WO2017034276A1 - Power converting device and method for switching control - Google Patents

Power converting device and method for switching control Download PDF

Info

Publication number
WO2017034276A1
WO2017034276A1 PCT/KR2016/009268 KR2016009268W WO2017034276A1 WO 2017034276 A1 WO2017034276 A1 WO 2017034276A1 KR 2016009268 W KR2016009268 W KR 2016009268W WO 2017034276 A1 WO2017034276 A1 WO 2017034276A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
switching
unit
switching sequence
converter
Prior art date
Application number
PCT/KR2016/009268
Other languages
French (fr)
Korean (ko)
Inventor
김태웅
조춘호
Original Assignee
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160101443A external-priority patent/KR101932679B1/en
Application filed by 경상대학교 산학협력단 filed Critical 경상대학교 산학협력단
Publication of WO2017034276A1 publication Critical patent/WO2017034276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/02Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters
    • H02M1/04Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters for tubes with grid control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers

Definitions

  • the present invention relates to a direct type AC / AC power converter without a DC link circuit for switching control, and more particularly, to a power converter capable of zero current switching of a converter section.
  • a power conversion device such as a two stage direct power converter system (TSDPC) consists of a direct DC link circuit of an indirect AC / AC power conversion system as a virtual DC link circuit to reduce the size and length of a large capacity system. It has an advantage for life.
  • TSDPC two stage direct power converter system
  • a three-phase power converter controls six switching elements including six bidirectional switching elements of an input side converter and an anti-parallel diode of an output side inverter, so that there are 18 semiconductor power switching elements to be controlled.
  • the control method for controlling such a power switching element generally uses a 9-step or 11-step switching sequence.
  • an object of the present invention is to minimize the switching switching through the simplification of the switching sequence of the input converter and the output inverter of the power converter.
  • an object of the present invention is to minimize the power loss that occurs during switching switching according to a switching sequence in an input converter and an output inverter of a power converter.
  • a power conversion apparatus comprising: a sector determination unit configured to determine a plurality of sectors of an input side converter unit, an output side inverter unit, an input current of the converter unit, and an output voltage of the inverter unit; A composite vector time calculating unit calculating a composite vector time using at least one of an input current of the converter unit, an output voltage of the inverter unit, and a modulation index MI, a switching sequence of the converter unit for each of the determined plurality of sectors; A sequence determination section for determining a switching sequence of the inverter section and a control signal for generating a control signal for performing a switching operation of the converter section and the inverter section based on the switching sequence of the converter section and the inverter section and the composite vector time; And a generating unit, wherein the switching sequence of the converter unit is: The not included.
  • the converter unit includes a six-way switch as a current type converter for converting three-phase alternating current into a direct current
  • the inverter unit is a three-phase alternating current
  • it may include six switches including an anti-parallel diode.
  • the sequence determiner may determine the switching sequence of the converter unit as a two-stage switching sequence without a zero vector, and may determine the switching sequence of the output side inverter unit as a five-stage switching sequence including a zero vector and a valid vector.
  • the sequence determiner may determine a switching sequence of the converter unit and the inverter unit such that the power converter has a six-stage switching sequence by combining a two-stage switching sequence of the converter unit and a five-stage switching sequence of the inverter unit.
  • the switching sequence of step 6 may have a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector.
  • the sequence determining unit may determine the switching sequence of the converter unit as a two-stage switching sequence without a zero vector, and may determine the switching sequence of the inverter unit as a seven-stage switching sequence including a zero vector and a valid vector.
  • the sequence determiner may include a switching sequence of the input side converter unit and the output side inverter unit such that the power converter has an eight-stage switching sequence using a combination of the two-stage switching sequence of the converter unit and the seven-stage switching sequence of the inverter unit. You can decide.
  • the switching sequence of step 8 may include a first zero vector, a first valid vector, a second valid vector, a second zero vector, and a third based on a first predetermined condition when the determined plurality of sectors is an odd number.
  • a zero vector, a third valid vector, a fourth valid vector, and a fourth zero vector, and when the determined plurality of sectors is an even number, the first zero vector and the second valid vector are based on a second predetermined condition.
  • the switching sequence may include a vector, a first valid vector, a second zero vector, a third zero vector, a fourth valid vector, a third valid vector, and a fourth zero vector.
  • the converter unit includes six bidirectional switches as a current converter for converting a three-phase alternating current voltage to a direct current, and the inverter unit is configured to supply the direct current.
  • a voltage converter for converting single phase alternating current may include four switches including an anti-parallel diode.
  • the sequence determining unit may determine the switching sequence of the converter unit as a two-stage switching sequence without a zero vector, and may determine the switching sequence of the inverter unit as a five-stage switching sequence including a zero vector and an effective vector.
  • the sequence determiner may determine a switching sequence of the converter unit and the inverter unit such that the power converter has a six-stage switching sequence by combining a two-stage switching sequence of the converter unit and a five-stage switching sequence of the inverter unit.
  • the six-stage switching sequence may include a first switching sequence of a first zero vector, a second valid vector, a second zero vector, a third zero vector, a first valid vector, and a fourth zero vector, and a first zero vector.
  • the first valid vector, the second zero vector, the third zero vector, the second valid vector, and the fourth zero vector may be one of a second switching sequence.
  • the apparatus further includes a vector time calculator configured to calculate an effective vector time and a zero vector time for calculating the synthesized vector time, wherein the vector time calculator includes an input effective vector time using an input current sector and an input current phase of the converter unit.
  • An input vector time calculator for calculating an output effective vector time and an output zero vector time by using an input vector time calculator for calculating an output voltage sector, an output voltage phase, and the modulation index MI;
  • the modulation index calculator may be configured to calculate the modulation index MI using an output voltage.
  • the power conversion apparatus minimizes switching switching by simplifying a switching sequence of an input side converter and an output side inverter, and thus generates power in switching switching according to the switching sequence. This has the effect of minimizing losses.
  • FIG. 1 is a block diagram of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 2 (a) is a first circuit diagram of a three-phase direct power converter according to an embodiment of the present invention
  • FIG. 2 (b) is a second circuit diagram of a three-phase direct power converter with a clamp protection circuit according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of a three-phase / single-phase direct power converter with a clamp protection circuit according to an embodiment of the present invention
  • FIG. 4 is an exemplary diagram of a bidirectional switching element of an input side converter unit according to an embodiment of the present invention.
  • FIG. 5 is an exemplary diagram illustrating a space vector of an input side converter unit and an output side inverter unit in a three-phase and three-phase / single-phase direct power converter according to an embodiment of the present invention
  • FIG. 6 is an exemplary diagram showing a switching sequence of a conventional power converter
  • FIG. 7 is an exemplary diagram illustrating a switching sequence for implementing partial zero current switching of a converter unit of a three-phase direct type power converter according to an embodiment of the present invention
  • FIG. 8 is an exemplary diagram illustrating a switching sequence for implementing zero current switching of a converter unit of a three-phase power converter according to an embodiment of the present invention
  • FIG. 9 is an exemplary diagram illustrating waveforms of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention.
  • FIG. 10 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention
  • FIG. 11 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link current and a switching gate signal of an input side converter in a partial zero current switching mode of a three-phase direct type power conversion device according to an embodiment of the present invention
  • FIG. 12 is an exemplary diagram illustrating waveforms of an output line voltage and an output current in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention.
  • FIG. 13 is an exemplary view showing waveforms of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention
  • FIG. 14 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention
  • 15 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage and a switching gate signal of an input side converter unit in a zero current switching mode of a three-phase direct type power converter according to an embodiment of the present invention
  • 16 is an exemplary diagram illustrating waveforms of an output line voltage and an output current in a zero current switching mode of a three-phase direct type power converter according to an embodiment of the present invention
  • 17 is an exemplary diagram illustrating a switching sequence for implementing zero current switching of a three-phase / single-phase direct power converter according to an embodiment of the present invention
  • 18 is an exemplary view showing waveforms of output current and output line voltage according to a simulation performed in a three-phase / single-phase direct current converter according to an embodiment of the present invention
  • 19 is an exemplary diagram illustrating waveforms of a DC link current and a switching signal according to a simulation performed in a three-phase / single-phase direct current converter according to an embodiment of the present invention
  • FIG. 20 is an exemplary view showing a ZCS operation waveform according to a simulation performed in a three-phase / single-phase direct current conversion device according to an embodiment of the present invention
  • 21 is an exemplary view showing a result of comparing a conventional control method and a number of partial zero current switching switching times during one cycle in a three-phase direct type power converter according to an embodiment of the present invention
  • FIG. 22 is an exemplary view showing a result of comparing a conventional control method and a zero current switching switching frequency during one cycle in a three-phase direct type power converter according to an embodiment of the present invention
  • FIG. 23 is a flowchart of a switch control method of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a power conversion apparatus according to an embodiment of the present invention.
  • the power converter is an AC / AC power converter that converts a three-phase AC input without a DC link circuit.
  • a power converter may be a three-phase direct power converter or a three-phase / single-phase direct power converter, depending on the embodiment.
  • the three-phase direct type power converter may be a device for directly converting a three-phase AC input into a three-phase AC output without a DC link circuit.
  • the three-phase / single-phase direct type power converter may be a device for directly converting and outputting a three-phase AC input into a single-phase AC output without a DC link circuit.
  • FIG. 2 (a) is a first circuit diagram of a three-phase direct power converter according to an embodiment of the present invention
  • Figure 2 (b) is a three-phase direct with a clamp protection circuit according to an embodiment of the present invention It is a 2nd circuit diagram of a type power converter.
  • the three-phase direct power converter is an AC / AC power converter that directly converts a three-phase AC input to a three-phase AC output without a DC link circuit.
  • the three-phase direct power converter includes an input side converter 110, an output side inverter 120, a sector discriminator 130, a sequence determiner 140, and a control signal generator 150.
  • the input side converter unit 110 includes six bidirectional switching elements for four quadrant operation, and the output side inverter unit 120 has a structure of a general voltage inverter.
  • the output side inverter unit 120 may be configured by, for example, two switching elements connected in series to each other to form one pole, and three poles connected in parallel to each other. At this time, in order to output the three-phase AC voltage, it is preferable that the switch elements of one pole and the neighboring pole operate complementarily.
  • a current direction detecting circuit is formed between the input side converter unit 110 and the output side inverter unit 120.
  • the current direction detection circuit is a circuit for identifying the regenerative section in which switching switching is changed in the regenerative section.
  • Such a current direction detecting circuit is preferably provided in a virtual DC link circuit.
  • the three-phase direct power conversion apparatus may further include a device stabilization circuit unit 170.
  • the device stabilization circuit unit 170 protects the switching device of the power converter from surges in the input line, overvoltage generation due to switching switching, and surge due to load shutdown.
  • the bidirectional switching device may be implemented in the following types.
  • FIG. 3 is a circuit diagram of a three-phase / single-phase direct power conversion device with a clamp protection circuit according to an embodiment of the present invention.
  • the three-phase / single phase direct type power converter is an AC / AC power converter that directly converts a three-phase AC input to a single-phase AC output without a DC link circuit.
  • the three-phase / single phase direct type power converter is similar to the three-phase direct type power converter described above with the input side converter unit 110, the output side inverter unit 120, the sector discriminator 130, and the sequence determiner 140.
  • the control signal generator 150 and the device stabilization circuit unit 170 is included.
  • the input side converter unit 110 includes six bidirectional switching elements for four quadrant operation, and the output side inverter unit 120 has a structure of a general single phase voltage inverter. That is, the output side inverter unit 120 may include an input side converter unit 110 including six bidirectional switching elements and four unidirectional switching elements for single phase grid connection.
  • a current direction detecting circuit is formed between the input side converter unit 110 and the output side inverter unit 120.
  • the current direction detection circuit is a circuit for identifying the regenerative section in which switching switching is changed in the regenerative section.
  • Such a current direction detecting circuit is preferably provided in a virtual DC link circuit.
  • the device stabilization circuit unit 170 protects the switching device of the power converter from surges in the input line, overvoltage generation due to switching switching, and surge due to load shutdown.
  • FIG. 4 is an exemplary diagram of a bidirectional switching device of an input side converter unit according to an exemplary embodiment of the present invention.
  • the bidirectional switching device may be implemented by using a conventional switching device (power MOSFET, IGBT, etc.).
  • Figure 4a is a bidirectional switching device of the first type, consisting of four diodes and one IGBT, because the bidirectional current conducts to one switch, one in each bidirectional switch compared to other types of bidirectional switching devices Only the gate driver is required. On the other hand, since there are three switches in each conduction path of the first type bidirectional switching element, the switching loss is greatest compared to other types of bidirectional switching elements, and there is a disadvantage in that the direction of the current flowing through the switch cannot be controlled.
  • (B) and (c) of FIG. 4 are bidirectional switching elements of a second type, and are composed of a common emitter or a common collector by combining two diodes and two IGBTs, and each of the IGBTs has a breakdown against zero voltage. Diodes for blocking are connected in anti-parallel. Since there are two switches in each conduction path, there is less switching loss than the bidirectional switching element of the first type.
  • the bidirectional switching device may be configured with two IGBTs. In this case, the switching loss can be minimized as compared with the other types of bidirectional switching elements.
  • the sector discriminating unit 130 determines a plurality of sectors with respect to the input current of the input side converter unit 110 and the output voltage of the output side inverter unit 120.
  • the input side converter unit 110 detects the input phase from the three-phase voltage input to the input side converter unit 110 using a phase locked loop (PLL), and the output side inverter unit 120 receives the input.
  • the output phase is detected from any given command voltage.
  • the sector discriminating unit 130 determines the sector for the input current from the pre-detected input phase by using the space vector for the input current, and determines the spatial vector for the output voltage. A sector for the output voltage is discriminated from the previously detected output phase.
  • the vector time calculator 160 calculates an effective vector time and a modulation index for calculating the synthesized vector time.
  • the synthesized vector time calculating unit 170 calculates the synthesized vector time based on the effective vector time and the modulation index calculated by the vector time calculating unit 160.
  • the vector time calculator 160 for calculating at least one of an effective vector time and a modulation index for calculating a composite vector time may include an input vector time calculator 161, an output vector time calculator 163, and a modulation index calculator. A portion 165 may be included.
  • the input vector time calculator 161 calculates an input valid vector time by using a phase of the sector and the input current with respect to the input current of the input side converter 110.
  • the output vector time calculating unit 163 calculates the output valid vector time using the phase of the sector and the output voltage with respect to the output voltage of the output side inverter unit 120.
  • the modulation index calculator 165 calculates the composite vector time together with the input valid vector time calculated from the input vector time calculator 161 and the output valid vector time calculated from the output vector time calculator 163. Calculate the modulation index.
  • the composite vector time calculator 170 may determine the input valid vector time calculated from the input vector time calculator 161, the output valid vector time calculated from the output vector time calculator 163, and the modulation index calculator 165.
  • the synthesized vector time can be calculated using the modulation index MI calculated from.
  • FIG. 5 is an exemplary diagram illustrating a space vector of an input side converter unit and an output side inverter unit in a three-phase and three-phase / single-phase direct type power converter according to an embodiment of the present invention.
  • the sector discriminator 130 may distinguish six current sectors by using a space vector for an input current.
  • the sector discriminating unit 130 may distinguish six voltage sectors by using a space vector for the output voltage.
  • the input converter 110 and the output inverter 120 are each composed of six current sectors and six voltage sectors. Can be distinguished.
  • the space vector of the output voltage of the output inverter 120 may be expressed by the following equation when the output inverter 120 is composed of three phases (hereinafter referred to as a three-phase output inverter). .
  • Equation 2 is a formula in which the three-phase output side inverter unit 120 represents a space vector, where ⁇ 1 is a phase of the space vector with respect to the input current and ⁇ 0 is a phase of the space vector with respect to the output voltage.
  • the power conversion apparatus needs sector information considering the phase angle of the input current and the phase angle of the output voltage at the same time, for this purpose, the current sector of the input side converter unit 110 and the three-phase output side inverter unit 120
  • the input voltage converter 110 and the three-phase output inverter 120 may be controlled by dividing the voltage sector into 36 synthesized sectors.
  • a composite sector configuration according to the current sector of the input converter unit 110 and the voltage sector of the three-phase output inverter unit 120 is shown in Table 1 below.
  • Table 1 Converter input current sector Inverter output current sector Synthetic Sector 1 to 6
  • the effective vector application time for implementing the modulation scheme is determined based on the calculated space vector for the input current and the output voltage. Can be calculated.
  • the effective vector application time for implementing the modulation technique may be expressed as Equation 3 below. That is, the input vector time calculating unit 161 and the output vector time calculating unit 163 are input effective vector time and three-phase output side inverter unit 120 with respect to the input current of the input side converter unit 110 through Equation (3).
  • the output effective vector time for the output voltage can be calculated.
  • Ti1 and Ti2 are input valid vector times
  • Tv1 and Tv2 are output vector times.
  • the synthesized vector time calculating unit 170 is as follows. Through Equation 4, the synthesized vector time to be used in the input side converter unit 110 and the three-phase output side inverter unit 120 of the power converter may be calculated.
  • Ts is a control period
  • T1 to T4 is a composite vector time
  • T0 is a composite zero vector application time
  • MI is a modulation index
  • k is an output sector
  • i is an input sector.
  • the sector discriminating unit 130 can be divided into six current sectors using the space vector for the input current.
  • the sector discriminating unit 130 may create a virtual space vector for the output voltage and distinguish two sectors by using the virtual space vector.
  • the two sectors divided by the virtual space vector have a 180 degree phase difference according to the positive and negative states of the command voltage.
  • Equation 1 the space vector with respect to the input current of the input side converter unit 110 of the three-phase / single-phase direct power converter is expressed by Equation 1, which is the same as the input converter unit 110 of the three-phase direct power converter.
  • Equation 5 the space vector with respect to the output voltage of the single-phase output side inverter unit 120 may be expressed by Equation 5 below.
  • the effective vector application time for implementing the modulation scheme is determined based on the calculated space vector for the input current and the output voltage. Can be calculated.
  • the effective vector application time for implementing the modulation technique may be expressed as Equation 6 below. That is, the input vector time calculating unit 161 and the output vector time calculating unit 163 are input effective vector time and single phase output side inverter unit 120 with respect to the input current of the input side converter unit 110 through Equation 6 below.
  • the output effective vector time for the output voltage can be calculated.
  • the synthesized vector time calculating unit 170 is as follows. Through Equation (7), the synthesized vector time to be used for the input side converter unit 110 and the single phase output side inverter unit 120 of the power converter may be calculated.
  • the control signal generator 150 synthesizes the calculated vector time calculation unit 170. Generates a control signal for performing an operation according to the switching sequence of the input side converter unit 110 and the three-phase or single-phase output side inverter unit 120 determined by the sequence determiner 140 during the vector time and the zero vector application time. .
  • the sequence determiner 140 may include an input converter 110 and a three-phase inverter 120 for each of a plurality of sectors determined by the sector discriminator 130. Determine the switching sequence of.
  • the control signal generator 150 When the switching sequence for each of the input side converter unit 110 and the three-phase output side inverter unit 120 is determined by the sequence determiner 140, the control signal generator 150 generates the input side converter unit 110 and the three-phase output side.
  • a control signal for performing the switching operation of the input side converter unit 110 and the three-phase output side inverter unit 120 is generated according to the switching sequence of the inverter unit 120 and the calculated composite vector time. Accordingly, the input side converter unit 110 and the three-phase output side inverter unit 120 may perform a switching operation according to the control signal generated through the control signal generator 150.
  • sequence determiner 140 may determine the switching sequence of the input converter 110 and the output inverter 120 through the following embodiment.
  • the sequence determiner 140 determines the switching sequence of the input side converter 110 as a two-stage switching sequence without a zero vector, and determines the switching sequence of the three-phase output inverter 120 as a zero vector and a vector. It can be determined by a five-stage switching sequence including the valid vector.
  • the sequence determiner 140 is a combination of the two-stage switching sequence of the input side converter unit 110 and the five-stage switching sequence of the three-phase output side inverter unit 120 such that the power converter has a six-stage switching sequence.
  • the switching sequence of the input side converter unit 110 and the three-phase output side inverter unit 120 may be determined.
  • the six-stage switching sequence may have a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector, and a plurality of sectors. It may be made of the same pattern.
  • the sequence determiner 140 determines the switching sequence of the input converter 110 as a two-stage switching sequence without a zero vector, and determines the switching sequence of the three-phase output inverter 120 as a zero vector. And a seven-stage switching sequence including the valid vector.
  • the sequence determiner 140 is a combination of the two-stage switching sequence of the input side converter unit 110 and the seven-stage switching sequence of the three-phase output side inverter unit 120 such that the power converter has an eight-stage switching sequence. The switching sequence of the input side converter unit 110 and the three-phase output side inverter unit 120 may be determined.
  • the sequence determination unit 140 may determine the switching sequence of eight steps based on the identification information of the plurality of sectors to which the identification information of 1 to 36 is assigned. Specifically, if the plurality of sectors determined by the sector discriminating unit 130 is odd, the sequence determining unit 140, based on the first condition, the first zero vector, the first valid vector, the second valid vector, and the second sector. An eight-stage switching sequence of the zero vector, the third zero vector, the third valid vector, the fourth valid vector, and the fourth zero vector may be determined. On the other hand, if the plurality of sectors determined by the sector discriminating unit 130 is an even number, the sequence determining unit 140 based on the second condition, the first zero vector, the second valid vector, the first valid vector, and the second zero. The eight-stage switching sequence of the vector, the third zero vector, the fourth valid vector, the third valid vector, and the fourth zero vector may be determined.
  • FIG. 6 is an exemplary view showing a switching sequence of a conventional power converter.
  • a power converter connected directly to an input / output without a power buffer circuit in the middle should combine input and output vector application times to simultaneously control input and output.
  • the synthesized vector application time consists of four valid vectors and one zero vector. Therefore, the conventional power converter uses a control method of an 11-switch switching sequence or a control method of a 9-switch switching sequence.
  • FIG. 6A illustrates a conventional method of controlling a 11-divided switching sequence, in which a zero vector is formed in a first section, a sixth section, and an eleventh section, and a second to fifth section and a seventh to seventh section. It is a sequence in which an effective vector is formed in 10 sections. Therefore, the input side converter unit 110 and the three-phase output side inverter unit 120 perform 11 switching switching cycles according to the 11 division switching sequence.
  • FIG. 6 (b) shows a conventional method of controlling a 9 division switching sequence, in which an effective vector is formed in the first to fourth and sixth to ninth sections, and a zero vector is formed in the fifth section. Is a sequence of. Accordingly, it can be seen that the input switching unit 110 and the three-phase output inverter 120 perform nine switching switching operations according to the nine split switching sequence, thereby reducing the number of switching switching times compared to the 11 split switching sequence control method. .
  • the conventional switching sequence controller method has a problem in that power loss occurs due to a large number of switching times compared to the present invention.
  • FIG. 7 is an exemplary diagram illustrating a switching sequence for implementing partial zero current switching of a converter unit of a three-phase direct type power converter according to an embodiment of the present invention.
  • the switching sequence shown in FIG. 7 is generated by combining a two-stage switching sequence without the zero vector of the input side converter unit 110 and a five-stage switching sequence for the zero and effective vectors of the three-phase output side inverter unit 120.
  • the six-stage switching sequence has a sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector.
  • the switching pattern of the input side converter unit 110 and the switching pattern of the three-phase output side inverter unit 120 with respect to the first sector are as shown in Tables 2 and 3 below, and the switching of the input side converter unit 110 is performed.
  • the six-stage switching sequence according to the combination of the pattern and the switching pattern of the three-phase output side inverter unit 120 is shown in Table 4 below.
  • switching is performed by performing partial zero current switching (PZCS) operation.
  • PZCS partial zero current switching
  • FIG. 8 is an exemplary view illustrating a switching sequence for implementing zero current switching of a converter unit of a three-phase power converter according to an embodiment of the present invention.
  • the sequence determiner 140 is a two-stage switching sequence and a three-phase output side inverter without a zero vector of the input side converter 110 based on the number of sectors determined by the sector discriminator 130.
  • the eight-stage switching sequence may be determined by combining the seven-stage switching sequence for the zero and valid vectors of the unit 120.
  • the step switching sequence includes a first zero vector, a first valid vector, a second valid vector, a second zero vector, a third zero vector, and a third valid vector. It has a sequence of the fourth valid vector and the fourth zero vector order.
  • the eight steps according to the combination of the switching pattern ⁇ Table 2> and the switching pattern ⁇ Table 3> of the three-phase output side inverter unit 120 The switching sequence includes a first zero vector, a second valid vector, a first valid vector, a second zero vector, a third zero vector, and a fourth valid vector. It has a sequence of the third valid vector and the fourth zero vector order.
  • the input side converter unit 110 and the three-phase output side inverter unit It may operate based on the hard switching switching and the partial zero current switching of 120, and the number of switching switching according to the partial zero current switching technique (PZCS) may be derived from Equation 8 below.
  • Nprd is the number of switching cycles per control cycle time
  • Nfout is the number of switching cycles per output frequency time
  • Nins is the number of switching sectors
  • Nout is the number of switching sectors
  • Nsc Is the number of switching cycles (output cycle time) during sector switching
  • NZCS is the number of zero current switching (output cycle time)
  • Tprd is the control cycle time
  • Nesl is the number of switching cycles of the power converter except for zero current switching (output cycle time).
  • Table 7 shows a comparison relationship between the switching control times according to the conventional control method and the partial zero current switching method according to the present invention.
  • Table 8 shows the relationship between the number of switching in the conventional control method according to the input commercial frequency and the output frequency and the partial zero current switching method according to the present invention.
  • Table 8 Output frequency Number of switching cycles according to input commercial frequency 50 Hz 60 Hz case1 case2 case1 case2 case21 case22 case21 case22 10 Hz 28004 16028 12024 28004 16028 12024 20 Hz 14008 8032 6024 14008 8032 6024 30 Hz 9345 5369 4024 9345 5369 4024 40 Hz 7016 4040 3028 50 Hz 5624 3248 2424 5620 3244 2428 60 Hz 4695 2718 2024 4691 2714 2028 70 Hz 4032 2341 1738 4028 2337 1742 80 Hz 3538 2062 1524 3532 2056 1530 90 Hz 3155 1845 1357 3147 1837 1363 100 Hz 2848 1672 1224 2840 1664 1232
  • case1 is the number of switching switching for the conventional control method
  • case21 is the total switching switching for the proposed control method
  • cass22 is the remaining switching switching count except for the partial zero current switching switching in the case of the proposed control method.
  • all switching switching of the input side converter 110 may operate based on zero current switching, such a partial zero current switching technique (PZCS) and zero.
  • PZCS partial zero current switching technique
  • the switching switching frequency according to the current switching technique ZCS may be derived from Equation 9 below.
  • Table 10 below shows the relationship between the number of switching in the conventional control technique according to the input commercial frequency and the output frequency and the zero current switching technique according to the present invention.
  • Table 10 Output frequency Number of switching cycles according to input commercial frequency 50 Hz 60 Hz case1 case2 case1 case2 case21 case22 case21 case22 10 Hz 28004 20004 12000 28004 20004 12000 20 Hz 14008 10008 6000 14008 10008 6000 30 Hz 9345 6678 4000 9345 6678 4000 40 Hz 7016 5016 3000 7016 5016 3000 50 Hz 5624 4024 2400 5620 4020 2400 60 Hz 4695 3361 2000 4691 3357 2000 70 Hz 4032 2889 1714 4028 2885 1714 80 Hz 3538 2538 1500 3532 2532 1500 90 Hz 3155 2266 1333 3147 2258 1333 100 Hz 2848 2048 1200 2840 2040 1200
  • case1 is the number of switching switching for the case of the conventional control method
  • case21 is the total number of switching switching for the case of the proposed control method
  • cass22 is the remaining number of switching switching except for the number of zero current switching switching in the case of the proposed control method.
  • the voltage of the virtual DC link circuit and the gate signal of the input converter 110 are Switching switching is performed in two patterns between the virtual DC link voltage and the gate signal according to before and after the idle period, and zero current switching operation is performed on three of the input side converter units 110 in which switching switching is performed in two patterns. Able to know.
  • FIG. 9 is an exemplary diagram illustrating waveforms of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention
  • FIG. 10 is an embodiment of the present invention
  • FIG. 11 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct type power converter according to an embodiment
  • FIG. 11 is a three-phase direct type according to an embodiment of the present invention.
  • FIG. 12 is a part of a three-phase direct power converter according to an embodiment of the present invention. It is an exemplary figure which shows the waveform of an output line voltage and an output current in zero current switching mode.
  • FIG. 11 it can be seen from the output waveform simulated with reference to FIG. 9 that an enlarged output waveform for the switching gate signal of the input side converter unit 110 appears at the top and the virtual link current at the bottom. .
  • TSDPC direct current power conversion device
  • FIG. 13 is an exemplary view illustrating waveforms of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention
  • FIG. 14 is an embodiment of the present invention.
  • FIG. 15 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention.
  • FIG. 15 is a three-phase direct power converter according to an embodiment of the present invention.
  • FIG. 16 is an exemplary diagram illustrating an enlarged waveform of the virtual DC link voltage and the switching gate signal of the input side converter unit in the zero current switching mode of the device, and
  • FIG. Is an exemplary diagram showing waveforms of output line voltage and output current.
  • FIG. 15 it can be seen from the output waveform simulated with reference to FIG. 13 that an enlarged output waveform for the switching gate signal of the input side converter unit 110 appears at the top and the virtual link current at the top. .
  • FIGS. 16A and 16B it can be seen that waveforms of the output line voltage and output current appear. have. It can be seen that the zero current switching operation is performed in the region A and the region B where the switching switching is performed between the virtual DC link voltage and the gate signal q1. Accordingly, the input side converter unit 110 is performed in the region A and region B. It can be seen that all of the switching switches of) perform the zero current switching operation.
  • FIG. 17 is an exemplary diagram illustrating a switching sequence for implementing zero current switching of a three-phase / single-phase direct power converter according to an embodiment of the present invention.
  • the switching sequence shown in FIG. 17 is a six-stage switching sequence generated by combining a two-stage switching sequence of the input side converter unit 110 and a five-stage switching sequence for the zero and effective vectors of the single-phase output side inverter unit 120.
  • the switching pattern of the input side converter unit 110 and the switching pattern of the single phase output side inverter unit 120 are as shown in Tables 12 and 13 below.
  • the following six switching sequences may be determined from the switching pattern of the input side converter unit 110 and the switching pattern of the single phase output side inverter unit 120.
  • the six switching sequences determined from the switching pattern of the input side converter unit 110 and the switching pattern of the single phase output side inverter unit 120 may include a first zero vector, a second effective vector, and a first one. 2nd zero vector, 3rd zero vector, first valid vector, and 4th zero vector, the first switching sequence and the first zero vector, the first valid vector, the second zero vector, the third zero vector, the second valid vector, and It may be one of the second switching sequences of the fourth zero vector order.
  • the first switching sequence it may be composed of a six-step switching sequence as shown in Table 14 below.
  • the second switching sequence it may be made of a switching sequence of six steps as shown in Table 15 below.
  • the single-phase output side inverter unit 120 creates a zero vector section at the time of switching switching of the input side converter unit 110 occurs. Accordingly, the power supply is cut off between the input side converter unit 110 and the single phase output side inverter unit 120 at the time when the single phase output side inverter unit 120 is controlled in the zero vector switching state.
  • the switching operation is zero current switching, allowing bidirectional power control without current direction detection.
  • FIG. 18 is an exemplary view illustrating waveforms of output current and output line voltage according to a simulation performed in a three-phase / single-phase direct current converter according to an embodiment of the present invention
  • FIG. 19 is a diagram illustrating an embodiment of the present invention.
  • FIG. 20 is a simulation in a three-phase / single-phase direct current converter according to an embodiment of the present invention.
  • the entire circuit configuration of the three-phase / single-phase direct type power converter is constructed.
  • the simulation specification conditions are set as shown in Table 16 below.
  • the switching loss of the bidirectional switching elements of the input side converter unit 110 is minimized through the control method of the spatial vector modulation method (SVPWM) based on the zero current switching of the three-phase / single-phase direct power converter according to the present invention.
  • switching switching of the bidirectional switching device of the input side converter unit 110 may be performed without using a conventional current direction detection circuit.
  • all switching switching of the input side converter unit 110 operates with zero current switching, thereby minimizing switching losses and increasing efficiency of the entire system.
  • 21 is an exemplary view showing a result of comparing the conventional control method and the number of partial zero current switching switching times during one cycle in the three-phase direct power converter according to an embodiment of the present invention.
  • the number of switching switching is a conventional control technique. It can be seen that the reduction is about 30% or more compared to the 9-stage switching switching technique. Furthermore, when using the TSD control method based on the partial zero current switching according to the present invention, the efficiency of the three-phase direct conversion device is expected to be improved, particularly in an environment with low output frequency. You can expect.
  • TSDPC space vector modulation
  • FIG. 22 is an exemplary view showing a result of comparing a conventional controller method and a zero current switching switching frequency during one cycle in a three-phase direct type power converter according to an embodiment of the present invention.
  • FIG. 23 is a flowchart of a switch control method of a power conversion apparatus according to an embodiment of the present invention.
  • the power converter is an AC / AC power converter that converts a three-phase AC input without a DC link circuit.
  • a power converter may be a three-phase direct power converter or a three-phase / single-phase direct power converter, depending on the embodiment.
  • Such a power converter determines a plurality of sectors for the input current of the input side converter section and the output voltage of the output side inverter section (S2310). Thereafter, the power conversion apparatus calculates a synthesized vector time using at least one of an input current of the input side converter 110, an output voltage of the output inverter 120, and a modulation index MI (S2320). Thereafter, the power conversion apparatus determines a switching sequence of the input side converter unit 110 and a switching sequence of the output side inverter unit 120 for each of the determined plurality of sectors (S2330).
  • the power conversion apparatus performs switching operations of the input side converter unit 110 and the output side inverter unit 120 based on the switching sequence of the input side converter unit 110 and the output side inverter unit 120 and the synthesis vector time.
  • the control signal is generated and the switching operation of the input side converter unit 110 and the output side inverter unit 120 is controlled based on the generated control signal (S2340).
  • the input side converter when the power converter is a three-phase direct power converter, the input side converter includes six bidirectional switching elements for four quadrant operation, and the output side inverter unit 120 has a structure of a general voltage inverter. Is done.
  • the output side inverter unit 120 may be configured by, for example, two switching elements connected in series to each other to form one pole, and three poles connected in parallel to each other. At this time, in order to output the three-phase AC voltage, it is preferable that the switch elements of one pole and the neighboring pole operate complementarily.
  • the input side converter unit 110 includes six bidirectional switching elements for four-quadrant operation
  • the output side inverter unit 120 is a general single-phase voltage type
  • the structure of the inverter is made. That is, the output side inverter unit 120 may include an input side converter unit 110 including six bidirectional switching elements and four unidirectional switching elements for single phase grid connection.
  • the power converter when the power converter is a three-phase direct power converter, six current sectors are divided by using a space vector of the input current of the input side converter unit, and the output side inverter unit (hereinafter referred to as a three-phase output side inverter unit) The six voltage sectors can be distinguished using the space vector for the output voltage. Thereafter, the three-phase direct type power converter calculates the synthesized vector time based on at least one of an input current of the input side converter unit, an output current of the three-phase output side inverter unit, and a modulation index MI.
  • the three-phase direct type power converter calculates the input effective vector time by using the phase of the sector and the input current with respect to the input current of the input side converter.
  • the three-phase direct type power converter calculates an output valid vector time using the phase of the sector and the output voltage with respect to the output voltage of the three-phase output side inverter.
  • the three-phase direct power converter can calculate the composite vector time using the calculated input valid vector time and output valid vector time and the modulation index MI. have.
  • the three-phase direct type power converter determines the switching sequence of the input side converter unit and the switching sequence of the three-phase output side inverter unit for each of the plurality of sectors determined in step S2310. Subsequently, the three-phase direct power converter performs switching operations of the input-side converter unit and the three-phase output side inverter unit according to the switching sequence determined for each sector during the composite vector time and the composite zero vector application time. do.
  • the three-phase direct type power converter determines the switching sequence of the input-side converter unit as a two-stage switching sequence without zero vector, and the five-stage including the zero vector and the effective vector as the switching sequence of the three-phase output side inverter unit. Can be determined by the switching sequence.
  • the three-phase direct power converter is a combination of a two-stage switching sequence of the input side converter section and a five-stage switching sequence of the three-phase output side inverter section so that the three-phase direct power converter has a six-stage switching sequence. And a switching sequence of the three-phase output side inverter unit.
  • the six-stage switching sequence may have a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector, and a plurality of sectors. It may be made of the same pattern.
  • the three-phase direct-type power conversion device determines the switching sequence of the input side converter unit as a two-stage switching sequence without zero vector, and the switching sequence of the three-phase output side inverter unit 7 including a zero vector and an effective vector. Can be determined by the step switching sequence.
  • the three-phase direct type power conversion device is a combination of a two-stage switching sequence of the input side converter section and a seven-stage switching sequence of the three-phase output side inverter section so that the power conversion device has an eight-stage switching sequence so that the input side converter section and the output side inverter section The switching sequence can be determined.
  • the three-phase direct power switching device if the determined plurality of sectors is odd, based on the first condition, the first zero vector, the first valid vector, the second valid vector, the second zero vector, and the third An eight-stage switching sequence of the zero vector, the third valid vector, the fourth valid vector, and the fourth zero vector may be determined.
  • the three-phase direct-type power conversion device if the determined plurality of sectors is even, based on the second condition, the first zero vector, the second valid vector, the first valid vector, the second zero vector, the third zero vector, An eight-stage switching sequence of the fourth valid vector, the third valid vector, and the fourth zero vector may be determined.
  • the present invention is not limited thereto, and the eight-stage switching sequence may have the same pattern for each of a plurality of sectors.
  • the three-phase direct power converter according to the present invention is a six-stage switching generated by a combination of a two-stage switching sequence without a zero vector of the input side converter unit and a five-stage switching sequence for the zero and effective vectors of the three-phase output side inverter unit.
  • the switching operation of the input side converter section and the three-phase output side inverter section is performed according to the eight-step switching sequence generated by the sequence or the combination of the seven-step switching sequence.
  • the three-phase direct type power converter performs Partial Zero Current Switching (PZCS) operation when switching of the input side converter part occurs in a zero vector period, thereby minimizing power loss generated during switching.
  • PZCS Partial Zero Current Switching
  • the number of switching switching is reduced, thereby minimizing power loss.
  • a virtual space vector for an output voltage may be created, and two sectors may be distinguished using the virtual space vector.
  • the two sectors divided by the virtual space vector have a 180 degree phase difference according to the positive and negative states of the command voltage.
  • the input side is based on the calculated space vector for the input current and the output voltage.
  • the input valid vector time for the input current of the converter section and the output valid vector time for the output voltage of the single-phase output side inverter section can be calculated.
  • the three-phase / single phase direct type power converter calculates a composite vector time to be used for the input side converter unit and the single phase output side inverter unit based on Equation 7 described above. Thereafter, the three-phase / single-phase direct type power converter determines the switching sequence of the input side converter unit and the switching sequence of the single phase output side inverter unit for each of the plurality of sectors determined in step S2310. Thereafter, the three-phase / single phase direct type power converter performs the switching operation of the input side converter unit and the single phase output side inverter unit according to the switching sequence of the input side converter unit and the single phase output side inverter unit determined for each sector.
  • the three-phase / single phase direct power converter has a six-stage switching sequence generated by a combination of a two-stage switching sequence of the input side converter unit and a five-stage switching sequence for the zero and effective vectors of the single-phase output side inverter unit.
  • the switching sequence of the input side converter section and the single phase output side inverter section can be determined.
  • the six-stage switching sequence determined from the switching pattern of the input side converter section and the switching pattern of the single-phase output side inverter section may include a first zero vector, a second valid vector, a second zero vector, and a third zero vector.
  • the three-phase / single-phase direct type power conversion device cuts off the power supply between the input side converter unit and the single phase output side inverter unit at the time when the single phase output side inverter unit is controlled in the zero vector switching state. All switching operations of 110 are zero current switched to allow bidirectional power control without current direction detection.

