WO2017034132A1 - Hybrid drying system - Google Patents

Hybrid drying system Download PDF

Info

Publication number
WO2017034132A1
WO2017034132A1 PCT/KR2016/005964 KR2016005964W WO2017034132A1 WO 2017034132 A1 WO2017034132 A1 WO 2017034132A1 KR 2016005964 W KR2016005964 W KR 2016005964W WO 2017034132 A1 WO2017034132 A1 WO 2017034132A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
storage tank
heat storage
hot air
evaporator
Prior art date
Application number
PCT/KR2016/005964
Other languages
French (fr)
Korean (ko)
Inventor
김종률
이원근
김혜영
Original Assignee
주식회사 티이애플리케이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티이애플리케이션 filed Critical 주식회사 티이애플리케이션
Publication of WO2017034132A1 publication Critical patent/WO2017034132A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
    • F26B7/002Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00 using an electric field and heat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/02Dehydrating; Subsequent reconstitution
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/02Dehydrating; Subsequent reconstitution
    • A23B7/0205Dehydrating; Subsequent reconstitution by contact of the material with fluids, e.g. drying gas or extracting liquids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • A23L3/01Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment using microwaves or dielectric heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/54Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution using irradiation or electrical treatment, e.g. ultrasonic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • F26B21/002Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • F26B23/004Heating arrangements using waste heat recovered from dryer exhaust gases by compressing and condensing vapour in exhaust gases, i.e. using an open cycle heat pump system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • F26B23/005Heating arrangements using waste heat recovered from dryer exhaust gases using a closed cycle heat pump system ; using a heat pipe system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00

