WO2017035621A1 - Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível. - Google Patents

Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível. Download PDF

Info

Publication number
WO2017035621A1
WO2017035621A1 PCT/BR2016/050216 BR2016050216W WO2017035621A1 WO 2017035621 A1 WO2017035621 A1 WO 2017035621A1 BR 2016050216 W BR2016050216 W BR 2016050216W WO 2017035621 A1 WO2017035621 A1 WO 2017035621A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
fuel
gas
fuel cell
carbon
Prior art date
Application number
PCT/BR2016/050216
Other languages
English (en)
French (fr)
Inventor
Paulo Emílio Valadão MIRANDA
Ugo Andrea ICARDI
Original Assignee
Instituto Alberto Luiz Coimbra De Pós Graduação E Pesquisa De Engenharia – Coppe/Ufrj
Oxiteno S.A. Indústria E Comércio
Energiah Participações E Negócios Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Alberto Luiz Coimbra De Pós Graduação E Pesquisa De Engenharia – Coppe/Ufrj, Oxiteno S.A. Indústria E Comércio, Energiah Participações E Negócios Ltda. filed Critical Instituto Alberto Luiz Coimbra De Pós Graduação E Pesquisa De Engenharia – Coppe/Ufrj
Priority to EP16840444.0A priority Critical patent/EP3346536B1/en
Priority to US15/754,880 priority patent/US20180259586A1/en
Publication of WO2017035621A1 publication Critical patent/WO2017035621A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04305Modeling, demonstration models of fuel cells, e.g. for training purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the specific design of a fuel cell and lock top plate testing laboratory system, interconnect device and base plate for high temperature fuel cell stacking support.
  • multi-fuel operation in a range between 600 and 1000 ° C, such as solid oxide fuel cells and molten carbonate fuel cells, and methodology of use for controlling the residence time of the fuel in the reaction chamber with the special feature of allowing the direct use, without prior reform, of a wide range of fuels, even those rich in carbon and administered to the stack in an unhydrated state, such that no carbon deposition in the system occurs or is limited or devices.
  • the present invention relates generally to high temperature fuel cell systems in the range of 600 to 1000 ° C.
  • Fuel cells are electrochemical systems that directly convert the chemical energy stored in the fuel into electrical energy and heat without burning reaction and with high energy efficiency or can be used as a reactor for the electrochemical conversion of carbon fuels into specific hydrocarbons, for example to perform oxidative electrochemical coupling of methane to C2 type hydrocarbons such as ethane and ethane.
  • High temperature fuel cells can be, for example: solid oxide fuel cells and molten carbonate fuel cells. Es- Such fuel cells may operate on hydrogen or carbonaceous fuel flow, such as hydrocarbons, including alcohols, provided that internal or external reforming of the fuel cell is carried out.
  • the wet or dry oxidant gas flow (usually air or oxygen) feeds the cathodic region of the fuel cell, while the anodic region is fueled by the fuel flow, with the possible addition of water in the form of steam and / or oxygen and / or carbon dioxide.
  • High temperature batteries work between about 600 and 1000 ° C.
  • fuel cell anode In systems for the production of high temperature fuel cell electric power in the range of 600 to 1000 ° C, fuel cell anode is normally fed to a fuel stream, which may be dry or wet hydrogen. or carbonaceous fuels to which water vapor and / or oxygen and / or carbon dioxide may be added.
  • a fuel stream which may be dry or wet hydrogen. or carbonaceous fuels to which water vapor and / or oxygen and / or carbon dioxide may be added.
  • the fuel When carbonaceous fuel is used in a fuel cell, the fuel is normally reformed prior to producing hydrogen rich gas and carbon monoxide. In such a case, the fuel flow reaching the anode compartment is composed of at least hydrogen, carbon monoxide and water. The presence of water in the anode compartment of the fuel cell also contributes to improve its operation by ensuring better physicochemical stability.
  • the carbonaceous fuel is used by its direct admission to the fuel cell, without prior refurbishment, but by remodeling the fuel cell internally, directly at its anode, with the use of water vapor and / or oxygen and / or carbon dioxide.
  • US 13525663 A shows a method for optimizing the quantities of fuel cells supplied to the fuel cell, but always using water vapor added to the fuel stream, without evaluating the possibility of using anhydrous fuel. This invention aims to optimize system control for different working conditions.
  • JP2002104033A the problem related to the presence of impurities in the gas stream that is fed to the fuel cell by means of a fuel purification system has been solved.
  • the invention interestingly provides a solution for eliminating impurities already present in the fuel.
  • the case of carbon formation and deposition due to the use of carbonaceous fuels, including anhydrous, at high temperature is a different problem.
  • the gas stream is already clean and free of such impurities, it may generate and deposit solid carbon in the fuel cell anode access devices, flow channels and reaction gas outlet ducts.
  • JP2008229144A Another invention that addresses the problem of impurities in carbonaceous gas streams for fuel cell feeding is JP2008229144A, in which the focus is on the elimination of odorants present in fuels. [00013]
  • JP2004121535A solves the problem of the presence of impurities in exhaust gases without, however, addressing the issue of pyrolysis solid carbon production.
  • the invention JP200650176A very interestingly explains a method of producing metal interconnector for fuel cells, but does not solve the case of use of anhydrous carbon fuels, which in contact with metals at high temperatures can produce solid carbon.
  • JP201013817A proposes a system for reducing the deterioration of fuel cell electrodes using a special manufacturing technique, but in this case also the problem of carbon production and deposition with the direct use of carbon fuels is not solved.
  • the present invention enables the direct use of carbonaceous fuels, including anhydrous, in solid oxide fuel cells, especially those manufactured with the characteristics disclosed in patents PI0901921-9, PI0803895-3, PI0601210-8, as they refer to It refers to manufacturing methods and types of anode materials that have resistance to coking and pore clogging by the generation and deposition of solid carbon.
  • the present invention aims to present innovations relating to reactor for performance testing for electricity production or for electrochemical conversion of single-cell hydrocarbons, the form suitable for their interconnected mounting with other system devices, as well as interconnect device, closure top plate and base plate for high temperature fuel cell stacking support for multi-fuel operation, considering high temperature operation in a range between 600 and 1000 ° C, and laboratory system operation mode for unit and stack performance testing and methodology of use with respect to the control of the residence time of the fuel in the reaction chamber, allowing the direct use of carbonaceous fuels, including anhydrous, without the need for prior reform, ensuring the continued operation of the system without obstruction with solid carbon deposition of access routes the fuel to the fuel cell and the reaction gas outlet.
  • the present invention will discriminate specificities relating to laboratory system parts for unit stack and stack performance tests for electricity production or for electrochemical conversion of hydrocarbons, as well as for interconnection system.
  • top plate for closure and base plate for stacking support between single cells and methodology of use regarding the control of the residence time of the fuel in the reaction chamber.
  • This set consists of a gas supply and exhaust system, which promotes controlled fuel and oxidant supply, as well as exhaust gas reaction products, including devices such as flow controllers, valves, pressure transducers and pipelines.
  • pressure transducers in this case is useful to identify in real time the occurrence of some control in the direct admission of components.
  • carbonaceous fuels that have generated solid carbon deposition in the fuel cell access pathways, anode fuel distribution channels and reaction gases, with partial obstruction, enabling decision-making on cleaning and control methodologies of the process.
  • These devices are also useful for the real-time identification of gas and fuel leak problems as well as fuel cell breakdown by improperly connecting the battery anode and cathode compartments to fuel.
  • Being such reactor constituted by specific material and necessary to ensure no carbon deposition with direct use of carbonaceous fuels, including anhydrous.
  • the reactor for the laboratory performance testing system for electricity production or for the electrochemical conversion of hydrocarbons have configuration. specific flow channels to allow proper gas, fuel or oxidant distribution to the fuel cell electrodes.
  • the material used for manufacturing the reactor, interconnect plates, closure top plate, and stacking support base plate that ensures no solid carbon deposition, even when operating on fuel Carbon dioxide, including anhydrous, at elevated temperatures in the range 600 to 1000 ° C is made from zirconium oxide or cerium oxide based material doped with one or more of the oxides iatria, scandia, calcia, gadolinium, samaria, alumina and cobaltite, with a total amount of dopants up to 20% by weight.
  • the present invention shows the possibility of direct use of carbonaceous fuels, including anhydrous ones, in high operating temperature fuel cells, with drastic reduction or elimination of eventual carbon deposition in the fuel intake ducts, fuel cell anode flow channels and output ducts of reaction gases. This is accomplished by fabricating the properly configured fuel cell test system, utilizing anode inlet fuel flow control and making use of material specific to the manufacture of stack-resistant base, top and interconnect plates. coking.
  • the mentioned control factors and the geometrical configuration of the devices in the heated regions of the test system influence the residence time of the fuel in the mentioned regions.
  • Such residence time together with the materials selected for fabrication of the devices in the heated regions of the test system determine the possibility of drastically decreasing or eliminating eventual carbon deposition in the fuel inlet ducts in the anode flow channels of the fuel cell and reaction gas outlet ducts.
  • Figure 1 Schematic representation of the laboratory testing system for high temperature fuel cells.
  • Figure 1 shows six gas flow controllers, four anode gas controllers 1 and two cathode gas controllers 2. There are also one-way flow valves 3, reactor 4 and kiln 5, two pressure transducers 6, the electric charge 7 and the end of the exhaust gas lines 8.
  • Figure 2 Example of a design of a single fuel cell reactor half or base plate or top plate of a stack.
  • a complete reactor is formed by two equal halves between which there will be either a unit stack or a stack consisting of several unit cells separated by interconnecting plates.
  • Figure 2 shows the inlet 9 and the outlet 10 of the gases in the one-half reactor feed pipes and the gas inlet 11 and outlet 12 in the one-half reactor flow channels, as well as the thermocouple inlet 13 and flow channels 14.
