WO2017033756A1 - Refrigeration device-use heat source unit - Google Patents

Refrigeration device-use heat source unit Download PDF

Info

Publication number
WO2017033756A1
WO2017033756A1 PCT/JP2016/073656 JP2016073656W WO2017033756A1 WO 2017033756 A1 WO2017033756 A1 WO 2017033756A1 JP 2016073656 W JP2016073656 W JP 2016073656W WO 2017033756 A1 WO2017033756 A1 WO 2017033756A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
outdoor
heat exchanger
heat
unit
Prior art date
Application number
PCT/JP2016/073656
Other languages
French (fr)
Japanese (ja)
Inventor
葉 阿形
西村 忠史
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201680047843.4A priority Critical patent/CN107923634B/en
Publication of WO2017033756A1 publication Critical patent/WO2017033756A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/42Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of the condensate, e.g. for enhanced cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Definitions

  • the present invention relates to a heat source unit of a refrigeration apparatus.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-76538
  • a large number of the air flows in a corresponding direction.
  • a nebulizer is provided.
  • An object of the present invention is made in view of the above-described points, and is obtained by water sprayed from at least one sprayer even when a heat exchanger that allows air to pass through a plurality of surfaces is used.
  • An object of the present invention is to provide a heat source unit of a refrigeration apparatus that can supply cooling air to different surfaces.
  • the heat source unit of the refrigeration apparatus is a heat source unit of the refrigeration apparatus, and includes a heat exchanger, a fan, a wind tunnel, and a sprayer.
  • the heat exchanger has at least a first heat exchange part that spreads on the first surface and a second heat exchange part that spreads on a second surface perpendicular to the first surface.
  • the fan creates an air flow that passes through the heat exchanger.
  • the wind tunnel has a first extending portion and a second extending portion that is continuous with the first extending portion. The first extending portion extends in a direction intersecting the first surface toward the windward side of the first heat exchange portion in the air flow.
  • the second extending portion extends while securing a gap with the second heat exchanging portion on the windward side of the second heat exchanging portion in the air flow.
  • the sprayer sprays water in the wind tunnel and on the windward side of the first heat exchange unit in the air flow.
  • the number of this sprayer is not specifically limited, At least 1 is provided.
  • the heat exchanger may be a heat exchanger spreading on only two sides of the first side and the second side, or a heat exchanger spreading on three sides, It may be a heat exchanger spread in
  • the wind tunnel extending in the direction intersecting the first surface is not limited to the wind tunnel extending linearly only in the direction intersecting the first surface.
  • the wind tunnel is curved so as to have a partially constricted portion.
  • a wind tunnel extending mainly in a direction intersecting the first surface is not limited to the wind tunnel extending linearly only in the direction intersecting the first surface.
  • the water sprayed from the sprayer on the windward side of the first heat exchange unit is not only for the first heat exchange unit but also for the first orthogonal to the first surface of the first heat exchange unit. It becomes possible to supply also to the 2nd heat exchange part which spreads on two surfaces. Thereby, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained by both the first heat exchange unit and the second heat exchange unit.
  • the heat source unit of the refrigeration apparatus according to the second aspect is the heat source unit of the refrigeration apparatus according to the first aspect, and the wind tunnel is a distance from the second heat exchange part to the second extension part in the normal direction of the second surface. However, it is shorter than the distance from the 1st heat exchange part in the normal line direction of a 1st surface to the windward side edge part of the airflow of a 1st extending
  • the cooling effect by the water sprayed on the windward side of the first heat exchange unit is obtained by both the first heat exchange unit and the second heat exchange unit, and the wind of the second heat exchange unit
  • the upper side compact installation is possible even in a narrow installation space.
  • stretching part is provided longer than the 2nd extending
  • the heat source unit of the refrigeration apparatus according to the third aspect is the heat source unit of the refrigeration apparatus according to the second aspect, and the distance from the second heat exchange part to the second extension part in the normal direction of the second surface is 50 mm. That's it.