Definitions

  • the present invention relates to a combined drying system, and more particularly to a combined drying system for drying a dry object using hot air from microwaves and heat pumps.
  • hot air drying equipment is mainly used to remove moisture of the dry matter such as grains or medicines.
  • a hot air drying facility is a facility which supplies hot air to the inside of the drying tank in which the to-be-contained object was accommodated, and dries a to-be-dried object through a contact with a to-be-dried thing.
  • An object of the present invention is to provide a complex drying system that can further improve efficiency.
  • the combined drying system includes a primary drying unit including a microwave generator and a drying chamber for primary drying the object by using the microwave generated by the microwave generator;
  • a secondary drying unit including a heat pump and an airflow dryer for secondary drying the dry matter from the drying chamber by using hot air absorbing the heat of condensation of the heat pump;
  • the high temperature cooling water that cools the microwave generator is stored and regenerated, and the stored high temperature cooling water is a heat source of the evaporator of the heat pump.
  • a heat storage tank for supplying and radiating heat; It includes a cooling water injection unit for spraying a portion of the high temperature cooling water stored in the heat storage tank to the surface of the evaporator.
  • the heat of the cooling water cooling the microwave generator is regenerated in the heat storage tank, and then supplied to the heat pump to radiate heat. Even when stopped, since the heat stored in the heat storage tank can be continuously supplied to the heat source of the evaporator, a stable heat source can be secured.
  • the three fluids such as the refrigerant, the coolant, and the air can be heat exchanged at the same time, not only can the heat exchange efficiency be improved, but also no additional heat exchanger needs to be installed.
  • FIG. 1 is a view showing a first operating mode of a combined drying system according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a second operation mode of the combined drying system according to the first embodiment of the present invention.
  • FIG. 3 is a view schematically showing the interior of the heat storage tank of the complex drying system according to the first embodiment of the present invention.
  • FIG. 4 is a view showing a first operation mode of a combined drying system according to a second embodiment of the present invention.
  • FIG. 5 is a view showing a second operation mode of the combined drying system according to the second embodiment of the present invention.
  • FIG. 6 is a view showing a coolant injection unit of a complex drying system according to a second embodiment of the present invention.
  • 1 is a view showing a first operating mode of a combined drying system according to a first embodiment of the present invention.
  • 2 is a view showing a second operation mode of the combined drying system according to the first embodiment of the present invention.
  • 3 is a view schematically showing the interior of the heat storage tank of the complex drying system according to the first embodiment of the present invention.
  • the primary drying unit 10 firstly drys the dried object in the drying chamber 14 by using the microwave generated by the microwave generator 11 and the hot air generated by the heat pump 30.
  • the microwave is irradiated into the drying chamber 14, and the hot air generated by the heat pump 30 to be described later is also supplied as an example.
  • the present invention is not limited thereto, and only one of the microwave and the hot air may be selected and used according to the condition of the dry matter or the temperature condition of the hot air.
  • the microwave generator 11 is a device for generating microwaves.
  • the microwave generator 11 is connected to the magnetron 12 for irradiating the microwaves.
  • the magnetron 12 is provided above the drying chamber 14 to irradiate microwaves into the drying chamber 14.
  • the microwave generator 11 is provided with a cooling water heat exchanger 13 through which cooling water passes.
  • the cooling water heat exchanger 13 is connected to the heat storage passage 51 and the generator circulation passage 52 which will be described later.
  • the drying chamber 14 is a chamber in which an object to be dried is accommodated.
  • the magnetron 12 is installed above the drying chamber 14.
  • An inlet 14a is formed at an upper portion of the drying chamber 14, and an outlet 14b is formed at a lower portion thereof to discharge the first dried object.
  • the inlet opening and closing means 16a is installed in the inlet opening 14a, and the outlet opening and closing means 16b is installed in the outlet opening 14b.
  • the drying chamber 14 is connected to drying chamber hot air supply passages 81 and 82 and a drying chamber hot air recovery passage 83.
  • the drying chamber 14 is provided with a stirrer for stirring and transporting a dry item.
  • the drying chamber hot air supply passages 81 and 82 are flow passages that guide the hot air generated by the heat pump 30 to the drying chamber 14. That is, the drying chamber hot air supply passages 81 and 82 guide at least a portion of the hot air absorbing the heat of condensation of the heat pump 30 to the drying chamber 14.
  • the drying chamber hot air supply passages 81 and 82 are branched from the hot air supply passage 84 described later, for example.
  • the present invention is not limited thereto, and the drying chamber hot air supply passages 81 and 82 may be directly connected to the condenser 32 of the heat pump 30.
  • the drying chamber hot air supply passages 81 and 82 are provided with auxiliary heaters 70 for heating the hot air from the heat pump 30.
  • the auxiliary heater 70 is operated when the temperature of the hot air from the heat pump 30 is out of a preset temperature range.
  • First and second valves 91 and 92 are provided in the drying chamber hot air supply passages 81 and 82 to open and close the passage. The first and second valves 91 and 92 shield the drying chamber hot air supply passages 81 and 82 in the second operation mode in which the operation of the microwave generator 11 is stopped.
  • the drying chamber hot air recovery flow path 83 is a flow path that guides the hot air discharged from the drying chamber 14 to the heat pump 30. Hot air from the drying chamber hot air recovery flow path 83 is used as a heat source of the evaporator 34.
  • the drying chamber hot wind recovery flow path 83 is described as being connected to the hot wind recovery flow path 85 to be described later, for example, but not limited to the evaporator 34 of the heat pump 30. It is of course also possible to connect directly.
  • the drying chamber hot wind recovery flow path 83 is provided with a third valve 93 for opening and closing the flow path. The third valve 93 shields the drying chamber hot air recovery passage 83 in the second operation mode in which the operation of the microwave generator 11 is stopped.
  • a blower may be installed in the drying chamber hot air recovery flow path 83.
  • the drying chamber 14 is provided with a dry tank 18.
  • the to-be-dried tank 18 is a tank for temporarily storing the to-be-dried product dried in the drying chamber 14.
  • the dry tank 18 is disposed below the outlet 14b of the drying chamber 14.
  • An upper portion of the dry tank 18 is formed in communication with the discharge port 14b, and a lower tank discharge port 18a and the tank opening / closing part 18b are provided.
  • the tank opening / closing portion 18b is opened when discharging the dry matter stored in the dry tank 18 to the first conveyor 61 and is shielded during the operation of the microwave generator 11.
  • the drying chamber 14 and the dry tank 18 are separately provided, and the outlet 14b of the dry chamber 14 is communicated with the upper portion of the dry tank 18.
  • the drying chamber 14 and the dry tank 18 may be formed integrally.
  • a first conveyor 61 is installed between the dry tank 18 and the air flow dryer 22.
  • the first conveyor 61 transfers the dry matter from the dry tank 18 to the air flow dryer 22.
  • the secondary drying unit 20 performs secondary drying of the dry matter in the airflow dryer 22 using the hot air from the heat pump 30.
  • the secondary drying unit 20 includes the heat pump 30, the air flow dryer 22, a hot air supply passage 84, and a hot air recovery passage 85.
  • the heat pump 30 includes a compressor 31, a condenser 32, an expansion valve 33, and an evaporator 34.
  • the compressor 31 compresses the refrigerant at high temperature and high pressure.
  • the refrigerant compressed by the compressor 31 flows into the condenser 32.
  • the condenser 32 heat-exchanges the refrigerant introduced from the compressor 31 with the air passing through the evaporator 34 to condense the refrigerant.
  • the hot air supply passage 84 is connected to the condenser 32.
  • the hot air supply passage 84 connects the condenser 32 and the airflow dryer 22.
  • the hot air supply flow path 84 is a flow path for supplying the hot air absorbing the condensation heat to the air flow dryer 22 while condensing the refrigerant in the condenser 32.
  • a fourth opening / closing valve 94 is provided in the hot air supply passage 84.
  • a blower may be installed in the hot air supply passage 84.
  • the expansion valve 33 expands the refrigerant from the condenser 32.
  • the evaporator 34 is a refrigerant that is expanded from the expansion valve 33, the hot air recovered from the drying chamber 11 and the air flow dryer 22, and the high-temperature cooling water from the heat storage tank (50) Heat exchange with each other. That is, the evaporator 34 is a triple heat exchanger in which the refrigerant, the hot air, and the cooling water exchange with each other. In the evaporator 34, the refrigerant is evaporated by receiving a heat source from the cooling water and the hot air.
  • the evaporator 34 includes a first heat exchange flow passage formed in a double pipe structure to exchange heat with each other while passing through the refrigerant and the cooling water, and a second heat exchange flow passage formed to surround the outside of the first heat exchange flow passage and allow the hot air to pass therethrough.
  • the coolant In the first heat exchange flow path, the coolant must be heat-exchanged not only with the coolant but also with the hot air, and a coolant pipe through which the coolant passes is disposed outside the coolant pipe through which the coolant passes.
  • a plurality of fins are formed on the surfaces of the first heat exchange flow paths to increase the heat exchange area.
  • the second heat exchange flow path is formed such that the hot air flows in a direction perpendicular to the flow direction of the refrigerant.
  • the hot air recovery flow path 85 is connected to the second heat exchange flow path.
  • the hot air recovery passage 85 connects the airflow dryer 22 and the evaporator 34.
  • the hot air recovery flow path 85 is a flow path for supplying the hot air obtained by drying the dried object in the air flow dryer 22 to the evaporator 34.
  • a blower may be installed in the hot air recovery flow path 85.
  • a hot air bypass flow path 86 is connected to the hot air recovery flow path 85.
  • the hot air bypass passage 86 is a passage through which some of the hot air from the air flow dryer 22 bypasses the evaporator 34.
  • One end of the hot air bypass passage 86 is connected to the hot air recovery passage 85, and the other end thereof is connected to the hot air supply passage 84.
  • the hot air bypass passage 86 is also connected to the passage 87 connecting the evaporator 34 and the condenser 32 by a connection passage 88.
  • the hot air bypass passage 86 is provided with fifth, sixth and seventh opening and closing valves 95, 96 and 97.
  • An eighth opening / closing valve 98 is installed in the connection passage 88.
  • the fifth, sixth and seventh opening / closing valves 95, 96 and 97 may be controlled to be opened or closed in accordance with the temperature or other conditions of the hot air from the airflow dryer 22.
  • the air flow dryer 22 is a device for secondary drying of the dried object by using the hot air supplied from the hot air supply passage 84.
  • the airflow dryer 22 receives the first dried item to be dried from the first conveyor 61.
  • the airflow dryer 22 has a cylindrical shape that is long in the vertical direction.
  • An ejector 23 is formed on one side of the upper portion of the airflow dryer 22 for discharging dry matter and hot air.
  • Hot air discharge pipe 24 for discharging hot air is connected to the upper end of the discharger (23).
  • the hot air discharge pipe 24 is connected to the hot air recovery flow path 85.
  • the mixing unit 80 is installed at the point where the hot air discharge pipe 24 and the hot air recovery flow path 85 are connected.
  • the mixing unit 80 mixes hot air discharged from the drying chamber hot air recovery flow path 83 with hot air discharged from the hot air discharge pipe 24 to increase the reuse efficiency of hot air.
  • a discharge port for discharging the dry object is formed at the lower end of the discharger 23, and a second conveyor 62 for transporting the dry object is installed at the lower end of the discharge port.
  • the heat storage tank 50 stores and accumulates high temperature cooling water that cools the microwave generator 11, and radiates the stored high temperature cooling water to be supplied to a heat source of the evaporator 34.
  • the heat storage tank 50 performs both the heat storage and the heat dissipation in the first operation mode in which both the microwave generator 11 and the air flow dryer 22 are operated.
  • the heat storage tank 50 performs only the heat dissipation without performing the heat storage.
  • the microwave generator 11 is stopped in the drying chamber 14 when operations such as adding, replacing, and discharging the dry matter are performed.
  • the heat stored in the heat storage tank 50 may be used in advance, thereby ensuring a stable heat source. It is possible.
  • the heat storage tank 50 and the microwave generator 11 are connected to the heat storage flow path 51 and the generator circulation flow path 52.
  • the heat storage flow path (51) connects the cooling water heat exchanger (13) installed in the microwave generator (11) and the heat storage tank (50), and cools the high temperature coolant to cool the microwave generator (11). 50) is a flow path for heat storage.
  • the generator circulation passage 52 connects the cooling water heat exchanger 13 installed in the microwave generator 11 and the heat storage tank 50 to transfer the low temperature cooling water stored in the heat storage tank 50 to the microwave generator. It is a circulating flow path.
  • the generator circulation passage 52 is provided with a first pump 51.
  • the heat storage tank 50 and the evaporator 34 are connected to the heat dissipation passage 53 and the heat storage tank circulation passage 54.
  • the heat dissipation flow path 53 connects the evaporator 34 and the heat storage tank 50 to supply heat to the evaporator 34 to cool the hot water stored in the heat storage tank 50 to dissipate heat.
  • the heat dissipation flow path 53 is provided with a second pump 53a.
  • the heat storage tank circulating flow path 54 is a flow path for connecting the evaporator 34 and the heat storage tank 50 to circulate the cooling water radiated while passing through the evaporator 34 to the heat storage tank 50 again.
  • the heat storage tank 50 stores the high temperature cooling water introduced from the heat storage flow passage 51 at the upper portion, and the low temperature cooling water introduced from the heat storage tank circulation flow passage 54 is stored at the lower portion.
  • the heat storage tank 50 is provided with a high temperature flow path 50a connected to the heat storage flow path 51 to send a high temperature cooling water flowing from the heat storage flow path 51 to the upper portion, and the heat storage tank circulation flow path 54. It is connected to the low temperature flow path (50b) is provided for sending the cooling water of the low temperature flowing from the heat storage tank circulation passage 54 to the bottom.
  • the high temperature flow path 50a is located above the heat storage tank 50, and an upper end portion is formed in a disk shape.
  • the high temperature flow path 50a is a flow path through which high temperature cooling water flows, the heat storage flow path 51 and the heat radiation flow path 53 are connected.
  • the low temperature flow path 50b is located below the heat storage tank 50, and a lower end portion is formed in a disk shape. Since the low temperature flow path 50b is a flow path for cooling water having a low temperature, the heat storage tank circulation flow path 54 and the generator circulation flow path 52 are connected to each other. At this time, the temperature difference between the high temperature cooling water and the low temperature cooling water is about 5 ° C.
  • a first operation mode in which the microwave generator 11, the airflow dryer 22, and the heat pump 30 are all operated will be described.
  • both the microwave generator 11 and the air flow dryer 22 are operated to perform primary drying of the dry matter in the drying chamber 14, and the air flow dryer 22 is performed. In the interior, secondary drying of the first dried object is achieved.
  • the microwave generator 11 since the microwave generator 11 is operated, heat storage is possible in the heat storage tank 50, and since the heat pump 30 is operated, heat dissipation of the heat storage tank 50 is also performed. This will be described in detail later.
  • the microwave generator 11 When the dry matter is injected into the drying chamber 14 and the inlet 14a of the drying chamber 14 and the tank outlet 18b of the dry tank 18 are shielded, the microwave generator 11 Is working. During operation of the microwave generator 11, the inlet 14a and the outlet 14b of the drying chamber 14 remain shielded to prevent exposure of the microwaves. It will be described by way of example that the dry matter is not discharged from the drying chamber 14 during the operation of the microwave generator 11. However, the present invention is not limited thereto, and the outlet 14b of the drying chamber 14 may be opened and only the tank outlet 18a may be shielded to prevent exposure of the microwaves. During operation of the microwave generator 11, the stirrer provided in the drying chamber 14 is rotated so that the dry matter in the drying chamber 14 may be uniformly dried.
  • tank outlet 18a of the to-be-dried tank 18 is also described as an example, but it is not limited to this, but the tank outlet 18a of the to-be-dried tank 18 is opened, It is also possible, of course, that the dry matter temporarily stored in the dry tank 18 is discharged to the first conveyor 61.
  • the hot air generated by the heat pump 30 is supplied to the drying chamber 14 through the drying chamber hot air supply passages 81 and 82.
  • the microwave generated by the microwave generator 11 is irradiated to the drying chamber 14.
  • the drying chamber 14 primary drying of the dried object is performed by the microwaves and the hot air.
  • stirring and conveying of the dried object are performed by the rotation of the stirrer mounted therein.
  • the dry matter to be dried first is transferred by the transfer of the stirrer and temporarily stored in the dry tank 18. Since the drying chamber 14 or the dry tank 18 should not be opened during the operation of the microwave generator 11, the tank outlet 18a of the dry tank 18 is shielded and the primary The dried object is temporarily stored in the object tank 18.
  • the cooling water cooling the microwave generator 11 is supplied to the heat storage tank 50 through the heat storage flow path (51).
  • the high temperature cooling water supplied to the heat storage tank 50 accumulates on the upper portion of the heat storage tank 50.
  • the low temperature cooling water stored in the lower portion of the heat storage tank 50 is circulated to the microwave generator 11 through the generator circulation passage 52 to cool the microwave generator 11.
  • the high temperature cooling water stored in the upper portion of the heat storage tank 50 is supplied to the evaporator 34 of the heat pump 30 through the heat dissipation passage 53 and provided as a heat source of the evaporator 34. Therefore, in the heat storage tank 50, both heat storage and heat dissipation are made.
  • the hot air drying the dried object in the drying chamber 14 is discharged through the drying chamber hot air discharge passage 83 and flows into the hot air recovery passage 85.
  • secondary drying of the dry matter by hot air supplied from the heat pump 30 is performed.
  • the hot air from the drying chamber 14 and the hot air from the airflow dryer 22 are recovered to the heat pump 30 through the hot air recovery flow path 85.
  • Hot air recovered through the hot air recovery flow path 85 is introduced into the evaporator 34 of the heat pump 30, and high-temperature cooling water is supplied from the heat storage tank 50. Therefore, in the evaporator 34, triple heat exchange with the hot air, the high temperature cooling water and the refrigerant is performed. Therefore, a sufficient heat source can be supplied to the evaporator 34.
  • the refrigerant evaporated in the evaporator 34 is introduced into the condenser 32 via the compressor 31.
  • the condenser 32 heats the refrigerant from the compressor 31 and the hot air passing through the evaporator 34.
  • Hot air absorbed from the condenser 32 through heat exchange may be supplied to the airflow dryer 22 and the drying chamber 14 through the hot air supply passage 84.
  • the second operation mode In the second operation mode, the operation of the microwave generator 11 is stopped, and the airflow dryer 22 and the heat pump 30 are operating modes.
  • the second operation mode is a state in which the microwave generator 11 is stopped by opening the drying chamber 14 for inputting, discharging, and replacing a dry item in the drying chamber 14.
  • the present invention is not limited thereto and may be stopped to check the failure of the microwave generator 11.
  • the primary drying of the dried product In the second operation mode, the primary drying of the dried product is stopped, but the secondary drying of the dried material first dried in the airflow dryer 22 may be continued.
  • the second operation mode since the operation of the microwave generator 11 is stopped, the heat storage of the heat storage tank 50 is stopped, but the heat dissipation of the heat storage tank 50 is continued because the heat pump 30 is operated. This can be done.
  • the microwave The generator 11 is stopped.
  • the hot air generated by the heat pump 30 is also supplied to the drying chamber 14 is blocked. That is, the drying chamber hot air supply passages 81 and 82 are also shielded, and the supply of hot air to the drying chamber 14 is blocked.
  • the outlet 14b of the drying chamber 14 is opened.
  • the dry matter to which the primary drying is performed in the drying chamber 14 is transferred by the transfer of the stirrer and temporarily stored in the dry tank 18.
  • the tank outlet 18a of the to-be-dried tank 18 is also opened, and the first-dried to-be-dried material is transferred to the airflow dryer 22 through the first conveyor 61.
  • Hot air recovered through the hot air recovery flow path 85 is introduced into the evaporator 34 of the heat pump 30, and high-temperature cooling water is supplied from the heat storage tank 50.
  • the high temperature cooling water stored in the heat storage tank 50 may be supplied to the evaporator 34. Accordingly, triple heat exchange of the hot air, the high temperature cooling water, and the refrigerant is performed in the evaporator 34, and a heat source of the evaporator 34 can be secured even when the microwave generator 11 is stopped.
  • the operation of the microwave generator 11 is stopped in the second operation mode. Even if it is, the high temperature cooling water stored in the heat storage tank 50 may be used as the heat source of the evaporator 34. Therefore, the heat source shortage due to the stop of the microwave generator 11 does not occur.
  • Figure 4 is a view showing a first operating mode of a combined drying system according to a second embodiment of the present invention.
  • 5 is a view showing a second operation mode of the combined drying system according to the second embodiment of the present invention.
  • 6 is a view showing a coolant injection unit of a complex drying system according to a second embodiment of the present invention.
  • the complex drying system according to the second embodiment of the present invention sprays a part of the high temperature cooling water stored in the heat storage tank 50 on the surface of the evaporator 34 of the heat pump 30.
  • a coolant injection unit 100 is different from the first embodiment and the rest of the configuration and operation is similar to the first embodiment, it will be described in detail with respect to different points and the same reference numerals for similar components In this case, detailed descriptions of similar configurations and operations are omitted.
  • the coolant injection unit 100 includes a coolant bypass passage 101, a coolant injection nozzle 102, and a coolant bypass valve 103.
  • the cooling water bypass flow passage 101 is branched from a heat dissipation flow passage 53 connecting the heat storage tank 50 and the evaporator 34 so that at least a portion of the high temperature cooling water from the heat storage tank 50 is separated into the evaporator ( 34) to the outside.
  • the evaporator 34, the refrigerant passage 35 and the heat dissipation passage 53 through which the refrigerant circulating the heat pump 30 is composed of a double pipe is a heat exchange between the refrigerant and the cooling water.
  • Hot air is supplied to the outer side of the evaporator 34 through the hot air recovery flow path 85 to exchange heat between the hot air, the refrigerant, and the cooling water.
  • the heat dissipation passage 53 exchanges the cooling water with the refrigerant while passing through the evaporator 34, while the cooling water bypass passage 101 is inserted into the hot air recovery passage 85.
  • the cooling water injection nozzle 102 is disposed in the hot air recovery flow path 85 to inject the cooling water toward the evaporator 34.
  • the cooling water injection nozzle 102 is provided at the end of the cooling water bypass flow path 101, and sprays the high temperature cooling water introduced into the cooling water bypass flow path 101 toward the surface of the evaporator 34.
  • the coolant bypass valve 103 is provided in the coolant bypass flow path 101 to control the opening and closing of the coolant bypass flow path 101.
  • the heat dissipation passage 53 is provided with a heat dissipation valve 53b for controlling the opening and closing of the heat dissipation passage 53.
  • the heat storage tank circulation passage 54 further includes a cooling water additional supply unit 110 to replenish the amount of cooling water circulated from the evaporator 34 to the heat storage tank 50.
  • a cooling water additional supply unit 110 to replenish the amount of cooling water circulated from the evaporator 34 to the heat storage tank 50.
  • the additional coolant supply unit 110 is an additional supply flow path for supplying coolant from the outside, and the coolant supplement supply unit 110 is provided with a coolant supplement valve 111.
  • the high temperature coolant stored in the heat storage tank 50 is supplied into the evaporator 34 through the heat dissipation passage 53. do.
  • the coolant supplied to the coolant bypass flow path 101 is sprayed onto the surface of the evaporator 34 through the coolant spray nozzle 102.
  • the high temperature cooling water injected through the cooling water injection nozzle 102 serves to clean the surface of the evaporator 34, thereby improving heat exchange efficiency of the evaporator 34.
  • the cooling water replenishing valve 111 may be opened to refill the cooling water circulated to the heat storage tank 50 through the heat storage tank circulation passage 54.
  • the cooling water bypass valve 103 When the cooling water bypass valve 103 is shielded, the cooling water from the heat storage tank 50 is supplied to the inside of the evaporator 34 through the heat dissipation passage 53 and used for heat exchange. When the coolant bypass valve 103 is shielded, the coolant supplement valve 111 is also shielded. Opening / closing time and opening / closing time of the cooling water bypass valve 103 may include heat exchange efficiency of the evaporator 34, a flow path 87 connecting the hot air supply passage 84 or the evaporator 34 and the condenser 32. Can be controlled according to the temperature of hot air.

Abstract

A hybrid drying system, according to the present invention, stores the heat of a coolant that has cooled a microwave generator in a heat storage tank, then supplies same to a heat pump and radiates same, and thus, even if the operation of the microwave generator is interrupted in order to input, discharge and replace an object to be dried, the heat stored in the heat storage tank may be continuously supplied as a heat source of an evaporator, thereby enabling the securing of a stable heat source. Further, a portion of a high-temperature coolant stored in the heat storage tank is sprayed on the surface of the evaporator, thereby enabling the enhancement of the heat-exchange efficiency of the evaporator.