Abstract

A power converting device for switching control is disclosed. According to the present invention, a power converting device includes: an input side converter unit; an output side inverter unit; a sector discerning unit for discerning a plurality of sectors for an input current of the converter unit and an output voltage of the inverter unit; a composite vector time calculating unit for using at least one from among the input current of the converter unit, the output voltage of the inverter unit, and a modulation index (MI) to calculate a composite vector time; a sequence determining unit for determining a switching sequence of the converter unit and a switching sequence of the inverter unit for each of the plurality of discerned sectors; and a control signal generating unit for generating a control signal for conducting a switching operation of the converter unit and the inverter unit on the basis of the switching sequences of the converter unit and the inverter unit and the composite vector time, and the switching sequence of the converter unit does not include a zero vector. Accordingly, the power converting device minimizes switching commutation through simplifying the switching sequences of the input side converter and the output side inverter, so as to be able to minimize power loss that occurs during switching commutation according to a switching sequence.

Description

스위칭 제어를 위한 전력 변환 장치 및 방법Power converter and method for switching control
본 발명은 스위칭 제어를 위한 직류 링크 회로가 없는 직접형 AC/AC 전력 변환 장치에 관한 것으로서, 보다 상세하게는 컨버터부의 영전류 스위칭이 가능한 전력 변환 장치에 관한 것이다.The present invention relates to a direct type AC / AC power converter without a DC link circuit for switching control, and more particularly, to a power converter capable of zero current switching of a converter section.
일반적으로 2 단계 직접형 전력 변환 시스템TSDPC(Two Stage Direct Power Converter)과 같은 전력 변환 장치는 간접형 AC/AC 전력변환시스템의 직류링크회로를 가상의 직류링크회로로 구성하여 대용량 시스템의 소형화 및 긴수명에 대한 장점을 가지고 있다.In general, a power conversion device such as a two stage direct power converter system (TSDPC) consists of a direct DC link circuit of an indirect AC / AC power conversion system as a virtual DC link circuit to reduce the size and length of a large capacity system. It has an advantage for life.
일반적으로 3상 전력 변환 장치는 입력측 컨버터의 6개의 양방향 스위칭 소자와 출력측 인버터의 역병렬 다이오드가 달린 6개의 스위칭 소자를 제어하기 때문에 전체적으로 제어해야 할 반도체 전력 스위칭 소자는 18개가 된다.  이 같은 전력 스위칭 소자를 제어하는 제어기법은 9단계 혹은 11단계 스위칭 시퀀스를 일반적으로 사용한다.In general, a three-phase power converter controls six switching elements including six bidirectional switching elements of an input side converter and an anti-parallel diode of an output side inverter, so that there are 18 semiconductor power switching elements to be controlled. The control method for controlling such a power switching element generally uses a 9-step or 11-step switching sequence.
그러나, 이 같은 9단계 혹은 11단계 스위칭 시퀀스를 통해 입력측 컨버터 및 출력측 인버터의 스위칭 소자를 제어할 경우, 각 단계의 스위칭 절환에 따른 전력 손실이 발생되는 문제가 있다.However, when controlling the switching elements of the input-side converter and the output-side inverter through the nine-stage or eleven-stage switching sequence, there is a problem that a power loss occurs due to the switching switching of each stage.
상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 나아가, 본 발명은 전력 변환 장치의 입력측 컨버터 및 출력측 인버터의 스위칭 시퀀스의 간소화를 통해 스위칭 절환이 최소화되도록 함을 목적으로 한다.In order to solve the above problems, an object of the present invention, furthermore, an object of the present invention is to minimize the switching switching through the simplification of the switching sequence of the input converter and the output inverter of the power converter.
나아가, 본 발명은 전력 변환 장치의 입력측 컨버터 및 출력측 인버터에서 스위칭 시퀀스에 따라 스위칭 절환 시 발생하는 전력 손실을 최소화하는 것을 목적으로 한다.Furthermore, an object of the present invention is to minimize the power loss that occurs during switching switching according to a switching sequence in an input converter and an output inverter of a power converter.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 전력 변환 장치는, 입력측 컨버터부, 출력측 인버터부, 상기 컨버터부의 입력 전류 및 상기 인버터부의 출력 전압에 대한 복수의 섹터를 판별하는 섹터 판별부, 상기 컨버터부의 입력 전류, 상기 인버터부의 출력 전압 및 변조 지수(MI) 중 적어도 하나를 이용하여 합성 벡터 시간을 산출하는 합성 벡터 시간 산출부, 상기 판별된 복수의 섹터 각각에 대해 상기 컨버터부의 스위칭 시퀀스 및 상기 인버터부의 스위칭 시퀀스를 결정하는 시퀀스 결정부 및 상기 컨버터부 및 상기 인버터부의 스위칭 시퀀스와, 상기 합성 벡터 시간에 기초하여 상기 컨버터부 및 상기 인버터부의 스위칭 동작을 수행하기 위한 제어 신호를 생성하는 제어 신호 생성부를 포함하며, 상기 컨버터부의 스위칭 시퀀스는, 영벡터를 포함하지 않는다.According to an aspect of the present invention, there is provided a power conversion apparatus comprising: a sector determination unit configured to determine a plurality of sectors of an input side converter unit, an output side inverter unit, an input current of the converter unit, and an output voltage of the inverter unit; A composite vector time calculating unit calculating a composite vector time using at least one of an input current of the converter unit, an output voltage of the inverter unit, and a modulation index MI, a switching sequence of the converter unit for each of the determined plurality of sectors; A sequence determination section for determining a switching sequence of the inverter section and a control signal for generating a control signal for performing a switching operation of the converter section and the inverter section based on the switching sequence of the converter section and the inverter section and the composite vector time; And a generating unit, wherein the switching sequence of the converter unit is: The not included.
그리고, 상기 전력 변환 장치가 3상 직접형 전력 변환 장치이면, 상기 컨버터부는 3상 교류를 직류로 변환하기 위한 전류형 컨버터로써 6개의 양방향 스위치를 포함하며, 상기 인터버부는 상기 직류를 3상 교류로 변환하기 위한 전압형 컨버터로써 역병령 다이오드를 포함하는 6개의 스위치를 포함할 수 있다.And, if the power conversion device is a three-phase direct power conversion device, the converter unit includes a six-way switch as a current type converter for converting three-phase alternating current into a direct current, the inverter unit is a three-phase alternating current As a voltage converter for converting the circuit into a circuit, it may include six switches including an anti-parallel diode.
또한, 상기 시퀀스 결정부는, 상기 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 상기 출력측 인버터부의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 5단계 스위칭 시퀀스로 결정할 수 있다.The sequence determiner may determine the switching sequence of the converter unit as a two-stage switching sequence without a zero vector, and may determine the switching sequence of the output side inverter unit as a five-stage switching sequence including a zero vector and a valid vector.
그리고, 상기 시퀀스 결정부는, 상기 컨버터부의 2단계 스위칭 시퀀스 및 상기 인버터부의 5단계 스위칭 시퀀스의 조합으로 상기 전력 변환 장치가 6단계의 스위칭 시퀀스를 가지도록 상기 컨버터부 및 상기 인버터부의 스위칭 시퀀스를 결정하며, 상기 6단계의 스위칭 시퀀스는, 제1 유효벡터, 제2 유효벡터, 제1 영벡터, 제2 영벡터, 제3 유효벡터, 제4 유효벡터 순서의 스위칭 시퀀스를 가질 수 있다.The sequence determiner may determine a switching sequence of the converter unit and the inverter unit such that the power converter has a six-stage switching sequence by combining a two-stage switching sequence of the converter unit and a five-stage switching sequence of the inverter unit. The switching sequence of step 6 may have a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector.
또한, 상기 시퀀스 결정부는, 상기 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 상기 인버터부의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 7단계 스위칭 시퀀스로 결정할 수 있다.The sequence determining unit may determine the switching sequence of the converter unit as a two-stage switching sequence without a zero vector, and may determine the switching sequence of the inverter unit as a seven-stage switching sequence including a zero vector and a valid vector.
그리고, 상기 시퀀스 결정부는, 상기 컨버터부의 2단계 스위칭 시퀀스 및 상기 인버터부의 7단계 스위칭 시퀀스의 조합으로 상기 전력 변환 장치가 8단계의 스위칭 시퀀스를 가지도록 상기 입력측 컨버터부 및 상기 출력측 인버터부의 스위칭 시퀀스를 결정할 수 있다.The sequence determiner may include a switching sequence of the input side converter unit and the output side inverter unit such that the power converter has an eight-stage switching sequence using a combination of the two-stage switching sequence of the converter unit and the seven-stage switching sequence of the inverter unit. You can decide.
또한, 상기 8단계의 스위칭 시퀀스는, 상기 판별된 복수의 섹터가 홀수이면, 기설정된 제1 조건에 기초하여 제1 영벡터, 제1 유효벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제3 유효벡터, 제4 유효벡터 및 제4 영벡터 순서의 스위칭 시퀀스를 가지며, 상기 판별된 복수의 섹터가 짝수이면, 기설정된 제2 조건에 기초하여 제1 영벡터, 제2 유효벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제4 유효벡터, 제3 유효벡터 및 제4 영벡터 순서의 스위칭 시퀀스를 가질 수 있다.The switching sequence of step 8 may include a first zero vector, a first valid vector, a second valid vector, a second zero vector, and a third based on a first predetermined condition when the determined plurality of sectors is an odd number. A zero vector, a third valid vector, a fourth valid vector, and a fourth zero vector, and when the determined plurality of sectors is an even number, the first zero vector and the second valid vector are based on a second predetermined condition. The switching sequence may include a vector, a first valid vector, a second zero vector, a third zero vector, a fourth valid vector, a third valid vector, and a fourth zero vector.
그리고, 상기 전력 변환 장치가 3상/단상 직접형 전력 변환 장치이면, 상기 컨버터부는 3상 교류 전압을 직류로 변환하기 위한 전류형 컨버터로써 6개의 양방향 스위치를 포함하며, 상기 인터버부는 상기 직류를 단상 교류로 변환하기 위한 전압형 컨버터로써 역병렬 다이오드를 포함하는 4개의 스위치를 포함할 수 있다.If the power converter is a three-phase / single-phase direct power converter, the converter unit includes six bidirectional switches as a current converter for converting a three-phase alternating current voltage to a direct current, and the inverter unit is configured to supply the direct current. A voltage converter for converting single phase alternating current may include four switches including an anti-parallel diode.
또한, 상기 시퀀스 결정부는, 상기 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2 단계 스위칭 시퀀스로 결정하며, 상기 인버터부의 스위칭 시퀀스를 영백터 및 유효벡터를 포함하는 5단계 스위칭 시퀀스로 결정할 수 있다.The sequence determining unit may determine the switching sequence of the converter unit as a two-stage switching sequence without a zero vector, and may determine the switching sequence of the inverter unit as a five-stage switching sequence including a zero vector and an effective vector.
그리고, 상기 시퀀스 결정부는, 상기 컨버터부의 2단계 스위칭 시퀀스 및 상기 인버터부의 5단계 스위칭 시퀀스의 조합으로 상기 전력 변환 장치가 6단계의 스위칭 시퀀스를 가지도록 상기 컨버터부 및 상기 인버터부의 스위칭 시퀀스를 결정하며, 상기 6단계의 스위칭 시퀀스는, 제1 영벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제1 유효벡터 및 제4 영벡터 순서의 제1 스위칭 시퀀스와, 제1 영벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제2 유효벡터 및 제4 영벡터 순서의 제2 스위칭 시퀀스 중 하나일 수 있다.The sequence determiner may determine a switching sequence of the converter unit and the inverter unit such that the power converter has a six-stage switching sequence by combining a two-stage switching sequence of the converter unit and a five-stage switching sequence of the inverter unit. The six-stage switching sequence may include a first switching sequence of a first zero vector, a second valid vector, a second zero vector, a third zero vector, a first valid vector, and a fourth zero vector, and a first zero vector. The first valid vector, the second zero vector, the third zero vector, the second valid vector, and the fourth zero vector may be one of a second switching sequence.
또한, 상기 합성 벡터 시간 산출을 위한 유효 벡터 시간 및 영벡터 시간을 산출하는 벡터 시간 산출부를 더 포함하며, 상기 벡터 시간 산출부는, 상기 컨버터부의 입력 전류 섹터 및 입력 전류 위상을 이용하여 입력 유효 벡터 시간을 산출하는 입력 벡터 시간 산출부, 상기 인버터부의 출력 전압 섹터, 출력 전압 위상 및 상기 변조 지수(MI)를 이용하여 출력 유효 벡터 시간 및 출력 영벡터 시간을 산출하는 출력 벡터 시간 산출부 및 상기 인버터부의 출력 전압을 이용하여 상기 변조 지수(MI)를 산출하는 변조 지수 산출부를 포함할 수 있다.The apparatus further includes a vector time calculator configured to calculate an effective vector time and a zero vector time for calculating the synthesized vector time, wherein the vector time calculator includes an input effective vector time using an input current sector and an input current phase of the converter unit. An input vector time calculator for calculating an output effective vector time and an output zero vector time by using an input vector time calculator for calculating an output voltage sector, an output voltage phase, and the modulation index MI; The modulation index calculator may be configured to calculate the modulation index MI using an output voltage.
상술한 바와 같이, 본 발명의 다양한 실시예에 따르면, 본 발명에 따른 전력 변환 장치는 입력측 컨버터 및 출력측 인버터의 스위칭 시퀀스의 간소화를 통해 스위칭 절환이 최소화시킴으로써, 스위칭 시퀀스에 따라 스위칭 절환 시 발생하는 전력 손실을 최소화할 수 있는 효과가 있다.As described above, according to various embodiments of the present disclosure, the power conversion apparatus according to the present invention minimizes switching switching by simplifying a switching sequence of an input side converter and an output side inverter, and thus generates power in switching switching according to the switching sequence. This has the effect of minimizing losses.
도 1은 본 발명의 일 실시예에 따른 전력 변환 장치의 블록도,1 is a block diagram of a power conversion apparatus according to an embodiment of the present invention;
도 2(a)는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 제1 회로도,2 (a) is a first circuit diagram of a three-phase direct power converter according to an embodiment of the present invention;
도 2(b)는 본 발명의 일 실시예에 따른 클램프 보호 회로가 부착된 3상 직접형 전력 변환 장치의 제2 회로도,2 (b) is a second circuit diagram of a three-phase direct power converter with a clamp protection circuit according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 클램프 보호 회로가 부착된 3상/단상 직접형 전력 변환 장치의 회로도,3 is a circuit diagram of a three-phase / single-phase direct power converter with a clamp protection circuit according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 입력측 컨버터부의 양방향 스위칭 소자의 예시도,4 is an exemplary diagram of a bidirectional switching element of an input side converter unit according to an embodiment of the present invention;
도 5는 본 발명의 일 실시예에 따른 3상 및 3상/단상 직접형 전력 변환 장치에서 입력측 컨버터부 및 출력측 인버터부의 공간벡터를 나타내는 예시도,5 is an exemplary diagram illustrating a space vector of an input side converter unit and an output side inverter unit in a three-phase and three-phase / single-phase direct power converter according to an embodiment of the present invention;
도 6은 종래의 전력 변환 장치의 스위칭 시퀀스를 나타내는 예시도,6 is an exemplary diagram showing a switching sequence of a conventional power converter;
도 7은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 컨버터부의 부분 영전류 스위칭을 구현하기 위한 스위칭 시퀀스를 나타내는 예시도,7 is an exemplary diagram illustrating a switching sequence for implementing partial zero current switching of a converter unit of a three-phase direct type power converter according to an embodiment of the present invention;
도 8은 본 발명의 일 실시예에 따른 3상 전력 변환 장치의 컨버터부의 영전류 스위칭을 구현하기 위한 스위칭 스퀀스를 나타내는 예시도,8 is an exemplary diagram illustrating a switching sequence for implementing zero current switching of a converter unit of a three-phase power converter according to an embodiment of the present invention;
도 9는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 부분 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 파형을 나타내는 예시도,9 is an exemplary diagram illustrating waveforms of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 부분 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 확대 파형을 나타내는 예시도,10 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention;
도 11은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장체의 부분 영전류 스위칭 모드에서 가상 직류 링크 전류 및 입력측 컨버터부의 스위칭 게이트 신호의 확대 파형을 나타내는 예시도,11 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link current and a switching gate signal of an input side converter in a partial zero current switching mode of a three-phase direct type power conversion device according to an embodiment of the present invention;
도 12는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 부분 영전류 스위칭 모드에서 출력선간 전압 및 출력 전류의 파형을 나타내는 예시도,12 is an exemplary diagram illustrating waveforms of an output line voltage and an output current in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 파형을 나타내는 예시도,13 is an exemplary view showing waveforms of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention;
도 14는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 확대 파형을 나타내는 예시도,14 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention;
도 15는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 가상 직류 링크 전압 및 입력측 컨버터부의 스위칭 게이트 신호의 확대 파형을 나타내는 예시도,15 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage and a switching gate signal of an input side converter unit in a zero current switching mode of a three-phase direct type power converter according to an embodiment of the present invention;
도 16은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 출력선간 전압 및 출력 전류의 파형을 나타내는 예시도,16 is an exemplary diagram illustrating waveforms of an output line voltage and an output current in a zero current switching mode of a three-phase direct type power converter according to an embodiment of the present invention;
도 17은 본 발명의 일 실시예에 따른 3상/단상 직접형 전력 변환 장치의 영전류 스위칭을 구현하기 위한 스위칭 시퀀스를 나타내는 예시도,17 is an exemplary diagram illustrating a switching sequence for implementing zero current switching of a three-phase / single-phase direct power converter according to an embodiment of the present invention;
도 18은 본 발명의 일 실시예에 따른 3상/단상 직접형 전류 변환 장치에서 시뮬레이션 수행에 따른 출력 전류 및 출력선간전압의 파형을 나타내는 예시도,18 is an exemplary view showing waveforms of output current and output line voltage according to a simulation performed in a three-phase / single-phase direct current converter according to an embodiment of the present invention;
도 19는 본 발명의 일 실시예에 따른 3상/단상 직접형 전류 변환 장치에서 시뮬레이션 수행에 따른 직류링크전류 및 스위칭 신호의 파형을 나타내는 예시도,19 is an exemplary diagram illustrating waveforms of a DC link current and a switching signal according to a simulation performed in a three-phase / single-phase direct current converter according to an embodiment of the present invention;
도 20은 본 발명의 일 실시예에 따른 3상/단상 직접형 전류 변환 장치에서 시뮬레이션 수행에 따른 ZCS 동작 파형을 나타내는 예시도,20 is an exemplary view showing a ZCS operation waveform according to a simulation performed in a three-phase / single-phase direct current conversion device according to an embodiment of the present invention;
도 21은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치에서 한 주기 동안의 기존 제어기법과 부분 영전류 스위칭 절환 횟수 비교 결과를 나타내는 예시도,21 is an exemplary view showing a result of comparing a conventional control method and a number of partial zero current switching switching times during one cycle in a three-phase direct type power converter according to an embodiment of the present invention;
도 22는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치에서 한 주기 동안의 기존 제어기법과 영전류 스위칭 절환 횟수 비교 결과를 나타내는 예시도,FIG. 22 is an exemplary view showing a result of comparing a conventional control method and a zero current switching switching frequency during one cycle in a three-phase direct type power converter according to an embodiment of the present invention; FIG.
도 23은 본 발명의 일 실시예에 따른 전력 변환 장치의 스위치 제어 방법의 흐름도이다.23 is a flowchart of a switch control method of a power conversion apparatus according to an embodiment of the present invention.
--
이하에서, 첨부된 도면을 이용하여 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 전력 변환 장치의 블록도이다.1 is a block diagram of a power conversion apparatus according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 전력 변환 장치는 직류 링크 회로 없이 3상 교류 입력을 변환하는 AC/AC 전력 변환 장치이다.  이 같은 전력 변환 장치는 실시예에 따라, 3상 직접형 전력 변환 장치이거나 또는 3상/단상 직접형 전력 변환 장치가 될 수 있다.As shown in FIG. 1, the power converter is an AC / AC power converter that converts a three-phase AC input without a DC link circuit. Such a power converter may be a three-phase direct power converter or a three-phase / single-phase direct power converter, depending on the embodiment.
3상 직접형 전력 변환 장치는 직류 링크 회로 없이 3상 교류 입력을 3상 교류 출력으로 직접 변환하여 출력하는 장치가 될 수 있다.  그리고, 3상/단상 직접형 전력 변환 장치는 직류 링크 회로 없이 3상 교류 입력을 단상 교류 출력으로 직접 변환하여 출력하는 장치가 될 수 있다.The three-phase direct type power converter may be a device for directly converting a three-phase AC input into a three-phase AC output without a DC link circuit. The three-phase / single-phase direct type power converter may be a device for directly converting and outputting a three-phase AC input into a single-phase AC output without a DC link circuit.
이하에서는, 3상 직접형 전력 변환 장치로 이루어지진 전력 변환 장치 및 3상/단상 직접형 전력 변환 장치로 이루어진 전력 변환 장치에 대해서 상세히 설명하도록 한다.Hereinafter, a power converter consisting of a three-phase direct type power converter and a power converter consisting of a three-phase / single phase direct type power converter will be described in detail.
도 2(a)는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 제1 회로도이며, 도 2(b)는 본 발명의 일 실시예에 따른 클램프 보호 회로가 부착된 3상 직접형 전력 변환 장치의 제2 회로도이다.2 (a) is a first circuit diagram of a three-phase direct power converter according to an embodiment of the present invention, Figure 2 (b) is a three-phase direct with a clamp protection circuit according to an embodiment of the present invention It is a 2nd circuit diagram of a type power converter.
도 2(a)에 도시된 바와 같이, 3상 직접형 전력 변환 장치는 직류 링크 회로 없이 3상 교류 입력을 3상 교류 출력으로 직접 변환하는 AC/AC 전력 변환 장치이다.  이 같은 3상 직접형 전력 변환 장치는 입력측 컨버터부(110), 출력측 인버터부(120), 섹터 판별부(130), 시퀀스 결정부(140) 및 제어 신호 생성부(150)를 포함한다.As shown in FIG. 2A, the three-phase direct power converter is an AC / AC power converter that directly converts a three-phase AC input to a three-phase AC output without a DC link circuit. The three-phase direct power converter includes an input side converter 110, an output side inverter 120, a sector discriminator 130, a sequence determiner 140, and a control signal generator 150.