  • Figure 3 Example of channel design for gas passageways (detail of a part of a reactor half). An enlargement of the flow channels 14 is shown in Figure 3.
  • Figure 4 Example of complete fuel cell reactor design, mounted with fuel cell 15 positioned between each half of reactor 4.
  • Figure 5 Example of a drawing of two stacking interconnect boards 16, containing a stack between them. Interconnect plates differ from base and top plates in that they have flow channels on both sides.
  • Figure 5 shows 2 interconnect boards 16 with a stack positioned between them.
  • the left side of the figure shows a three-dimensional drawing and the right side of the figure shows the same drawing, but in transparency, so that the pipes and gas passageways in the interconnection plates can be seen.
  • the present invention will discriminate specificities relating to laboratory system parts. These refer to parts for unit stack and stack performance tests for electricity production or for electrochemical conversion of hydrocarbons, those relating to the interconnect system, closure top plate and stacking support base plate. and methodology of use regarding the control of the residence time of the fuel in the reaction chamber.
  • the laboratory testing system for unit stack and stack performance testing for electricity production or for the con- Electrochemical version of hydrocarbons targets performance testing of fuel cells fueled by various fuels, including hydrogen, methane, ethanol or other hydrocarbons on the anode side and oxygen or air on the cathode side.
  • Oxidant-side feed can be effected with gases such as oxygen or air and also with the possibility of working with or without water vapor injection on either side of the fuel cell anode or cathode.
  • Working temperature between 600 and 1000 ° C and working pressure close to atmospheric pressure is expected.
  • the present invention aims to solve or drastically reduce this problem, which presents an obstacle to testing, because the carbon that forms is able to clog the fuel side (anode) feed and exhaust pipes as well as the anode side flow channels of the reactor.
  • the project has to be divided into different subsystems and each of them consists of one or more equipment including gas supply and exhaust, reactor heating system, electrical measurements and control, management, data storage and safety.
  • a necessary condition for the use of such a test bench is to have a gas network or gas cylinder of all the necessary gases or, if liquid fuels are used, a tank for its use. storage.
  • equipment capable of controlling and measuring the gas flows is required; These devices must supply the reactor either on the cathode side (oxidizing side: oxygen or air) or on the anode side (fuel side: hydrogen, methane, other hydrocarbons or alcohols).
  • oxidizing side oxygen or air
  • fuel side hydrogen, methane, other hydrocarbons or alcohols.
  • a pumping system using a pump or pressurized flow, is required prior to the flow controller (for example, a fuel such as ethanol is liquid at room temperature and atmospheric pressure).
  • Control of anode gas flow by means of flow controllers 1 is a necessary condition, as well as the design of inlet 9 and outlet 10 ducts and flow channels 14 of reactor 4 to achieve a residence time.
  • the fuel inside the system at high temperature in such a way that it does not facilitate solid carbon formation. Therefore, essential elements of this invention are the material used for component manufacture and the control of the fuel residence time in the heated regions of the system through the specific design of the components and the flow control of the combustible gases.
  • inert gas on both anodic and cathodic side is required.
  • nitrogen may be used for the purpose of cleaning the system prior to testing and also to ensure safety against explosion or combustion on the fuel side.
  • FIG. 1 In the left part of Figure 1 are represented six gas flow controllers 1, 2. Such controllers shown in Figure 1 are provided for four possible anodic gases introduced into the system by flow controllers 1, and two possible cathodic gases, flow through the controllers 2. The gases, after passing through the controllers 1,2 and through the one-way flow valves 3, will feed the reactor 4, which is positioned in the furnace 5. Before the reactor are visible two pressure transducers 6. On the right side of Figure 1 are the electrical charge 7 and the end of the exhaust gas lines 8. The entire assembly is positioned under a hood with exhaust system to eliminate the exhaust gas and others eventually. potentially hazardous leaks.
  • Heating system reactor Gases, fuel and oxidant, are regulated with convenient flows to enter reactor 4.
  • high temperature fuel cells work at temperatures that may require reactor 4 heating system 5 with temperature maintenance capability. at least 1000 ° C.
  • a system heat ramp appropriate to the type of fuel cell used is required to prevent differential thermal expansion of its different components from damaging the fuel cell. This is the reason why, for example, heating ramps with slow rates below 1 ° C per minute are used.
  • Ensuring mechanical compatibility of the fuel cell is facilitated by the use of materials with similar thermal expansion coefficients.
  • the reactor is made up of materials with a thermal expansion coefficient similar to the stack material and the sealing material.
  • planar solid oxide fuel cell (PaCOS) test reactors are usually made of steel, for example, with ferritic stainless steel called CROFER, a material that catalyzes the pyrolysis of coal, including anhydrous, fuel fed into the reactor. 4, causing the production of high amounts of solid carbon already in their feed pipes.
  • the reactor material 4 used In order to solve or reduce the problem of solid carbon formation in the high temperature regions of the system, that is, when they reach thermodynamically favorable reaction conditions for pyrolysis for the fuel used, the reactor material 4 used must have specific characteristics. , such as not catalyzing pyrolysis of fuel fed into the anode compartment at operating temperature and having mechanical strength and coefficient of thermal expansion appropriate to the working conditions and PaCOS component materials. To solve this problem, it was designed to a reactor 4 made of zirconia or ceria material.
  • zirconium oxide-based or cerium oxide-based material doped with one or more of the yttria, scald, calcium, gadolinium, samaria, alumina and cobaltite oxides, with a total amount of dopants up to 20% by weight.
  • Figure 2 the inlet 9 and outlet 10 of the feed gases from one of the reactor halves converging at the inlet and outlet 12 of the flow channels 14 are shown, where the gas contacts the stack a Fuel 15.
  • Figure 2 also shows the thermocouple inlet 13 for reactor temperature measurement 4 in a center position at half thickness to half the length of flow channels 14.
  • FIG. 3 An enlargement of flow channels 14 is shown in Figure 3.
  • Figure 4 shows the complete reactor 4 showing a fuel cell 15 between the two halves of reactor 4.
  • a sealing element for example mica, is used. , between the halves of reactor 4 and the fuel cell 15.
  • the equipment commonly used in fuel cell (PaC) tests is called electronic charge 7: it is a device that uses electronic components, being able to continuously vary the load, ie electric current, within a certain range. while measuring the electrical variables.
  • the electronic load 7 can then regulate the resistance of the PaC load circuit to obtain different measuring points, characterized as current and voltage.
  • Device control and data storage are performed via serial communication using the RS232 protocol.
  • a hardware-software system which, through a computer capable of reading the software instructions, can control and act on each device to optimize the assays and store the data. , which can then be analyzed to evaluate the performance of each fuel cell tested.
  • the software must also be able to control the test bench security system, which together with the laboratory security system must act to keep the test environment safe.
  • the software mentioned was specially developed for the test bench described here. Therefore, when the software or instruction set is executed by a computer, the computer will control and drive the test system devices as desired.
  • FIG. 2 shows an example base plate (or top plate) for stacking.
  • Figure 5 shows two interconnect boards with a fuel cell between them.
  • the left side of the figure shows a three-dimensional drawing of interconnect plates for stacking, and the right side of the figure shows the same but transparent drawing to show the holes and gas passageways in the plates.
  • gas passage can only occur through flow channels positioned on the same side as the gas conducting hole emerges.
  • the plates are designed to pass combustible gas on the anode side and oxidizing gas on the cathode side without being able to mix.
  • the material used for the construction of reactor 4 is the same as that used in the manufacture of interconnect plates, closure top plate, stacking support base plate, and stacking gas supply pipes consisting of of zirconium oxide or cerium oxide based material doped with one or more of the oxides iatria, scandia, calcia, gadolinium, samaria, alumina and cobaltite, with a total amount of dopants up to 20% by weight.
  • a full stack is consisting of fuel cells and overlapping interconnect plates, also containing top plate for closure and base plate for stacking support.
  • the top and bottom plates used at the ends of the stack have flow channels on the inner side only, which is in contact with a fuel cell.
  • the present invention allows the elimination or drastic reduction of carbon formation in the case of anodic feed performed with carbonaceous fuels, including anhydrous.
  • This elimination or drastic reduction of carbon formation can be achieved with the following essential elements:
  • reactor 4 (and interconnect plates, closure top plate and stacking support base plate) is not a catalyst for pyrolysis of coal, including anhydrous, at high temperatures in the regions. high temperature of the system, that is, that reach conditions of reaction thermally favorable to the pyrolysis for the fuel used and;
  • Control of the residence time of the combustible gas in the heated regions of the system is made by controlling the gas flow and the specific design of the components.
  • the amount of solid carbon eventually produced is a function of the reaction rate of thermal fuel pyrolysis at operating temperature and the residence time of the fuel in the heated regions of the system. As the temperature increases, the reaction rate increases and therefore, to hinder eventual carbon production by pyrolysis, the fuel residence time in the heated regions of the system is reduced.
  • the design of the pipes and channels considers this residence time of the supply gas, and must be such that it should not allow the production of carbon, but rather, the reaction of electricity production and / or the electrochemical conversion of hydrocarbons. .
  • the fuel feed duct section, flow channel access holes and their geometry shall be optimized to prevent or limit possible carbon deposition by pyrolysis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Abstract