Description

복합 건조 시스템Compound drying system
본 발명은 복합 건조 시스템에 관한 것으로서, 보다 상세하게는 마이크로웨이브와 히트 펌프에서 나온 열풍을 이용하여 피건조물을 건조하는 복합 건조 시스템에 관한 것이다. The present invention relates to a combined drying system, and more particularly to a combined drying system for drying a dry object using hot air from microwaves and heat pumps.
일반적으로 곡물이나 약재 등의 피건조물의 수분을 제거하기 위해 열풍 건조 설비가 주로 사용된다. 열풍 건조 설비는, 피건조물이 수용된 건조 탱크의 내부에 열풍을 공급하여, 피건조물과 열풍이 접촉을 통해 피건조물을 건조시키는 설비이다. In general, hot air drying equipment is mainly used to remove moisture of the dry matter such as grains or medicines. A hot air drying facility is a facility which supplies hot air to the inside of the drying tank in which the to-be-contained object was accommodated, and dries a to-be-dried object through a contact with a to-be-dried thing.
그러나, 종래의 열풍 건조 설비는, 열풍과 접촉되는 피건조물의 표면부터 건조되므로, 피건조물의 내부 건조가 이루어지지 않는 경우가 발생되며, 피건조물의 표면부터 내부까지 건조가 균일하게 이루어지지 않을 경우 품질 저하가 발생되는 문제점이 있다. However, since the conventional hot air drying equipment is dried from the surface of the object to be in contact with the hot air, there is a case where the drying of the object is not performed, and if the drying is not uniform from the surface to the inside of the object There is a problem that a degradation in quality occurs.
본 발명의 목적은, 효율을 보다 향상시킬 수 있는 복합 건조 시스템을 제공하는 데 있다. An object of the present invention is to provide a complex drying system that can further improve efficiency.
본 발명에 따른 복합 건조 시스템은, 마이크로웨이브 발생기와, 상기 마이크로웨이브 발생기에서 발생된 마이크로웨이브를 이용하여 피건조물을 1차 건조시키는 건조 챔버를 포함하는 1차 건조유닛과; 히트 펌프와, 상기 히트 펌프의 응축열을 흡수한 열풍을 이용하여 상기 건조 챔버에서 나온 피건조물을 2차 건조시키는 기류 건조기를 포함하는 2차 건조유닛과; 상기 마이크로웨이브 발생기, 상기 히트 펌프 및 상기 기류 건조기가 모두 작동되는 제1운전 모드시, 상기 마이크로웨이브 발생기를 냉각시킨 고온의 냉각수를 저장하여 축열하고, 저장된 고온의 냉각수를 상기 히트 펌프의 증발기의 열원으로 공급하여 방열하는 축열조와; 상기 축열조에 저장된 고온의 냉각수 중 일부를 상기 증발기의 표면에 분사하는 냉각수 분사부를 포함한다.The combined drying system according to the present invention includes a primary drying unit including a microwave generator and a drying chamber for primary drying the object by using the microwave generated by the microwave generator; A secondary drying unit including a heat pump and an airflow dryer for secondary drying the dry matter from the drying chamber by using hot air absorbing the heat of condensation of the heat pump; In the first operation mode in which the microwave generator, the heat pump, and the airflow dryer all operate, the high temperature cooling water that cools the microwave generator is stored and regenerated, and the stored high temperature cooling water is a heat source of the evaporator of the heat pump. A heat storage tank for supplying and radiating heat; It includes a cooling water injection unit for spraying a portion of the high temperature cooling water stored in the heat storage tank to the surface of the evaporator.
본 발명에 따른 복합 건조 시스템은, 마이크로 웨이브 발생기를 냉각시킨 냉각수의 열을 축열조에 축열한 후, 히트 펌프에 공급하여 방열함으로써, 피건조물의 투입, 배출 및 교체 등을 위해 마이크로 웨이브 발생기의 작동이 중지되는 경우에도 상기 축열조에 저장된 열을 증발기의 열원으로 계속해서 공급할 수 있으므로, 안정적인 열원 확보가 가능하다. In the combined drying system according to the present invention, the heat of the cooling water cooling the microwave generator is regenerated in the heat storage tank, and then supplied to the heat pump to radiate heat. Even when stopped, since the heat stored in the heat storage tank can be continuously supplied to the heat source of the evaporator, a stable heat source can be secured.
또한, 축열조에 저장된 고온의 냉각수 중 일부를 증발기의 표면에 분사시켜, 증발기의 열교환 효율을 향상시킬 수 있다. In addition, some of the high-temperature cooling water stored in the heat storage tank is sprayed on the surface of the evaporator, thereby improving heat exchange efficiency of the evaporator.
또한, 증발기에서는 냉매, 냉각수 및 공기 등 3개의 유체가 동시에 열교환가능하기 때문에, 열교환 효율이 향상될 수 있을 뿐만 아니라, 추가적인 열교환기의 설치가 필요하지 않아도 되므로 구성이 간단해지는 이점이 있다. In addition, in the evaporator, since the three fluids such as the refrigerant, the coolant, and the air can be heat exchanged at the same time, not only can the heat exchange efficiency be improved, but also no additional heat exchanger needs to be installed.
도 1은 본 발명의 제1실시예에 따른 복합 건조 시스템의 제1운전모드가 도시된 도면이다.1 is a view showing a first operating mode of a combined drying system according to a first embodiment of the present invention.
도 2는 본 발명의 제1실시예에 따른 복합 건조 시스템의 제2운전모드가 도시된 도면이다.2 is a view showing a second operation mode of the combined drying system according to the first embodiment of the present invention.
도 3은 본 발명의 제1실시예에 따른 복합 건조 시스템의 축열조의 내부를 개략적으로 도시한 도면이다. 3 is a view schematically showing the interior of the heat storage tank of the complex drying system according to the first embodiment of the present invention.
도 4는 본 발명의 제2실시예에 따른 복합 건조 시스템의 제1운전모드가 도시된 도면이다.4 is a view showing a first operation mode of a combined drying system according to a second embodiment of the present invention.
도 5는 본 발명의 제2실시예에 따른 복합 건조 시스템의 제2운전모드가 도시된 도면이다.5 is a view showing a second operation mode of the combined drying system according to the second embodiment of the present invention.
도 6은 본 발명의 제2실시예에 따른 복합 건조 시스템의 냉각수 분사부가 도시된 도면이다. 6 is a view showing a coolant injection unit of a complex drying system according to a second embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 제1실시예에 대해 상세히 설명한다.Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 제1실시예에 따른 복합 건조 시스템의 제1운전모드가 도시된 도면이다. 도 2는 본 발명의 제1실시예에 따른 복합 건조 시스템의 제2운전모드가 도시된 도면이다. 도 3은 본 발명의 제1실시예에 따른 복합 건조 시스템의 축열조의 내부를 개략적으로 도시한 도면이다. 1 is a view showing a first operating mode of a combined drying system according to a first embodiment of the present invention. 2 is a view showing a second operation mode of the combined drying system according to the first embodiment of the present invention. 3 is a view schematically showing the interior of the heat storage tank of the complex drying system according to the first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제1실시예에 따른 복합 건조 시스템은, 마이크로웨이브 발생기(11)와 건조 챔버(14)를 포함하는 1차 건조유닛(10), 히트 펌프(30)와 기류 건조기(22)를 포함하는 2차 건조유닛(20) 및 축열조(50)를 포함한다. 1, the combined drying system according to the first embodiment of the present invention, the primary drying unit 10, the heat pump 30 and the airflow including the microwave generator 11 and the drying chamber 14 It includes a secondary drying unit 20 and the heat storage tank 50 including a dryer (22).
상기 1차 건조유닛(10)은, 상기 마이크로웨이브 발생기(11)에서 생성된 마이크로웨이브와 상기 히트 펌프(30)에서 생성된 열풍을 이용하여 상기 건조 챔버(14)내의 피건조물을 1차 건조시킨다. 본 실시예에서는, 상기 건조 챔버(14)내에 마이크로웨이브가 조사됨과 아울러, 후술하는 상기 히트 펌프(30)에서 생성된 열풍도 동시에 공급되는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 피건조물의 상태나 상기 열풍의 온도 조건에 따라 상기 마이크로웨이브와 상기 열풍 중 어느 하나만이 선택되어 사용되는 것도 물론 가능하다. The primary drying unit 10 firstly drys the dried object in the drying chamber 14 by using the microwave generated by the microwave generator 11 and the hot air generated by the heat pump 30. . In the present embodiment, the microwave is irradiated into the drying chamber 14, and the hot air generated by the heat pump 30 to be described later is also supplied as an example. However, the present invention is not limited thereto, and only one of the microwave and the hot air may be selected and used according to the condition of the dry matter or the temperature condition of the hot air.
상기 마이크로웨이브 발생기(Microwave generator)(11)는, 마이크로웨이브를 발생시키는 기기이다. 상기 마이크로웨이브 발생기(11)는 상기 마이크로웨이브를 조사하는 마그네트론(12)과 연결된다. 상기 마그네트론(12)은, 상기 건조 챔버(14)의 상측에 설치되어 상기 건조 챔버(14)내로 마이크로웨이브를 조사한다. The microwave generator 11 is a device for generating microwaves. The microwave generator 11 is connected to the magnetron 12 for irradiating the microwaves. The magnetron 12 is provided above the drying chamber 14 to irradiate microwaves into the drying chamber 14.
상기 마이크로웨이브 발생기(11)에는 냉각수가 통과하는 냉각수 열교환기(13)가 구비된다. 상기 냉각수 열교환기(13)에는 후술하는 축열유로(51)와 발생기 순환유로(52)가 연결된다. The microwave generator 11 is provided with a cooling water heat exchanger 13 through which cooling water passes. The cooling water heat exchanger 13 is connected to the heat storage passage 51 and the generator circulation passage 52 which will be described later.
상기 건조 챔버(14)는, 피건조물이 수용되는 챔버이다. 상기 건조 챔버(14)의 상부에는 상기 마그네트론(12)이 설치된다. 상기 건조 챔버(14)의 상부에는 투입구(14a)가 형성되고, 하부에는 1차 건조된 피건조물이 배출되는 배출구(14b)가 형성된다. 상기 투입구(14a)에는 투입구 개폐수단(16a)이 설치되고, 상기 배출구(14b)에는 배출구 개폐수단(16b)이 설치된다. 상기 건조 챔버(14)에는 건조챔버 열풍공급유로(81)(82)와 건조챔버 열풍회수유로(83)가 연결된다. 상기 건조 챔버(14)에는 피건조물을 교반하여 이송하는 교반기가 구비된다. The drying chamber 14 is a chamber in which an object to be dried is accommodated. The magnetron 12 is installed above the drying chamber 14. An inlet 14a is formed at an upper portion of the drying chamber 14, and an outlet 14b is formed at a lower portion thereof to discharge the first dried object. The inlet opening and closing means 16a is installed in the inlet opening 14a, and the outlet opening and closing means 16b is installed in the outlet opening 14b. The drying chamber 14 is connected to drying chamber hot air supply passages 81 and 82 and a drying chamber hot air recovery passage 83. The drying chamber 14 is provided with a stirrer for stirring and transporting a dry item.
상기 건조챔버 열풍공급유로(81)(82)는, 상기 히트 펌프(30)에서 생성된 열풍을 상기 건조챔버(14)로 안내하는 유로이다. 즉, 상기 건조챔버 열풍공급유로(81)(82)는, 상기 히트 펌프(30)의 응축열을 흡수한 열풍 중 적어도 일부를 상기 건조챔버(14)로 안내한다. 본 실시예에서는, 상기 건조챔버 열풍공급유로(81)(82)는, 후술하는 열풍 공급유로(84)에서 분기되는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 건조챔버 열풍공급유로(81)(82)는 상기 히트 펌프(30)의 응축기(32)에 직접 연결되는 것도 가능하다. 상기 건조챔버 열풍공급유로(81)(82)에는, 상기 히트 펌프(30)에서 나온 열풍을 가열하는 보조 가열기(70)가 설치된다. 상기 보조 가열기(70)는, 상기 히트 펌프(30)에서 나온 열풍의 온도가 미리 설정된 온도범위를 벗어나면 작동된다. 상기 건조챔버 열풍공급유로(81)(82)에는 유로를 개폐하는 제1,2밸브(91)(92)가 설치된다. 상기 제1,2밸브(91)(92)는, 상기 마이크로웨이브 발생기(11)의 작동이 정지되는 제2운전모드시 상기 건조챔버 열풍공급유로(81)(82)를 차폐한다. The drying chamber hot air supply passages 81 and 82 are flow passages that guide the hot air generated by the heat pump 30 to the drying chamber 14. That is, the drying chamber hot air supply passages 81 and 82 guide at least a portion of the hot air absorbing the heat of condensation of the heat pump 30 to the drying chamber 14. In the present embodiment, the drying chamber hot air supply passages 81 and 82 are branched from the hot air supply passage 84 described later, for example. However, the present invention is not limited thereto, and the drying chamber hot air supply passages 81 and 82 may be directly connected to the condenser 32 of the heat pump 30. The drying chamber hot air supply passages 81 and 82 are provided with auxiliary heaters 70 for heating the hot air from the heat pump 30. The auxiliary heater 70 is operated when the temperature of the hot air from the heat pump 30 is out of a preset temperature range. First and second valves 91 and 92 are provided in the drying chamber hot air supply passages 81 and 82 to open and close the passage. The first and second valves 91 and 92 shield the drying chamber hot air supply passages 81 and 82 in the second operation mode in which the operation of the microwave generator 11 is stopped.
상기 건조챔버 열풍회수유로(83)는, 상기 건조 챔버(14)에서 피건조물을 건조시키고 배출된 열풍을 상기 히트 펌프(30)로 안내하는 유로이다. 상기 건조챔버 열풍회수유로(83)에서 나온 열풍은 상기 증발기(34)의 열원으로 사용된다. 본 실시예에서는, 상기 건조챔버 열풍회수유로(83)는, 후술하는 열풍회수유로(85)에 연결되는 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 히트 펌프(30)의 증발기(34)에 직접 연결되는 것도 물론 가능하다. 상기 건조챔버 열풍회수유로(83)에는 유로를 개폐하는 제3밸브(93)가 설치된다. 상기 제3밸브(93)는, 상기 마이크로웨이브 발생기(11)의 작동이 정지되는 제2운전모드시 상기 건조챔버 열풍회수유로(83)를 차폐한다. 상기 건조챔버 열풍회수유로(83)에는 송풍기가 설치될 수 있다. The drying chamber hot air recovery flow path 83 is a flow path that guides the hot air discharged from the drying chamber 14 to the heat pump 30. Hot air from the drying chamber hot air recovery flow path 83 is used as a heat source of the evaporator 34. In the present embodiment, the drying chamber hot wind recovery flow path 83 is described as being connected to the hot wind recovery flow path 85 to be described later, for example, but not limited to the evaporator 34 of the heat pump 30. It is of course also possible to connect directly. The drying chamber hot wind recovery flow path 83 is provided with a third valve 93 for opening and closing the flow path. The third valve 93 shields the drying chamber hot air recovery passage 83 in the second operation mode in which the operation of the microwave generator 11 is stopped. A blower may be installed in the drying chamber hot air recovery flow path 83.