입력측 컨버터부(110)는 4상한 운전을 위한 6개의 양방향 스위칭 소자를 포함하며, 출력측 인버터부(120)는 일반적인 전압형 인버터의 구조로 이루어진다.  여기서, 출력측 인버터부(120)는 가령 2개의 스위칭 소자가 서로 직렬 연결되어 하나의 폴(pole)을 형성하며, 3개의 폴이 서로 병렬 연결되어 구성될 수 있다.  이때, 3상의 교류 전압을 출력하기 위하여, 하나의 폴과 이웃하는 폴의 스위치 소자들은 상보적으로 동작하는 것이 바람직하다.The input side converter unit 110 includes six bidirectional switching elements for four quadrant operation, and the output side inverter unit 120 has a structure of a general voltage inverter. Here, the output side inverter unit 120 may be configured by, for example, two switching elements connected in series to each other to form one pole, and three poles connected in parallel to each other. At this time, in order to output the three-phase AC voltage, it is preferable that the switch elements of one pole and the neighboring pole operate complementarily.
여기서, 상보적이란 하나의 폴에서 상단 스위칭 소자와 인접하는 폴의 하단 스위칭 소자를 동시에 턴 온 및 턴 오프시키되, 각각의 폴에서의 상단 스위칭 소자와 하단 스위칭 소자는 교차하여 턴 온 및 턴 오프시키는 것을 의미한다.Here, complementary means to turn on and turn off the upper switching element and the lower switching element of the adjacent pole in one pole at the same time, the upper switching element and the lower switching element in each pole alternately turn on and turn off Means that.
한편, 입력측 컨버터부(110) 및 출력측 인버터부(120) 사이에 전류 방향 검출 회로가 형성된다.  여기서, 전류 방향 검출 회로는 회생구간에서 스위칭 절환이 달라지는 회생구간을 파악하기 위한 회로로써, 이 같은 전류 방향 검출 회로는 가상의 직류 링크 회로에 설치되는 것이 바람직하다.Meanwhile, a current direction detecting circuit is formed between the input side converter unit 110 and the output side inverter unit 120. Here, the current direction detection circuit is a circuit for identifying the regenerative section in which switching switching is changed in the regenerative section. Such a current direction detecting circuit is preferably provided in a virtual DC link circuit.
한편, 도 2(b)에 도시된 바와 같이, 본 발명에 따른 3상 직접형 전력 변환 장치는 소자 안정화 회로부(170)를 더 포함할 수 있다.  이 같은 소자 안정화 회로부(170)는 입력 라인의 서지(Surge), 스위칭 절환에 따른 과전압 발생, 그리고 부하 셧다운에 의한 서지(Surge)로부터 전력 변환 장치의 스위칭 소자를 보호해 주는 역할을 수행한다.On the other hand, as shown in Figure 2 (b), the three-phase direct power conversion apparatus according to the present invention may further include a device stabilization circuit unit 170. The device stabilization circuit unit 170 protects the switching device of the power converter from surges in the input line, overvoltage generation due to switching switching, and surge due to load shutdown.
한편, 양방향 스위칭 소자는 다음과 같은 타입으로 구현될 수 있다.Meanwhile, the bidirectional switching device may be implemented in the following types.
도 3은 본 발명의 일 실시예에 따른 클램프 보호 회로가 부착된 3상/단상 직접형 전력 변환 장치의 회로도이다.3 is a circuit diagram of a three-phase / single-phase direct power conversion device with a clamp protection circuit according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 3상/단상 직접형 전력 변환 장치는 직류 링크 회로 없이 3상 교류 입력을 단상 교류 출력으로 직접 변환하는 AC/AC 전력 변환 장치이다.  이 같은 3상/단상 직접형 전력 변환 장치는 상술한 3상 직접형 전력 변환 장치와 마찬가지로 입력측 컨버터부(110), 출력측 인버터부(120), 섹터 판별부(130), 시퀀스 결정부(140) 제어 신호 생성부(150) 및 소자 안정화 회로부(170)를 포함한다.As shown in FIG. 3, the three-phase / single phase direct type power converter is an AC / AC power converter that directly converts a three-phase AC input to a single-phase AC output without a DC link circuit. The three-phase / single phase direct type power converter is similar to the three-phase direct type power converter described above with the input side converter unit 110, the output side inverter unit 120, the sector discriminator 130, and the sequence determiner 140. The control signal generator 150 and the device stabilization circuit unit 170 is included.
입력측 컨버터부(110)는 4상한 운전을 위한 6개의 양방향 스위칭 소자를 포함하며, 출력측 인버터부(120)는 일반적인 단상 전압형 인버터의 구조로 이루어진다.  즉, 출력측 인버터부(120)는 6개의 양방향 스위칭 소자를 포함하는 입력측 컨버터부(110)와 단상 계통 연결을 위한 4개의 단방향 스위칭 소자를 포함할 수 있다.The input side converter unit 110 includes six bidirectional switching elements for four quadrant operation, and the output side inverter unit 120 has a structure of a general single phase voltage inverter. That is, the output side inverter unit 120 may include an input side converter unit 110 including six bidirectional switching elements and four unidirectional switching elements for single phase grid connection.
한편, 입력측 컨버터부(110) 및 출력측 인버터부(120) 사이에 전류 방향 검출 회로가 형성된다.  여기서, 전류 방향 검출 회로는 회생구간에서 스위칭 절환이 달라지는 회생구간을 파악하기 위한 회로로써, 이 같은 전류 방향 검출 회로는 가상의 직류 링크 회로에 설치되는 것이 바람직하다.Meanwhile, a current direction detecting circuit is formed between the input side converter unit 110 and the output side inverter unit 120. Here, the current direction detection circuit is a circuit for identifying the regenerative section in which switching switching is changed in the regenerative section. Such a current direction detecting circuit is preferably provided in a virtual DC link circuit.
소자 안정화 회로부(170)는 입력 라인의 서지(Surge), 스위칭 절환에 따른 과전압 발생, 그리고 부하 셧다운에 의한 서지(Surge)로부터 전력 변환 장치의 스위칭 소자를 보호해 주는 역할을 수행한다.The device stabilization circuit unit 170 protects the switching device of the power converter from surges in the input line, overvoltage generation due to switching switching, and surge due to load shutdown.
도 4는 본 발명의 일 실시예에 따른 입력측 컨버터부의 양방향 스위칭 소자의 예시도이다.4 is an exemplary diagram of a bidirectional switching device of an input side converter unit according to an exemplary embodiment of the present invention.
일반적으로, 양방향 스위칭 소자는 기존의 스위칭 소자(파워 MOSFET, IGBT 등)를 이용하여 구현할 수 있다.In general, the bidirectional switching device may be implemented by using a conventional switching device (power MOSFET, IGBT, etc.).
도 4의 (a)는 제1 타입의 양방향 스위칭 소자로써, 4개의 다이오드와 1개의 IGBT로 구성되고, 양방향 전류가 하나의 스위치로 도통하므로 다른 타입의 양방향 스위칭 소자에 비해 각 양방향 스위치에 하나의 게이트 드라이버만 요구되는 장점이 있다.  반면, 제1 타입의 양방향 스위칭 소자의 각 도통경로에는 세 개의 스위치가 있기 때문에 다른 타입의 양방향 스위칭 소자에 비해 스위칭 손실이 가장 크며, 스위치에 흐르는 전류의 방향을 제어할 수 없는 단점이 있다.Figure 4a is a bidirectional switching device of the first type, consisting of four diodes and one IGBT, because the bidirectional current conducts to one switch, one in each bidirectional switch compared to other types of bidirectional switching devices Only the gate driver is required. On the other hand, since there are three switches in each conduction path of the first type bidirectional switching element, the switching loss is greatest compared to other types of bidirectional switching elements, and there is a disadvantage in that the direction of the current flowing through the switch cannot be controlled.
도 4의 (b) 및 (c)는 제2 타입의 양방향 스위칭 소자로써, 2개의 다이오드와 2개의 IGBT를 조합하여 공통 이미터 혹은 공통 컬렉터로 구성되며, IGBT 각각은 영방향 전압에 대한 파괴를 막기 위한 다이오드가 역병렬로 연결된다.  각 도통경로에는 2개의 스위치가 존재하므로 제1 타입의 양방향 스위칭 소자에 비해 스위칭 손실이 적다.(B) and (c) of FIG. 4 are bidirectional switching elements of a second type, and are composed of a common emitter or a common collector by combining two diodes and two IGBTs, and each of the IGBTs has a breakdown against zero voltage. Diodes for blocking are connected in anti-parallel. Since there are two switches in each conduction path, there is less switching loss than the bidirectional switching element of the first type.
한편, 도 4의 (b) 및 (c)의 양방향 스위칭 소자의 각 IGBT가 역방향 전압을 견딜 수 있을 경우, 도 3의 (d)와 같이, 2개의 IGBT로 양방향 스위칭 소자를 구성할 수 있으며, 이 경우, 나머지 타입의 양방향 스위칭 소자에 비해 스위칭 손실을 가장 최소화할 수 있다.Meanwhile, when each IGBT of the bidirectional switching device of FIGS. 4B and 4C can withstand the reverse voltage, as shown in FIG. 3D, the bidirectional switching device may be configured with two IGBTs. In this case, the switching loss can be minimized as compared with the other types of bidirectional switching elements.
한편, 섹터 판별부(130)는 입력측 컨버터부(110)의 입력 전류 및 출력측 인버터부(120)의 출력 전압에 대한 복수의 섹터를 판별한다.  구체적으로, 입력측 컨버터부(110)는 위상 고정 루프(Phase locked loop : PLL)를 이용하여 입력측 컨버터부(110)에 입력된 3상의 전압으로부터 입력 위상을 검출하고, 출력측 인버터부(120)는 입력된 임의의 지령 전압으로부터 출력 위상을 검출한다.  이 같이, 입력 위상 및 출력 위상이 검출되면, 섹터 판별부(130)는 입력 전류에 대한 공간벡터를 이용하여 기검출된 입력 위상으로부터 입력 전류에 대한 섹터를 판별하고, 출력 전압에 대한 공간벡터를 이용하여 기검출된 출력 위상으로부터 출력 전압에 대한 섹터를 판별한다.Meanwhile, the sector discriminating unit 130 determines a plurality of sectors with respect to the input current of the input side converter unit 110 and the output voltage of the output side inverter unit 120. Specifically, the input side converter unit 110 detects the input phase from the three-phase voltage input to the input side converter unit 110 using a phase locked loop (PLL), and the output side inverter unit 120 receives the input. The output phase is detected from any given command voltage. As such, when the input phase and the output phase are detected, the sector discriminating unit 130 determines the sector for the input current from the pre-detected input phase by using the space vector for the input current, and determines the spatial vector for the output voltage. A sector for the output voltage is discriminated from the previously detected output phase.
벡터 시간 산출부(160)는 합성 벡터 시간 산출을 위한 유효 벡터 시간 및 변조 지수를 산출한다.  그리고, 합성 벡터 시간 산출부(170)는 벡터 시간 산출부(160)로부터 산출된 유효 벡터 시간 및 변조 지수에 기초하여 합성 벡터 시간을 산출한다.  구체적으로, 합성 벡터 시간 산출을 위한 유효 벡터 시간 및 변조 지수 중 적어도 하나를 산출하는 벡터 시간 산출부(160)는 입력 벡터 시간 산출부(161), 출력 벡터 시간 산출부(163) 및 변조 지수 산출부(165)를 포함할 수 있다.The vector time calculator 160 calculates an effective vector time and a modulation index for calculating the synthesized vector time. The synthesized vector time calculating unit 170 calculates the synthesized vector time based on the effective vector time and the modulation index calculated by the vector time calculating unit 160. Specifically, the vector time calculator 160 for calculating at least one of an effective vector time and a modulation index for calculating a composite vector time may include an input vector time calculator 161, an output vector time calculator 163, and a modulation index calculator. A portion 165 may be included.
입력 벡터 시간 산출부(161)는 입력측 컨버터부(110)의 입력 전류에 대한 섹터 및 입력 전류의 위상을 이용하여 입력 유효 벡터 시간을 산출한다.  그리고, 출력 벡터 시간 산출부(163)는 출력측 인버터부(120)의 출력 전압에 대한 섹터 및 출력 전압의 위상을 이용하여 출력 유효 벡터 시간을 산출한다.  그리고, 변조 지수 산출부(165)는 입력 벡터 시간 산출부(161)로부터 산출된 입력 유효 벡터 시간과 출력 벡터 시간 산출부(163)로부터 산출된 출력 유효 벡터 시간과 함께 합성 벡터 시간을 산출하기 위한 변조 지수를 산출한다.The input vector time calculator 161 calculates an input valid vector time by using a phase of the sector and the input current with respect to the input current of the input side converter 110. The output vector time calculating unit 163 calculates the output valid vector time using the phase of the sector and the output voltage with respect to the output voltage of the output side inverter unit 120. The modulation index calculator 165 calculates the composite vector time together with the input valid vector time calculated from the input vector time calculator 161 and the output valid vector time calculated from the output vector time calculator 163. Calculate the modulation index.
따라서, 합성 벡터 시간 산출부(170)는 입력 벡터 시간 산출부(161)로부터 산출된 입력 유효 벡터 시간, 출력 벡터 시간 산출부(163)로부터 산출된 출력 유효 벡터 시간 및 변조 지수 산출부(165)로부터 산출된 변조 지수(MI)를 이용하여 합성 벡터 시간을 산출할 수 있다.  Accordingly, the composite vector time calculator 170 may determine the input valid vector time calculated from the input vector time calculator 161, the output valid vector time calculated from the output vector time calculator 163, and the modulation index calculator 165. The synthesized vector time can be calculated using the modulation index MI calculated from.
도 5는 본 발명의 일 실시예에 따른 3상 및 3상/단상 직접형 전력 변환 장치에서 입력측 컨버터부 및 출력측 인버터부의 공간벡터를 나타내는 예시도이다.FIG. 5 is an exemplary diagram illustrating a space vector of an input side converter unit and an output side inverter unit in a three-phase and three-phase / single-phase direct type power converter according to an embodiment of the present invention.
도 5의 (a)에 도시된 바와 같이, 3상 직접형 전력 변환 장치에서 섹터 판별부(130)는 입력 전류에 대한 공간벡터를 이용하여 6개의 전류 섹터를 구분할 수 있다.  또한, 섹터 판별부(130)는 도 5의 (b)에 도시된 바와 같이, 출력 전압에 대한 공간벡터를 이용하여 6개의 전압 섹터를 구분할 수 있다.  이와 같이, 본 발명에 따른 전력 변환 장치를 공간벡터 변조방식(SVPWM) 기법을 통해 제어할 경우, 입력측 컨버터부(110)와 출력측 인버터부(120)는 6개의 전류 섹터와 6개의 전압 섹터로 각각 구분될 수 있다.As shown in (a) of FIG. 5, in the three-phase direct type power converter, the sector discriminator 130 may distinguish six current sectors by using a space vector for an input current. In addition, as shown in (b) of FIG. 5, the sector discriminating unit 130 may distinguish six voltage sectors by using a space vector for the output voltage. As described above, when the power converter according to the present invention is controlled through the SVPWM technique, the input converter 110 and the output inverter 120 are each composed of six current sectors and six voltage sectors. Can be distinguished.
수학식 1
Figure PCTKR2016009268-appb-M000001
Equation 1
Figure PCTKR2016009268-appb-M000001
그리고, 출력측 인버터부(120)의 출력 전압에 대한 공간벡터는 출력측 인버터부(120)가 3상으로 이루어질 경우(이하 3상 출력측 인버터부라 함) <수학식 2>과 같은 수식으로 표현될 수 있다. The space vector of the output voltage of the output inverter 120 may be expressed by the following equation when the output inverter 120 is composed of three phases (hereinafter referred to as a three-phase output inverter). .
수학식 2
Figure PCTKR2016009268-appb-M000002
Equation 2
Figure PCTKR2016009268-appb-M000002
여기서, <수학식 2>는 3상 출력측 인버터부(120)이 공간벡터를 나타내는 수식으로써, θ1은 입력 전류에 대한 공간벡터의 위상이며, θ0은 출력 전압에 대한 공간벡터의 위상이다.Here, Equation 2 is a formula in which the three-phase output side inverter unit 120 represents a space vector, where θ1 is a phase of the space vector with respect to the input current and θ0 is a phase of the space vector with respect to the output voltage.
한편, 본 발명에 따른 전력 변환 장치는 입력 전류의 위상각과 출력 전압의 위상각을 동시에 고려한 섹터 정보가 필요하며, 이를 위해 입력측 컨버터부(110)의 전류 섹터와 3상 출력측 인버터부(120)의 전압 섹터를 합성하여 36개의 합성 섹터로 나누어 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)를 각각 제어할 수 있다.  입력측 컨버터부(110)의 전류 섹터와 3상 출력측 인버터부(120)의 전압 섹터에 따른 합성 섹터 구성은 아래 <표 1>와 같다.On the other hand, the power conversion apparatus according to the present invention needs sector information considering the phase angle of the input current and the phase angle of the output voltage at the same time, for this purpose, the current sector of the input side converter unit 110 and the three-phase output side inverter unit 120 The input voltage converter 110 and the three-phase output inverter 120 may be controlled by dividing the voltage sector into 36 synthesized sectors. A composite sector configuration according to the current sector of the input converter unit 110 and the voltage sector of the three-phase output inverter unit 120 is shown in Table 1 below.
표 1
컨버터부 입력전류 섹터 인버터부 출력전류 섹터 합성섹터
1 ~ 6 1 1 ~ 6
1 ~ 6 2 7 ~ 12
1 ~ 6 3 13 ~ 18
1 ~ 6 4 19 ~ 24
1 ~ 6 5 25 ~ 30
1 ~ 6 6 31 ~ 36
Table 1
Converter input current sector Inverter output current sector Synthetic Sector
1 to 6 One 1 to 6
1 to 6 2 7 to 12
1 to 6 3 13-18
1 to 6 4 19 to 24
1 to 6 5 25-30
1 to 6 6 31 to 36
한편, 전술한 <수학식 1,2>로부터 입력 전류 및 출력 전압에 대한 공간벡터가 산출되면, 산출된 입력 전류 및 출력 전압에 대한 공간벡터에 기초하여 변조기법을 구현하기 위한 유효벡터 인가시간을 산출할 수 있다.  변조기법을 구현하기 위한 유효벡터 인가시간은 아래 <수학식 3>과 같이 표현될 수 있다.  즉, 입력 벡터 시간 산출부(161)와 출력 벡터 시간 산출부(163)는 <수학식 3>을 통해 입력측 컨버터부(110)의 입력 전류에 대한 입력 유효 벡터 시간 및 3상 출력측 인버터부(120)의 출력 전압에 대한 출력 유효 벡터 시간을 산출할 수 있다.On the other hand, when the space vector for the input current and the output voltage is calculated from the above Equations 1 and 2, the effective vector application time for implementing the modulation scheme is determined based on the calculated space vector for the input current and the output voltage. Can be calculated. The effective vector application time for implementing the modulation technique may be expressed as Equation 3 below. That is, the input vector time calculating unit 161 and the output vector time calculating unit 163 are input effective vector time and three-phase output side inverter unit 120 with respect to the input current of the input side converter unit 110 through Equation (3). The output effective vector time for the output voltage can be calculated.
수학식 3
Figure PCTKR2016009268-appb-M000003
Equation 3
Figure PCTKR2016009268-appb-M000003
여기서, Ti1, Ti2는 입력 유효 벡터 시간이며, Tv1,Tv2는 출력 벡터 시간이다. Here, Ti1 and Ti2 are input valid vector times, and Tv1 and Tv2 are output vector times.
이 같이, 입력측 컨버터부(110)의 입력 전류에 대한 입력 유효 벡터 시간 및 3상 출력측 인버터부(120)의 출력 전압에 대한 출력 유효 벡터 시간을 산출되면, 합성 벡터 시간 산출부(170)는 아래 <수학식 4>를 통해 전력 변환 장치의 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)에 사용될 합성 벡터 시간을 산출할 수 있다.As such, when the input valid vector time for the input current of the input side converter unit 110 and the output valid vector time for the output voltage of the three-phase output side inverter unit 120 are calculated, the synthesized vector time calculating unit 170 is as follows. Through Equation 4, the synthesized vector time to be used in the input side converter unit 110 and the three-phase output side inverter unit 120 of the power converter may be calculated.
수학식 4
Figure PCTKR2016009268-appb-M000004
Equation 4
Figure PCTKR2016009268-appb-M000004
여기서, Ts는 제어주기, T1 ~ T4는 합성 벡터 시간, T0는 합성 영벡터 인가시간, MI는 변조 지수, k는 출력섹터, i는 입력섹터이다.Here, Ts is a control period, T1 to T4 is a composite vector time, T0 is a composite zero vector application time, MI is a modulation index, k is an output sector, and i is an input sector.
한편, 3상/단상 직접형 전력 변환 장치에서 출력측 인버터부(120)가 단상으로 이루어질 경우(이하 단상 출력측 인버터부라 함), 도 5의 (c)에 도시된 바와 같이, 섹터 판별부(130)는 입력 전류에 대한 공간 벡터를 이용하여 6개의 전류 섹터를 구분할 수 있다. 또한, 섹터 판별부(130)는 도 5의 (d)에 도시된 바와 같이, 출력 전압에 대한 가상의 공간벡터를 만들고, 가상의 공간 벡터를 이용하여 2개의 섹터를 구분할 수 있다.  여기서, 가상의 공간 벡터를 통해 구분된 2개의 섹터는 지령 전압의 상태양(+)과 음(-)에 따라 180도 위상차를 갖는 것이 바람직하다.On the other hand, when the output side inverter unit 120 is made of a single phase (hereinafter referred to as the single-phase output side inverter unit) in the three-phase / single-phase direct type power conversion device, as shown in (c) of Figure 5, the sector discriminating unit 130 Can be divided into six current sectors using the space vector for the input current. In addition, as shown in (d) of FIG. 5, the sector discriminating unit 130 may create a virtual space vector for the output voltage and distinguish two sectors by using the virtual space vector. Here, it is preferable that the two sectors divided by the virtual space vector have a 180 degree phase difference according to the positive and negative states of the command voltage.
따라서, 3상/단상 직접형 전력 변환 장치의 입력측 컨버터부(110)의 입력 전류에 대한 공간벡터는 3상 직접형 전력 변환 장치의 입력측 컨버터부(110)와 동일한 <수학식 1>과 같이 표현될 수 있으며, 단상 출력측 인버터부(120)의 출력 전압에 대한 공간벡터는 아래 <수학식 5>와 같이 표현될 수 있다.Therefore, the space vector with respect to the input current of the input side converter unit 110 of the three-phase / single-phase direct power converter is expressed by Equation 1, which is the same as the input converter unit 110 of the three-phase direct power converter. The space vector with respect to the output voltage of the single-phase output side inverter unit 120 may be expressed by Equation 5 below.
수학식 5
Figure PCTKR2016009268-appb-M000005
Equation 5
Figure PCTKR2016009268-appb-M000005
한편, 전술한 <수학식 1,5>로부터 입력 전류 및 출력 전압에 대한 공간벡터가 산출되면, 산출된 입력 전류 및 출력 전압에 대한 공간벡터에 기초하여 변조기법을 구현하기 위한 유효벡터 인가시간을 산출할 수 있다.  변조기법을 구현하기 위한 유효벡터 인가시간은 아래 <수학식 6>과 같이 표현될 수 있다.  즉, 입력 벡터 시간 산출부(161)와 출력 벡터 시간 산출부(163)는 아래 <수학식 6>을 통해 입력측 컨버터부(110)의 입력 전류에 대한 입력 유효 벡터 시간 및 단상 출력측 인버터부(120)의 출력 전압에 대한 출력 유효 벡터 시간을 산출할 수 있다.On the other hand, when the space vector for the input current and the output voltage is calculated from the above Equations 1 and 5, the effective vector application time for implementing the modulation scheme is determined based on the calculated space vector for the input current and the output voltage. Can be calculated. The effective vector application time for implementing the modulation technique may be expressed as Equation 6 below. That is, the input vector time calculating unit 161 and the output vector time calculating unit 163 are input effective vector time and single phase output side inverter unit 120 with respect to the input current of the input side converter unit 110 through Equation 6 below. The output effective vector time for the output voltage can be calculated.
수학식 6
Figure PCTKR2016009268-appb-M000006
Equation 6
Figure PCTKR2016009268-appb-M000006
이 같이, 입력측 컨버터부(110)의 입력 전류에 대한 입력 유효 벡터 시간 및 3상 출력측 인버터부(120)의 출력 전압에 대한 출력 유효 벡터 시간을 산출되면, 합성 벡터 시간 산출부(170)는 아래 <수학식 7>을 통해 전력 변환 장치의 입력측 컨버터부(110) 및 단상 출력측 인버터부(120)에 사용될 합성 벡터 시간을 산출할 수 있다.As such, when the input valid vector time for the input current of the input side converter unit 110 and the output valid vector time for the output voltage of the three-phase output side inverter unit 120 are calculated, the synthesized vector time calculating unit 170 is as follows. Through Equation (7), the synthesized vector time to be used for the input side converter unit 110 and the single phase output side inverter unit 120 of the power converter may be calculated.
수학식 7
Figure PCTKR2016009268-appb-M000007
Equation 7
Figure PCTKR2016009268-appb-M000007
이 같이, 입력측 컨버터부(110)와, 3상 혹은 단상 출력측 인버터부(120)에 대한 합성 벡터 시간이 산출되면, 제어 신호 생성부(150)는 합성 벡터 시간 산출부(170)로부터 산출된 합성 벡터 시간 및 및 영벡터 인가시간 동안 시퀀스 결정부(140)에 의해 결정된 입력측 컨버터부(110)와 3상 혹은 단상 출력측 인버터부(120)의 스위칭 시퀀스에 따라 동작을 수행하기 위한 제어 신호를 생성한다.In this way, when the combined vector time for the input side converter unit 110 and the three-phase or single-phase output side inverter unit 120 is calculated, the control signal generator 150 synthesizes the calculated vector time calculation unit 170. Generates a control signal for performing an operation according to the switching sequence of the input side converter unit 110 and the three-phase or single-phase output side inverter unit 120 determined by the sequence determiner 140 during the vector time and the zero vector application time. .