A presente invenção refere-se a um sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos, inclusive anidros, sem promo- ver ou limitando a deposição de carbono nos dutos de entrada e saída de ga- ses, assim como nos canais de fluxo do anodo, o sistema compreendendo: um forno (5) contendo um reator (4), o reator consistindo de pelo menos duas placas de interconexão e pelo menos uma pilha a combustível (15) localizada entre duas placas de interconexão, em que uma das placas de interconexão em contato com uma pilha a combustível é um lado catódico, o qual recebe gás oxidante, e a outra placa de interconexão em contato com a referida pilha a combustível é um lado anódico, o qual recebe gás combustível, o sistema compreendendo ainda um meio de alimentação e exaustão controlada de gases conectado ao reator (4), em que cada placa compreende ainda uma pluralidade de canais de fluxo (14) em sua superfície superior e inferior, onde o gás oxi- dante e o gás combustível passam através dos canais de fluxo (14) para entrar em contato com os eletrodos da pilha a combustível (15), e em que as placas de base, de topo e de interconexão são formadas com um material a base de óxido de zircônio ou a base de óxido de cério dopados com um ou mais dentre os óxidos ítria, escândia, calcia, gadolínia, samária, alumina e cobaltita, com quantidade total de dopantes de até 20 % em peso.

Description

"SISTEMA DE TESTE PARA PILHAS A COMBUSTÍVEL DE ALTA TEMPERATURA DE OPERAÇÃO MULTICOMBUSTÍVEL, O QUAL PERMITE A UTILIZAÇÃO DIRETA DE COMBUSTÍVEIS CARBONOSOS SEM PROMOVER A DEPOSIÇÃO DE CARBONO NOS ELEMENTOS DE PASSAGEM DE COMBUSTÍVEL"
CAMPO TÉCNICO
[0001] A presente invenção refere-se ao projeto específico de sistema laboratorial para testes para pilhas a combustível e de placa de topo para fechamento, de dispositivo de interconexão e de placa de base para suporte de empilhamento de pilhas a combustível de alta temperatura de operação multi- combustível numa faixa entre 600 e 1000°C, tais como pilhas a combustível de óxido sólido e pilhas a combustível de carbonato fundido e metodologia de utilização no que se refere ao controle do tempo de residência do combustível na câmara de reação, com a característica especial de possibilitar a utilização direta, sem reforma prévia, de uma gama variada de combustíveis, mesmo aqueles ricos em carbono e administrados à pilha em estado não hidratado, de tal forma que não ocorra ou que seja limitada a deposição de carbono no sistema ou dispositivos.
DESCRIÇÃO DO ESTADO DA TÉCNICA
[0002] A presente invenção é relativa, em geral, aos sistemas de pilha a combustível de alta temperatura, numa faixa entre 600 e 1000°C. As pilhas a combustível são sistemas eletroquímicos que convertem diretamente a energia química armazenada no combustível em energia elétrica e calor, sem reação de queima e com alta eficiência energética ou podem ser utilizadas como rea- tor para a conversão eletroquímica de combustíveis carbonosos em hidrocarbonetos específicos, por exemplo para realizar o acoplamento eletroquímico oxidativo do metano em hidrocarbonetos do tipo C2, tais como eteno e etano. As pilhas a combustível de alta temperatura podem ser, por exemplo: pilhas a combustível de óxido sólido e pilhas a combustível de carbonato fundido. Es- sas pilhas a combustível podem trabalhar com fluxo de hidrogénio ou de combustível carbonoso, tal como os hidrocarbonetos, inclusive álcoois, desde que seja feita reforma interna ou reforma prévia externa à pilha a combustível. Nesses tipos de sistemas o fluxo de gás oxidante (normalmente ar ou oxigénio), seco ou úmido, alimenta a região catódica da pilha a combustível, enquanto a região anódica é alimentada pelo fluxo de combustível, com eventual adição de água em forma de vapor e/ou de oxigénio e/ou de dióxido de carbono. As pilhas de altas temperaturas trabalham entre cerca de 600 e 1000°C.
[0003] Dependendo do tipo de eletrólito usado, nessas temperaturas há duas configurações possíveis. Numa configuração para eletrólito condutor de íons oxigénio, o transporte desses íons se dá desde o cátodo, onde é admitido o gás oxidante, o qual ioniza-se e se difunde através do eletrólito, até o ânodo, onde é admitido o combustível e onde os íons oxigénio reagem com o combustível, produzindo energia elétrica, calor, moléculas de água e gases ricos em carbono. Numa outra configuração para eletrólito condutor de íons hidrogénio, o transporte desses íons se dá desde o ânodo, onde é admitido o combustível, que reage para produzir íons hidrogénio, os quais se difundem através do eletrólito, até o cátodo, onde é admitido gás oxidante e onde os íons hidrogénio reagem com o oxidante, produzindo energia elétrica, calor e moléculas de água. Essas reações produzem elétrons, que por meio de um circuito externo, circulam desde o ânodo até o cátodo, gerando eletricidade pela produção de corrente elétrica. No caso de uso de combustível carbonoso, inclusive anidro, em alta temperatura, normalmente é possível a formação de carbono no reator ou no empilhamento devido à pirólise do combustível, que pode gradativamente preencher os tubos ou os canais de fluxo de gases dos dispositivos de alimentação do ânodo da pilha a combustível. A presente invenção pretende resolver ou diminuir drasticamente a produção de carbono durante o funcionamento em alta temperatura da pilha a combustível operando com fluxo de combustível carbonoso, inclusive anidro. [0004] Em sistemas para produção de energia elétrica com pilha a combustível de alta temperatura, numa faixa de 600 a 1000°C, é normalmente feita alimentação no ânodo da pilha a combustível de um fluxo de combustível, que pode ser hidrogénio seco ou úmido ou combustíveis carbonosos aos quais podem ser adicionados vapor d' agua e/ou oxigénio e/ou dióxido de carbono.
[0005] No caso da alimentação direta de hidrogénio seco ou com vapor d' agua, não ocorrem reações de caráter químico nos dispositivos de alimentação do fluxo de gás até o ânodo, onde acontecem reações eletroquímicas.
[0006] Quando é utilizado combustível carbonoso numa pilha a combustível, normalmente realiza-se reforma prévia desse combustível a fim de produzir gás rico em hidrogénio e monóxido de carbono. Nesse caso, o fluxo de combustível que atinge o compartimento anódico é composto, pelo menos, de hidrogénio, monóxido de carbono e água. A presença de água no compartimento anódico da pilha a combustível também contribui para melhorar o seu funcionamento, por garantir melhor estabilidade físico-química.
[0007] Numa outra configuração, faz-se uso do combustível carbonoso através da sua admissão direta na pilha a combustível, sem realizar reforma prévia, porém, realizando reforma internamente à pilha a combustível, dire- tamente no seu ânodo, com o uso de vapor d' agua e/ou oxigénio e/ou dióxido de carbono.
[0008] Numa configuração especial, que prevê o uso de combustível carbonoso, inclusive anidro, em temperaturas na faixa entre 600 e 1000°C, há grande probabilidade de formação e deposição de carbono sólido no sistema de admissão do combustível até o compartimento anódico da pilha a combustível, nele próprio e nos dutos de saída de gases de reação, devido à ocorrência de reações de pirólise. Se tal problema não for resolvido, o carbono depositado poderá preencher parcial ou totalmente os dispositivos de alimentação do compartimento anódico da pilha a combustível, dificultando ou mesmo impedindo o transporte do combustível e ainda danificar e até degradar total- mente o ânodo.
[0009] Uma tentativa de resolução do problema mencionado de formação e deposição de carbono num sistema de testes para pilhas-botão oriundo da pirólise de combustível carbonoso diretamente admitido numa pilha a combustível de óxido sólido foi descrita na patente CN200810119204A. Essa invenção relata solucionar tal problema usando um sistema de resfriamento com água no trajeto do combustível até a admissão no ânodo da pilha a combustível, uma vez que na baixa temperatura obtida com tal resfriamento a pirólise do combustível não é favorecida. Essa invenção apresenta uma solução para o problema mencionado somente no caso de testes de pilhas-botão.
[00010] A invenção US 13525663 A mostra um método para otimizar as quantidades de gases de alimentação à pilha a combustível, mas sempre com uso de vapor d' água adicionado ao fluxo de combustível, sem avaliar a possibilidade de uso de combustível anidro. Essa invenção objetiva otimizar o controle do sistema para diferentes condições de trabalho.
[00011] Com a invenção JP2002104033A foi resolvido o problema relacionado à presença de impurezas no fluxo de gases que é alimentado à pilha a combustível por meio de um sistema de purificação do combustível. A invenção apresenta de forma interessante solução para eliminar as impurezas já presentes no combustível. Entretanto, o caso da formação e deposição de carbono devido ao uso de combustíveis carbonosos, inclusive anidros, em alta temperatura é um problema diferente. Nesse caso, mesmo que o fluxo de gás já seja limpo, não contendo tais impurezas, poderá gerar e depositar carbono sólido nos dispositivos de acesso ao ânodo da pilha a combustível, nos canais de fluxo e nos dutos de saída dos gases de reação.
[00012] Outra invenção que aborda o problema de impurezas em fluxos de gases carbonosos para alimentação de pilha a combustível é a JP2008229144A, na qual o foco é a eliminação de odorantes presentes nos combustíveis. [00013] Na invenção JP2004121535A é apresentada resolução para o problema da presença de impurezas em gases de exaustão, sem, entretanto, abordar a questão da produção de carbono sólido por pirólise.