상기 건조챔버(14)에는 피건조물 탱크(18)가 구비된다. 상기 피건조물 탱크(18)는, 상기 건조챔버(14)에서 1차 건조되어 나온 피건조물이 일시 저장되는 탱크이다. 상기 피건조물 탱크(18)는 상기 건조챔버(14)의 배출구(14b) 하부에 배치된다. 상기 피건조물 탱크(18)의 상부는 상기 배출구(14b)와 연통되게 형성되고, 하부에는 탱크 배출구(18a)와 상기 탱크 개폐부(18b)가 구비된다. 상기 탱크 개폐부(18b)는, 상기 피건조물 탱크(18)에 저장된 피건조물을 제1컨베이어(61)로 배출시 개방되고, 상기 마이크로웨이브 발생기(11)의 작동 중에는 차폐된다. 본 실시예에서는, 상기 건조챔버(14)와 상기 피건조물 탱크(18)가 별도로 구비되고, 상기 건조챔버(14)의 배출구(14b)까 상기 피건조물 탱크(18)의 상부에 연통되는 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 건조챔버(14)와 상기 피건조물 탱크(18)는 일체로 형성되는 것도 가능하다. The drying chamber 14 is provided with a dry tank 18. The to-be-dried tank 18 is a tank for temporarily storing the to-be-dried product dried in the drying chamber 14. The dry tank 18 is disposed below the outlet 14b of the drying chamber 14. An upper portion of the dry tank 18 is formed in communication with the discharge port 14b, and a lower tank discharge port 18a and the tank opening / closing part 18b are provided. The tank opening / closing portion 18b is opened when discharging the dry matter stored in the dry tank 18 to the first conveyor 61 and is shielded during the operation of the microwave generator 11. In this embodiment, the drying chamber 14 and the dry tank 18 are separately provided, and the outlet 14b of the dry chamber 14 is communicated with the upper portion of the dry tank 18. For example, but not limited to this, the drying chamber 14 and the dry tank 18 may be formed integrally.
상기 피건조물 탱크(18)와 상기 기류 건조기(22)사이에는 제1컨베이어(61)가 설치된다. 상기 제1컨베이어(61)는, 상기 피건조물 탱크(18)에서 나온 피건조물을 상기 기류 건조기(22)로 이송한다. A first conveyor 61 is installed between the dry tank 18 and the air flow dryer 22. The first conveyor 61 transfers the dry matter from the dry tank 18 to the air flow dryer 22.
상기 2차 건조유닛(20)은, 상기 히트 펌프(30)에서 나온 열풍을 이용하여 상기 기류 건조기(22)내의 피건조물을 2차 건조시킨다. 상기 2차 건조유닛(20)은, 상기 히트 펌프(30), 상기 기류 건조기(22), 열풍 공급유로(84) 및 열풍회수유로(85)를 포함한다. The secondary drying unit 20 performs secondary drying of the dry matter in the airflow dryer 22 using the hot air from the heat pump 30. The secondary drying unit 20 includes the heat pump 30, the air flow dryer 22, a hot air supply passage 84, and a hot air recovery passage 85.
상기 히트 펌프(30)는, 압축기(31), 응축기(32), 팽창밸브(33) 및 증발기(34)를 포함한다. The heat pump 30 includes a compressor 31, a condenser 32, an expansion valve 33, and an evaporator 34.
상기 압축기(31)는, 냉매를 고온 고압으로 압축한다. 상기 압축기(31)에서 압축된 냉매는 상기 응축기(32)로 유입된다.The compressor 31 compresses the refrigerant at high temperature and high pressure. The refrigerant compressed by the compressor 31 flows into the condenser 32.
상기 응축기(32)는, 상기 압축기(31)에서 유입된 냉매를 상기 증발기(34)를 통과한 공기와 열교환시켜, 냉매를 응축시킨다. 상기 응축기(32)에는 열풍공급유로(84)가 연결된다. The condenser 32 heat-exchanges the refrigerant introduced from the compressor 31 with the air passing through the evaporator 34 to condense the refrigerant. The hot air supply passage 84 is connected to the condenser 32.
상기 열풍공급유로(84)는, 상기 응축기(32)와 상기 기류 건조기(22)를 연결한다. 상기 열풍공급유로(84)는, 상기 응축기(32)에서 냉매를 응축시키면서 응축열을 흡수한 열풍을 상기 기류 건조기(22)로 공급하는 유로이다. 상기 열풍공급유로(84)에는, 제4개폐밸브(94)가 설치된다. 상기 열풍공급유로(84)에는 송풍기가 설치될 수 있다. The hot air supply passage 84 connects the condenser 32 and the airflow dryer 22. The hot air supply flow path 84 is a flow path for supplying the hot air absorbing the condensation heat to the air flow dryer 22 while condensing the refrigerant in the condenser 32. A fourth opening / closing valve 94 is provided in the hot air supply passage 84. A blower may be installed in the hot air supply passage 84.
상기 팽창밸브(33)는, 상기 응축기(32)에서 나온 냉매를 팽창시킨다.The expansion valve 33 expands the refrigerant from the condenser 32.
상기 증발기(34)는, 상기 팽창밸브(33)에서 팽창되어 나온 냉매와, 상기 건조 챔버(11)와 상기 기류 건조기(22)에서 회수된 열풍과, 상기 축열조(50)에서 나온 고온의 냉각수를 서로 열교환시킨다. 즉, 상기 증발기(34)는, 상기 냉매, 상기 열풍 및 상기 냉각수가 서로 열교환되는 삼중 열교환기이다. 상기 증발기(34)에서는, 상기 냉각수와 상기 열풍으로부터 열원을 제공받아 상기 냉매가 증발된다. 상기 증발기(34)는, 상기 냉매와 상기 냉각수가 각각 통과하면서 서로 열교환하도록 이중관 구조로 이루어진 제1열교환유로와, 상기 제1열교환유로의 외측을 감싸며 상기 열풍이 통과하도록 형성된 제2열교환유로로 이루어진다. 상기 제1열교환유로는, 상기 냉매가 상기 냉각수 뿐만 아니라 상기 열풍과도 열교환이 이루어져야 하므로, 상기 냉매가 통과하는 냉매관이 상기 냉각수가 통과하는 냉각수관의 외부에 배치된다. 상기 제1열교환유로들의 표면에는 열교환 면적을 늘리기 위한 복수의 핀들이 형성된다. 상기 제2열교환유로는, 상기 열풍이 상기 냉매의 유동방향과 수직한 방향으로 흐르도록 형성된다. 상기 제2열교환유로에는 상기 열풍회수유로(85)가 연결된다.The evaporator 34 is a refrigerant that is expanded from the expansion valve 33, the hot air recovered from the drying chamber 11 and the air flow dryer 22, and the high-temperature cooling water from the heat storage tank (50) Heat exchange with each other. That is, the evaporator 34 is a triple heat exchanger in which the refrigerant, the hot air, and the cooling water exchange with each other. In the evaporator 34, the refrigerant is evaporated by receiving a heat source from the cooling water and the hot air. The evaporator 34 includes a first heat exchange flow passage formed in a double pipe structure to exchange heat with each other while passing through the refrigerant and the cooling water, and a second heat exchange flow passage formed to surround the outside of the first heat exchange flow passage and allow the hot air to pass therethrough. . In the first heat exchange flow path, the coolant must be heat-exchanged not only with the coolant but also with the hot air, and a coolant pipe through which the coolant passes is disposed outside the coolant pipe through which the coolant passes. A plurality of fins are formed on the surfaces of the first heat exchange flow paths to increase the heat exchange area. The second heat exchange flow path is formed such that the hot air flows in a direction perpendicular to the flow direction of the refrigerant. The hot air recovery flow path 85 is connected to the second heat exchange flow path.
상기 열풍회수유로(85)는, 상기 기류 건조기(22)와 상기 증발기(34)를 연결한다. 상기 열풍회수유로(85)는, 상기 기류 건조기(22)에서 피건조물을 건조시킨 열풍을 상기 증발기(34)로 공급하는 유로이다. 상기 열풍회수유로(85)에는 송풍기가 설치될 수 있다. The hot air recovery passage 85 connects the airflow dryer 22 and the evaporator 34. The hot air recovery flow path 85 is a flow path for supplying the hot air obtained by drying the dried object in the air flow dryer 22 to the evaporator 34. A blower may be installed in the hot air recovery flow path 85.
상기 열풍회수유로(85)에는 열풍 바이패스유로(86)가 연결된다. 상기 열풍 바이패스유로(86)는, 상기 기류 건조기(22)에서 나온 열풍 중 일부가 상기 증발기(34)를 바이패스시키는 유로이다. 상기 열풍 바이패스유로(86)의 일단은 상기 열풍회수유로(85)에 연결되고, 타단은 상기 열풍 공급유로(84)에 연결된다. 상기 열풍 바이패스유로(86)는, 상기 증발기(34)와 상기 응축기(32)를 연결하는 유로(87)에도 연결유로(88)로 연결된다. 상기 열풍 바이패스유로(86)에는 제5,6,7개폐 밸브(95)(96)(97)가 설치된다. 상기 연결유로(88)에는 제8개폐밸브(98)가 설치된다. 상기 제5,6,7개폐 밸브(95)(96)(97)는, 상기 기류 건조기(22)에서 나온 열풍의 온도나 기타 조건에 따라 개폐가 제어될 수 있다.A hot air bypass flow path 86 is connected to the hot air recovery flow path 85. The hot air bypass passage 86 is a passage through which some of the hot air from the air flow dryer 22 bypasses the evaporator 34. One end of the hot air bypass passage 86 is connected to the hot air recovery passage 85, and the other end thereof is connected to the hot air supply passage 84. The hot air bypass passage 86 is also connected to the passage 87 connecting the evaporator 34 and the condenser 32 by a connection passage 88. The hot air bypass passage 86 is provided with fifth, sixth and seventh opening and closing valves 95, 96 and 97. An eighth opening / closing valve 98 is installed in the connection passage 88. The fifth, sixth and seventh opening / closing valves 95, 96 and 97 may be controlled to be opened or closed in accordance with the temperature or other conditions of the hot air from the airflow dryer 22.
상기 기류 건조기(22)는, 상기 열풍 공급유로(84)로부터 공급된 열풍을 이용하여 피건조물을 2차 건조시키는 장치이다. 상기 기류 건조기(22)는 상기 제1컨베이어(61)로부터 1차 건조된 피건조물을 공급받는다. 상기 기류 건조기(22)는 상하방향으로 긴 원통 형상으로 이루어진다. 상기 기류 건조기(22)의 상부 일측에 피건조물과 열풍을 배출하기 위한 배출기(23)가 형성된다. 상기 배출기(23)의 상단에는 열풍을 배출하는 열풍 토출관(24)이 연결된다. 상기 열풍 토출관(24)은 상기 열풍회수유로(85)와 연결된다. 상기 열풍 토출관(24)과 상기 열풍회수유로(85)가 연결된 지점에는 믹싱 유닛(80)이 설치된다. 상기 믹싱 유닛(80)은, 상기 건조챔버 열풍회수유로(83)에서 배출된 열풍과 상기 열풍 토출관(24)에서 토출된 열풍을 혼합하여 열풍의 재사용 효율을 증대시킨다. 상기 배출기(23)의 하단에는 피건조물을 배출하는 배출구가 형성되고, 배출구의 하단에는 피건조물을 이송하는 제2컨베이어(62)가 설치된다. The air flow dryer 22 is a device for secondary drying of the dried object by using the hot air supplied from the hot air supply passage 84. The airflow dryer 22 receives the first dried item to be dried from the first conveyor 61. The airflow dryer 22 has a cylindrical shape that is long in the vertical direction. An ejector 23 is formed on one side of the upper portion of the airflow dryer 22 for discharging dry matter and hot air. Hot air discharge pipe 24 for discharging hot air is connected to the upper end of the discharger (23). The hot air discharge pipe 24 is connected to the hot air recovery flow path 85. The mixing unit 80 is installed at the point where the hot air discharge pipe 24 and the hot air recovery flow path 85 are connected. The mixing unit 80 mixes hot air discharged from the drying chamber hot air recovery flow path 83 with hot air discharged from the hot air discharge pipe 24 to increase the reuse efficiency of hot air. A discharge port for discharging the dry object is formed at the lower end of the discharger 23, and a second conveyor 62 for transporting the dry object is installed at the lower end of the discharge port.
상기 축열조(Heat storage tank)(50)는, 상기 마이크로 웨이브 발생기(11)를 냉각시킨 고온의 냉각수를 저장하여 축열하고, 저장된 고온의 냉각수를 상기 증발기(34)의 열원으로 공급되도록 방열한다. 상기 축열조(50)는, 상기 마이크로 웨이브 발생기(11)와 상기 기류 건조기(22)가 모두 작동되는 제1운전모드시에는 상기 축열과 상기 방열을 모두 수행한다. 한편, 상기 축열조(50)는, 상기 마이크로 웨이브 발생기(11)의 작동은 정지되고 상기 기류 건조기(22)만 작동되는 제2운전모드시에는 상기 축열은 이루어지지 않고 상기 방열만 수행한다. 상기 마이크로 웨이브 발생기(11)는, 상기 건조 챔버(14)에서 피건조물의 투입, 교체, 배출 등의 작업이 이루어질 때 정지된다. 상기 증발기(34)의 열원에 해당하는 상기 마이크로 웨이브 발생기(11)와 상기 기류 건조기(22) 중 어느 하나의 운전이 정지되더라도 상기 축열조(50)에 미리 저장된 열을 이용할 수 있으므로, 안정적인 열원 확보가 가능하다. The heat storage tank 50 stores and accumulates high temperature cooling water that cools the microwave generator 11, and radiates the stored high temperature cooling water to be supplied to a heat source of the evaporator 34. The heat storage tank 50 performs both the heat storage and the heat dissipation in the first operation mode in which both the microwave generator 11 and the air flow dryer 22 are operated. On the other hand, in the second operation mode in which the operation of the microwave generator 11 is stopped and only the airflow dryer 22 is operated, the heat storage tank 50 performs only the heat dissipation without performing the heat storage. The microwave generator 11 is stopped in the drying chamber 14 when operations such as adding, replacing, and discharging the dry matter are performed. Even if the operation of any one of the microwave generator 11 and the air flow dryer 22 corresponding to the heat source of the evaporator 34 is stopped, the heat stored in the heat storage tank 50 may be used in advance, thereby ensuring a stable heat source. It is possible.
상기 축열조(50)와 상기 마이크로 웨이브 발생기(11)는, 축열유로(51)와 발생기 순환유로(52)로 연결된다. The heat storage tank 50 and the microwave generator 11 are connected to the heat storage flow path 51 and the generator circulation flow path 52.
상기 축열유로(51)는, 상기 마이크로 웨이브 발생기(11)에 설치된 냉각수 열교환기(13)와 상기 축열조(50)를 연결하여, 상기 마이크로 웨이브 발생기(11)를 냉각시킨 고온의 냉각수를 상기 축열조(50)로 공급하여 축열하는 유로이다.The heat storage flow path (51) connects the cooling water heat exchanger (13) installed in the microwave generator (11) and the heat storage tank (50), and cools the high temperature coolant to cool the microwave generator (11). 50) is a flow path for heat storage.
상기 발생기 순환유로(52)는, 상기 마이크로 웨이브 발생기(11)에 설치된 냉각수 열교환기(13)와 상기 축열조(50)를 연결하여, 상기 축열조(50)에 저장된 저온의 냉각수를 상기 마이크로 웨이브 발생기로 순환시키는 유로이다. 상기 발생기 순환유로(52)에는 제1펌프(51)가 설치된다. The generator circulation passage 52 connects the cooling water heat exchanger 13 installed in the microwave generator 11 and the heat storage tank 50 to transfer the low temperature cooling water stored in the heat storage tank 50 to the microwave generator. It is a circulating flow path. The generator circulation passage 52 is provided with a first pump 51.
상기 축열조(50)와 상기 증발기(34)는, 방열유로(53)와 축열조 순환유로(54)로 연결된다. The heat storage tank 50 and the evaporator 34 are connected to the heat dissipation passage 53 and the heat storage tank circulation passage 54.