먼저, 3상 직접형 전력 변환 장치의 경우, 시퀀스 결정부(140)는 섹터 판별부(130)에 의해 판별된 복수의 섹터 각각에 대해 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)의 스위칭 시퀀스를 결정한다.  시퀀스 결정부(140)에 의해 입력측 컨버터부(110) 및 3상 출력측 인버터부(120) 각각에 대한 스위칭 시퀀스가 결정되면, 제어 신호 생성부(150)는 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)의 스위칭 시퀀스와, 기산출된 합성 벡터 시간에 따라 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)의 스위칭 동작을 수행하기 위한 제어 신호를 생성한다.  이에 따라, 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)는 제어 신호 생성부(150)를 통해 생성된 제어 신호에 따라 스위칭 동작을 수행할 수 있다.First, in the case of a three-phase direct type power conversion device, the sequence determiner 140 may include an input converter 110 and a three-phase inverter 120 for each of a plurality of sectors determined by the sector discriminator 130. Determine the switching sequence of. When the switching sequence for each of the input side converter unit 110 and the three-phase output side inverter unit 120 is determined by the sequence determiner 140, the control signal generator 150 generates the input side converter unit 110 and the three-phase output side. A control signal for performing the switching operation of the input side converter unit 110 and the three-phase output side inverter unit 120 is generated according to the switching sequence of the inverter unit 120 and the calculated composite vector time. Accordingly, the input side converter unit 110 and the three-phase output side inverter unit 120 may perform a switching operation according to the control signal generated through the control signal generator 150.
한편, 전술한 시퀀스 결정부(140)는 다음과 같은 실시예를 통해 입력측 컨버터부(110) 및 출력측 인버터부(120)의 스위칭 시퀀스를 결정할 수 있다.Meanwhile, the above-described sequence determiner 140 may determine the switching sequence of the input converter 110 and the output inverter 120 through the following embodiment.
먼저, 3상 직접형 전력 변환 장치에서 입력측 컨버터부(110) 및 3상 출력측 컨버터부(120)의 스위칭 시퀀스를 결정하는 동작에 대해서 설명하도록 한다.First, an operation of determining a switching sequence of the input side converter unit 110 and the three phase output side converter unit 120 in the three-phase direct type power converter will be described.
일 실시예에 따라, 시퀀스 결정부(140)는 입력측 컨버터부(110)의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 3상 출력측 인버터부(120)의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 5단계 스위칭 시퀀스로 결정할 수 있다.  이 경우, 시퀀스 결정부(140)는 입력측 컨버터부(110)의 2단계 스위칭 시퀀스 및 3상 출력측 인버터부(120)의 5단계 스위칭 시퀀스의 조합으로 전력 변환 장치가 6단계의 스위칭 시퀀스를 가지도록 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)의 스위칭 시퀀스를 결정할 수 있다.According to an exemplary embodiment, the sequence determiner 140 determines the switching sequence of the input side converter 110 as a two-stage switching sequence without a zero vector, and determines the switching sequence of the three-phase output inverter 120 as a zero vector and a vector. It can be determined by a five-stage switching sequence including the valid vector. In this case, the sequence determiner 140 is a combination of the two-stage switching sequence of the input side converter unit 110 and the five-stage switching sequence of the three-phase output side inverter unit 120 such that the power converter has a six-stage switching sequence. The switching sequence of the input side converter unit 110 and the three-phase output side inverter unit 120 may be determined.
여기서, 6단계의 스위칭 시퀀스는, 제1 유효벡터, 제2 유효벡터, 제1 영벡터, 제2 영벡터, 제3 유효벡터, 제4 유효벡터 순서의 스위칭 시퀀스를 가질 수 있으며, 복수의 섹터별로 동일한 패턴으로 이루어질 수 있다.In this case, the six-stage switching sequence may have a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector, and a plurality of sectors. It may be made of the same pattern.
또다른 실시예에 따라, 시퀀스 결정부(140)는 입력측 컨버터부(110)의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 3상 출력측 인버터부(120)의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 7단계 스위칭 시퀀스로 결정할 수 있다.  이 경우, 시퀀스 결정부(140)는 입력측 컨버터부(110)의 2단계 스위칭 시퀀스 및 3상 출력측 인버터부(120)의 7단계 스위칭 시퀀스의 조합으로 전력 변환 장치가 8단계의 스위칭 시퀀스를 가지도록 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)의 스위칭 시퀀스를 결정할 수 있다.According to another exemplary embodiment, the sequence determiner 140 determines the switching sequence of the input converter 110 as a two-stage switching sequence without a zero vector, and determines the switching sequence of the three-phase output inverter 120 as a zero vector. And a seven-stage switching sequence including the valid vector. In this case, the sequence determiner 140 is a combination of the two-stage switching sequence of the input side converter unit 110 and the seven-stage switching sequence of the three-phase output side inverter unit 120 such that the power converter has an eight-stage switching sequence. The switching sequence of the input side converter unit 110 and the three-phase output side inverter unit 120 may be determined.
이때, 시퀀스 결정부(140)는 1부터 36까지의 식별 정보가 부여된 복수의 섹터 의 식별 정보에 기초하여 8단계의 스위칭 시퀀스를 결정할 수 있다.  구체적으로, 시퀀스 결정부(140)는 섹터 판별부(130)에 의해 판별된 복수의 섹터가 홀수이면, 제1 조건에 기초하여 제1 영벡터, 제1 유효벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제3 유효벡터, 제4 유효벡터 및 제4 영벡터 순서의 8단계 스위칭 시퀀스를 결정할 수 있다. 한편, 시퀀스 결정부(140)는 섹터 판별부(130)에 의해 판별된 복수의 섹터가 짝수이면, 제2 조건에 기초하여 제1 영벡터, 제2 유효벡터, 제1 유효벡터, 제2 영백터, 제3 영벡터, 제4 유효벡터, 제3 유효벡터 및 제4 영벡터 순서의 8단계 스위칭 시퀀스를 결정할 수 있다.In this case, the sequence determination unit 140 may determine the switching sequence of eight steps based on the identification information of the plurality of sectors to which the identification information of 1 to 36 is assigned. Specifically, if the plurality of sectors determined by the sector discriminating unit 130 is odd, the sequence determining unit 140, based on the first condition, the first zero vector, the first valid vector, the second valid vector, and the second sector. An eight-stage switching sequence of the zero vector, the third zero vector, the third valid vector, the fourth valid vector, and the fourth zero vector may be determined. On the other hand, if the plurality of sectors determined by the sector discriminating unit 130 is an even number, the sequence determining unit 140 based on the second condition, the first zero vector, the second valid vector, the first valid vector, and the second zero. The eight-stage switching sequence of the vector, the third zero vector, the fourth valid vector, the third valid vector, and the fourth zero vector may be determined.
도 6은 종래의 전력 변환 장치의 스위칭 시퀀스를 나타내는 예시도이다.6 is an exemplary view showing a switching sequence of a conventional power converter.
일반적으로, 중간에 전력 버퍼 회로가 없이 입출력이 직접 연결된 전력 변환 장치는 입력과 출력의 벡터 인가시간을 합성하여 입출력의 제어가 동시에 이루어져야 한다.  이를 위해, 합성된 벡터 인가시간은 4개의 유효벡터와 1개의 영벡터로 구성된다.  따라서, 종래의 전력 변환 장치는 11분할의 스위칭 시퀀스의 제어기법 또는 9분할의 스위칭 시퀀스의 제어기법이 이용된다.In general, a power converter connected directly to an input / output without a power buffer circuit in the middle should combine input and output vector application times to simultaneously control input and output. To this end, the synthesized vector application time consists of four valid vectors and one zero vector. Therefore, the conventional power converter uses a control method of an 11-switch switching sequence or a control method of a 9-switch switching sequence.
도 6의 (a)는 종래의 11분할 스위칭 시퀀스의 제어기법을 나타낸 것으로써, 제1 구간, 제6 구간 및 제11 구간에 영벡터가 이루어지며, 제2 내지 제5 구간 및 제7 내지 제10 구간에 유효 벡터가 이루어지는 형태의 시퀀스이다.  따라서, 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)는 11분할 스위칭 시퀀스에 따라 11번의 스위칭 절환을 수행한다.  도 6의 (b)는 종래의 9분할 스위칭 시퀀스의 제어기법을 나타낸 것으로써, 제1 내지 제4 구간 및 제6 내지 제9 구간에 유효 벡터가 이루어지며, 제5 구간에 영백터가 이루어지는 형태의 시퀀스이다.  따라서, 입력측 컨버터부(110) 및 3상 출력측 인버터부(120)는 9분할 스위칭 시퀀스에 따라 9번의 스위칭 절환을 수행함으로써, 11분할 스위칭 시퀀스 제어기법에 비해 스위칭 절환 횟수가 감소되는 것을 알 수 있다.FIG. 6A illustrates a conventional method of controlling a 11-divided switching sequence, in which a zero vector is formed in a first section, a sixth section, and an eleventh section, and a second to fifth section and a seventh to seventh section. It is a sequence in which an effective vector is formed in 10 sections. Therefore, the input side converter unit 110 and the three-phase output side inverter unit 120 perform 11 switching switching cycles according to the 11 division switching sequence. FIG. 6 (b) shows a conventional method of controlling a 9 division switching sequence, in which an effective vector is formed in the first to fourth and sixth to ninth sections, and a zero vector is formed in the fifth section. Is a sequence of. Accordingly, it can be seen that the input switching unit 110 and the three-phase output inverter 120 perform nine switching switching operations according to the nine split switching sequence, thereby reducing the number of switching switching times compared to the 11 split switching sequence control method. .
그러나, 종래의 이 같은 스위칭 시퀀스 제어기법은 본 발명에 비해 스위칭 횟수가 많아 전력 손실이 발생하는 문제가 있다.However, the conventional switching sequence controller method has a problem in that power loss occurs due to a large number of switching times compared to the present invention.
도 7은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 컨버터부의 부분 영전류 스위칭을 구현하기 위한 스위칭 시퀀스를 나타내는 예시도이다.7 is an exemplary diagram illustrating a switching sequence for implementing partial zero current switching of a converter unit of a three-phase direct type power converter according to an embodiment of the present invention.
도 7에 도시된 스위칭 시퀀스는 입력측 컨버터부(110)의 영벡터가 없는 2단계 스위칭 시퀀스 및 3상 출력측 인버터부(120)의 영벡터 및 유효벡터에 대한 5단계 스위칭 시퀀스의 조합으로 생성된 6단계 스위칭 시퀀스이다.  이 같은 6단계 스위칭 시퀀스는 제1 유효벡터, 제2 유효벡터, 제1 영벡터, 제2 영벡터, 제3 유효벡터 및 제4 유효벡터 순서의 시퀀스를 가진다.The switching sequence shown in FIG. 7 is generated by combining a two-stage switching sequence without the zero vector of the input side converter unit 110 and a five-stage switching sequence for the zero and effective vectors of the three-phase output side inverter unit 120. Phase switching sequence. The six-stage switching sequence has a sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector.
이 경우, 제1 섹터에 대한 입력측 컨버터부(110)의 스위칭 패턴과 3상 출력측 인버터부(120)의 스위칭 패턴은 아래 <표 2 및 표 3>와 같으며, 입력측 컨버터부(110)의 스위칭 패턴과 3상 출력측 인버터부(120)의 스위칭 패턴의 조합에 따른 6단계 스위칭 시퀀스는 아래 <표 4>와 같다.In this case, the switching pattern of the input side converter unit 110 and the switching pattern of the three-phase output side inverter unit 120 with respect to the first sector are as shown in Tables 2 and 3 below, and the switching of the input side converter unit 110 is performed. The six-stage switching sequence according to the combination of the pattern and the switching pattern of the three-phase output side inverter unit 120 is shown in Table 4 below.
표 2
Ti1 Ti2
phase a 1 1
phase b o -1
phase c -1 0
TABLE 2
Ti1 Ti2
phase a One One
phase b o -One
phase c -One 0
표 3
Tv1/2 Tv2/2 Tv0 Tv2/2 Tv1/2
phase a 1 1 1 1 1
phase b 0 1 1 1 0
phase c 0 0 1 0 0
TABLE 3
Tv1 / 2 Tv2 / 2 Tv0 Tv2 / 2 Tv1 / 2
phase a One One One One One
phase b 0 One One One 0
phase c 0 0 One 0 0
표 4
T1 T2 T0/2 T0/2 T2 T1
input a 1 1 1 1 1 1
input b 0 0 0 -1 -1 -1
input c -1 -1 -1 0 0 0
output a 1 1 1 1 1 1
output b 0 1 1 1 1 0
output c 0 0 1 1 0 0
Table 4
T1 T2 T0 / 2 T0 / 2 T2 T1
input a One One One One One One
input b 0 0 0 -One -One -One
input c -One -One -One 0 0 0
output a One One One One One One
output b 0 One One One One 0
output c 0 0 One One 0 0
위 <표 4>의 제1 및 제2 영벡터(T0/2) 구간에서 입력측 컨버터부(110)의 스위칭 절환이 일어날 경우, 부분 영전류 스위칭(Partial Zero Current Switching : PZCS) 동작을 수행하여 스위칭 절환시 발생하는 전력 손실을 최소화할 수 있으며, 나아가, 종래에 비해 스위칭 절환 횟수가 줄어들어 그에 따른 전력 손실을 최소화할 수 있다.When switching switching of the input side converter unit 110 occurs in the first and second zero vectors T0 / 2 shown in Table 4 above, switching is performed by performing partial zero current switching (PZCS) operation. The power loss generated during the switching can be minimized, and furthermore, the number of switching switching can be reduced as compared with the related art, thereby minimizing the power loss.
뿐만 아니라, <표 4>의 제1 또는 제4 유효백터(T1) 구간과 연속되는 이전 섹터 혹은 다음 섹터의 벡터 구간에서 입력측 컨버터부(110)의 스위칭 절환이 일어날 경우, 부분 영전류 스위칭(Partial Zero Current Switching : PZCS) 동작을 수행함으로써, 전체 섹터별 스위칭 절환시 발생하는 전력 손실을 최소화할 수 있으며, 나아가, 종래에 비해 전체 섹터별 스위칭 절환 횟수가 줄어들어 그에 따른 전력 손실을 최소화할 수 있다.In addition, when the switching switching of the input-side converter 110 occurs in a vector section of the previous sector or the next sector consecutive to the first or fourth effective vector T1 in Table 4, partial zero current switching (Partial) By performing Zero Current Switching (PZCS) operation, power loss generated during switching of all sectors can be minimized. Furthermore, the number of switching switching of all sectors can be reduced compared to the conventional ones, thereby minimizing power loss.
도 8은 본 발명의 일 실시예에 따른 3상 전력 변환 장치의 컨버터부의 영전류 스위칭을 구현하기 위한 스위칭 스퀀스를 나타내는 예시도이다.8 is an exemplary view illustrating a switching sequence for implementing zero current switching of a converter unit of a three-phase power converter according to an embodiment of the present invention.
전술한 바와 같이, 시퀀스 결정부(140)는 섹터 판별부(130)에 의해 판별된 복수의 섹터의 개수에 기초하여 입력측 컨버터부(110)의 영벡터가 없는 2단계 스위칭 시퀀스 및 3상 출력측 인버터부(120)의 영벡터 및 유효벡터에 대한 7단계 스위칭 시퀀스의 조합으로 8단계의 스위칭 시퀀스를 결정할 수 있다.  As described above, the sequence determiner 140 is a two-stage switching sequence and a three-phase output side inverter without a zero vector of the input side converter 110 based on the number of sectors determined by the sector discriminator 130. The eight-stage switching sequence may be determined by combining the seven-stage switching sequence for the zero and valid vectors of the unit 120.
구체적으로, 도 8의 (a)에 도시된 바와 같이, 복수의 섹터가 홀수인 경우, 스위칭 패턴<표 2>과 3상 출력측 인버터부(120)의 스위칭 패턴<표 3>의 조합에 따른 8단계 스위칭 시퀀스는 제1 영벡터, 제1 유효벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제3 유효벡터. 제4 유효벡터 및 제4 영백터 순서의 시퀀스를 가진다.Specifically, as shown in (a) of FIG. 8, when a plurality of sectors are odd, 8 according to the combination of the switching pattern <Table 2> and the switching pattern <Table 3> of the three-phase output side inverter unit 120. The step switching sequence includes a first zero vector, a first valid vector, a second valid vector, a second zero vector, a third zero vector, and a third valid vector. It has a sequence of the fourth valid vector and the fourth zero vector order.
복수의 섹터가 홀수인 경우, 제1 섹터에 있어서의 8단계 스위칭 시퀀스는 아래 <표 5>와 같다.When a plurality of sectors is odd, the eight-stage switching sequence in the first sector is shown in Table 5 below.
표 5
T0/4 T2 T1 T0/4 T0/4 T4 T3 T0/4
input a 1 1 1 1 1 1 1 1
input b 0 0 0 0 -1 -1 -1 -1
input c -1 -1 -1 -1 0 0 0 0
output a 0 1 1 1 1 1 1 0
output b 0 0 1 1 1 0 0 0
output c 0 0 0 1 1 0 0 0
Table 5
T0 / 4 T2 T1 T0 / 4 T0 / 4 T4 T3 T0 / 4
input a One One One One One One One One
input b 0 0 0 0 -One -One -One -One
input c -One -One -One -One 0 0 0 0
output a 0 One One One One One One 0
output b 0 0 One One One 0 0 0
output c 0 0 0 One One 0 0 0
한편, 도 8의 (b)에 도시된 바와 같이, 복수의 섹터가 짝수인 경우, 스위칭 패턴<표 2>과 3상 출력측 인버터부(120)의 스위칭 패턴<표 3>의 조합에 따른 8단계 스위칭 시퀀스는 제1 영벡터, 제2 유효벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제4 유효벡터. 제3 유효벡터 및 제4 영백터 순서의 시퀀스를 가진다.On the other hand, as shown in (b) of FIG. 8, when a plurality of sectors are even, the eight steps according to the combination of the switching pattern <Table 2> and the switching pattern <Table 3> of the three-phase output side inverter unit 120 The switching sequence includes a first zero vector, a second valid vector, a first valid vector, a second zero vector, a third zero vector, and a fourth valid vector. It has a sequence of the third valid vector and the fourth zero vector order.
복수의 섹터가 짝수인 경우인 경우, 섹터 7에 있어서의 8단계 스위칭 시퀀스는 아래 <표 6>과 같다.In the case where a plurality of sectors are even, the eight-stage switching sequence in sector 7 is shown in Table 6 below.
표 6
T0/4 T2 T1 T0/4 T0/4 T4 T3 T0/4
input a 1 1 1 1 1 1 1 1
input b 0 0 0 0 -1 -1 -1 -1
input c -1 -1 -1 -1 0 0 0 0
output a 0 0 1 1 1 1 0 0
output b 0 1 1 1 0 0 0 0
output c 0 0 0 1 1 0 0 0
Table 6
T0 / 4 T2 T1 T0 / 4 T0 / 4 T4 T3 T0 / 4
input a One One One One One One One One
input b 0 0 0 0 -One -One -One -One
input c -One -One -One -One 0 0 0 0
output a 0 0 One One One One 0 0
output b 0 One One One 0 0 0 0
output c 0 0 0 One One 0 0 0
위 <표 5 및 표 6>의 제2 및 제3 영벡터(T0/4) 구간에서 입력측 컨버터부(110)의 스위칭 절환이 일어날 경우, 영전류 스위칭(Zero Current Switching : ZCS) 동작을 수행하여 스위칭 절환시 발생하는 전력 손실을 최소화할 수 있다.한편, 본 발명에 따른 부분 영전류 스위칭(PZCS) 기법을 이용하여 전력 변환 장치를 구동할 경우, 입력측 컨버터부(110)와 3상 출력측 인버터부(120)의 하드 스위칭 절환 및 부분 영전류 스위칭 기반으로 동작할 수 있으며, 이 같은 부분 영전류 스위칭 기법(PZCS)에 따른 스위칭 절환 횟수는 아래 <수학식 8>로부터 도출될 수 있다. When switching switching of the input side converter unit 110 occurs in the second and third zero vectors (T0 / 4) in Tables 5 and 6 above, a zero current switching (ZCS) operation is performed. The power loss generated during switching switching can be minimized. Meanwhile, when driving the power conversion apparatus using the partial zero current switching (PZCS) technique according to the present invention, the input side converter unit 110 and the three-phase output side inverter unit It may operate based on the hard switching switching and the partial zero current switching of 120, and the number of switching switching according to the partial zero current switching technique (PZCS) may be derived from Equation 8 below.
수학식 8
Figure PCTKR2016009268-appb-M000008
Equation 8
Figure PCTKR2016009268-appb-M000008
여기서, Nin은 입력측 스위칭 절환 횟수, ,Nout은 출력측 스위칭 절환 횟수, Nprd는 제어 주기 시간당 스위칭 절환 횟수, Nfout는 출력 주파수 시간당 스위칭 절환 횟수, Nins는 입력 섹터 전환 횟수, Nout은 출력 섹터 전환 횟수, Nsc는 섹터 전환시 스위칭 절환 횟수(출력 주기 시간), NZCS는 영전류 스위칭 횟수(출력 주기 시간), Tprd는 제어 주기 시간, Nesl은 영전류 스위칭을 제외한 전력 변환 장치의 스위칭 전환 횟수(출력 주기 시간)가 될 수 있다.Where Nin is the number of switching cycles on the input side, Nout is the number of switching cycles on the output side, Nprd is the number of switching cycles per control cycle time, Nfout is the number of switching cycles per output frequency time, Nins is the number of switching sectors, Nout is the number of switching sectors, and Nsc Is the number of switching cycles (output cycle time) during sector switching, NZCS is the number of zero current switching (output cycle time), Tprd is the control cycle time, and Nesl is the number of switching cycles of the power converter except for zero current switching (output cycle time). Can be
아래 <표 7>은 기존 제어 기법 및 본 발명에 따른 부분 영전류 스위칭 기법에 따른 스위칭 절환 횟수에 대한 비교 관계를 나타낸 것이다.Table 7 below shows a comparison relationship between the switching control times according to the conventional control method and the partial zero current switching method according to the present invention.
표 7
항목 스위칭 절환 횟수
제어주기(1㎲) 출력 주파수(50Hz)
기존 제어기법 전체 스위칭 절환 횟수 28 5624
제안 제어기법 전체 스위칭 절환 횟수 20 3248
소프트 스위칭 횟수를 제외한 전체 스위칭 절환 횟수 12 2424
TABLE 7
Item Number of switching changes
Control cycle (1㎲) Output frequency (50 Hz)
Conventional Control Method Total number of switching changes 28 5624
Proposed Control Method Total number of switching changes 20 3248
Total number of switching changes except soft switching 12 2424
아래 <표 8>은 입력 상용 주파수와 출력 주파수에 따른 기존 제어 기법 및 본 발명에 따른 부분 영전류 스위칭 기법에서의 스위칭 횟수의 관계를 나타내 것이다.Table 8 below shows the relationship between the number of switching in the conventional control method according to the input commercial frequency and the output frequency and the partial zero current switching method according to the present invention.
표 8
출력 주파수 입력 상용 주파수에 따른 스위칭 절환 횟수
50Hz 60Hz
case1 case2 case1 case2
case21 case22 case21 case22
10Hz 28004 16028 12024 28004 16028 12024
20Hz 14008 8032 6024 14008 8032 6024
30Hz 9345 5369 4024 9345 5369 4024
40Hz 7016 4040 3024 7016 4040 3028
50Hz 5624 3248 2424 5620 3244 2428
60Hz 4695 2718 2024 4691 2714 2028
70Hz 4032 2341 1738 4028 2337 1742
80Hz 3538 2062 1524 3532 2056 1530
90Hz 3155 1845 1357 3147 1837 1363
100Hz 2848 1672 1224 2840 1664 1232
Table 8
Output frequency Number of switching cycles according to input commercial frequency
50 Hz 60 Hz
case1 case2 case1 case2
case21 case22 case21 case22
10 Hz 28004 16028 12024 28004 16028 12024
20 Hz 14008 8032 6024 14008 8032 6024
30 Hz 9345 5369 4024 9345 5369 4024
40 Hz 7016 4040 3024 7016 4040 3028
50 Hz 5624 3248 2424 5620 3244 2428
60 Hz 4695 2718 2024 4691 2714 2028
70 Hz 4032 2341 1738 4028 2337 1742
80 Hz 3538 2062 1524 3532 2056 1530
90 Hz 3155 1845 1357 3147 1837 1363
100 Hz 2848 1672 1224 2840 1664 1232
여기서, case1은 기존 제어기법인 경우에 대한 스위칭 절환 횟수이며, case21은 제안 제어기법인 경우에 대한 전체 스위칭 절환 횟수이며, cass22는 제안 제어기법인 경우에 부분 영전류 스위칭 절환 횟수를 제외한 나머지 스위칭 절환 횟수이다.Here, case1 is the number of switching switching for the conventional control method, case21 is the total switching switching for the proposed control method, and cass22 is the remaining switching switching count except for the partial zero current switching switching in the case of the proposed control method.
그리고, 영전류 스위칭 기법을 이용하여 전력 변환 장치를 구동할 경우, 입력측 컨버터부(110)의 모든 스위칭 절환은 영전류 스위칭 기반으로 동작할 수 있으며, 이 같은 부분 영전류 스위칭 기법(PZCS) 및 영전류 스위칭 기법(ZCS)에 따른 스위칭 절환 횟수는 아래 <수학식 9>으로부터 도출될 수 있다.In addition, when driving the power converter using the zero current switching technique, all switching switching of the input side converter 110 may operate based on zero current switching, such a partial zero current switching technique (PZCS) and zero. The switching switching frequency according to the current switching technique ZCS may be derived from Equation 9 below.
수학식 9
Figure PCTKR2016009268-appb-M000009
Equation 9
Figure PCTKR2016009268-appb-M000009