  • the distance from the second heat exchange part to the second extension part in the normal direction of the second surface is not particularly limited from the viewpoint of suppressing the sprayed water from diffusing outside the wind tunnel. , 250 mm or less.
  • the water sprayed on the windward side of the first heat exchange unit is secured by securing a distance of 50 mm or more from the second heat exchange unit to the second extending unit in the normal direction of the second surface.
  • the heat source unit of the refrigeration apparatus is a heat source unit of the refrigeration apparatus according to any one of the first to third aspects, and is a second with respect to the width of the first extending portion in the normal direction of the second surface.
  • the ratio of the width of the first heat exchanging portion in the normal direction of the surface is 0.5 or more and 0.9 or less.
  • the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained more sufficiently in the second heat exchange unit.
  • the heat source unit of the refrigeration apparatus according to the fifth aspect is a heat source unit of the refrigeration apparatus according to any one of the first to fourth aspects, and in the gap space between the second heat exchange unit and the second extension unit. , Water is not sprayed.
  • the cooling effect by the water sprayed on the windward side of the first heat exchange unit is the first. It can be obtained by both the first heat exchange unit and the second heat exchange unit.
  • stretching part is not provided (the spraying port in which water is sprayed is provided between the 2nd heat exchanging part and the 2nd extending
  • the cooling effect by the sprayed water can be obtained by both the first heat exchange unit and the second heat exchange unit.
  • the heat source unit of the refrigeration apparatus according to the sixth aspect is a heat source unit of the refrigeration apparatus according to any of the first to fifth aspects, and the passage area of the air flow of the first heat exchange unit is the second heat exchange. It is wider than the passage area of the air flow of the part.
  • the air flow passage area of the first heat exchange unit is larger than that of the second heat exchange unit having the largest air flow passage area.
  • the heat source unit of the refrigeration apparatus according to the seventh aspect is the heat source unit of the refrigeration apparatus according to any of the first to sixth aspects, and the heat exchanger further includes a third heat exchange unit.
  • the third heat exchange part extends on the third surface facing the second surface while being orthogonal to the first surface.
  • the wind tunnel further includes a third extending portion that is continuous with the first extending portion. The third extending portion extends while securing a gap with the third heat exchanging portion on the windward side of the third heat exchanging portion in the air flow.
  • the water sprayed from the sprayer on the windward side of the first heat exchanging unit spreads not only the first heat exchanging unit and the second heat exchanging unit but also the first heat exchanging unit. It is also possible to supply to the third heat exchanging portion that spreads on the third surface orthogonal to the first surface. Thereby, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained in any of the first heat exchange unit, the second heat exchange unit, and the third heat exchange unit.
  • the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained by both the first heat exchange unit and the second heat exchange unit. Become.
  • the heat source unit of the refrigeration apparatus according to the second aspect can be installed even in a narrow installation space while obtaining a cooling effect in both the first heat exchange unit and the second heat exchange unit.
  • the water sprayed on the windward side of the first heat exchange unit can be more sufficiently supplied to the entire second heat exchange unit, and the first It becomes easy to sufficiently secure the wind speed in the two heat exchanging units, and it is possible to cause the second heat exchanging units to sufficiently perform the heat exchange.
  • the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be more sufficiently obtained also in the second heat exchange unit.
  • the cooling effect by the sprayed water is reduced. It can be obtained by both the first heat exchange unit and the second heat exchange unit.
  • the cooling effect by the water sprayed on the windward side of the first heat exchange unit is determined in any of the first heat exchange unit, the second heat exchange unit, and the third heat exchange unit. Can also be obtained.
  • FIG. 1 It is a side view of the outdoor unit provided with the wind tunnel of a comparison object. It is a figure which shows the simulation result of the mode of distribution of a cooling effect. It is a figure which shows the simulation result of the mode of the distribution of the cooling effect at the time of seeing from the different angle about the same content as FIG.