상기 방열유로(53)는, 상기 증발기(34)와 상기 축열조(50)를 연결하여, 상기 축열조(50)에 저장된 고온의 냉각수를 상기 증발기(34)로 공급하여 방열하는 유로이다. 상기 방열유로(53)에는 제2펌프(53a)가 설치된다. The heat dissipation flow path 53 connects the evaporator 34 and the heat storage tank 50 to supply heat to the evaporator 34 to cool the hot water stored in the heat storage tank 50 to dissipate heat. The heat dissipation flow path 53 is provided with a second pump 53a.
상기 축열조 순환유로(54)는, 상기 증발기(34)와 상기 축열조(50)를 연결하여, 상기 증발기(34)를 통과하면서 방열한 냉각수를 상기 축열조(50)로 다시 순환시키는 유로이다.The heat storage tank circulating flow path 54 is a flow path for connecting the evaporator 34 and the heat storage tank 50 to circulate the cooling water radiated while passing through the evaporator 34 to the heat storage tank 50 again.
도 3을 참조하면, 상기 축열조(50)는 상기 축열유로(51)로부터 유입되는 고온의 냉각수는 상부에 저장하고, 상기 축열조 순환유로(54)로부터 유입되는 저온의 냉각수는 하부에 저장한다. 상기 축열조(50)의 내부에는 상기 축열유로(51)에 연결되어 상기 축열유로(51)로부터 유입되는 고온의 냉각수를 상부로 보내기 위한 고온 유로(50a)가 구비되고, 상기 축열조 순환유로(54)에 연결되어 상기 축열조 순환유로(54)로부터 유입되는 저온의 냉각수를 하부로 보내기 위한 저온 유로(50b)가 구비된다. 상기 고온 유로(50a)는, 상기 축열조(50)의 상부에 위치되고, 상단부가 디스크 형상으로 이루어진 것으로 예를 들어 설명한다. 상기 고온 유로(50a)는, 고온의 냉각수가 흐르는 유로이므로, 상기 축열유로(51)와 상기 방열유로(53)가 연결된다. 상기 저온 유로(50b)는, 상기 축열조(50)의 하부에 위치되고, 하단부가 디스크 형상으로 이루어진 것으로 예를 들어 설명한다. 상기 저온 유로(50b)는, 저온의 냉각수를 흐르는 유로이므로, 상기 축열조 순환유로(54)와 상기 발생기 순환유로(52)가 연결된다. 이 때, 상기 고온의 냉각수와 상기 저온의 냉각수의 온도차는 약 5℃ 이다. Referring to FIG. 3, the heat storage tank 50 stores the high temperature cooling water introduced from the heat storage flow passage 51 at the upper portion, and the low temperature cooling water introduced from the heat storage tank circulation flow passage 54 is stored at the lower portion. The heat storage tank 50 is provided with a high temperature flow path 50a connected to the heat storage flow path 51 to send a high temperature cooling water flowing from the heat storage flow path 51 to the upper portion, and the heat storage tank circulation flow path 54. It is connected to the low temperature flow path (50b) is provided for sending the cooling water of the low temperature flowing from the heat storage tank circulation passage 54 to the bottom. The high temperature flow path 50a is located above the heat storage tank 50, and an upper end portion is formed in a disk shape. Since the high temperature flow path 50a is a flow path through which high temperature cooling water flows, the heat storage flow path 51 and the heat radiation flow path 53 are connected. The low temperature flow path 50b is located below the heat storage tank 50, and a lower end portion is formed in a disk shape. Since the low temperature flow path 50b is a flow path for cooling water having a low temperature, the heat storage tank circulation flow path 54 and the generator circulation flow path 52 are connected to each other. At this time, the temperature difference between the high temperature cooling water and the low temperature cooling water is about 5 ° C.
상기와 같이 구성된 본 발명의 실시예에 따른 복합 건조 시스템의 작동을 설명하면, 다음과 같다. Referring to the operation of the complex drying system according to an embodiment of the present invention configured as described above are as follows.
먼저, 도 1을 참조하면, 상기 마이크로 웨이브 발생기(11), 상기 기류 건조기(22) 및 상기 히트 펌프(30)가 모두 작동되는 제1운전모드에 대해 설명한다. 상기 제1운전모드는, 상기 마이크로 웨이브 발생기(11)와 상기 기류 건조기(22)가 모두 작동되어, 상기 건조 챔버(14)내에서는 피건조물의 1차 건조가 이루어지며, 상기 기류 건조기(22)내에서는 1차 건조된 피건조물의 2차 건조가 이루어진다. 또한, 상기 제1운전모드는, 상기 마이크로 웨이브 발생기(11)가 작동되므로 상기 축열조(50)에서 축열이 가능하고, 상기 히트 펌프(30)가 작동되므로 상기 축열조(50)의 방열도 이루어지며, 이에 대해서는 뒤에서 상세히 설명한다.First, referring to FIG. 1, a first operation mode in which the microwave generator 11, the airflow dryer 22, and the heat pump 30 are all operated will be described. In the first operation mode, both the microwave generator 11 and the air flow dryer 22 are operated to perform primary drying of the dry matter in the drying chamber 14, and the air flow dryer 22 is performed. In the interior, secondary drying of the first dried object is achieved. In addition, in the first operation mode, since the microwave generator 11 is operated, heat storage is possible in the heat storage tank 50, and since the heat pump 30 is operated, heat dissipation of the heat storage tank 50 is also performed. This will be described in detail later.
상기 건조 챔버(14)에 피건조물이 투입되어, 상기 건조 챔버(14)의 상기 투입구(14a)와 상기 피건조물 탱크(18)의 탱크 배출구(18b)가 차폐되면, 상기 마이크로 웨이브 발생기(11)가 작동된다. 상기 마이크로 웨이브 발생기(11)의 작동중에는 상기 마이크로 웨이브의 노출을 방지하기 위해 상기 건조 챔버(14)의 투입구(14a)와 상기 배출구(14b)가 차폐된 상태를 유지한다. 상기 마이크로 웨이브 발생기(11)의 작동중에는 상기 피건조물이 상기 건조 챔버(14)로부터 배출되지 않는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 건조 챔버(14)의 배출구(14b)는 개방되고 탱크 배출구(18a)만이 차폐되어 상기 마이크로 웨이브의 노출이 방지되는 것도 물론 가능하다. 상기 마이크로 웨이브 발생기(11)의 작동 중에는 상기 건조 챔버(14)내에 구비된 교반기가 회전되어 상기 건조 챔버(14)내의 피건조물이 균일하게 건조될 수 있다. 또한, 본 실시예에서는, 상기 피건조물 탱크(18)의 탱크 배출구(18a)도 차폐된 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 피건조물 탱크(18)의 탱크 배출구(18a)는 개방되어, 상기 피건조물 탱크(18)내에 일시 저장된 피건조물이 상기 제1컨베이어(61)로 배출되는 것도 물론 가능하다. When the dry matter is injected into the drying chamber 14 and the inlet 14a of the drying chamber 14 and the tank outlet 18b of the dry tank 18 are shielded, the microwave generator 11 Is working. During operation of the microwave generator 11, the inlet 14a and the outlet 14b of the drying chamber 14 remain shielded to prevent exposure of the microwaves. It will be described by way of example that the dry matter is not discharged from the drying chamber 14 during the operation of the microwave generator 11. However, the present invention is not limited thereto, and the outlet 14b of the drying chamber 14 may be opened and only the tank outlet 18a may be shielded to prevent exposure of the microwaves. During operation of the microwave generator 11, the stirrer provided in the drying chamber 14 is rotated so that the dry matter in the drying chamber 14 may be uniformly dried. In addition, in this embodiment, the tank outlet 18a of the to-be-dried tank 18 is also described as an example, but it is not limited to this, but the tank outlet 18a of the to-be-dried tank 18 is opened, It is also possible, of course, that the dry matter temporarily stored in the dry tank 18 is discharged to the first conveyor 61.
또한, 상기 히트 펌프(30)와 상기 열풍 공급유로(84)에 설치된 송풍기가 작동된다.In addition, a blower installed in the heat pump 30 and the hot air supply passage 84 is operated.
상기 건조 챔버(14)에는 상기 히트 펌프(30)에서 생성된 열풍이 상기 건조챔버 열풍공급유로(81)(82)를 통해 공급된다. 또한, 상기 건조 챔버(14)에는, 상기 마이크로 웨이브 발생기(11)에서 발생된 마이크로 웨이브가 조사된다. The hot air generated by the heat pump 30 is supplied to the drying chamber 14 through the drying chamber hot air supply passages 81 and 82. In addition, the microwave generated by the microwave generator 11 is irradiated to the drying chamber 14.
따라서, 상기 건조 챔버(14)에서는, 상기 마이크로 웨이브와 상기 열풍에 의해 상기 피건조물의 1차 건조가 이루어진다. 상기 건조 챔버(14)에서는 내부에 장착된 교반기의 회전에 의해 피건조물의 교반 및 이송이 이루어진다. Therefore, in the drying chamber 14, primary drying of the dried object is performed by the microwaves and the hot air. In the drying chamber 14, stirring and conveying of the dried object are performed by the rotation of the stirrer mounted therein.
상기 건조 챔버(14)에서 1차 건조가 이루어진 피건조물은 상기 교반기의 이송에 의해 이송되어 상기 피건조물 탱크(18)에 일시 저장된다. 상기 마이크로 웨이브 발생기(11)의 작동 중에는 상기 건조 챔버(14)나 상기 피건조물 탱크(18)가 개방되지 않아야 하므로, 상기 피건조물 탱크(18)의 탱크 배출구(18a)는 차폐되고, 상기 1차 건조된 피건조물은 상기 피건조물 탱크(18)에 일시 저장된다. In the drying chamber 14, the dry matter to be dried first is transferred by the transfer of the stirrer and temporarily stored in the dry tank 18. Since the drying chamber 14 or the dry tank 18 should not be opened during the operation of the microwave generator 11, the tank outlet 18a of the dry tank 18 is shielded and the primary The dried object is temporarily stored in the object tank 18.
한편, 상기 마이크로 웨이브 발생기(11)를 냉각시킨 냉각수는 상기 축열 유로(51)을 통해 상기 축열조(50)로 공급된다. 상기 축열조(50)로 공급된 고온의 냉각수는 상기 축열조(50)의 상부에 축열한다. 또한, 상기 축열조(50)의 하부에 저장된 저온의 냉각수는 상기 발생기 순환유로(52)를 통해 상기 마이크로 웨이브 발생기(11)로 순환하여, 상기 마이크로 웨이브 발생기(11)를 냉각시킨다. On the other hand, the cooling water cooling the microwave generator 11 is supplied to the heat storage tank 50 through the heat storage flow path (51). The high temperature cooling water supplied to the heat storage tank 50 accumulates on the upper portion of the heat storage tank 50. In addition, the low temperature cooling water stored in the lower portion of the heat storage tank 50 is circulated to the microwave generator 11 through the generator circulation passage 52 to cool the microwave generator 11.
또한, 상기 축열조(50)의 상부에 저장된 고온의 냉각수는 상기 방열유로(53)를 통해 상기 히트 펌프(30)의 증발기(34)로 공급되어, 상기 증발기(34)의 열원으로 제공된다. 따라서, 상기 축열조(50)에서는 축열과 방열이 모두 이루어진다. In addition, the high temperature cooling water stored in the upper portion of the heat storage tank 50 is supplied to the evaporator 34 of the heat pump 30 through the heat dissipation passage 53 and provided as a heat source of the evaporator 34. Therefore, in the heat storage tank 50, both heat storage and heat dissipation are made.
상기 건조 챔버(14)에서 피건조물을 건조시킨 열풍은 상기 건조챔버 열풍토출유로(83)를 통해 토출되어, 상기 열풍회수유로(85)로 유입된다. The hot air drying the dried object in the drying chamber 14 is discharged through the drying chamber hot air discharge passage 83 and flows into the hot air recovery passage 85.
한편, 상기 기류 건조기(22)에는, 상기 건조 챔버(14)에서 1차 건조된 피건조물이 유입된 상태이다. 상기 기류 건조기(22)에서는 상기 히트 펌프(30)로부터 공급되는 열풍에 의한 피건조물의 2차 건조가 이루어진다. On the other hand, in the airflow dryer 22, the to-be-dried thing which dried by the said drying chamber 14 inflow | poured. In the airflow dryer 22, secondary drying of the dry matter by hot air supplied from the heat pump 30 is performed.
상기 건조 챔버(14)에서 나온 열풍과 상기 기류 건조기(22)에서 나온 열풍은 상기 열풍회수유로(85)를 통해 상기 히트 펌프(30)로 회수된다.The hot air from the drying chamber 14 and the hot air from the airflow dryer 22 are recovered to the heat pump 30 through the hot air recovery flow path 85.
상기 히트 펌프(30)의 증발기(34)에는, 상기 열풍회수유로(85)를 통해 회수된 열풍이 유입됨과 아울러, 상기 축열조(50)로부터 고온의 냉각수가 공급된다. 따라서, 상기 증발기(34)에서는, 상기 열풍, 상기 고온의 냉각수 및 상기 냉매와의 삼중 열교환이 이루어진다. 따라서, 상기 증발기(34)에는 충분한 열원이 공급될 수 있다. Hot air recovered through the hot air recovery flow path 85 is introduced into the evaporator 34 of the heat pump 30, and high-temperature cooling water is supplied from the heat storage tank 50. Therefore, in the evaporator 34, triple heat exchange with the hot air, the high temperature cooling water and the refrigerant is performed. Therefore, a sufficient heat source can be supplied to the evaporator 34.
상기 증발기(34)에서 증발된 냉매는 상기 압축기(31)를 거쳐 상기 응축기(32)로 유입된다. 상기 응축기(32)는, 상기 압축기(31)에서 나온 냉매와 상기 증발기(34)를 통과한 열풍을 열교환시킨다. 상기 응축기(32)에서 열교환을 통해 응축열을 흡수한 열풍은 상기 열풍 공급유로(84)를 통해 상기 기류 건조기(22)와 상기 건조 챔버(14)로 공급될 수 있다. The refrigerant evaporated in the evaporator 34 is introduced into the condenser 32 via the compressor 31. The condenser 32 heats the refrigerant from the compressor 31 and the hot air passing through the evaporator 34. Hot air absorbed from the condenser 32 through heat exchange may be supplied to the airflow dryer 22 and the drying chamber 14 through the hot air supply passage 84.
한편, 도 2를 참조하면, 상기 제2운전모드에 대해 설명한다. 상기 제2운전모드는, 상기 마이크로 웨이브 발생기(11)의 작동은 정지되고, 상기 기류 건조기(22) 및 상기 히트 펌프(30)는 작동되는 운전모드이다. 상기 제2운전모드는, 상기 건조 챔버(14)에서 피건조물의 투입, 배출 및 교체를 위해 상기 건조 챔버(14)가 개방되어 상기 마이크로 웨이브 발생기(11)가 정지된 상태이다. 다만, 이에 한정되지 않고, 상기 마이크로 웨이브 발생기(11)의 고장 점검 등을 위해 정지되는 것도 물론 가능하다. 상기 제2운전모드에서는, 피건조물의 1차 건조가 중단되나, 상기 기류 건조기(22)내에서는 1차 건조된 피건조물의 2차 건조는 계속해서 이루어질 수 있다. 또한, 상기 제2운전모드는, 상기 마이크로 웨이브 발생기(11)의 작동이 정지되므로 상기 축열조(50)의 축열은 중단되나, 상기 히트 펌프(30)가 작동되므로 상기 축열조(50)의 방열은 계속해서 이루어질 수 있다. Meanwhile, referring to FIG. 2, the second operation mode will be described. In the second operation mode, the operation of the microwave generator 11 is stopped, and the airflow dryer 22 and the heat pump 30 are operating modes. The second operation mode is a state in which the microwave generator 11 is stopped by opening the drying chamber 14 for inputting, discharging, and replacing a dry item in the drying chamber 14. However, the present invention is not limited thereto and may be stopped to check the failure of the microwave generator 11. In the second operation mode, the primary drying of the dried product is stopped, but the secondary drying of the dried material first dried in the airflow dryer 22 may be continued. In addition, in the second operation mode, since the operation of the microwave generator 11 is stopped, the heat storage of the heat storage tank 50 is stopped, but the heat dissipation of the heat storage tank 50 is continued because the heat pump 30 is operated. This can be done.