여기서, Nin은 입력측 스위칭 절환 횟수, ,Nout은 출력측 스위칭 절환 횟수, Nprd는 제어 주기 시간당 스위칭 절환 횟수, Nfout는 출력 주파수 시간당 스위칭 절환 횟수, Nins는 입력 섹터 전환 횟수, Nouts은 출력 섹터 전환 횟수, Nsc는 섹터 전환시 스위칭 절환 횟수(출력 주기 시간), NZCS는 영전류 스위칭 횟수(출력 주기 시간), Tprd는 제어 주기 시간, Nesl은 영전류 스위칭을 제외한 전력 변환 장치의 스위칭 전환 횟수(출력 주기 시간)가 될 수 있다.아래 <표 9>는 기존 제어 기법 및 본 발명에 따른 영전류 스위칭 기법에 따른 스위칭 절환 횟수에 대한 비교 관계를 나타낸 것이다.Where Nin is the number of switching cycles on the input side, Nout is the number of switching cycles on the output side, Nprd is the number of switching cycles per control cycle time, Nfout is the number of switching cycles per output frequency time, Nins is the number of switching sectors, Nouts is the number of switching sectors, and Nsc Is the number of switching cycles (output cycle time) during sector switching, NZCS is the number of zero current switching (output cycle time), Tprd is the control cycle time, and Nesl is the number of switching cycles of the power converter except for zero current switching (output cycle time). Table 9 below shows a comparison relationship between the switching control times according to the existing control technique and the zero current switching technique according to the present invention.
표 9
항목 스위칭 절환 횟수
제어주기(1㎲) 출력 주파수(50Hz)
기존 제어기법 전체 스위칭 절환 횟수 28 5624
제안 제어기법 전체 스위칭 절환 횟수 20 3248
소프트 스위칭 횟수를 제외한 전체 스위칭 절환 횟수 12 2400
Table 9
Item Number of switching changes
Control cycle (1㎲) Output frequency (50 Hz)
Conventional Control Method Total number of switching changes 28 5624
Proposed Control Method Total number of switching changes 20 3248
Total number of switching changes except soft switching 12 2400
아래 <표 10>은 입력 상용 주파수와 출력 주파수에 따른 기존 제어 기법 및 본 발명에 따른 영전류 스위칭 기법에서의 스위칭 횟수의 관계를 나타내 것이다.Table 10 below shows the relationship between the number of switching in the conventional control technique according to the input commercial frequency and the output frequency and the zero current switching technique according to the present invention.
표 10
출력 주파수 입력 상용 주파수에 따른 스위칭 절환 횟수
50Hz 60Hz
case1 case2 case1 case2
case21 case22 case21 case22
10Hz 28004 20004 12000 28004 20004 12000
20Hz 14008 10008 6000 14008 10008 6000
30Hz 9345 6678 4000 9345 6678 4000
40Hz 7016 5016 3000 7016 5016 3000
50Hz 5624 4024 2400 5620 4020 2400
60Hz 4695 3361 2000 4691 3357 2000
70Hz 4032 2889 1714 4028 2885 1714
80Hz 3538 2538 1500 3532 2532 1500
90Hz 3155 2266 1333 3147 2258 1333
100Hz 2848 2048 1200 2840 2040 1200
Table 10
Output frequency Number of switching cycles according to input commercial frequency
50 Hz 60 Hz
case1 case2 case1 case2
case21 case22 case21 case22
10 Hz 28004 20004 12000 28004 20004 12000
20 Hz 14008 10008 6000 14008 10008 6000
30 Hz 9345 6678 4000 9345 6678 4000
40 Hz 7016 5016 3000 7016 5016 3000
50 Hz 5624 4024 2400 5620 4020 2400
60 Hz 4695 3361 2000 4691 3357 2000
70 Hz 4032 2889 1714 4028 2885 1714
80 Hz 3538 2538 1500 3532 2532 1500
90 Hz 3155 2266 1333 3147 2258 1333
100 Hz 2848 2048 1200 2840 2040 1200
여기서, case1은 기존 제어기법인 경우에 대한 스위칭 절환 횟수이며, case21은 제안 제어기법인 경우에 대한 전체 스위칭 절환 횟수이며, cass22는 제안 제어기법인 경우에 영전류 스위칭 절환 횟수를 제외한 나머지 스위칭 절환 횟수이다.Here, case1 is the number of switching switching for the case of the conventional control method, case21 is the total number of switching switching for the case of the proposed control method, and cass22 is the remaining number of switching switching except for the number of zero current switching switching in the case of the proposed control method.
<시뮬레이션 해석 및 실험 해석>Simulation Analysis and Experimental Analysis
본 발명에 따른 소프트 스위칭 기반의 공간벡터 변조방식(SVPWM) 제어기법의 유효성을 검증하기 위하여 전류 변환 장치의 전체 회로 구성은 전술한 도 2와 같으며, 시뮬레이션 사양 조건은 아래 <표 11>과 같이 설정하였다.In order to verify the effectiveness of the soft switching based SVPWM control method according to the present invention, the entire circuit configuration of the current converter is shown in FIG. 2, and the simulation specification conditions are as shown in Table 11 below. Set.
표 11
item value
input power 3 pahse AC 50V/50Hz
switching device IGBT 18ea
diode 18ea
load resistance 5mH
inductance 5ohm
control frequency 10kHz
Table 11
item value
input power 3 pahse AC 50V / 50Hz
switching device IGBT 18ea
diode 18ea
load resistance
5 mH
inductance
5 ohm
control frequency
10 kHz
<표 11>의 시뮬레이션 사용 조건을 이용하여 본 발명에 따른 소프트 스위칭 기반의 공간벡터 변조방식(SVPWM) 제어기법으로 시뮬레이션 한 결과, 가상 직류링크회로의 전압과 입력측 컨버터부(110)의 게이트 신호의 휴지기간 전후에 따라 가상 직류링크전압과 게이트신호 사이에 2가지 패턴으로 스위칭 절환이 이루지며, 2가지 패턴으로 스위칭 절환이 이루어지는 입력측 컨버터부(110)의 3 상에 영전류 스위칭 동작이 이루지는 것을 알 수 있다.As a result of simulation using the soft switching-based spatial vector modulation method (SVPWM) control method according to the present invention using the simulation conditions of Table 11, the voltage of the virtual DC link circuit and the gate signal of the input converter 110 are Switching switching is performed in two patterns between the virtual DC link voltage and the gate signal according to before and after the idle period, and zero current switching operation is performed on three of the input side converter units 110 in which switching switching is performed in two patterns. Able to know.
 도 9는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 부분 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 파형을 나타내는 예시도이며, 도 10은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 부분 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 확대 파형을 나타내는 예시도이며, 도 11은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장체의 부분 영전류 스위칭 모드에서 가상 직류 링크 전류 및 입력측 컨버터부의 스위칭 게이트 신호의 확대 파형을 나타내는 예시도이며, 도 12는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 부분 영전류 스위칭 모드에서 출력선간 전압 및 출력 전류의 파형을 나타내는 예시도이다.FIG. 9 is an exemplary diagram illustrating waveforms of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention, and FIG. 10 is an embodiment of the present invention. FIG. 11 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a partial zero current switching mode of a three-phase direct type power converter according to an embodiment, and FIG. 11 is a three-phase direct type according to an embodiment of the present invention. Exemplary diagram showing an enlarged waveform of the virtual DC link current and the switching gate signal of the input side converter unit in the zero current switching mode of a power conversion device, and FIG. 12 is a part of a three-phase direct power converter according to an embodiment of the present invention. It is an exemplary figure which shows the waveform of an output line voltage and an output current in zero current switching mode.
<표 11>의 시뮬레이션 사용 조건을 이용하여 본 발명에 따른 부분 영전류 스위칭 기반의 2단계 3상 직접형 전력 변환 장치(TSDPC)의 스위칭 제어 기법으로 시뮬레이션 한 결과, 도 9에 도시된 바와 같이, 상단에는 가상링크전압 및 전류와 하단에는 입력측 컨버터부(110)의 a상(R상)의 상단 게이트신호(q1)에 대한 출력 파형이 나타나는 것을 알 수 있다.  그리고, 도 9와 관련하여 시뮬레이션된 출력 파형으로부터 도 10과 같이, 상단에는 가상링크전압 및 전류와 하단에는 입력측 컨버터부(110)의 a상(R상)의 상단 게이트신호(q1)에 대한 확대된 출력 파형이 나타나는 것을 알 수 있다.As a result of the simulation using the switching control technique of the two-stage three-phase direct-type power converter (TSDPC) based on the partial zero current switching according to the present invention using the simulation use conditions of Table 11, as shown in FIG. It can be seen that the output waveform for the upper gate signal q1 of the a phase (R phase) of the input side converter unit 110 appears at the upper end of the virtual link voltage and current. Then, as shown in FIG. 10 from the output waveform simulated with reference to FIG. 9, the virtual link voltage and current at the top and the top gate signal q1 of the a phase (R phase) of the input side converter unit 110 are enlarged at the bottom. You can see that the output waveform appears.
또한, 도 11에 도시된 바와 같이, 도 9와 관련하여 시뮬레이션된 출력 파형으로부터 상단에는 가상링크전류 및 하단에는 입력측 컨버터부(110)의 스위칭 게이트 신호에 대한 확대된 출력 파형이 나타나는 것을 알 수 있다.  또한, 부분 영전류 스위칭 기반의 2단계 직접형 전력 변환 장치(TSDPC)의 스위칭 제어 기법으로 시뮬레이션 한 결과, 도 12의 (a) 및 (b)에 도시된 바와 같이, 출력선간 전압 및 출력 전류의 파형이 나타나는 것을 알 수 있다.In addition, as shown in FIG. 11, it can be seen from the output waveform simulated with reference to FIG. 9 that an enlarged output waveform for the switching gate signal of the input side converter unit 110 appears at the top and the virtual link current at the bottom. . In addition, as a result of simulation by the switching control technique of the two-step direct current power conversion device (TSDPC) based on partial zero current switching, as shown in FIGS. 12A and 12B, the output line voltage and the output current Notice that the waveform appears.
도 13은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 파형을 나타내는 예시도이며, 도 14는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 가상 직류 링크 전압, 전류 및 게이트 신호의 확대 파형을 나타내는 예시도이며, 도 15는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 가상 직류 링크 전압 및 입력측 컨버터부의 스위칭 게이트 신호의 확대 파형을 나타내는 예시도이며, 도 16은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치의 영전류 스위칭 모드에서 출력선간 전압 및 출력 전류의 파형을 나타내는 예시도이다.FIG. 13 is an exemplary view illustrating waveforms of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention, and FIG. 14 is an embodiment of the present invention. FIG. 15 is an exemplary diagram illustrating an enlarged waveform of a virtual DC link voltage, a current, and a gate signal in a zero current switching mode of a three-phase direct power converter according to an embodiment of the present invention. FIG. 15 is a three-phase direct power converter according to an embodiment of the present invention. FIG. 16 is an exemplary diagram illustrating an enlarged waveform of the virtual DC link voltage and the switching gate signal of the input side converter unit in the zero current switching mode of the device, and FIG. Is an exemplary diagram showing waveforms of output line voltage and output current.
위 <표 11>의 시뮬레이션 사용 조건을 이용하여 본 발명에 따른 소프트 스위칭 기반의 공간벡터 변조방식(SVPWM) 제어기법으로 시뮬레이션 한 결과, 도 13에 도시된 바와 같이, 상단에는 가상링크전압 및 전류와 하단에는 입력측 컨버터부(110)의 a상(R상)의 상단 게이트신호(q1)에 대한 출력 파형이 나타나며, 게이트신호(q1)의 휴지기간 전후에 따라 가상 직류링크전압과 게이트신호(q1) 사이에 2가지 패턴으로 스위칭 절환(A 영역, B 영역)이 일어나는 것을 알 수 있다.  As a result of the simulation using the soft switching-based Spatial Vector Modulation (SVPWM) control method according to the present invention using the simulation use conditions of Table 11, as shown in FIG. At the bottom, the output waveform of the upper gate signal q1 of the a phase (R phase) of the input side converter section 110 is shown, and the virtual DC link voltage and the gate signal q1 depending on before and after the idle period of the gate signal q1. It can be seen that switching switching (region A and region B) occurs in two patterns in between.
그리고, 도 14의 (a) 및 (b)에 도시된 바와 같이, 도 13과 관련하여 시뮬레이션된 출력 파형으로부터 A 영역에 대한 확대된 출력 파형 및 B 영역에 대한 출력 파형이 나타나는 것을 알 수 있다.  As shown in (a) and (b) of FIG. 14, it can be seen that an enlarged output waveform for region A and an output waveform for region B appear from the output waveform simulated with reference to FIG. 13.
또한, 도 15에 도시된 바와 같이, 도 13과 관련하여 시뮬레이션된 출력 파형으로부터 상단에는 가상링크전류 및 하단에는 입력측 컨버터부(110)의 스위칭 게이트 신호에 대한 확대된 출력 파형이 나타나는 것을 알 수 있다.  또한, 영전류 스위칭 기반의 공간벡터 변조방식(SVPWM) 제어기법으로 시뮬레이션 한 결과, 도 16의 (a) 및 (b)에 도시된 바와 같이, 출력선간 전압 및 출력 전류의 파형이 나타나는 것을 알 수 있다.  이 같은 가상 직류링크전압과 게이트신호(q1) 사이에 스위칭 절환이 이루어진 A 영역 및 B 영역에서 영전류 스위칭 동작을 수행하는 것을 알 수 있으며, 이에 따라, A 영역 및 B 영역에서 입력측 컨버터부(110)의 모든 스위칭 절환이 영전류 스위칭 동작을 수행하는 것을 알 수 있다.In addition, as shown in FIG. 15, it can be seen from the output waveform simulated with reference to FIG. 13 that an enlarged output waveform for the switching gate signal of the input side converter unit 110 appears at the top and the virtual link current at the top. . In addition, as a result of simulation by the SVPWM control method based on zero current switching, as shown in FIGS. 16A and 16B, it can be seen that waveforms of the output line voltage and output current appear. have. It can be seen that the zero current switching operation is performed in the region A and the region B where the switching switching is performed between the virtual DC link voltage and the gate signal q1. Accordingly, the input side converter unit 110 is performed in the region A and region B. It can be seen that all of the switching switches of) perform the zero current switching operation.
이하에서는, 본 발명에 따른 3상/단상 직접형 전력 변환 장치의 영전류 스위칭을 구현하기 위한 스위칭 시퀀스를 결정하는 동작에 대해서 상세히 설명하도록 한다.Hereinafter, an operation of determining a switching sequence for implementing zero current switching of the three-phase / single-phase direct power converter according to the present invention will be described in detail.
도 17은 본 발명의 일 실시예에 따른 3상/단상 직접형 전력 변환 장치의 영전류 스위칭을 구현하기 위한 스위칭 시퀀스를 나타내는 예시도이다.FIG. 17 is an exemplary diagram illustrating a switching sequence for implementing zero current switching of a three-phase / single-phase direct power converter according to an embodiment of the present invention.
도 17에 도시된 스위칭 시퀀스는 입력측 컨버터부(110)의 2단계 스위칭 시퀀스 및 단상 출력측 인버터부(120)의 영벡터 및 유효벡터에 대한 5단계 스위칭 시퀀스의 조합으로 생성된 6단계 스위칭 시퀀스이다.  The switching sequence shown in FIG. 17 is a six-stage switching sequence generated by combining a two-stage switching sequence of the input side converter unit 110 and a five-stage switching sequence for the zero and effective vectors of the single-phase output side inverter unit 120.
입력측 컨버터부(110)의 스위칭 패턴과 단상 출력측 인버터부(120)의 스위칭 패턴은 아래 <표 12 및 표 13>과 같다.The switching pattern of the input side converter unit 110 and the switching pattern of the single phase output side inverter unit 120 are as shown in Tables 12 and 13 below.
표 12
T1 T2
phase R phase S phase T phase R phase S phase T
sector1 1 0 -1 1 -1 0
sector2 1 -1 0 0 -1 1
sector3 0 -1 1 -1 0 1
sector4 -1 0 1 -1 1 0
sector5 -1 1 0 0 1 -1
sector6 0 1 -1 1 0 -1
Table 12
T1 T2
phase R phase S phase T phase R phase S phase T
sector1 One 0 -One One -One 0
sector2 One -One 0 0 -One One
sector3 0 -One One -One 0 One
sector4 -One 0 One -One One 0
sector5 -One One 0 0 One -One
sector6 0 One -One One 0 -One
표 13
T0/4 T1 T0/2 T2 T0/4
phase A phase B phase A phase B phase A phase B phase A phase B phase A phase B
sector1 0 0 1 0 1 1 1 0 0 0
sector2 0 0 0 1 1 1 0 1 0 0
Table 13
T0 / 4 T1 T0 / 2 T2 T0 / 4
phase A phase B phase A phase B phase A phase B phase A phase B phase A phase B
sector1
0 0 One 0 One One One 0 0 0
sector2 0 0 0 One One One 0 One 0 0
 위 <표 12 및 표 13>과 같이, 입력측 컨버터부(110)의 스위칭 패턴과 단상 출력측 인버터부(120)의 스위칭 패턴으로부터 다음과 같은 6단계의 스위칭 시퀀스가 결정될 수 있다.As shown in Tables 12 and 13, the following six switching sequences may be determined from the switching pattern of the input side converter unit 110 and the switching pattern of the single phase output side inverter unit 120.
실시예에 따라, 제1 섹터의 경우, 입력측 컨버터부(110)의 스위칭 패턴과 단상 출력측 인버터부(120)의 스위칭 패턴으로부터 결정된 6단계의 스위칭 시퀀스는 제1 영벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제1 유효벡터 및 제4 영벡터 순서의 제1 스위칭 시퀀스 및 제1 영벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제2 유효벡터 및 제4 영벡터 순서의 제2 스위칭 시퀀스 중 하나일 수 있다.According to an embodiment, in the case of the first sector, the six switching sequences determined from the switching pattern of the input side converter unit 110 and the switching pattern of the single phase output side inverter unit 120 may include a first zero vector, a second effective vector, and a first one. 2nd zero vector, 3rd zero vector, first valid vector, and 4th zero vector, the first switching sequence and the first zero vector, the first valid vector, the second zero vector, the third zero vector, the second valid vector, and It may be one of the second switching sequences of the fourth zero vector order.
제1 스위칭 시퀀스인 경우, 아래 <표 14>와 같은 6단계의 스위칭 시퀀스로 이루어질 수 있다.In the case of the first switching sequence, it may be composed of a six-step switching sequence as shown in Table 14 below.
표 14
T0/4 T1 T0/4 T0/4 T2 T0/4
phase R 1 1 1 0 0 0
phase S -1 -1 -1 -1 -1 -1
phase T 0 0 0 1 1 1
phase A 0 1 1 1 1 0
phase B 0 0 1 1 0 0
Table 14
T0 / 4 T1 T0 / 4 T0 / 4 T2 T0 / 4
phase R One One One 0 0 0
phase S -One -One -One -One -One -One
phase T 0 0 0 One One One
phase A 0 One One One One 0
phase B 0 0 One One 0 0
한편, 제2 스위칭 시퀀스인 경우, 아래 <표 15>와 같은 6단계의 스위칭 시퀀스로 이루어질 수 있다.On the other hand, in the case of the second switching sequence, it may be made of a switching sequence of six steps as shown in Table 15 below.
표 15
T0/4 T2 T0/4 T0/4 T1 T0/4
phase R 1 1 1 0 0 0
phase S -1 -1 -1 -1 -1 -1
phase T 0 0 0 1 1 1
phase A 0 1 1 1 1 0
phase B 0 0 1 1 0 0
Table 15
T0 / 4 T2 T0 / 4 T0 / 4 T1 T0 / 4
phase R One One One 0 0 0
phase S -One -One -One -One -One -One
phase T 0 0 0 One One One
phase A 0 One One One One 0
phase B 0 0 One One 0 0
즉, 위 <표 14 및 표 15>와 같이, 단상 출력측 인버터부(120)는 입력측 컨버터부(110)의 스위칭 절환이 일어나는 시점에 영벡터 구간을 만들어 준다.  이에 따라, 단상 출력측 인버터부(120)에 영벡터 스위칭 상태로 제어되는 시점에 입력측 컨버터부(110)와 단상 출력측 인버터부(120) 사이에 전력 공급이 차단됨으로써, 출력측 컨버터부(110)는 모든 스위칭 동작이 영전류 스위칭되어 전류 방향 검출 없이 양방향 전력 제어를 할 수 있다.That is, as shown in Tables 14 and 15, the single-phase output side inverter unit 120 creates a zero vector section at the time of switching switching of the input side converter unit 110 occurs. Accordingly, the power supply is cut off between the input side converter unit 110 and the single phase output side inverter unit 120 at the time when the single phase output side inverter unit 120 is controlled in the zero vector switching state. The switching operation is zero current switching, allowing bidirectional power control without current direction detection.
이하에서는, 시뮬레이션 결과를 통해 3상/단상 직접형 전력 변환 장치의 영전류 스위칭 기반의 공간벡터 변조방식(SVPWM)의 제어 기법에 대한 유효성을 검증하도록 한다.Hereinafter, through the simulation results to verify the effectiveness of the control method of the spatial vector modulation method (SVPWM) based on the zero current switching of the three-phase / single-phase direct power converter.
도 18은 본 발명의 일 실시예에 따른 3상/단상 직접형 전류 변환 장치에서 시뮬레이션 수행에 따른 출력 전류 및 출력선간전압의 파형을 나타내는 예시도이며, 도 19는 본 발명의 일 실시예에 따른 3상/단상 직접형 전류 변환 장치에서 시뮬레이션 수행에 따른 직류링크전류 및 스위칭 신호의 파형을 나타내는 예시도이며, 도 20은 본 발명의 일 실시예에 따른 3상/단상 직접형 전류 변환 장치에서 시뮬레이션 수행에 따른 ZCS 동작 파형을 나타내는 예시도이다.FIG. 18 is an exemplary view illustrating waveforms of output current and output line voltage according to a simulation performed in a three-phase / single-phase direct current converter according to an embodiment of the present invention, and FIG. 19 is a diagram illustrating an embodiment of the present invention. An exemplary diagram showing waveforms of a DC link current and a switching signal according to a simulation performed in a three-phase / single-phase direct current converter, and FIG. 20 is a simulation in a three-phase / single-phase direct current converter according to an embodiment of the present invention. An exemplary view showing a ZCS operation waveform according to execution.
<시뮬레이션 해석 및 실험 해석>Simulation Analysis and Experimental Analysis
본 발명에 따른 3상/단상 직접형 전력 변환 장치의 영전류 스위칭 기반의 공간벡터 변조방식(SVPWM)의 제어 기법에 대한 유효성을 검증하기 위해서 3상/단상 직접형 전력 변환 장치의 전체 회로 구성을 아래 <표 16>과 같은 시뮬레이션 사양 조건을 설정하였다.In order to verify the effectiveness of the control method of the zero-current switching-based space vector modulation method (SVPWM) of the three-phase / single-phase direct type power converter according to the present invention, the entire circuit configuration of the three-phase / single-phase direct type power converter is constructed. The simulation specification conditions are set as shown in Table 16 below.
표 16
item simulation value
input voltage 3-phase, 220V, 50Hz
semiconductor wsitching devices 16-IGBYs with freewheeling diodes
load 100 ohm, 10 mH
output frequency 50Hz
switching sequence 6-step
control frequency 10kHz
Table 16
item simulation value
input voltage 3-phase, 220V, 50Hz
semiconductor wsitching devices 16-IGBYs with freewheeling diodes
load 100 ohm, 10 mH
output frequency
50 Hz
switching sequence 6-step
control frequency
10 kHz
위 <표 16>의 시뮬레이션 사용 조건을 이용하여 본 발명에 따른 3상/단상 직접형 전력 변환 장치를 시뮬레이션한 결과, 도 18의 (a) 내지 (c)와 같은 출력 전류, 출력선간전압 및 출력선간전압(LPF)의 파형이 출력되는 것을 알 수 있다.  즉, 본 발명에 따른 3상/단상 직접형 전력 변환 장치의 입력측 컨버터(110)는 가상의 직류 링크 전류가 0인 경우, 도 18에 도시된 바와 같이, 스위칭 온/오프 동작을 수행하는 것을 알 수 있다.As a result of simulating a three-phase / single-phase direct type power conversion device according to the present invention using the simulation use conditions of Table 16, the output current, output line voltage and output as shown in (a) to (c) of FIG. It can be seen that the waveform of the line voltage LPF is output. That is, the input side converter 110 of the three-phase / single-phase direct type power conversion apparatus according to the present invention, when the virtual DC link current is 0, as shown in Figure 18, it is seen that performs the switching on / off operation Can be.
그리고, 위 <표 16>의 시뮬레이션 사용 조건을 이용하여 본 발명에 따른 3상/단상 직접형 전력 변환 장치를 시뮬레이션한 결과, 도 19의 (a) 내지 (c)와 같은 질류링크 전류, q1 스위칭 신호 및 스위칭 시퀀스 파형과 도 20의 (a) 내지 (c)와 같은 ZCS 동작이 파형이 출력되는 것을 알 수 있다.  이 같은 출력 파형을 통해 3상/단상 직접형 전력 변환 장치의 입력측 컨버터부(110)에서 ZCS 동작이 수행되고 있음을 알 수 있다.In addition, as a result of simulating a three-phase / single-phase direct type power conversion device according to the present invention using the simulation use conditions shown in Table 16 above, as shown in (a) to (c) of FIG. It can be seen that the signal and the switching sequence waveform and the ZCS operation as shown in FIGS. 20A to 20C output the waveform. Through this output waveform, it can be seen that the ZCS operation is performed in the input side converter unit 110 of the three-phase / single-phase direct power converter.