[00014] A invenção JP200650176A explica de forma muito interessante um método de produção de interconector metálico para pilhas a combustível, porém, não resolve o caso de uso de combustíveis carbonosos anidros, que em contato com metais em altas temperaturas pode produzir carbono sólido.
[00015] A invenção JP201013817A propõe um sistema para diminuir a deterioração de eletrodos de pilhas a combustível usando uma técnica especial de fabricação, porém, também nesse caso não é resolvido o problema de produção e deposição de carbono com o uso direto de combustíveis carbonosos.
[00016] Diferentes metodologias e equipamentos para a detecção de monóxido de carbono são mostrados nas invenções US2003387004A, DE19780491A, JP1997537921A e DE19780491T. Entretanto, a questão da produção e deposição de carbono com o uso direto de combustíveis carbonosos em temperaturas elevadas não é abordada, não se apresentando soluções para tal problema.
[00017] Um dispositivo para simulação térmica da operação de pilhas a combustível de óxido sólido é apresentado na invenção EP2005112297A, sem, neste caso também abordar o problema da produção e deposição de carbono com o uso direto de combustíveis carbonosos em temperaturas elevadas.
[00018] A presente invenção viabiliza a utilização direta de combustíveis carbonosos, inclusive anidros, em pilhas a combustível de óxido sólido, principalmente aquelas fabricadas com as características desvendadas nas patentes PI0901921-9, PI0803895-3, PI0601210-8, já que referem-se a métodos de fabricação e tipos de materiais para ânodos que possuem resistência à coqueifi- cação e ao entupimento de poros pela geração e deposição de carbono sólido. OBJETIVOS DA INVENÇÃO
[00019] A presente invenção tem como objetivos apresentar inovações re- ferentes a reator para teste de desempenho para produção de eletricidade ou para a conversão eletroquímica de hidrocarbonetos de pilha unitária, a forma adequada para sua montagem interligada com outros dispositivos do sistema e também dispositivo de interconexão, placa de topo para fechamento e placa de base para suporte de empilhamento de pilhas a combustível de alta temperatura de operação multi-combustível, considerando operação em temperaturas elevadas, numa faixa entre 600 e 1000°C, e o modo de operação de sistema laboratorial para testes de desempenho de pilhas unitárias e de empilhamentos e metodologia de utilização no que se refere ao controle do tempo de residência do combustível na câmara de reação, possibilitando a utilização direta de combustíveis carbonosos, inclusive anidros, sem o requerimento da realização de reforma prévia, garantindo a operação continuada do sistema sem a obstrução com deposição de carbono sólido das vias de acesso do combustível à pilha a combustível e de saída dos gases de reação.
DESCRIÇÃO RESUMIDA DA INVENÇÃO
[00020] Para alcançar os objetivos aqui detalhados, a presente invenção discriminará especificidades referentes a partes de sistema laboratorial para testes de desempenho de pilha unitária e de empilhamento para produção de eletricidade ou para a conversão eletroquímica de hidrocarbonetos, assim como relativo a sistema de interconexão, placa de topo para fechamento e placa de base para suporte de empilhamento entre pilhas unitárias e metodologia de utilização no que se refere ao controle do tempo de residência do combustível na câmara de reação. Tal conjunto é composto por sistema de alimentação e exaustão de gases, que promove a alimentação controlada de combustível e oxidante, assim como a exaustão dos gases produtos de reação, incluindo dispositivos tais como controladores de fluxo, válvulas, transdutores de pressão e tubulações.
[00021] O uso de transdutores de pressão neste caso é útil para identificar em tempo real a ocorrência de algum descontrole na admissão direta de com- bustíveis carbonosos que tenha gerado a deposição de carbono sólido nas vias de acesso à pilha a combustível, nos canais de distribuição de combustível no ânodo e na saída dos gases de reação, com obstrução parcial, possibilitando a tomada de decisão sobre metodologias de limpeza e controle do processo. Esses dispositivos também são úteis para a identificação em tempo real de problemas relacionados à ocorrência de vazamento de gases, tanto do combustível quanto do oxidante, assim como referente à quebra da pilha a combustível, conectando indevidamente os compartimentos do ânodo e do cátodo da pilha a combustível.
[00022] O sistema de testes laboratoriais de desempenho para produção de eletricidade ou para a conversão eletroquímica de hidrocarbonetos e o sistema de interconexão, com placa de topo para fechamento e placa de base para suporte de empilhamento entre pilhas unitárias em configuração de empilhamento curto, utilizam reator com sistema de aquecimento. Sendo tal reator constituído por material específico e necessário para garantir a não deposição de carbono com utilização direta de combustíveis carbonosos, inclusive anidros.
[00023] Adicionalmente, o reator para o sistema de testes laboratoriais de desempenho para produção de eletricidade ou para a conversão eletroquímica de hidrocarbonetos, as placas de interconexão, a placa de topo para fechamento e placa de base para suporte entre pilhas unitárias, possuem configuração específica de canais de fluxo para permitir a adequada distribuição de gases, combustível ou oxidante, nos eletrodos da pilha a combustível.
[00024] Numa configuração específica, o material utilizado para a fabricação do reator, das placas de interconexão, da placa de topo para fechamento e da placa de base para suporte do empilhamento referido que garante a não deposição de carbono sólido, mesmo operando com combustível carbonoso, inclusive anidro, em temperaturas elevadas, na faixa entre 600 e 1000°C, é fabricado com material a base de óxido de zircônio ou a base de óxido de cério dopados com um ou mais dentre os óxidos ítria, escândia, calcia, gadolínia, samaria, alumina e cobaltita, com quantidade total de dopantes de até 20 % em peso.
[00025] Nas configurações da presente invenção em que se realizam testes laboratoriais de desempenho de pilhas a combustível unitárias ou de empilhamentos curtos para produção de eletricidade ou para a conversão eletro- química de hidrocarbonetos, que não produzem com reações eletroquímicas a quantidade necessária de calor para garantir a manutenção da temperatura desejada de operação, na faixa entre 600 e 1000°C, utiliza-se sistema especial de aquecimento, controle e monitoramento de temperatura, que permite montagem facilitada e otimizada dos dispositivos descritos nesta invenção com suas características específicas, garantindo ainda o controle de operação.
[00026] O correto funcionamento, seja do sistema laboratorial de testes de desempenho de pilhas a combustível unitárias ou de empilhamentos para produção de eletricidade ou para a conversão eletroquímica de hidrocarbonetos, seja da operação real de empilhamentos autos suficientes em calor, depende do uso de sistemas convencionais para a operação de pilhas a combustível. Nas configurações apresentadas na presente invenção, estes sistemas convencionais requereram ações específicas de desenvolvimento para adaptação ao uso referente a programas computacionais de operação e controle. Eles incluem sistema de medidas elétricas utilizando dispositivo de carga eletrônica, assim como sistema de controle, gestão, armazenamento de dados, segurança de operação e interconexão com outros sistemas de utilização da energia elétrica gerada.
[00027] Em resumo, a presente invenção mostra a possibilidade da utilização direta de combustíveis carbonosos, inclusive anidros, em pilhas a combustível de temperatura elevada de operação, com diminuição drástica ou eliminação de eventual deposição de carbono nos dutos de entrada de combustível, nos canais de fluxo do ânodo da pilha a combustível e nos dutos de saída de gases de reação. Isso é conseguido com a fabricação do sistema de testes da pilha a combustível com configuração adequada, utilizando controle do fluxo de combustível admitido no ânodo e fazendo uso de material específico para a fabricação de placas de base, de topo e de interconexão do empilhamento resistentes à coqueificação.
[00028] Os fatores de controle mencionados e a configuração geométrica dos dispositivos nas regiões aquecidas do sistema de testes influenciam no tempo de residência do combustível nas regiões mencionadas. Tal tempo de residência em conjunto com os materiais selecionados para fabricação dos dispositivos nas regiões aquecidas do sistema de testes determinam a possibilidade de que haja diminuição drástica ou eliminação de eventual deposição de carbono nos dutos de entrada de combustível, nos canais de fluxo do ânodo da pilha a combustível e nos dutos de saída de gases de reação.
DESCRIÇÃO DAS FIGURAS
[00029] A presente invenção será, a seguir, descrita fazendo-se referência a uma concretização preferida ilustrada nos desenhos anexos, dos quais:
[00030] Figura 1 : representação esquemática do sistema de testes laboratoriais para pilhas a combustível de alta temperatura.
[00031] Na Figura 1 são representados seis controladores de fluxo de gás, sendo quatro controladores de gases anódicos 1 e dois controladores de gases catódicos 2. Há ainda as válvulas de fluxo em sentido único 3, o reator 4 e o forno 5, dois transdutores de pressão 6, a carga elétrica 7 e o fim das linhas dos gases de exaustão 8.