  • FIG. 1 shows a refrigerant circuit 10 and the like of an air conditioner 1 including an outdoor unit 2 according to an embodiment of the present invention.
  • the air conditioner 1 is a multi-type air conditioner for buildings, and is configured by connecting an indoor unit 3 as a plurality of utilization units in parallel to an outdoor unit 2 as one or a plurality of heat source units. Has been.
  • the refrigerant circuit 10 of the air conditioner 1 is mainly composed of a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 14, an outdoor expansion valve 16, an indoor expansion valve 17, and an indoor heat exchanger 18 connected in order. Yes, it is a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 can be switched between the cooling operation and the heating operation by switching the connection state of the four-way switching valve 12.
  • the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 14, and the outdoor expansion valve 16 are included in the outdoor unit 2.
  • the outdoor unit 2 is provided with an accumulator 13 between the suction side of the compressor 11 and the four-way switching valve 12.
  • the outdoor unit 2 is provided with an outdoor fan 15 that applies air to the outdoor heat exchanger 14 to promote heat exchange between the refrigerant and the air.
  • the compressor 11 is not particularly limited, but includes a variable capacity compressor (inverter compressor) that performs rotation speed control by an inverter and a constant capacity compressor (constant capacity compressor) that performs on / off control. It may be combined.
  • the indoor expansion valve 17 and the indoor heat exchanger 18 are included in the indoor unit 3.
  • the indoor unit 3 is provided with an indoor fan 19 that applies air to the indoor heat exchanger 18 to promote heat exchange between the refrigerant and the air.
  • the four-way switching valve 12 and the indoor heat exchanger 18 are connected by a gas side refrigerant communication pipe 5.
  • the outdoor expansion valve 16 and the indoor expansion valve 17 are connected by a liquid side refrigerant communication pipe 4.
  • the liquid side refrigerant communication pipe 4 and the gas side refrigerant communication pipe 5 are disposed between the outdoor unit 2 and the indoor unit 3. Further, in the outdoor unit 2, in addition to those described above, accessory devices are also provided, but are not illustrated here.
  • a gas side closing valve 20b and a liquid side closing valve 20a are provided at the end of the internal refrigerant circuit of the outdoor unit 2.
  • the gas side shut-off valve 20b is disposed on the four-way switching valve 12 side, and the gas side refrigerant communication pipe 5 is connected thereto.
  • the liquid side closing valve 20a is disposed on the outdoor expansion valve 16 side, and the liquid side refrigerant communication pipe 4 is connected thereto.
  • the gas side shutoff valve 20b and the liquid side shutoff valve 20a are closed when the outdoor unit 2 and the indoor unit 3 are installed.
  • the gas-side shutoff valve 20b and the liquid-side shutoff valve 20a are configured such that the outdoor unit 2 and the indoor unit 3 are installed on the site, and the gas-side refrigerant communication pipe 5 and the liquid-side refrigerant communication pipe 4 are closed with the gas-side shutoff valve 20b. After being connected to the valve 20a, the valve is opened.
  • the outdoor unit 2 is provided with a two-fluid sprayer 6 for cooling the air sent to the outdoor heat exchanger 14 in order to increase the condensation efficiency of the refrigerant in the outdoor heat exchanger 14.
  • a plurality of the two-fluid sprayers 6 (seven: the first two-fluid sprayers 6a to the sixth two-fluid sprayers 6g) are provided, but the number of the two-fluid sprayers 6 is not particularly limited. It may be.
  • the two-fluid sprayer 6 sprays a mixture of air and water.
  • the two-fluid sprayer 6 is disposed at a position on the windward side of the outdoor heat exchanger 14 and surrounded by a wind tunnel 8 described later in the air flow formed by the outdoor fan 15.
  • the two-fluid sprayer 6 is configured to spray water droplets radially toward the side opposite to the outdoor heat exchanger 14 side.