즉, 상기 건조 챔버(14)에 피건조물의 투입을 위해 상기 투입구(14a)를 개방하거나, 상기 피건조물 탱크(18)에서 피건조물의 배출을 위해 탱크 배출구(18a)를 개방하면, 상기 마이크로 웨이브 발생기(11)의 작동이 중지된다. 또한, 상기 히트 펌프(30)에서 생성된 열풍이 상기 건조 챔버(14)로 공급되는 것도 차단된다. 즉, 상기 건조챔버 열풍공급유로(81)(82)도 차폐되어, 상기 건조 챔버(14)에 열풍의 공급이 차단된다. That is, when the inlet port 14a is opened for the input of the dry object to the drying chamber 14 or the tank outlet 18a is opened for the discharge of the dry object from the dry tank 18, the microwave The generator 11 is stopped. In addition, the hot air generated by the heat pump 30 is also supplied to the drying chamber 14 is blocked. That is, the drying chamber hot air supply passages 81 and 82 are also shielded, and the supply of hot air to the drying chamber 14 is blocked.
한편, 상기 마이크로 웨이브 발생기(11)의 작동이 정지되면, 상기 건조 챔버(14)의 배출구(14b)가 개방된다. 상기 건조 챔버(14)의 배출구(14b)가 개방되면, 상기 건조 챔버(14)에서 1차 건조가 이루어진 피건조물이 상기 교반기의 이송에 의해 이송되어 상기 피건조물 탱크(18)에 일시 저장된다. 또한, 상기 피건조물 탱크(18)의 탱크 배출구(18a)도 개방되어, 상기 1차 건조된 피건조물은 상기 제1컨베이어(61)를 통해 상기 기류 건조기(22)로 이송된다. 상기 마이크로웨이브 발생기(11)의 작동 중지시, 필요에 따라 회전되거나 정지될 수 있다. On the other hand, when the operation of the microwave generator 11 is stopped, the outlet 14b of the drying chamber 14 is opened. When the outlet 14b of the drying chamber 14 is opened, the dry matter to which the primary drying is performed in the drying chamber 14 is transferred by the transfer of the stirrer and temporarily stored in the dry tank 18. In addition, the tank outlet 18a of the to-be-dried tank 18 is also opened, and the first-dried to-be-dried material is transferred to the airflow dryer 22 through the first conveyor 61. When the microwave generator 11 stops operating, it may be rotated or stopped as necessary.
상기 기류 건조기(22)에서는 상기 히트 펌프(30)로부터 공급된 열풍에 의해 피건조물의 2차 건조가 이루어진다. 상기 기류 건조기(22)에서 나온 열풍은 상기 열풍회수유로(85)를 통해 상기 히트 펌프(30)로 다시 회수된다. In the airflow dryer 22, secondary drying of the dried object is performed by hot air supplied from the heat pump 30. The hot air from the air flow dryer 22 is recovered back to the heat pump 30 through the hot air recovery flow path 85.
상기 히트 펌프(30)의 증발기(34)에는, 상기 열풍회수유로(85)를 통해 회수된 열풍이 유입됨과 아울러, 상기 축열조(50)로부터 고온의 냉각수가 공급된다. 상기 축열조(50)에서 축열이 중단된 상태이지만, 상기 축열조(50)에 미리 저장된 고온의 냉각수는 상기 증발기(34)로 공급될 수 있다. 따라서, 상기 증발기(34)에서는 상기 열풍, 상기 고온의 냉각수 및 상기 냉매의 삼중 열교환이 이루어지며, 상기 마이크로 웨이브 발생기(11)가 중지되더라도 상기 증발기(34)의 열원 확보는 가능하다. Hot air recovered through the hot air recovery flow path 85 is introduced into the evaporator 34 of the heat pump 30, and high-temperature cooling water is supplied from the heat storage tank 50. Although the heat storage is stopped in the heat storage tank 50, the high temperature cooling water stored in the heat storage tank 50 may be supplied to the evaporator 34. Accordingly, triple heat exchange of the hot air, the high temperature cooling water, and the refrigerant is performed in the evaporator 34, and a heat source of the evaporator 34 can be secured even when the microwave generator 11 is stopped.
본 발명에 따른 복합 건조 시스템에서는, 상기 마이크로 웨이브 발생기(11)를 냉각시킨 냉각수의 열을 상기 축열조(50)에 축열하기 때문에, 상기 제2운전모드에서 상기 마이크로 웨이브 발생기(11)의 작동이 중지되더라도 상기 축열조(50)에 미리 저장된 고온의 냉각수를 상기 증발기(34)의 열원으로 이용할 수 있다. 따라서, 상기 마이크로 웨이브 발생기(11)의 정지로 인한 열원 부족 현상이 발생되지 않는다. In the combined drying system according to the present invention, since the heat of the cooling water cooling the microwave generator 11 is accumulated in the heat storage tank 50, the operation of the microwave generator 11 is stopped in the second operation mode. Even if it is, the high temperature cooling water stored in the heat storage tank 50 may be used as the heat source of the evaporator 34. Therefore, the heat source shortage due to the stop of the microwave generator 11 does not occur.
한편, 도 4는 본 발명의 제2실시예에 따른 복합 건조 시스템의 제1운전모드가 도시된 도면이다. 도 5는 본 발명의 제2실시예에 따른 복합 건조 시스템의 제2운전모드가 도시된 도면이다. 도 6은 본 발명의 제2실시예에 따른 복합 건조 시스템의 냉각수 분사부가 도시된 도면이다. On the other hand, Figure 4 is a view showing a first operating mode of a combined drying system according to a second embodiment of the present invention. 5 is a view showing a second operation mode of the combined drying system according to the second embodiment of the present invention. 6 is a view showing a coolant injection unit of a complex drying system according to a second embodiment of the present invention.
도 4 내지 도 6을 참조하면, 본 발명의 제2실시예에 따른 복합 건조 시스템은, 축열조(50)에서 저장된 고온의 냉각수 중 일부를 히트펌프(30)의 증발기(34)의 표면에 분사하는 냉각수 분사부(100)를 더 포함하는 것이 상기 제1실시예와 상이하고 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 상이한 점을 중심으로 상세히 설명하고 유사 구성에 대해 동일 부호를 사용하고, 유사 구성 및 작용에 대한 상세한 설명은 생략한다. 4 to 6, the complex drying system according to the second embodiment of the present invention sprays a part of the high temperature cooling water stored in the heat storage tank 50 on the surface of the evaporator 34 of the heat pump 30. Further comprising a coolant injection unit 100 is different from the first embodiment and the rest of the configuration and operation is similar to the first embodiment, it will be described in detail with respect to different points and the same reference numerals for similar components In this case, detailed descriptions of similar configurations and operations are omitted.
상기 냉각수 분사부(100)는, 냉각수 바이패스유로(101), 냉각수 분사노즐(102) 및 냉각수 바이패스밸브(103)를 포함한다.The coolant injection unit 100 includes a coolant bypass passage 101, a coolant injection nozzle 102, and a coolant bypass valve 103.
상기 냉각수 바이패스유로(101)는, 상기 축열조(50)와 상기 증발기(34)를 연결하는 방열유로(53)에서 분기되어, 상기 축열조(50)에서 나온 고온의 냉각수 중 적어도 일부를 상기 증발기(34)의 외측으로 안내한다. The cooling water bypass flow passage 101 is branched from a heat dissipation flow passage 53 connecting the heat storage tank 50 and the evaporator 34 so that at least a portion of the high temperature cooling water from the heat storage tank 50 is separated into the evaporator ( 34) to the outside.
상기 증발기(34)는, 상기 히트펌프(30)를 순환하는 냉매가 흐르는 냉매유로(35)와 상기 방열유로(53)가 이중관으로 이루어져 상기 냉매와 상기 냉각수의 열교환이 이루어진다. 상기 증발기(34)의 외측으로는 상기 열풍회수유로(85)를 통해 열풍이 공급되어, 상기 열풍, 상기 냉매 및 상기 냉각수의 열교환이 이루어진다. The evaporator 34, the refrigerant passage 35 and the heat dissipation passage 53 through which the refrigerant circulating the heat pump 30 is composed of a double pipe is a heat exchange between the refrigerant and the cooling water. Hot air is supplied to the outer side of the evaporator 34 through the hot air recovery flow path 85 to exchange heat between the hot air, the refrigerant, and the cooling water.
상기 방열유로(53)는, 상기 증발기(34)의 내부를 통과하면서 상기 냉각수와 상기 냉매를 열교환시키는 반면, 상기 냉각수 바이패스유로(101)는 상기 열풍회수유로(85)의 내부로 삽입된다. The heat dissipation passage 53 exchanges the cooling water with the refrigerant while passing through the evaporator 34, while the cooling water bypass passage 101 is inserted into the hot air recovery passage 85.
상기 냉각수 분사노즐(102)은, 상기 열풍회수유로(85)의 내부에 배치되어 상기 증발기(34)를 향해 상기 냉각수를 분사한다. 상기 냉각수 분사노즐(102)은, 상기 냉각수 바이패스유로(101)의 단부에 구비되고, 상기 냉각수 바이패스유로(101)로 유입된 고온의 냉각수를 상기 증발기(34)의 표면을 향해 분사한다.The cooling water injection nozzle 102 is disposed in the hot air recovery flow path 85 to inject the cooling water toward the evaporator 34. The cooling water injection nozzle 102 is provided at the end of the cooling water bypass flow path 101, and sprays the high temperature cooling water introduced into the cooling water bypass flow path 101 toward the surface of the evaporator 34.
상기 냉각수 바이패스밸브(103)는, 상기 냉각수 바이패스유로(101)에 설치되어 상기 냉각수 바이패스유로(101)의 개폐를 단속한다.The coolant bypass valve 103 is provided in the coolant bypass flow path 101 to control the opening and closing of the coolant bypass flow path 101.
상기 방열유로(53)에는 상기 방열유로(53)의 개폐를 단속하는 방열 밸브(53b)가 설치된다. The heat dissipation passage 53 is provided with a heat dissipation valve 53b for controlling the opening and closing of the heat dissipation passage 53.
상기 축열조 순환유로(54)에는 상기 증발기(34)로부터 상기 축열조(50)로 순환되는 냉각수의 양을 보충하는 냉각수 추가공급부(110)를 더 포함한다. 상기 냉각수 바이패스유로(101)가 개방되어, 상기 냉각수 중 일부가 분사되면 상기 축열조 순환유로(54)를 통해 상기 축열조(50)로 순환되는 냉각수의 양이 부족하게 된다. 따라서, 상기 냉각수 추가공급부(110)를 통해 외부로부터 냉각수를 보충할 수 있다. 상기 냉각수 추가공급부(110)는 외부로부터 냉각수를 공급하는 추가공급유로이고, 상기 냉각수 추가공급부(110)에는 냉각수 보충밸브(111)가 설치된다. The heat storage tank circulation passage 54 further includes a cooling water additional supply unit 110 to replenish the amount of cooling water circulated from the evaporator 34 to the heat storage tank 50. When the cooling water bypass flow path 101 is opened and some of the cooling water is injected, the amount of cooling water circulated to the heat storage tank 50 through the heat storage tank circulation flow path 54 is insufficient. Therefore, the coolant may be replenished from the outside through the additional coolant supply unit 110. The additional coolant supply unit 110 is an additional supply flow path for supplying coolant from the outside, and the coolant supplement supply unit 110 is provided with a coolant supplement valve 111.
상기와 같이 구성된 본 발명의 제2실시예에 따른 냉각수 분사부(100)의 작동을 설명하면, 다음과 같다. Referring to the operation of the cooling water injection unit 100 according to the second embodiment of the present invention configured as described above are as follows.
도 4 내지 도 6을 참조하면, 상기 제1운전모드 및 상기 제2운전모드에서, 상기 축열조(50)에 저장된 고온의 냉각수는 상기 방열유로(53)를 통해 상기 증발기(34)의 내부로 공급된다.4 to 6, in the first operation mode and the second operation mode, the high temperature coolant stored in the heat storage tank 50 is supplied into the evaporator 34 through the heat dissipation passage 53. do.
이 때, 상기 냉각수 바이패스밸브(103)를 열면, 상기 방열유로(53)를 흐르는 고온의 냉각수 중 일부가 상기 냉각수 바이패스유로(101)로 공급된다.At this time, when the cooling water bypass valve 103 is opened, a part of the high temperature cooling water flowing through the heat radiation passage 53 is supplied to the cooling water bypass passage 101.
상기 냉각수 바이패스유로(101)로 공급된 냉각수는 상기 냉각수 분사노즐(102)을 통해 상기 증발기(34)의 표면에 분사된다.The coolant supplied to the coolant bypass flow path 101 is sprayed onto the surface of the evaporator 34 through the coolant spray nozzle 102.
상기 냉각수 분사노즐(102)을 통해 분사된 고온의 냉각수는 상기 증발기(34)의 표면을 청소하는 역할을 하게 되어, 상기 증발기(34)의 열교환 효율을 향상시킬 수 있다. The high temperature cooling water injected through the cooling water injection nozzle 102 serves to clean the surface of the evaporator 34, thereby improving heat exchange efficiency of the evaporator 34.
한편, 상기 방열유로(53)의 냉각수가 상기 냉각수 바이패스유로(101)로 공급되면, 상기 축열조 순환유로(54)를 통해 상기 축열조(50)로 순환되는 냉각수의 양이 줄어들게 된다. 따라서, 상기 냉각수 보충밸브(111)를 개방하여, 상기 축열조 순환유로(54)를 통해 상기 축열조(50)로 순환되는 냉각수를 보충할 수 있다. On the other hand, when the cooling water of the heat radiation passage 53 is supplied to the cooling water bypass passage 101, the amount of cooling water circulated to the heat storage tank 50 through the heat storage tank circulation passage 54 is reduced. Therefore, the cooling water replenishing valve 111 may be opened to refill the cooling water circulated to the heat storage tank 50 through the heat storage tank circulation passage 54.
상기 냉각수 바이패스밸브(103)가 차폐되면, 상기 축열조(50)에서 나온 냉각수는 상기 방열유로(53)를 통해 전부 상기 증발기(34)의 내부로 공급되어, 열교환에 이용된다. 상기 냉각수 바이패스밸브(103)가 차폐되면, 상기 냉각수 보충밸브(111)도 차폐된다. 상기 냉각수 바이패스밸브(103)의 개폐시기나 개폐시간은 상기 증발기(34)의 열교환 효율, 상기 열풍 공급유로(84)나 상기 증발기(34)와 상기 응축기(32)를 연결하는 유로(87)의 열풍의 온도 등에 따라 제어될 수 있다. When the cooling water bypass valve 103 is shielded, the cooling water from the heat storage tank 50 is supplied to the inside of the evaporator 34 through the heat dissipation passage 53 and used for heat exchange. When the coolant bypass valve 103 is shielded, the coolant supplement valve 111 is also shielded. Opening / closing time and opening / closing time of the cooling water bypass valve 103 may include heat exchange efficiency of the evaporator 34, a flow path 87 connecting the hot air supply passage 84 or the evaporator 34 and the condenser 32. Can be controlled according to the temperature of hot air.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명을 이용하면, 마이크로웨이브와 히트 펌프에서 나온 열풍을 이용하여 피건조물을 건조하는 복합 건조 시스템을 제조할 수 있다.Using the present invention, it is possible to produce a complex drying system for drying a dry matter using hot air from microwaves and heat pumps.