[00032] Figura 2: exemplo de desenho de uma metade de reator para pilha a combustível unitária ou ainda da placa de base ou da placa de topo de um empilhamento. Um reator completo é formado por duas metades iguais entre as quais existirá seja uma pilha unitária, seja um empilhamento, composto por diversas pilhas unitárias separadas por placas de interconexão.
[00033] Na Figura 2 são apresentados a entrada 9 e a saída 10 dos gases nos tubos de alimentação de uma metade do reator e a entrada 11 e a saída 12 de gases nos canais de fluxos de uma metade do reator, assim como, a entrada do termopar 13 e os canais de fluxo 14.
[00034] Figura 3: Exemplo de desenho dos canais para passagens do gás (detalhe de uma parte de uma metade do reator). Na Figura 3 é representada uma ampliação dos canais de fluxo 14.
[00035] Figura 4: exemplo de desenho do reator completo para pilhas a combustível, montado com pilha a combustível 15 posicionada entre cada uma das metades do reator 4.
[00036] Figura 5: exemplo de desenho de duas placas de interconexão para empilhamento 16 , contendo uma pilha entre elas. As placas de interconexão diferenciam- se das placas de base e de topo por possuírem canais de fluxo de ambos os lados.
[00037] A Figura 5 mostra 2 placas de interconexão 16 com uma pilha posicionada entre elas. No lado esquerdo da figura apresenta- se desenho em três dimensões e na parte direita da figura mostra-se o mesmo desenho, porém em transparência, para que se possam visualizar os tubos e os canais de passagem dos gases nas placas de interconexão.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[00038] Para alcançar os objetivos aqui detalhados, a presente invenção discriminará especificidades referentes a partes de sistema laboratorial. Estas referem- se a partes para testes de desempenho de pilha unitária e de empilhamento para produção de eletricidade ou para a conversão eletroquímica de hidrocarbonetos, aquelas relativas ao sistema de interconexão, a placa de topo para fechamento e a placa de base para suporte de empilhamento e metodologia de utilização no que se refere ao controle do tempo de residência do combustível na câmara de reação.
[00039] O sistema de testes laboratoriais para testes de desempenho de pilha unitária e de empilhamento para produção de eletricidade ou para a con- versão eletroquímica de hidrocarbonetos tem como alvo testes de desempenho de pilhas a combustível alimentadas com vários combustíveis, dentre os quais hidrogénio, metano, etanol ou outros hidrocarbonetos no lado anódico e oxigénio ou ar no lado catódico. A alimentação no lado do oxidante pode ser efe- tuada com gases tais como oxigénio ou ar e também com a possibilidade de trabalhar com ou sem injeção de vapor d' água em ambos os lados, no ânodo ou no cátodo da pilha a combustível. Prevê-se temperatura de trabalho entre 600 e 1000°C e pressão de trabalho próxima à pressão atmosférica. Estas condições conduzem, eventualmente, a um problema, no caso de uso de combustíveis que contêm carbono, da possível pirólise desses combustíveis.
[00040] A presente invenção objetiva resolver ou reduzir drasticamente este problema, que apresenta-se como um obstáculo aos testes, porque o carbono que se forma é capaz de entupir os tubos de alimentação e exaustão no lado do combustível (ânodo), assim como os canais de fluxos do lado anódico do reator. O projeto tem que ser dividido em diferentes subsistemas e cada um deles é constituído de um ou mais equipamentos incluindo alimentação e exaustão dos gases, sistema de aquecimento para o reator, medidas elétricas e controle, gestão, armazenamento dos dados e segurança.
Sistema de alimentação e exaustão dos gases
[00041] Uma condição necessária para o uso de uma bancada de testes desse tipo é dispor-se de uma rede de gases ou cilindros de gases de todos os gases necessários ou, no caso de uso de combustíveis líquidos, de um tanque para o seu armazenamento. Para alimentar o reator onde vai ser colocada a pilha a combustível objeto do ensaio, são necessários equipamentos capazes de controlar e medir os fluxos dos gases; esses aparelhos têm que alimentar o reator seja no lado catódico (lado oxidante: oxigénio, ou ar), seja no lado anódico (lado do combustível: hidrogénio, metano, outros hidrocarbonetos ou álcoois). [00042] No caso de uso de combustíveis líquidos é requerido o uso de um sistema de bombeamento, com utilização de bomba ou fluxo pressurizado, antes do controlador de fluxo (por exemplo, um combustível como o etanol é liquido à temperatura ambiente e pressão atmosférica).
[00043] O controle do fluxo de gás anódico, por meio dos controladores de fluxo 1, é condição necessária, assim como o desenho de dutos de entrada 9 e saída 10 e canais de fluxo 14 do reator 4, para conseguir um tempo de residência do combustível no interior do sistema em alta temperatura de forma tal que não facilite a formação de carbono sólido. Assim sendo, são elementos essenciais desta invenção o material utilizado para a fabricação de componentes e o controle do tempo de residência do combustível nas regiões aquecidas do sistema através do projeto específico dos componentes e do controle de fluxo dos gases combustíveis.
[00044] Adicionalmente, é requerida a possibilidade de alimentar gás inerte em ambos os lados, anódico e catódico. Por exemplo, pode-se usar nitrogénio, com os objetivos de limpar o sistema antes dos ensaios e também para garantir segurança contra explosão ou combustão no lado do combustível.
[00045] Existe a possibilidade de explosão ou combustão em condição na qual o sistema, estando desligado, admite a entrada de ar no reator e, quando em alta temperatura com injeção de combustível, a relação combutível-ar atinja percentual capaz de deflagrar combustão espontânea. Por isso, torna-se necessário retirar o ar eventualmente presente no compartimento anódico com uso de uma vazão de nitrogénio antes de alimentar os gases combustíveis inflamáveis.
[00046] No caso da alimentação anódica ocorrer com combustíveis carbonosos anidros, é necessário avaliar, com o apoio de uma medição externa, a possibilidade de formação de carbono oriunda da ocorrência de pirólise do gás combustível na alta temperatura de trabalho, o que resulta em entupimen- to do sistema. Uma forma de detectar tal problema é através da medição de pressão antes da entrada do fluxo de combustível no reator. Essa medição é efetuada, por exemplo, pelo uso de transdutores de pressão. Os transdutores de pressão podem ser também um meio para avaliar problemas de quebra da pilha a combustível ou vazamento dos gases para fora do reator. No caso em que a pilha a combustível é quebrada, os fluxos anódico e catódico podem se misturar, resultando em uma variação na pressão das linhas anódica ou catódica.
[00047] Caso haja formação de carbono, conforme acima descrito, resguardadas as condições de segurança, alimenta-se oxigénio no lado anódico, para promover a sua reação com o carbono formado pela pirólise, resultando na produção de óxidos de carbono e na consequente limpeza do reator. Os gases de exaustão em alta temperatura na saída do reator têm que ser conduzidos até um sistema adequado de exaustão para evitar qualquer possibilidade de ocorrência de ambiente inseguro. A Figura 1 mostra o projeto do sistema completo.
[00048] Na parte esquerda da Figura 1 estão representados seis controladores de fluxo de gás 1, 2. Tais controladores mostrados na Figura 1 são previstos para quatro possíveis gases anódicos, introduzidos no sistema por controladores de fluxo 1, e dois possíveis gases catódicos, introduzidos no sistema por controladores de fluxo 2. Os gases, depois de passar pelos controladores 1,2 e através das válvulas de fluxo em sentido único 3, vão alimentar o reator 4, que está posicionado no forno 5. Antes do reator são visíveis os dois transdutores de pressão 6. No lado direto da Figura 1 estão representados a carga elétrica 7 e o término das linhas dos gases de exaustão 8. Todo o conjunto é posicionado sob uma coifa com sistema de exaustão para eliminar os gases de exaustão e outros eventualmente resultantes de vazamentos, potencialmente perigosos.
Reator com sistema de aquecimento [00049] Os gases, combustível e oxidante, são regulados com fluxos convenientes para dar entrada no reator 4. Todavia, as pilhas a combustível de alta temperatura trabalham em temperaturas que podem requerer sistema de aquecimento 5 do reator 4 com capacidade de manutenção de temperatura de trabalho de, pelo menos, até 1000°C. E necessário o uso de rampa de aquecimento do sistema adequada ao tipo de pilha a combustível utilizada para evitar que a dilatação térmica diferencial dos seus diferentes componentes cause danos à pilha a combustível. Essa é a motivação pela qual utilizam-se, por exemplo, rampas de aquecimento com taxas lentas, inferiores a 1°C por minuto. A garantia de compatibilidade mecânica da pilha a combustível é facilitada com o uso de materiais com coeficientes de dilatação térmica similares. Assim, o reator é constituído de materiais com coeficiente de dilatação térmica similar ao material da pilha e do material de vedação.
[00050] No caso de uso de combustíveis carbonosos, inclusive anidros, o material do reator pode ocasionar o problema de favorecer a formação de carbono. De fato, os reatores para testes de pilha a combustível de óxido sólido (PaCOS) planares são normalmente fabricados com aço, por exemplo, com o aço inoxidável ferrítico denominado CROFER, material que catalisa a pirólise do combustível carbonoso, inclusive anidro, alimentado ao reator 4, provocando a produção de elevadas quantidades de carbono sólido já nos seus tubos de alimentação.