이와 같이, 본 발명에 따른 3상/단상 직접형 전력 변환 장치의 영전류 스위칭 기반의 공간벡터 변조방식(SVPWM)의제어 기법을 통해 입력측 컨버터부(110)의 양방향 스위칭 소자들의 스위칭 손실을 최소하시킬 수 있으며, 기존의 전류방향 검출회로를 이용하지 않고도 입력측 컨버터부(110)의 양방향 스위칭 소자에 대한 스위칭 절환을 수행할 수 있다.  나아가, 본 발명에 따른 3상/단상 직접형 전력 변환 장치는 입력측 컨버터부(110)의 모든 스위칭 절환이 영전류 스위칭으로 동작함으로써, 스위칭 손실을 최소하하여 전체 시스템의 효율을 높일 수 있다.As described above, the switching loss of the bidirectional switching elements of the input side converter unit 110 is minimized through the control method of the spatial vector modulation method (SVPWM) based on the zero current switching of the three-phase / single-phase direct power converter according to the present invention. In addition, switching switching of the bidirectional switching device of the input side converter unit 110 may be performed without using a conventional current direction detection circuit. Furthermore, in the three-phase / single-phase direct type power conversion apparatus according to the present invention, all switching switching of the input side converter unit 110 operates with zero current switching, thereby minimizing switching losses and increasing efficiency of the entire system.
도 21은 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치에서 한 주기 동안의 기존 제어기법과 부분 영전류 스위칭 절환 횟수 비교 결과를 나타내는 예시도이다.21 is an exemplary view showing a result of comparing the conventional control method and the number of partial zero current switching switching times during one cycle in the three-phase direct power converter according to an embodiment of the present invention.
도 21에 도시된 바와 같이, 본 발명에 따른 부분 영전류 스위칭 기반의 공간벡터 변조방식(TSDPC) 제어기법을 이용하여 3상 직접형 전력 변환 장치를 구동할 경우, 스위칭 절환 횟수가 종래의 제어 기법인 9 단계 스위칭 절환 기법에 비해 약 30 % 이상 감소되는 것을 알 수 있다.  나아가, 본 발명에 따른 부분 영전류 스위칭 기반의 공간벡터 변조방식(TSDPC) 제어기법을 이용할 경우, 3상 직접형 전변 변환 장치의 효율 향상이 기대되며, 특히, 출력 주파수가 낮은 환경에서 더욱 큰 효과를 기대할 수 있다.As shown in FIG. 21, when driving a three-phase direct type power converter using a partial zero current switching-based space vector modulation (TSDPC) controller method according to the present invention, the number of switching switching is a conventional control technique. It can be seen that the reduction is about 30% or more compared to the 9-stage switching switching technique. Furthermore, when using the TSD control method based on the partial zero current switching according to the present invention, the efficiency of the three-phase direct conversion device is expected to be improved, particularly in an environment with low output frequency. You can expect.
도 22는 본 발명의 일 실시예에 따른 3상 직접형 전력 변환 장치에서 한 주기 동안의 기존 제어기법과 영전류 스위칭 절환 횟수 비교 결과를 나타내는 예시도이다.FIG. 22 is an exemplary view showing a result of comparing a conventional controller method and a zero current switching switching frequency during one cycle in a three-phase direct type power converter according to an embodiment of the present invention. FIG.
도 21에 도시된 바와 같이, 본 발명에서 제안한 영전류 스위칭 기반의 공간벡터 변조방식(SVPWM) 제어기법을 이용하여 3상 직접형 전력 변환 장치를 구동할 경우, 입력측 컨버터부(110)의 모든 스위칭 절환은 영전류 스위칭 동작으로 이루어지며, 제어주기에 따른 전체 스위칭 전환 횟수와 입력측 컨버터부(110)의 스위칭 절환 횟수, 및 한 주기(50Hz)의 전체 스위칭 절환 횟수와 입력측 컨버터부(110)의 스위칭 절환 횟수가 종래에 비해 감소되어 스위칭 절환에 따른 전력 손실이 종래에 비해 약 40% 이상 감소되며, 특히, 출력 주파수가 낮은 환경에서보다 큰 효과를 기대할 수 있다.  나아가, 본 발명에 따른 영전류 스위칭 기반의 공간벡터 변조방식(SVPWM) 제어기법을 이용할 경우, 전력 변환 장치의 구성 및 제어 기법이 단순화되어, 전력 변환 장치의 안정화 및 신뢰성을 향상시킬 수 있다.As shown in FIG. 21, when driving the three-phase direct type power converter using the zero-current switching-based space vector modulation (SVPWM) controller method proposed in the present invention, all switching of the input side converter 110 is performed. The switching is performed by a zero current switching operation, the total number of switching switching according to the control cycle, the number of switching switching of the input side converter 110, and the total number of switching switching of one cycle (50 Hz) and the switching of the input side converter 110 Since the number of switching is reduced compared to the conventional, the power loss due to the switching switching is reduced by about 40% or more compared with the conventional, and in particular, a greater effect than in an environment where the output frequency is low can be expected. Further, when using the zero current switching-based space vector modulation (SVPWM) control method according to the present invention, the configuration and control scheme of the power converter can be simplified, thereby improving the stabilization and reliability of the power converter.
이하에서는 본 발명에 따른 전력 변환 장치의 스위칭 제어 방법에 대해서 상세히 설명하도록 한다.Hereinafter, a switching control method of the power converter according to the present invention will be described in detail.
도 23은 본 발명의 일 실시예에 따른 전력 변환 장치의 스위치 제어 방법의 흐름도이다.23 is a flowchart of a switch control method of a power conversion apparatus according to an embodiment of the present invention.
도 23에 도시된 바와 같이, 전력 변환 장치는 직류 링크 회로 없이 3상 교류 입력을 변환하는 AC/AC 전력 변환 장치이다.  이 같은 전력 변환 장치는 실시예에 따라, 3상 직접형 전력 변환 장치이거나 또는 3상/단상 직접형 전력 변환 장치가 될 수 있다.As shown in Fig. 23, the power converter is an AC / AC power converter that converts a three-phase AC input without a DC link circuit. Such a power converter may be a three-phase direct power converter or a three-phase / single-phase direct power converter, depending on the embodiment.
이 같은 전력 변환 장치는 입력측 컨버터부의 입력 전류 및 출력측 인버터부의 출력 전압에 대한 복수의 섹터를 판별한다(S2310).  이후, 전력 변환 장치는 입력측 컨버터부(110)의 입력 전류, 출력 인버터부(120)의 출력 전압 및 변조 지수(MI) 중 적어도 하나를 이용하여 합성 벡터 시간을 산출한다(S2320).  이후, 전력 변환 장치는 판별된 복수의 섹터 각각에 대해 입력측 컨버터부(110)의 스위칭 시퀀스 및 출력측 인버터부(120)의 스위칭 시퀀스를 결정한다(S2330).  이후, 전력 변환 장치는 입력측 컨버터부(110) 및 출력측 인버터부(120)의 스위칭 시퀀스와, 합성 벡터 시간에 기초하여 입력측 컨버터부(110) 및 출력측 인버터부(120)의 스위칭 동작을 수행하기 위한 제어 신호를 생성하고, 생성된 제어 신호에 기초하여 입력측 컨버터부(110) 및 출력측 인버터부(120)의 스위칭 동작을 제어한다(S2340).Such a power converter determines a plurality of sectors for the input current of the input side converter section and the output voltage of the output side inverter section (S2310). Thereafter, the power conversion apparatus calculates a synthesized vector time using at least one of an input current of the input side converter 110, an output voltage of the output inverter 120, and a modulation index MI (S2320). Thereafter, the power conversion apparatus determines a switching sequence of the input side converter unit 110 and a switching sequence of the output side inverter unit 120 for each of the determined plurality of sectors (S2330). Subsequently, the power conversion apparatus performs switching operations of the input side converter unit 110 and the output side inverter unit 120 based on the switching sequence of the input side converter unit 110 and the output side inverter unit 120 and the synthesis vector time. The control signal is generated and the switching operation of the input side converter unit 110 and the output side inverter unit 120 is controlled based on the generated control signal (S2340).
실시예에 따라, 전력 변환 장치가 3상 직접형 전력 변환 장치인 경우, 입력측 컨버터는 4상한 운전을 위한 6개의 양방향 스위칭 소자를 포함하며, 출력측 인버터부(120)는 일반적인 전압형 인버터의 구조로 이루어진다.  여기서, 출력측 인버터부(120)는 가령 2개의 스위칭 소자가 서로 직렬 연결되어 하나의 폴(pole)을 형성하며, 3개의 폴이 서로 병렬 연결되어 구성될 수 있다.  이때, 3상의 교류 전압을 출력하기 위하여, 하나의 폴과 이웃하는 폴의 스위치 소자들은 상보적으로 동작하는 것이 바람직하다.According to an embodiment, when the power converter is a three-phase direct power converter, the input side converter includes six bidirectional switching elements for four quadrant operation, and the output side inverter unit 120 has a structure of a general voltage inverter. Is done. Here, the output side inverter unit 120 may be configured by, for example, two switching elements connected in series to each other to form one pole, and three poles connected in parallel to each other. At this time, in order to output the three-phase AC voltage, it is preferable that the switch elements of one pole and the neighboring pole operate complementarily.
한편, 전력 변환 장치가 3상/단상 직접형 전력 변환 장치인 경우, 입력측 컨버터부(110)는 4상한 운전을 위한 6개의 양방향 스위칭 소자를 포함하며, 출력측 인버터부(120)는 일반적인 단상 전압형 인버터의 구조로 이루어진다.  즉, 출력측 인버터부(120)는 6개의 양방향 스위칭 소자를 포함하는 입력측 컨버터부(110)와 단상 계통 연결을 위한 4개의 단방향 스위칭 소자를 포함할 수 있다.On the other hand, when the power converter is a three-phase / single-phase direct power converter, the input side converter unit 110 includes six bidirectional switching elements for four-quadrant operation, and the output side inverter unit 120 is a general single-phase voltage type The structure of the inverter is made. That is, the output side inverter unit 120 may include an input side converter unit 110 including six bidirectional switching elements and four unidirectional switching elements for single phase grid connection.
구체적으로, 전력 변환 장치가 3상 직접형 전력 변환 장치인 경우, 입력측 컨버터부의 입력 전류에 대한 공간벡터를 이용하여 6개의 전류 섹터를 구분하고, 출력측 인버터부(이하 3상 출력측 인버터부라 함)의 출력 전압에 대한 공간벡터를 이용하여 6개의 전압 섹터를 구분할 수 있다.  이후, 3상 직접형 전력 변환 장치는 입력측 컨버터부의 입력 전류, 3상 출력측 인버터부의 출력 전류 및 변조 지수(MI) 중 적어도 하나에 기초하여 합성 벡터 시간을 산출한다.  Specifically, when the power converter is a three-phase direct power converter, six current sectors are divided by using a space vector of the input current of the input side converter unit, and the output side inverter unit (hereinafter referred to as a three-phase output side inverter unit) The six voltage sectors can be distinguished using the space vector for the output voltage. Thereafter, the three-phase direct type power converter calculates the synthesized vector time based on at least one of an input current of the input side converter unit, an output current of the three-phase output side inverter unit, and a modulation index MI.
구체적으로, 3상 직접형 전력 변환 장치는 입력측 컨버터부의 입력 전류에 대한 섹터 및 입력 전류의 위상을 이용하여 입력 유효 벡터 시간을 산출한다.  그리고, 3상 직접형 전력 변환 장치는 3상 출력측 인버터부의 출력 전압에 대한 섹터 및 출력 전압의 위상을 이용하여 출력 유효 벡터 시간을 산출한다.  입력 유효 벡터 시간 및 출력 유효 벡터 시간이 산출되면, 3상 직접형 전력 변환 장치는 기산출된 입력 유효 벡터 시간 및 출력 유효 벡터 시간과, 변조 지수(MI)를 이용하여 합성 벡터 시간을 산출할 수 있다.Specifically, the three-phase direct type power converter calculates the input effective vector time by using the phase of the sector and the input current with respect to the input current of the input side converter. The three-phase direct type power converter calculates an output valid vector time using the phase of the sector and the output voltage with respect to the output voltage of the three-phase output side inverter. When the input valid vector time and the output valid vector time are calculated, the three-phase direct power converter can calculate the composite vector time using the calculated input valid vector time and output valid vector time and the modulation index MI. have.
이후, 3상 직접형 전력 변환 장치는 단계 S2310을 통해 판별된 복수의 섹터 각각에 대해 입력측 컨버터부의 스위칭 시퀀스 및 3상 출력측 인버터부의 스위칭 시퀀스를 결정한다.  이후, 3상 직접형 전력 변환 장치는 합성 벡터 시간 및 합성 영벡터 인가시간 동안 각 섹터별 결정된 입력측 컨버터부 및 3상 출력측 인버터부의 스위칭 시퀀스에 따라 입력측 컨버터부 및 3상 출력측 인버터부의 스위칭 동작을 수행한다.Thereafter, the three-phase direct type power converter determines the switching sequence of the input side converter unit and the switching sequence of the three-phase output side inverter unit for each of the plurality of sectors determined in step S2310. Subsequently, the three-phase direct power converter performs switching operations of the input-side converter unit and the three-phase output side inverter unit according to the switching sequence determined for each sector during the composite vector time and the composite zero vector application time. do.
일 실시예에 따라, 3상 직접형 전력 변환 장치는 입력측 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 3상 출력측 인버터부의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 5단계 스위칭 시퀀스로 결정할 수 있다.  이 경우, 3상 직접형 전력 변환 장치는 입력측 컨버터부의 2단계 스위칭 시퀀스 및 3상 출력측 인버터부의 5단계 스위칭 시퀀스의 조합으로 3상 직접형 전력 변환 장치가 6단계의 스위칭 시퀀스를 가지도록 입력측 컨버터부 및 3상 출력측 인버터부의 스위칭 시퀀스를 결정할 수 있다.According to an embodiment, the three-phase direct type power converter determines the switching sequence of the input-side converter unit as a two-stage switching sequence without zero vector, and the five-stage including the zero vector and the effective vector as the switching sequence of the three-phase output side inverter unit. Can be determined by the switching sequence. In this case, the three-phase direct power converter is a combination of a two-stage switching sequence of the input side converter section and a five-stage switching sequence of the three-phase output side inverter section so that the three-phase direct power converter has a six-stage switching sequence. And a switching sequence of the three-phase output side inverter unit.
여기서, 6단계의 스위칭 시퀀스는, 제1 유효벡터, 제2 유효벡터, 제1 영벡터, 제2 영벡터, 제3 유효벡터, 제4 유효벡터 순서의 스위칭 시퀀스를 가질 수 있으며, 복수의 섹터별로 동일한 패턴으로 이루어질 수 있다.In this case, the six-stage switching sequence may have a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector, and a plurality of sectors. It may be made of the same pattern.
또다른 실시예에 따라, 3상 직접형 전력 변환 장치는 입력측 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 3상 출력측 인버터부의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 7단계 스위칭 시퀀스로 결정할 수 있다.  이 경우, 3상 직접형 전력 변환 장치는 입력측 컨버터부의 2단계 스위칭 시퀀스 및 3상 출력측 인버터부의 7단계 스위칭 시퀀스의 조합으로 전력 변환 장치가 8단계의 스위칭 시퀀스를 가지도록 입력측 컨버터부 및 출력측 인버터부의 스위칭 시퀀스를 결정할 수 있다.According to another embodiment, the three-phase direct-type power conversion device determines the switching sequence of the input side converter unit as a two-stage switching sequence without zero vector, and the switching sequence of the three-phase output side inverter unit 7 including a zero vector and an effective vector. Can be determined by the step switching sequence. In this case, the three-phase direct type power conversion device is a combination of a two-stage switching sequence of the input side converter section and a seven-stage switching sequence of the three-phase output side inverter section so that the power conversion device has an eight-stage switching sequence so that the input side converter section and the output side inverter section The switching sequence can be determined.
실시예에 따라, 3상 직접형 전력 번환 장치는 판별된 복수의 섹터가 홀수이면, 제1 조건에 기초하여 제1 영벡터, 제1 유효벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제3 유효벡터, 제4 유효벡터 및 제4 영벡터 순서의 8단계 스위칭 시퀀스를 결정할 수 있다.  한편, 3상 직접형 전력 변환 장치는 판별된 복수의 섹터가 짝수이면, 제2 조건에 기초하여 제1 영벡터, 제2 유효벡터, 제1 유효벡터, 제2 영백터, 제3 영벡터, 제4 유효벡터, 제3 유효벡터 및 제4 영벡터 순서의 8단계 스위칭 시퀀스를 결정할 수 있다. 그러나, 본 발명은 이에 한정되지 않으며, 8단계의 스위칭 시퀀스는 복수의 섹터별로 동일한 패턴으로 이루어질 수 있다.According to an embodiment, the three-phase direct power switching device, if the determined plurality of sectors is odd, based on the first condition, the first zero vector, the first valid vector, the second valid vector, the second zero vector, and the third An eight-stage switching sequence of the zero vector, the third valid vector, the fourth valid vector, and the fourth zero vector may be determined. On the other hand, the three-phase direct-type power conversion device, if the determined plurality of sectors is even, based on the second condition, the first zero vector, the second valid vector, the first valid vector, the second zero vector, the third zero vector, An eight-stage switching sequence of the fourth valid vector, the third valid vector, and the fourth zero vector may be determined. However, the present invention is not limited thereto, and the eight-stage switching sequence may have the same pattern for each of a plurality of sectors.
이와 같이, 본 발명에 따른 3상 직접형 전력 변환 장치는 입력측 컨버터부의 영벡터가 없는 2단계 스위칭 시퀀스 및 3상 출력측 인버터부의 영벡터 및 유효벡터에 대한 5단계 스위칭 시퀀스 조합으로 생성된 6단계 스위칭 시퀀스 혹은 7단계 스위칭 시퀀스의 조합으로 생성된 8단계 스위칭 시퀀스에 따라 입력측 컨버터부 및 3상 출력측 인버터부의 스위칭 동작을 수행한다.  이에 따라, 3상 직접형 전력 변환 장치는 영벡터 구간에서 입력측 컨버터부의 스위칭 절환이 일어날 경우, 부분 영전류 스위칭(Partial Zero Current Switching : PZCS) 동작을 수행하여 스위칭 절환시 발생하는 전력 손실을 최소화할 수 있으며, 종래에 비해 스위칭 절환 횟수가 줄어들어 그에 따른 전력 손실을 최소화할 수 있다.As described above, the three-phase direct power converter according to the present invention is a six-stage switching generated by a combination of a two-stage switching sequence without a zero vector of the input side converter unit and a five-stage switching sequence for the zero and effective vectors of the three-phase output side inverter unit. The switching operation of the input side converter section and the three-phase output side inverter section is performed according to the eight-step switching sequence generated by the sequence or the combination of the seven-step switching sequence. Accordingly, the three-phase direct type power converter performs Partial Zero Current Switching (PZCS) operation when switching of the input side converter part occurs in a zero vector period, thereby minimizing power loss generated during switching. In addition, compared to the related art, the number of switching switching is reduced, thereby minimizing power loss.
한편, 전력 변환 장치가 3상/단상 직접형 전력 변환 장치인 경우, 출력 전압에 대한 가상의 공간벡터를 만들고, 가상의 공간벡터를 이용하여 2개의 섹터를 구분할 수 있다.  여기서, 가상의 공간 벡터를 통해 구분된 2개의 섹터는 지령 전압의 상태양(+)과 음(-)에 따라 180도 위상차를 갖는 것이 바람직하다.Meanwhile, when the power converter is a three-phase / single-phase direct power converter, a virtual space vector for an output voltage may be created, and two sectors may be distinguished using the virtual space vector. Here, it is preferable that the two sectors divided by the virtual space vector have a 180 degree phase difference according to the positive and negative states of the command voltage.
즉, 3상/단상 직접형 전력 변환 장치는 전술한 <수학식 1,5>로부터 입력 전류 및 출력 전압에 대한 공간벡터가 산출되면, 산출된 입력 전류 및 출력 전압에 대한 공간벡터에 기초하여 입력측 컨버터부의 입력 전류에 대한 입력 유효 벡터 시간 및 단상 출력측 인버터부의 출력 전압에 대한 출력 유효 벡터 시간을 산출할 수 있다.That is, in the three-phase / single-phase direct type power converter, when the space vector for the input current and the output voltage is calculated from the above Equation 1, 5, the input side is based on the calculated space vector for the input current and the output voltage. The input valid vector time for the input current of the converter section and the output valid vector time for the output voltage of the single-phase output side inverter section can be calculated.
이후, 3상/단상 직접형 전력 변환 장치는 전술한 <수학식 7>에 기초하여 입력측 컨버터부 및 단상 출력측 인버터부에 사용될 합성 벡터 시간을 산출한다.  이후, 3상/단상 직접형 전력 변환 장치는 단계 S2310을 통해 판별된 복수의 섹터 각각에 대해 입력측 컨버터부의 스위칭 시퀀스 및 단상 출력측 인버터부의 스위칭 시퀀스를 결정한다.  이후, 3상/단상 직접형 전력 변환 장치는 각 섹터별 결정된 입력측 컨버터부 및 단상 출력측 인버터부의 스위칭 시퀀스에 따라 입력측 컨버터부 및 단상 출력측 인버터부의 스위칭 동작을 수행한다.Thereafter, the three-phase / single phase direct type power converter calculates a composite vector time to be used for the input side converter unit and the single phase output side inverter unit based on Equation 7 described above. Thereafter, the three-phase / single-phase direct type power converter determines the switching sequence of the input side converter unit and the switching sequence of the single phase output side inverter unit for each of the plurality of sectors determined in step S2310. Thereafter, the three-phase / single phase direct type power converter performs the switching operation of the input side converter unit and the single phase output side inverter unit according to the switching sequence of the input side converter unit and the single phase output side inverter unit determined for each sector.
실시예에 따라, 3상/단상 직접형 전력 변환 장치는 입력측 컨버터부의 2단계 스위칭 시퀀스 및 단상 출력측 인버터부의 영벡터 및 유효벡터에 대한 5단계 스위칭 시퀀스의 조합으로 생성된 6단계의 스위칭 시퀀스를 가지도록 입력측 컨버터부 및 단상 출력측 인버터부의 스위칭 시퀀스를 결정할 수 있다.According to an embodiment, the three-phase / single phase direct power converter has a six-stage switching sequence generated by a combination of a two-stage switching sequence of the input side converter unit and a five-stage switching sequence for the zero and effective vectors of the single-phase output side inverter unit. The switching sequence of the input side converter section and the single phase output side inverter section can be determined.
실시예에 따라, 제1 섹터의 경우, 입력측 컨버터부의 스위칭 패턴과 단상 출력측 인버터부의 스위칭 패턴으로부터 결정된 6단계의 스위칭 시퀀스는 제1 영벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제1 유효벡터 및 제4 영벡터 순서의 제1 스위칭 시퀀스 및 제1 영벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제2 유효벡터 및 제4 영벡터 순서의 제2 스위칭 시퀀스 중 하나일 수 있다.According to an embodiment, in the case of the first sector, the six-stage switching sequence determined from the switching pattern of the input side converter section and the switching pattern of the single-phase output side inverter section may include a first zero vector, a second valid vector, a second zero vector, and a third zero vector. , The first switching sequence of the first valid vector and the fourth zero vector, and the second of the first zero vector, the first valid vector, the second zero vector, the third zero vector, the second valid vector, and the fourth zero vector. It may be one of the switching sequences.
이와 같이, 본 발명에 따른 3상/단상 직접형 전력 변환 장치는 단상 출력측 인버터부에 영벡터 스위칭 상태로 제어되는 시점에 입력측 컨버터부와 단상 출력측 인버터부 사이의 전력 공급을 차단시킴으로써, 출력측 컨버터부(110)의 모든 스위칭 동작이 영전류 스위칭되어 전류 방향 검출 없이 양방향 전력 제어를 할 수 있다.As described above, the three-phase / single-phase direct type power conversion device according to the present invention cuts off the power supply between the input side converter unit and the single phase output side inverter unit at the time when the single phase output side inverter unit is controlled in the zero vector switching state. All switching operations of 110 are zero current switched to allow bidirectional power control without current direction detection.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다.So far I looked at the center of the preferred embodiment for the present invention.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the above has been shown and described with respect to preferred embodiments of the present invention, the present invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (11)