Claims (14)

  1. 마이크로웨이브 발생기와, 상기 마이크로웨이브 발생기에서 발생된 마이크로웨이브를 이용하여 피건조물을 1차 건조시키는 건조 챔버를 포함하는 1차 건조유닛과;A primary drying unit including a microwave generator and a drying chamber for first drying the object to be dried using the microwaves generated by the microwave generator;
    히트 펌프와, 상기 히트 펌프의 응축열을 흡수한 열풍을 이용하여 상기 건조 챔버에서 나온 피건조물을 2차 건조시키는 기류 건조기를 포함하는 2차 건조유닛과;A secondary drying unit including a heat pump and an airflow dryer for secondary drying the dry matter from the drying chamber by using hot air absorbing the heat of condensation of the heat pump;
    상기 마이크로웨이브 발생기, 상기 히트 펌프 및 상기 기류 건조기가 모두 작동되는 제1운전 모드시, 상기 마이크로웨이브 발생기를 냉각시킨 고온의 냉각수를 저장하여 축열하고, 저장된 고온의 냉각수를 상기 히트 펌프의 증발기의 열원으로 공급하여 방열하는 축열조와;In the first operation mode in which the microwave generator, the heat pump, and the airflow dryer all operate, the high temperature cooling water that cools the microwave generator is stored and regenerated, and the stored high temperature cooling water is a heat source of the evaporator of the heat pump. A heat storage tank for supplying and radiating heat;
    상기 축열조에 저장된 고온의 냉각수 중 일부를 상기 증발기의 표면에 분사하는 냉각수 분사부를 포함하는 복합 건조 시스템.And a coolant spray unit for spraying a portion of the high temperature coolant stored in the heat storage tank on the surface of the evaporator.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 축열조와 상기 히트 펌프를 연결하여, 상기 축열조에 저장된 고온의 냉각수를 상기 증발기의 내부로 공급하도록 형성된 방열유로를 더 포함하고, A heat dissipation flow path configured to connect the heat storage tank and the heat pump to supply the high temperature cooling water stored in the heat storage tank to the inside of the evaporator,
    상기 냉각수 분사부는, The cooling water injection unit,
    상기 방열유로에서 분기되어, 상기 고온의 냉각수를 상기 증발기로 안내하는 냉각수 바이패스유로와,A cooling water bypass passage branched from the heat dissipation passage and guiding the high temperature cooling water to the evaporator;
    상기 냉각수 바이패스유로에 구비되어 상기 고온의 냉각수를 상기 증발기의 표면을 향해 분사하는 복수의 냉각수 분사노즐들과, A plurality of coolant injection nozzles provided in the coolant bypass flow passage for injecting the high temperature coolant toward the surface of the evaporator;
    상기 냉각수 바이패스유로에 설치되어 상기 냉각수 바이패스유로의 개폐를 단속하는 냉각수 바이패스밸브를 포함하는 복합 건조 시스템. And a coolant bypass valve installed in the coolant bypass flow path and controlling the opening and closing of the coolant bypass flow path.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 증발기는, 상기 히트펌프를 순환하는 냉매가 흐르는 냉매유로와 상기 방열유로가 서로 열교환하도록 이중관 구조로 이루어지고, 상기 건조 챔버와 상기 기류 건조기에서 나온 열풍을 회수하여 상기 증발기로 안내하는 열풍회수유로가 연결되고,The evaporator has a double pipe structure in which a refrigerant flow path through which the refrigerant circulating the heat pump flows and the heat dissipation flow path exchange with each other, and recovers hot air from the drying chamber and the airflow dryer to guide the evaporator to the evaporator. Is connected,
    상기 냉각수 분사노즐은, 상기 열풍회수유로의 내부에 배치되어 상기 증발기의 표면을 향해 냉각수를 분사하는 복합 건조 시스템. The cooling water injection nozzle is disposed inside the hot air recovery flow path to spray the cooling water toward the surface of the evaporator.
  4. 청구항 2에 있어서, The method according to claim 2,
    상기 방열유로에 설치되어 상기 방열유로의 개폐를 단속하는 방열 밸브를 더 포함하는 복합 건조 시스템. And a heat dissipation valve installed in the heat dissipation passage to control opening and closing of the heat dissipation passage.
  5. 청구항 2에 있어서, The method according to claim 2,
    상기 축열조와 상기 증발기를 연결하여, 상기 증발기를 통과하면서 방열한 냉각수를 상기 축열조로 순환시키는 축열조 순환유로와,A heat storage tank circulation passage which connects the heat storage tank and the evaporator to circulate cooling water radiated while passing through the evaporator to the heat storage tank;
    상기 축열조 순환유로에 연결되어, 상기 축열조로 순환되는 냉각수를 외부로부터 보충하는 냉각수 추가공급부를 더 포함하는 복합 건조 시스템. And a coolant additional supply unit connected to the heat storage tank circulation passage to replenish the coolant circulated in the heat storage tank from the outside.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로웨이브 발생기의 작동은 정지되고, 상기 히트 펌프와 상기 기류 건조기만이 작동되는 제2운전 모드시, In the second operation mode in which the operation of the microwave generator is stopped and only the heat pump and the air flow dryer are operated.
    상기 축열조에서 상기 축열은 중단되고, 저장된 고온의 냉각수를 상기 증발기의 열원으로 공급하는 방열만 수행하는 복합 건조 시스템. In the heat storage tank, the heat storage is stopped, and only a heat dissipation for supplying the stored high temperature cooling water to the heat source of the evaporator is performed.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 증발기는, The evaporator,
    상기 히트 펌프를 순환하는 냉매와, 상기 건조 챔버와 상기 기류 건조기 중 적어도 하나에서 피건조물을 건조시키고 회수된 고온의 열풍과, 상기 축열조에서 나온 고온의 냉각수를 서로 열교환시키는 복합 건조 시스템. And a refrigerant that circulates the heat pump, a high temperature hot air recovered by drying the dried object in at least one of the drying chamber and the airflow dryer, and the high temperature cooling water from the heat storage tank.
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로웨이브 발생기와 상기 축열조를 연결하여 상기 마이크로웨이브 발생기를 냉각시킨 고온의 냉각수를 상기 축열조로 공급하는 축열유로와,A heat storage flow path for connecting the microwave generator and the heat storage tank to supply high temperature cooling water cooling the microwave generator to the heat storage tank;
    상기 마이크로웨이브 발생기와 상기 축열조를 연결하여 상기 축열조에 저장된 저온의 냉각수를 상기 마이크로웨이브 발생기로 순환시키는 발생기 순환유로를 더 포함하는 복합 건조 시스템.And a generator circulation passage connecting the microwave generator and the heat storage tank to circulate low-temperature cooling water stored in the heat storage tank to the microwave generator.
  9. 청구항 8에 있어서, The method according to claim 8,
    상기 축열조와 상기 히트 펌프를 연결하여 상기 축열조에 저장된 고온의 냉각수를 상기 히트 펌프로 공급하는 방열유로와,A heat dissipation passage connecting the heat storage tank and the heat pump to supply the high temperature cooling water stored in the heat storage tank to the heat pump;
    상기 축열조와 상기 히트 펌프를 연결하여 상기 증발기를 통과하면서 방열한 냉각수를 상기 축열조로 순환시키는 축열조 순환유로를 더 포함하는 복합 건조 시스템. And a heat storage tank circulation passage circulating the heat storage tank and the heat pump to circulate cooling water radiated while passing through the evaporator to the heat storage tank.
  10. 청구항 1에 있어서, The method according to claim 1,
    상기 히트 펌프의 응축기와 상기 기류 건조기를 연결하여, 상기 히트 펌프의 응축열을 흡수한 열풍를 상기 기류 건조기로 공급하는 열풍공급유로와,A hot air supply passage connecting the condenser of the heat pump and the air flow dryer to supply hot air absorbed from the heat pump to the air flow dryer;
    상기 기류 건조기와 상기 히트 펌프의 증발기를 연결하여, 상기 기류 건조기에서 피건조물을 건조시킨 열풍을 상기 증발기로 안내하는 열풍회수유로를 더 포함하는 복합 건조 시스템. And a hot air recovery flow path connecting the air flow dryer and the evaporator of the heat pump to guide the hot air from which the object is dried in the air flow dryer to the evaporator.
  11. 청구항 10에 있어서, The method according to claim 10,
    상기 열풍 공급유로에서 분기되어 상기 건조 챔버에 연결되어, 상기 열풍 공급유로의 열풍 중 적어도 일부를 상기 건조 챔버로 공급하는 건조챔버 열풍공급유로와,A drying chamber hot wind supply passage branched from the hot wind supply passage and connected to the drying chamber, for supplying at least a portion of the hot air of the hot wind supply passage to the drying chamber;
    상기 건조 챔버와 상기 열풍회수유로를 연결하여, 상기 건조 챔버에서 피건조물을 건조시킨 열풍을 상기 열풍회수유로로 안내하는 건조챔버 열풍회수유로를 더 포함하는 복합 건조 시스템. And a drying chamber hot air recovery flow path connecting the drying chamber and the hot air recovery flow path to guide the hot air drying the dried object in the drying chamber to the hot air recovery flow path.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 건조챔버 열풍공급유로에 설치된 보조 가열기를 더 포함하는 복합 건조 시스템. And a supplementary heater installed in the drying chamber hot air supply passage.
  13. 청구항 1에 있어서, The method according to claim 1,
    상기 건조 챔버에는 내부에서 1차 건조된 피건조물을 일시 저장하는 피건조물 탱크가 구비되고,The drying chamber is provided with a dry tank for temporarily storing the dry matter first dried therein,
    상기 피건조물 탱크는 상기 제1운전모드시 차폐되고 상기 제2운전모드시 개방되는 복합 건조 시스템.The dry tank is shielded in the first mode of operation and opened in the second mode of operation;
  14. 청구항 13에 있어서, The method according to claim 13,
    상기 피건조물 탱크와 상기 기류 건조기 사이에 설치되어 상기 피건조물 탱크에서 나온 피건조물을 상기 기류 건조기로 이송시키는 컨베이어를 더 포함하는 복합 건조 시스템. And a conveyor installed between the dry tank and the air flow dryer to transfer the dry matter from the dry tank to the air flow dryer.
PCT/KR2016/005964 2015-08-21 2016-06-07 Hybrid drying system WO2017034132A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150117970 2015-08-21
KR10-2015-0117970 2015-08-21
KR1020160069288A KR101693287B1 (en) 2015-08-21 2016-06-03 Multi-drying system
KR10-2016-0069288 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017034132A1 true WO2017034132A1 (en) 2017-03-02