[00051] Para resolver ou diminuir o problema de formação de carbono sólido nas regiões de temperatura elevada do sistema, isto é, que atingem condições de reação termodinamicamente favorável à pirólise para o combustível utilizado, o material do reator 4 utilizado tem que possuir caraterísticas específicas, tais como não catalisar a pirólise do combustível alimentado no compartimento anódico na temperatura de operação e ter resistência mecânica e coeficiente de dilatação térmica adequados às condições de trabalho e aos materiais componentes da PaCOS. Para solucionar esse problema, foi projeta- do um reator 4 fabricado com material a base de zircônia ou céria. Numa configuração específica foi utilizado material a base de óxido de zircônio ou a base de óxido de cério dopados com um ou mais dentre os óxidos ítria, escân- dia, calcia, gadolínia, samária, alumina e cobaltita, com quantidade total de dopantes de até 20 % em peso.
[00052] Além disso, cuidados especiais também foram tomados em relação ao projeto do reator 4. Neste caso, foram realizadas simulações matemáticas para avaliar a distribuição de velocidade dos gases nos canais de fluxo 14 existentes no reator 4 com o objetivo de direcionar de forma adequada a distribuição de combustível no ânodo, garantindo ainda a resistência mecânica em alta temperatura requerida do material cerâmico usado no corpo do reator 4. A convergência em resultados otimizados nestas simulações, permitiram o projeto de fabricação do reator cerâmico 4 especialmente fabricado para uso em testes de PaCOS.
[00053] O desenho de um exemplo de uma metade do reator 4 projetado e construído é representado na Figura 2. A outra metade (para formar o reator completo) é igual e na montagem da pilha a combustível, as duas metades de reator são colocadas uma por sobre a outra, tendo a pilha a combustível entre elas (Figura 4).
[00054] Na Figura 2 são apresentados, os tubos de entrada 9 e saída 10 dos gases de alimentação de uma das metades do reator que convergem na entrada l i e saída 12 dos canais de fluxo 14, onde o gás entra em contato com a pilha a combustível 15. A Figura 2 também apresenta a entrada do termopar 13 para medida da temperatura do reator 4 numa posição centralizada à meia espessura, até a metade do comprimento dos canais de fluxo 14.
[00055] Na Figura 3 é apresentada uma ampliação dos canais de fluxo 14. A Figura 4 apresenta o reator 4 completo, mostrando uma pilha a combustível 15 entre as duas metades do reator 4. Utiliza-se um elemento vedante, por exemplo, mica, entre as metades do reator 4 e a pilha a combustível 15. Sistema para medidas elétricas
[00056] Para avaliar o desempenho elétrico das pilhas a combustível é preciso um equipamento que possa aplicar a carga elétrica desejada e medir a tensão e a corrente elétrica produzidas pela pilha a combustível. O equipamento normalmente usado em testes de pilha a combustível (PaC) é denominado carga eletrônica 7: trata-se de um dispositivo que utiliza componentes eletrônicos, sendo capaz de variar de forma contínua a carga, isto é, corrente elétrica, em um determinado intervalo, efetuando ao mesmo tempo a medição das variáveis elétricas. A carga eletrônica 7 pode então regular a resistência do circuito de carga da PaC para se obter diferentes pontos de medição, caracterizados como corrente e tensão. O controle do dispositivo e o armazenamento dos dados são efetuados através de uma comunicação serial, que utiliza o protocolo RS232.
Sistema de análise dos gases de saída do ânodo
[00057] No caso de uso de pilha a combustível para conversão eletroquí- mica de hidrocarbonetos é necessário realizar análise dos gases de saída do ânodo para avaliar o rendimento da reação de conversão nos produtos finais. Tal análise pode ser efetuada por meio de cromatografia gasosa ou com o uso de analisador de massas. .
Sistema de controle, gestão, armazenamento dados e segurança
[00058] Para gerenciar todos os vários dispositivos descritos anteriormente, é necessário um sistema hardware-software, que por meio de um computador capaz de ler as instruções do software, possa controlar e atuar em cada dispositivo, para otimizar os ensaios e armazenar os dados, os quais poderão em seguida ser analisados para avaliar o desempenho de cada pilha a combustível testada. O software deve poder também controlar o sistema de segurança da bancada de testes, que junto com o sistema de segurança do laboratório tem que atuar para manter o ambiente do ensaio seguro. O software mencionado foi especialmente desenvolvido para a bancada de testes aqui descrita. Sendo assim, quando o software ou conjunto de instruções for executado por um computador, o computador irá controlar e acionar os dispositivos do sistema de teste da forma desejada.
[00059] Tal escolha de programar o software foi tomada para poder controlar livremente todos os aspectos do sistema, sem limitar as futuras possibilidades de modificações ou melhoramentos no processo de controle e gestão dos testes, armazenamento dos resultados e gerenciamento da segurança da bancada de testes.
[00060] As placas de interconexão, a placa de topo para fechamento e a placa de base para suporte de um empilhamento de pilhas a combustível utiliza a mesma tecnologia do reator já descrito para evitar ou diminuir a formação de carbono no ambiente do empilhamento. Na figura 2 é apresentado um exemplo de placa de base (ou de placa de topo) para empilhamento.
[00061] A Figura 5 mostra duas placas de interconexão com uma pilha a combustível entre elas. O lado esquerdo da figura mostra um desenho em três dimensões de placas de interconexão para um empilhamento e o lado direito da figura apresenta o mesmo desenho, porém, transparente, para mostrar os furos e os canais de passagem dos gases nas placas. Como é possível notar, a passagem de gás somente pode ocorrer através dos canais de fluxo posicionados no mesmo lado em que o furo condutor do gás emerge. As placas são projetadas para deixar passar o gás combustível no lado anódico e o gás oxidante no lado catódico, sem possibilidade de se misturar.
[00062] O material usado para construção do reator 4 é o mesmo utilizado na fabricação das placas de interconexão, da placa de topo para fechamento, da placa de base para suporte de empilhamento, e ainda para os tubos que alimentam gases ao empilhamento, constituído de material a base de óxido de zircônio ou a base de óxido de cério dopados com um ou mais dentre os óxidos ítria, escândia, calcia, gadolínia, samaria, alumina e cobaltita, com quantidade total de dopantes de até 20 % em peso. Um empilhamento completo é constituído pelas pilhas a combustível e placas de interconexão sobrepostas, contendo ainda placa de topo para fechamento e placa de base para suporte do empilhamento. As placas de topo e de base usadas nas extremidades do empilhamento possuem canais de fluxo apenas no lado interno, que está em conta- to com uma pilha a combustível.
[00063] A presente invenção permite a eliminação ou a diminuição drástica da formação de carbono em caso de alimentação anódica executada com combustíveis carbonosos, inclusive anidros. Essa eliminação ou diminuição drástica de formação de carbono pode ser obtida com os seguintes elementos essenciais:
1) O material usado na construção do reator 4 (e nas placas de interconexão, na placa de topo para fechamento e na placa de base para suporte de empilhamento) não é catalizador de pirólise de combustíveis carbonosos, inclusive anidros, em alta temperatura nas regiões de temperatura elevada do sistema, isto é, que atingem condições de reação termodicamicamente favorável à pirólise para o combustível utilizado e;
2) É feito controle do tempo de residência do gás combustível nas regiões aquecidas do sistema através do controle do fluxo de gases e do proje- to específico dos componentes. A quantidade de carbono sólido eventualmente produzido é função da velocidade de reação da pirólise térmica do combustível na temperatura de operação e do tempo de residência do combustível nas regiões aquecidas do sistema. Com o aumento da temperatura, a velocidade de reação aumenta e, por isso, para dificultar a eventual produção de carbono por pirólise, reduz-se o tempo de residência do combustível nas regiões aquecidas do sistema. O projeto dos tubos e dos canais considera esse tempo de residência do gás de alimentação, tendo que ser tal que não deve permitir a produção de carbono, mas sim, preferencialmente, a reação de produção de energia elétrica e/ou a conversão eletroquímica de hidrocarbonetos. Para que se tenha um baixo tempo de permanência do combustível com o uso de vazão de trabalho específica, a seção do duto de alimentação do combustível, dos furos de acesso aos canais de fluxo e da geometria desses, devem ser otimizados para evitar ou limitar a eventual deposição de carbono por pirólise.
[00063] O uso no presente caso de material cerâmico para a fabricação do reator, o qual não catalisa a reação de pirólise do combustível, contribui para limitar a formação de carbono sólido nos tubos de acesso e no ambiente da pilha a combustível. Além disso, o controle exercido de forma tal a diminuir o tempo de permanência do combustível nos ambientes de temperatura elevada do sistema, realizado através de controle do fluxo do combustível, limita a ocorrência de pirólise do combustível mesmo que termodinamicamente favorável, porém, com baixa cinética de ocorrência.