  1. 전력 변환 장치에 있어서,In the power converter,
    입력측 컨버터부;An input side converter section;
    출력측 인버터부;An output inverter unit;
    상기 컨버터부의 입력 전류 및 상기 인버터부의 출력 전압에 대한 복수의 섹터를 판별하는 섹터 판별부; A sector discriminating unit for discriminating a plurality of sectors with respect to an input current of the converter unit and an output voltage of the inverter unit;
    상기 컨버터부의 입력 전류, 상기 인버터부의 출력 전압 및 변조 지수(MI) 중 적어도 하나를 이용하여 합성 벡터 시간을 산출하는 합성 벡터 시간 산출부;A synthesized vector time calculator configured to calculate a synthesized vector time by using at least one of an input current of the converter unit, an output voltage of the inverter unit, and a modulation index (MI);
    상기 판별된 복수의 섹터 각각에 대해 상기 컨버터부의 스위칭 시퀀스 및 상기 인버터부의 스위칭 시퀀스를 결정하는 시퀀스 결정부; 및A sequence determination unit that determines a switching sequence of the converter unit and a switching sequence of the inverter unit for each of the determined plurality of sectors; And
    상기 컨버터부 및 상기 인버터부의 스위칭 시퀀스와, 상기 합성 벡터 시간에 기초하여 상기 컨버터부 및 상기 인버터부의 스위칭 동작을 수행하기 위한 제어 신호를 생성하는 제어 신호 생성부;를 포함하며,And a control signal generator configured to generate a control signal for performing a switching operation of the converter unit and the inverter unit based on a switching sequence of the converter unit and the inverter unit, and the synthesized vector time.
    상기 컨버터부의 스위칭 시퀀스는,The switching sequence of the converter unit,
     영벡터를 포함하지 않는 것을 특징으로 하는 전력 변환 장치.A power conversion device, characterized in that it does not contain a zero vector.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 전력 변환 장치가 3상 직접형 전력 변환 장치이면,If the power converter is a three-phase direct power converter,
    상기 컨버터부는 3상 교류를 직류로 변환하기 위한 전류형 컨버터로써 6개의 양방향 스위치;를 포함하며,The converter unit includes a six-way switch as a current converter for converting three-phase alternating current into direct current.
    상기 인터버부는 상기 직류를 3상 교류로 변환하기 위한 전압형 컨버터로써 역병령 다이오드를 포함하는 6개의 스위치;The switch unit may include six switches including a reverse parallel diode as a voltage converter for converting the direct current into a three-phase alternating current;
    를 포함하는 것을 특징으로 하는 전력 변환 장치.Power conversion apparatus comprising a.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 시퀀스 결정부는,The sequence determiner,
    상기 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 상기 출력측 인버터부의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 5단계 스위칭 시퀀스로 결정하는 것을 특징으로 하는 전력 변환 장치.And the switching sequence of the converter unit is determined as a two-stage switching sequence without a zero vector, and the switching sequence of the output side inverter unit is determined as a five-stage switching sequence including a zero vector and an effective vector.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 시퀀스 결정부는,The sequence determiner,
    상기 컨버터부의 2단계 스위칭 시퀀스 및 상기 인버터부의 5단계 스위칭 시퀀스의 조합으로 상기 전력 변환 장치가 6단계의 스위칭 시퀀스를 가지도록 상기 컨버터부 및 상기 인버터부의 스위칭 시퀀스를 결정하며,Determining a switching sequence of the converter unit and the inverter unit such that the power conversion device has a six-stage switching sequence by combining a two-stage switching sequence of the converter unit and a five-stage switching sequence of the inverter unit,
    상기 6단계의 스위칭 시퀀스는,The switching sequence of the six steps,
    제1 유효벡터, 제2 유효벡터, 제1 영벡터, 제2 영벡터, 제3 유효벡터, 제4 유효벡터 순서의 스위칭 시퀀스를 가지는 것을 특징으로 하는 전력 변환 장치.And a switching sequence of a first valid vector, a second valid vector, a first zero vector, a second zero vector, a third valid vector, and a fourth valid vector.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 시퀀스 결정부는,The sequence determiner,
    상기 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2단계 스위칭 시퀀스로 결정하며, 상기 인버터부의 스위칭 시퀀스를 영벡터 및 유효벡터를 포함하는 7단계 스위칭 시퀀스로 결정하는 것을 특징으로 하는 전력 변환 장치.And the switching sequence of the converter unit is determined as a two-stage switching sequence without a zero vector, and the switching sequence of the inverter unit is determined as a seven-stage switching sequence including a zero vector and an effective vector.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 시퀀스 결정부는,The sequence determiner,
    상기 컨버터부의 2단계 스위칭 시퀀스 및 상기 인버터부의 7단계 스위칭 시퀀스의 조합으로 상기 전력 변환 장치가 8단계의 스위칭 시퀀스를 가지도록 상기 입력측 컨버터부 및 상기 출력측 인버터부의 스위칭 시퀀스를 결정하는 것을 특징으로 하는 전력 변환 장치.Determining the switching sequence of the input side converter unit and the output side inverter unit such that the power conversion device has an eight-stage switching sequence by a combination of the two-stage switching sequence of the converter unit and the seven-stage switching sequence of the inverter unit. Converter.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 8단계의 스위칭 시퀀스는,The switching sequence of the eight steps,
    상기 판별된 복수의 섹터가 홀수이면, 기설정된 제1 조건에 기초하여 제1 영벡터, 제1 유효벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제3 유효벡터, 제4 유효벡터 및 제4 영벡터 순서의 스위칭 시퀀스를 가지며,If the determined plurality of sectors is an odd number, the first zero vector, the first valid vector, the second valid vector, the second zero vector, the third zero vector, the third valid vector, and the fourth are based on the preset first condition. Has a switching sequence of an effective vector and a fourth zero vector order,
    상기 판별된 복수의 섹터가 짝수이면, 기설정된 제2 조건에 기초하여 제1 영벡터, 제2 유효벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제4 유효벡터, 제3 유효벡터 및 제4 영벡터 순서의 스위칭 시퀀스를 가지는 것을 특징으로 하는 전력 변환 장치.If the determined plurality of sectors is an even number, the first zero vector, the second valid vector, the first valid vector, the second zero vector, the third zero vector, the fourth valid vector, and the third based on the second predetermined condition And a switching sequence of an effective vector and a fourth zero vector order.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 전력 변환 장치가 3상/단상 직접형 전력 변환 장치이면,If the power converter is a three-phase / single-phase direct power converter,
    상기 컨버터부는 3상 교류 전압을 직류로 변환하기 위한 전류형 컨버터로써 6개의 양방향 스위치;를 포함하며,The converter unit includes a six-way switch as a current converter for converting a three-phase AC voltage into direct current.
    상기 인터버부는 상기 직류를 단상 교류로 변환하기 위한 전압형 컨버터로써 역병렬 다이오드를 포함하는 4개의 스위치;The switch unit may include four switches including an antiparallel diode as a voltage converter for converting the direct current into single phase alternating current;
    를 포함하는 것을 특징으로 하는 전력 변환 장치.Power conversion apparatus comprising a.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 시퀀스 결정부는,The sequence determiner,
    상기 컨버터부의 스위칭 시퀀스를 영벡터가 없는 2 단계 스위칭 시퀀스로 결정하며, 상기 인버터부의 스위칭 시퀀스를 영백터 및 유효벡터를 포함하는 5단계 스위칭 시퀀스로 결정하는 것을 특징으로 하는 전력 변환 장치.And the switching sequence of the converter unit is determined as a two-stage switching sequence without a zero vector, and the switching sequence of the inverter unit is determined as a five-stage switching sequence including a zero vector and an effective vector.
  10. 제 9항에 있어서,The method of claim 9,
    상기 시퀀스 결정부는,The sequence determiner,
    상기 컨버터부의 2단계 스위칭 시퀀스 및 상기 인버터부의 5단계 스위칭 시퀀스의 조합으로 상기 전력 변환 장치가 6단계의 스위칭 시퀀스를 가지도록 상기 컨버터부 및 상기 인버터부의 스위칭 시퀀스를 결정하며,Determining a switching sequence of the converter unit and the inverter unit such that the power conversion device has a six-stage switching sequence by combining a two-stage switching sequence of the converter unit and a five-stage switching sequence of the inverter unit,
    상기 6단계의 스위칭 시퀀스는,The switching sequence of the six steps,
    제1 영벡터, 제2 유효벡터, 제2 영벡터, 제3 영벡터, 제1 유효벡터 및 제4 영벡터 순서의 제1 스위칭 시퀀스와,A first switching sequence of a first zero vector, a second valid vector, a second zero vector, a third zero vector, a first valid vector, and a fourth zero vector;
    제1 영벡터, 제1 유효벡터, 제2 영벡터, 제3 영벡터, 제2 유효벡터 및 제4 영벡터 순서의 제2 스위칭 시퀀스 중 하나인 것을 특징으로 하는 전력 변환 장치.And a second switching sequence in the order of the first zero vector, the first valid vector, the second zero vector, the third zero vector, the second valid vector, and the fourth zero vector.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 합성 벡터 시간 산출을 위한 유효 벡터 시간 및 영벡터 시간을 산출하는 벡터 시간 산출부;를 더 포함하며,And a vector time calculator configured to calculate an effective vector time and a zero vector time for calculating the synthesized vector time.
    상기 벡터 시간 산출부는,The vector time calculation unit,
    상기 컨버터부의 입력 전류 섹터 및 입력 전류 위상을 이용하여 입력 유효 벡터 시간을 산출하는 입력 벡터 시간 산출부;An input vector time calculator configured to calculate an input valid vector time using an input current sector and an input current phase of the converter unit;
    상기 인버터부의 출력 전압 섹터, 출력 전압 위상 및 상기 변조 지수(MI)를 이용하여 출력 유효 벡터 시간 및 출력 영벡터 시간을 산출하는 출력 벡터 시간 산출부; 및An output vector time calculator configured to calculate an output valid vector time and an output zero vector time by using an output voltage sector of the inverter unit, an output voltage phase, and the modulation index MI; And
    상기 인버터부의 출력 전압을 이용하여 상기 변조 지수(MI)를 산출하는 변조 지수 산출부;A modulation index calculator configured to calculate the modulation index MI using the output voltage of the inverter unit;
    를 포함하는 것을 특징으로 하는 전력 변환 장치.Power conversion apparatus comprising a.
PCT/KR2016/009268 2015-08-21 2016-08-22 Power converting device and method for switching control WO2017034276A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150117780 2015-08-21
KR10-2015-0117780 2015-08-21
KR1020160101443A KR101932679B1 (en) 2015-08-21 2016-08-09 Power conversion apparatus and method for switching control
KR10-2016-0101443 2016-08-09