Family

ID=57835506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005964 WO2017034132A1 (en) 2015-08-21 2016-06-07 Hybrid drying system

Country Status (2)

Country Link
KR (1) KR101693287B1 (en)
WO (1) WO2017034132A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410796A (en) * 2019-08-20 2019-11-05 江西国科医药工程科技有限公司 Trade waste processing system and method
US20200348078A1 (en) * 2018-01-16 2020-11-05 Waister As Modular System and Process of Drying Solids and Liquid-Solid Mixtures
CN112857018A (en) * 2021-01-22 2021-05-28 同济大学 Temperature/humidity field cooperative multi-heat exchanger heat pump drying system and control method thereof
EP4147766A1 (en) * 2021-09-09 2023-03-15 Glatt Gesellschaft mit beschränkter Haftung Process gas processing device and method for monitoring process gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081416B1 (en) * 2019-06-14 2020-02-25 농업회사법인주식회사팜텍 A Dehumidifier for drying foods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887174B1 (en) * 2007-10-31 2009-03-09 한국에너지기술연구원 Combination type drying system using an air current drying and move drying
KR20100026346A (en) * 2008-08-29 2010-03-10 엘지전자 주식회사 Dryer and control method of dryer
KR20110003663U (en) * 2010-10-13 2011-04-13 고진호 A Food Waste Treating System
KR101178572B1 (en) * 2012-01-30 2012-08-30 (주) 대성이앤비 Apparatus for drying and reducing food waste and method to control the same
JP2013234771A (en) * 2012-05-07 2013-11-21 Okawara Mfg Co Ltd Drying system equipped with dehumidifying mechanism for dry air

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252664B1 (en) 2010-11-22 2013-04-09 주식회사 세지테크 Dryer having weightlessness fluidized bed using micro wave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887174B1 (en) * 2007-10-31 2009-03-09 한국에너지기술연구원 Combination type drying system using an air current drying and move drying
KR20100026346A (en) * 2008-08-29 2010-03-10 엘지전자 주식회사 Dryer and control method of dryer
KR20110003663U (en) * 2010-10-13 2011-04-13 고진호 A Food Waste Treating System
KR101178572B1 (en) * 2012-01-30 2012-08-30 (주) 대성이앤비 Apparatus for drying and reducing food waste and method to control the same
JP2013234771A (en) * 2012-05-07 2013-11-21 Okawara Mfg Co Ltd Drying system equipped with dehumidifying mechanism for dry air

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200348078A1 (en) * 2018-01-16 2020-11-05 Waister As Modular System and Process of Drying Solids and Liquid-Solid Mixtures
CN110410796A (en) * 2019-08-20 2019-11-05 江西国科医药工程科技有限公司 Trade waste processing system and method
CN112857018A (en) * 2021-01-22 2021-05-28 同济大学 Temperature/humidity field cooperative multi-heat exchanger heat pump drying system and control method thereof
EP4147766A1 (en) * 2021-09-09 2023-03-15 Glatt Gesellschaft mit beschränkter Haftung Process gas processing device and method for monitoring process gas

Also Published As

Publication number Publication date
KR101693287B1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2017034132A1 (en) Hybrid drying system
KR100997045B1 (en) Server rack
CN104136871B (en) For the drying machine of textile fabric
CN101464500B (en) Electronic device of magnetic resonance apparatus and magnetic resonance apparatus with the electronic device
US20080216341A1 (en) Dry air-supplying apparatus and dryer
WO2010117183A2 (en) Steam generating device and a cooking appliance comprising the same
WO2017018862A1 (en) Laundry treatment apparatus
WO2016133246A1 (en) Heat recovery type hybrid drying system using hot blast and micro waves
WO2017034047A1 (en) Hybrid drying system
WO2017034187A1 (en) Dryer
CN104056765A (en) Device for drying a workpiece and method for operating such a device
WO2019013383A1 (en) Printing drying device having function of waste heat recovery and waste heat reuse by means of organic solvent measurement, and method for controlling same
WO2010117180A2 (en) Cooking apparatus
US8286365B2 (en) Cooling apparatus and method for cooling objects from a coating device
CN201433319Y (en) Cloth baking equipment
WO2020105855A1 (en) Fuel cell system comprising plurality of fuel cells
WO2012091470A2 (en) Automatic water supply-type steam generator using vapor pressure
WO2020032714A1 (en) Dishwasher
CN111397346A (en) Energy-saving tunnel oven
KR20110019095A (en) Energy saving style large size clothing dryer
WO2017200171A1 (en) Cooler for display, and display device having same
WO2017069457A1 (en) Supercritical carbon dioxide generating system
CN213037832U (en) Circulating air cooling device for vertical carburizing furnace
CN114433451A (en) Device and method for drying workpieces by means of a cascade of heat input devices
CN110528130B (en) Textile machine with cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839423

Country of ref document: EP

Kind code of ref document: A1