Claims

REIVINDICAÇÕES
1. Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos, inclusive anidros, sem promover ou limitando a deposição de carbono nos dutos de entrada e saída de gases, assim como nos canais de fluxo do ânodo, o sistema compreendendo:
um forno (5) contendo um reator (4), o reator consistindo de pelo menos duas placas de interconexão e pelo menos uma pilha a combustível (15) localizada entre duas placas de interconexão, em que uma das placas de interconexão em contato com uma pilha é um lado catódico, o qual recebe gás oxidante, e a outra placa de interconexão em contato com a referida pilha a combustível é um lado anódico, o qual recebe gás combustível;
o sistema caracterizado por compreender ainda:
um meio de alimentação e exaustão controlada de gases conectado ao reator (4);
em que cada placa compreende ainda uma pluralidade de canais de fluxo (14) em sua superfície superior e inferior, onde o gás oxidante e o gás combustível passam através dos canais de fluxo (14) para entrar em contato com os eletrodos da pilha a combustível (15); e
em que as placas de base, de topo e de interconexão são formadas com um material a base de óxido de zircônio ou a base de óxido de cério dopados com um ou mais dentre os óxidos ítria, escândia, calcia, gadolínia, sa- mária, alumina e cobaltita, com quantidade total de dopantes de até 20 % em peso.
2. Sistema, de acordo com a reivindicação 1, caracterizado por as placas e as pilhas serem posicionadas empilhadas uma sobre a outra de forma intercalada, e as placas nas posições mais superior e mais inferior possuem canais de fluxo apenas em sua superfície interna.
3. Sistema, de acordo com a reivindicação 1 ou 2, caracterizado por o meio de alimentação e exaustão controlada de gases compreender pelo menos dois controladores de fluxo (1, 2).
4. Sistema, de acordo com qualquer uma das reivindicações 1 a 3, caracterizado por o meio de alimentação e exaustão controlada de gases compreender um tubo de entrada com uma entrada de gás (9) e que termina na entrada (11) do canal de fluxo (14) da placa do reator, e um tubo de saída (10) com uma saída de gás e que termina na saída (12) do canal de fluxo (14) da placa do reator, em que ambos os tubos são direcionados para linhas de gases exaustão para um sistema de exaustão (8).
5. Sistema, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado por compreender ainda uma pluralidade de válvulas de sentido único (3) conectadas à jusante dos controladores de fluxo (1, 2).
6. Sistema, de acordo com qualquer uma das reivindicações 1 a 5, caracterizado por compreender quatro controladores de fluxo de gases anódicos (1) e dois controladores de fluxo de gases catódicos (2).
7. Sistema, de acordo com qualquer uma das reivindicações 1 a 6, caracterizado por compreender ainda um dispositivo eletrônico para variar a corrente elétrica do sistema de forma contínua, a carga eletrônica (7), durante um intervalo de teste determinado.
8. Sistema, de acordo com qualquer uma das reivindicações 1 a 7, caracterizado por compreender ainda um dispositivo controlador para controlar e acionar os dispositivos do sistema de teste.
9. Sistema, de acordo com qualquer uma das reivindicações 1 a 8, caracterizado por o dispositivo controlador consistir em um conjunto de instruções legíveis por computador que, quando executadas por um computador, fazem com que o computador controle e acione os dispositivos do sistema de teste.
10. Sistema, de acordo com qualquer uma das reivindicações 1 a 9, caracterizado por o reator 4 compreender ainda uma entrada de termopar (13) para receber um termopar para medir da temperatura do reator (4) numa posição centralizada à meia espessura.
11. Sistema, de acordo com qualquer uma das reivindicações 1 a
10, caracterizado por o combustível de alta temperatura de operação multi- combustível estar numa faixa de temperatura entre 600 e 1000°C.
12. Sistema, de acordo com qualquer uma das reivindicações 1 a
11, caracterizado por compreender ainda pelo menos um transdutor de pressão (6) para medir a pressão no reator (4) antes da entrada do fluxo de combustível no reator (4).
13. Sistema, de acordo com qualquer uma das reivindicações 1 a
12, caracterizado por os transdutores de pressão (6) serem ainda configurados para identificar a quebra da pilha a combustível ou vazamento de gases para fora do reator (4).
14. Sistema, de acordo com qualquer uma das reivindicações 1 a
13, caracterizado por compreender a alimentação de ar/oxigênio no lado anódico do reator (4), em que o oxigénio reage com o carbono para produzir óxidos de carbono e limpar o reator (4), em que os óxidos de carbono produzidos são conduzidos até a saída da linha de gases de exaustão (8) para serem expelidos do sistema.
15. Sistema, de acordo com qualquer uma das reivindicações 1 a
14, caracterizado por o forno (5) aquecer o reator (4) a uma taxa inferior a 1°C por minuto.
16. Sistema, de acordo com qualquer uma das reivindicações 1 a
15, caracterizado por compreender a alimentação de nitrogénio em ambos os lados anódico e catódico do reator (4) para limpar os dutos do sistema antes da operação do reator.
17. Sistema, de acordo com qualquer uma das reivindicações 1 a
16, caracterizado por o reator (4) ser constituído de materiais com coeficiente de dilatação similar ao material da pilha a combustível e do material de vedação.
18. Sistema, de acordo com qualquer uma das reivindicações 1 a
17, caracterizado pelas metades do reator (4) e a pilhas a combustível (15) serem seladas com um vedante.
19. Sistema, de acordo com qualquer uma das reivindicações 1 a
18, caracterizado por o vedante ser Mica.
20. Sistema, de acordo com qualquer uma das reinvindicações 1 a
19, caracterizado por realizar conversão eletroquímica de hidrocarbonetos, determinando rendimento através de cromatografia gasosa ou com uso de analisador de massas.
PCT/BR2016/050216 2015-09-04 2016-09-02 Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível. WO2017035621A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16840444.0A EP3346536B1 (en) 2015-09-04 2016-09-02 Test system for multi-fuel high temperature operating fuel cells, which allows direct use of carbon- based fuels without promoting carbon deposition in fuel passage elements
US15/754,880 US20180259586A1 (en) 2015-09-04 2016-09-02 Test System for Multi-Fuel High Temperature Operating Fuel Cells, Which Allows Direct Use of Carbon-Based Fuels without Promoting Carbon Deposition in Fuel Passage Elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020150218206 2015-09-04
BR102015021820-6A BR102015021820B1 (pt) 2015-09-04 2015-09-04 Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível

Publications (1)

Publication Number Publication Date
WO2017035621A1 true WO2017035621A1 (pt) 2017-03-09

Family

ID=58186366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/050216 WO2017035621A1 (pt) 2015-09-04 2016-09-02 Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível.

Country Status (5)

Country Link
US (1) US20180259586A1 (pt)
EP (1) EP3346536B1 (pt)
AR (1) AR105895A1 (pt)
BR (1) BR102015021820B1 (pt)
WO (1) WO2017035621A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959868A (zh) * 2017-12-21 2019-07-02 中南大学 一种新型锂-氧扣式电池测试瓶

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571732B (zh) * 2021-07-13 2023-09-15 中国矿业大学(北京) 测试装置及扁管式固体氧化物燃料电池测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459340A (en) * 1982-04-30 1984-07-10 Board Of Trustees, Stanford University Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte
US20020076603A1 (en) * 2000-10-23 2002-06-20 Toho Gas Co., Ltd. Solid oxide fuel cell
EP2330672A1 (en) * 2009-12-03 2011-06-08 Delphi Technologies, Inc. Glass seal containing zirconia powder and fiber for a solid oxide fuel cell stack
US20110183233A1 (en) * 2010-01-26 2011-07-28 Bloom Energy Corporation Phase Stable Doped Zirconia Electrolyte Compositions with Low Degradation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163713B2 (en) * 1999-07-31 2007-01-16 The Regents Of The University Of California Method for making dense crack free thin films
US6479178B2 (en) * 1999-11-16 2002-11-12 Northwestern University Direct hydrocarbon fuel cells
US6949307B2 (en) * 2001-10-19 2005-09-27 Sfco-Efs Holdings, Llc High performance ceramic fuel cell interconnect with integrated flowpaths and method for making same
US7011903B2 (en) * 2002-09-20 2006-03-14 Plug Power Inc. Method and apparatus for a combined fuel cell and hydrogen purification system
US20040081867A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
CA2521769A1 (en) * 2003-04-17 2004-10-28 Hydrogenics Corporation Alarm recovery system and method for fuel cell testing systems
US7732084B2 (en) * 2004-02-04 2010-06-08 General Electric Company Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
US20050263393A1 (en) * 2004-04-30 2005-12-01 Franklin Fuel Cells, Inc. System and method of performing electrochemical tests of solid oxide fuel cells
US20080278183A1 (en) * 2007-05-07 2008-11-13 Mound Technical Solutions, Inc. Fuel cell test system
US8435683B2 (en) * 2007-07-19 2013-05-07 Cp Sofc Ip, Llc Internal reforming solid oxide fuel cells
TWI427308B (zh) * 2011-10-18 2014-02-21 Iner Aec Executive Yuan 多功能固態氧化物燃料電池檢測裝置
EP3089252A4 (en) * 2013-12-27 2017-05-17 Murata Manufacturing Co., Ltd. Separator for solid electrolyte fuel cells, and solid electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459340A (en) * 1982-04-30 1984-07-10 Board Of Trustees, Stanford University Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte
US20020076603A1 (en) * 2000-10-23 2002-06-20 Toho Gas Co., Ltd. Solid oxide fuel cell
EP2330672A1 (en) * 2009-12-03 2011-06-08 Delphi Technologies, Inc. Glass seal containing zirconia powder and fiber for a solid oxide fuel cell stack
US20110183233A1 (en) * 2010-01-26 2011-07-28 Bloom Energy Corporation Phase Stable Doped Zirconia Electrolyte Compositions with Low Degradation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EGUCHI, T; ET AL.: "Electrical properties of ceria-based oxides and their application to solid oxide fuel cells", SOLID STATE LONICS, vol. 52, no. 1-3, May 1992 (1992-05-01), North-Holland, pages 165 - 172, XP025754221 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959868A (zh) * 2017-12-21 2019-07-02 中南大学 一种新型锂-氧扣式电池测试瓶

Also Published As

Publication number Publication date
AR105895A1 (es) 2017-11-22
EP3346536A1 (en) 2018-07-11
BR102015021820B1 (pt) 2021-12-07
EP3346536A4 (en) 2019-05-01
EP3346536B1 (en) 2020-03-18
BR102015021820A2 (pt) 2017-03-14
US20180259586A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6472638B2 (ja) 複合発電システム、その制御装置及び方法並びにプログラム
EP2506355B1 (en) Power generation system and operating method therefor
TWI449251B (zh) 間接內部重組型固體氧化物燃料電池及其停止運轉方法
JP6599093B2 (ja) 燃料電池モジュール、これを備えた複合発電システムおよび燃料電池発電部の温度制御方法
JP2010086917A (ja) 燃料電池システム
Munts et al. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas
CN104106166A (zh) 利用高温燃料电池系统的再循环的方法和装置
WO2017035621A1 (pt) Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível.
JP2011003305A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
KR102336581B1 (ko) 열량 제어가 가능한 열 관리형 연료전지 핫박스
JP2008217999A (ja) 高温型燃料電池システムの運転方法
EP2842191B1 (en) Method and arrangement for determining enthalpy change of a fuel cell system
JP5922433B2 (ja) 燃料電池及びその酸化剤供給方法
EP2130262A1 (en) Fuel cell system
KR101205538B1 (ko) 고체 산화물 연료 전지 시스템
JP6130129B2 (ja) 燃料電池装置
JP6241362B2 (ja) 燃料電池システム
Liu et al. The Use of Methane‐Containing Syngas in a Solid Oxide Fuel Cell: A Comparison of Kinetic Models and a Performance Evaluation
JP6325717B2 (ja) 燃料電池装置
JP2015103422A (ja) 固体酸化物形燃料電池システム
JP2015082408A (ja) 固体酸化物形燃料電池システムおよび固体酸化物形燃料電池システムの停止方法
JP6264182B2 (ja) 燃料電池システム
JP2022131744A (ja) 燃料電池の温度評価装置、制御装置、及び、温度評価方法
KR101549508B1 (ko) 연료전지용 모사 스택 장치
EP3163660A1 (en) Fuel cell module having increased thermal efficiency, and heating system using same and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840444

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15754880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WD Withdrawal of designations after international publication

Designated state(s): BR

WWE Wipo information: entry into national phase

Ref document number: 2016840444

Country of ref document: EP