Publications (1)

Publication Number Publication Date
WO2017034276A1 true WO2017034276A1 (en) 2017-03-02

Family

ID=58100485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009268 WO2017034276A1 (en) 2015-08-21 2016-08-22 Power converting device and method for switching control

Country Status (1)

Country Link
WO (1) WO2017034276A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039115A (en) * 2018-08-07 2018-12-18 北京航空航天大学 A kind of isolated converter of high-frequency AC and its uniform spaces Vector Modulation strategy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078380A (en) * 2011-12-30 2013-07-10 엘에스산전 주식회사 Control apparatus for regenerative medium voltage inverter
WO2014127090A2 (en) * 2013-02-15 2014-08-21 Eaton Corporation System and method for single-phase and three-phase current determination in power converters and inverters
KR101515875B1 (en) * 2014-01-20 2015-05-06 (주)갑진 Ac/dc converter in 2-stage
KR20150070353A (en) * 2012-10-15 2015-06-24 제네럴 일렉트릭 컴퍼니 Bidirectional power system, operation method, and controller for operating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078380A (en) * 2011-12-30 2013-07-10 엘에스산전 주식회사 Control apparatus for regenerative medium voltage inverter
KR20150070353A (en) * 2012-10-15 2015-06-24 제네럴 일렉트릭 컴퍼니 Bidirectional power system, operation method, and controller for operating
WO2014127090A2 (en) * 2013-02-15 2014-08-21 Eaton Corporation System and method for single-phase and three-phase current determination in power converters and inverters
KR101515875B1 (en) * 2014-01-20 2015-05-06 (주)갑진 Ac/dc converter in 2-stage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO, CHOON - HO ET AL.: "Partial ZCS Switching Control Scheme for AC/AC Two Stage Direct Power Converter", THE TRANSACTIONS OF THE KOREAN INSTITUTE OF POWER ELECTRONICS, July 2014 (2014-07-01), pages 387 - 388 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039115A (en) * 2018-08-07 2018-12-18 北京航空航天大学 A kind of isolated converter of high-frequency AC and its uniform spaces Vector Modulation strategy
CN109039115B (en) * 2018-08-07 2024-01-05 北京航空航天大学 High-frequency AC isolated converter and unified space vector modulation strategy thereof

Similar Documents

Publication Publication Date Title
WO2016089032A1 (en) Motor driving device, an air conditioner including same and a control method therefor
US8050063B2 (en) Systems and methods for controlling a converter for powering a load
AU2018203019A1 (en) Direct-current transmission protection apparatus, current converter, and protection method
WO2019057931A1 (en) Soft-starter ac-ac converter with integrated solid-state circuit breaker and method of operation thereof
CN110808572A (en) Switching device
Empringham et al. Design challenges in the use of silicon carbide JFETs in matrix converter applications
JPWO2015166523A1 (en) Semiconductor device and power conversion device
WO2017034276A1 (en) Power converting device and method for switching control
WO2012161547A2 (en) Apparatus for controlling rotor current in a wound-rotor type induction motor
JP3479899B2 (en) Voltage regulator
KR101932679B1 (en) Power conversion apparatus and method for switching control
WO2018124467A1 (en) Motor control device and control method for motor control device
Mahlein et al. New concepts for matrix converter design
US20170054360A1 (en) Semiconductor device
WO2014017713A1 (en) Uninterruptible power supply system
WO2013111968A1 (en) Method for current control pulse width modulation of multiphase full bridge voltage source inverter
WO2021040197A1 (en) Independent microgrid system and inverter device
Schulte et al. Power loss comparison of different matrix converter commutation strategies
Wang et al. A 1200V DC-link Hybrid Si/SiC Four-level ANPC Inverter with Balanced Loss Distribution, $ dv/dt $ and Cost
WO2022005206A1 (en) Power conversion device and control method thereof
WO2020204371A2 (en) Inverter control device
CN217307563U (en) Current converter control device and current converter
WO2021251536A1 (en) Two-phase motor assembly
Motto et al. High frequency operation of a megawatt voltage source inverter equipped with ETOs
Casadei et al. Experimental analysis of a matrix converter prototype based on new IGBT modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839565

Country of ref document: EP

Kind code of ref document: A1