  • Water droplets sprayed radially from the two-fluid sprayer 6 toward the side opposite to the outdoor heat exchanger 14 side in the wind tunnel 8 are gradually diffused to the outdoor heat exchanger 14 side by the air flow generated by the outdoor fan 15 while being diffused. The flow is changed so that substantially all water droplets are vaporized before reaching the outdoor heat exchanger 14. Thereby, the air sent to the outdoor heat exchanger 14 can be cooled, and the condensation efficiency of the refrigerant
  • the outdoor heat exchanger 14 since it is comprised so that the water droplet sprayed from the two-fluid sprayer 6 may vaporize substantially all before reaching the outdoor heat exchanger 14, in the outdoor heat exchanger 14 mainly comprised with the metal. Corrosion can be suppressed.
  • the water to be sprayed is supplied to the two-fluid sprayer 6 from the water supply source 95 through the liquid feed pipe 93.
  • a liquid feed pump 94 is provided in the middle of the liquid feed pipe 93 so that the amount of water flowing through the liquid feed pipe 93 can be adjusted.
  • the branched liquid feeding piping 93 is connected with respect to each of the seven two fluid sprayers 6 of this embodiment.
  • the air for mixing with the water to be sprayed is supplied to the two-fluid sprayer 6 through the air supply pipe 91.
  • a pneumatic pump 92 such as a compressor is provided in the middle of the pneumatic pipeline 91 so that the amount of air flowing through the pneumatic pipeline 91 can be adjusted.
  • the branched air supply piping 91 is connected with respect to each of the seven two fluid sprayers 6 of this embodiment.
  • the water sent via the liquid feed pipe 93 and the air sent via the air feed pipe 91 are mixed in the gas-liquid mixing unit 61, The obtained gas-liquid mixed water is sprayed from the nozzle 62.
  • the air conditioner 1 has a control unit 98 that performs various controls.
  • the control unit 98 includes an indoor control unit 96 provided in the indoor unit 3 and an outdoor control unit 97 provided in the outdoor unit 2.
  • the indoor control unit 96 and the outdoor control unit 97 each have a ROM, a RAM, a CPU, and the like.
  • the control unit 98 controls the frequency of the compressor 11, the switching control of the four-way switching valve 12, the air volume control of the outdoor fan 15, the valve opening control of the outdoor expansion valve 16, the valve opening control of the indoor expansion valve 17, and the indoor fan. 19 air volume control, liquid feed pump 94 output control, air feed pump 92 output control, and the like.
  • the four-way switching valve 12 is maintained in the state indicated by the solid line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 14 through the four-way switching valve 12, and is condensed and liquefied by exchanging heat with outdoor air.
  • water is sprayed from the two-fluid sprayer 6 to cool the air flowing toward the outdoor heat exchanger 14 and improve the condensation efficiency of the refrigerant in the outdoor heat exchanger 14.
  • the spray of water from the two-fluid sprayer 6 here may be executed when a predetermined load level is exceeded during the cooling operation.
  • the liquid feed pump 94 and the air feed pump 92 are controlled so that water is sprayed continuously or intermittently from each of the two fluid sprayers 6 for a predetermined time.
  • the refrigerant liquefied in the outdoor heat exchanger 14 passes through the fully opened outdoor expansion valve 16 and flows into the indoor units 3 through the liquid side refrigerant communication pipe 4.
  • the refrigerant is depressurized to a predetermined low pressure by the indoor expansion valve 17, and is further evaporated by exchanging heat with indoor air in the indoor heat exchanger 18.
  • the indoor air cooled by the evaporation of the refrigerant is blown out into the room by the indoor fan 19 to cool the room.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 18 returns to the outdoor unit 2 through the gas side refrigerant communication pipe 5, passes through the four-way switching valve 12 and the accumulator 13, and then is sucked into the compressor 11. .
  • the four-way switching valve 12 is held in a state indicated by a broken line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 18 of each indoor unit 3 via the four-way switching valve 12, and exchanges heat with indoor air to condense and liquefy.
  • the indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 19 to heat the room.
  • the refrigerant liquefied in the indoor heat exchanger 18 returns from the fully expanded indoor expansion valve 17 to the outdoor unit 2 through the liquid side refrigerant communication pipe 4.
  • the refrigerant that has returned to the outdoor unit 2 is decompressed to a predetermined low pressure by the outdoor expansion valve 16, and further evaporates by exchanging heat with outdoor air by the outdoor heat exchanger 14.
  • the spraying of water from the two-fluid sprayer 6 performed during the cooling operation is not performed during the heating operation.
  • the refrigerant evaporated and evaporated in the outdoor heat exchanger 14 is sucked into the compressor 11 through the four-way switching valve 12 and the accumulator 13.
  • FIG. 2 is a schematic perspective view including the front side of the outdoor unit 2 (excluding the wind tunnel).
  • FIG. 3 is a schematic side view of the outdoor unit 2.
  • FIG. 4 is a schematic plan view of the outdoor unit 2.
  • the outdoor unit 2 has an outdoor unit casing 30 that accommodates an outdoor heat exchanger 14, an outdoor fan 15, a compressor 11, an accumulator 13, and an outdoor expansion valve 16.
  • the outdoor unit casing 30 has a substantially rectangular parallelepiped shape, and includes a first support 31a, a second support 31b, a third support 31c, a fourth support 31d, a reinforcing member 31x, a front base leg 36a, a back base leg 36b, and a front upper panel 32a.
  • the support column includes a first support column 31a extending in the vertical direction on the right side of the front surface, a second support column 31b extending in the vertical direction on the right side of the rear surface, a third support column 31c extending in the vertical direction on the left side of the rear surface, and a first support column extending in the vertical direction on the left side of the front surface. 4 columns 31d.
  • the reinforcing member 31x is provided so as to connect the first support post 31a and the second support post 31b at a plurality of positions at an intermediate height, thereby increasing the strength of the outdoor unit casing 30.
  • the front base leg 36 a extends to the left and right at the front side lower end of the outdoor unit casing 30.
  • the back base leg 36 b extends to the left and right at the back side lower end portion of the outdoor unit casing 30.
  • the front upper panel 32 a covers the front side of the outdoor fan 15 above the front surface of the outdoor unit casing 30.
  • the front left lower panel 32 b extends so as to cover the lower left front of the outdoor unit casing 30.
  • the right panel 33 is provided so as to cover the right side of the outdoor fan 15 above the right side surface of the outdoor unit casing 30.
  • the back panel 34 is provided so as to cover the back side of the outdoor fan 15 above the back of the outdoor unit casing 30.
  • the left upper panel 35 a is provided above the left side surface of the outdoor unit casing 30 so as to cover the left side of the outdoor fan 15.
  • the left front lower panel 35 b extends so as to cover the lower front side of the left side surface of the outdoor unit casing 30.
  • the upper air outlet 15a is an opening provided so as to penetrate in the vertical direction on the upper surface of the outdoor unit casing 30, and sends the air flow F generated by the outdoor fan 15 vertically upward.
  • the bottom frame 37 is fixed to the columns 31a to 31d in the vicinity of the lower ends of the columns 31a to 31d and spreads on a plane.
  • the outdoor fan 15 is disposed above the outdoor unit casing 30 and downstream of the outdoor heat exchanger 14 (downward side). Although it does not specifically limit as the outdoor fan 15, For example, an axial blower, a centrifugal blower, a mixed flow blower, etc. can be used. Two units are provided so as to be arranged in parallel in the longitudinal direction of the outdoor unit casing 30 in a top view. The outdoor fans 15 are provided such that their rotation axes are directed vertically upward. Around each of the plurality of outdoor fans 15, a bell mouth 15b extending in a cylindrical shape in the vertical direction is provided.
  • the wind speed immediately before the center of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 of the air flow generated by the outdoor fan 15 is preferably operated in the range of 0.5 m / s to 2.0 m / s. It is more preferable to operate in the range of not less than 0.8 m / s and not more than 1.7 m / s.
  • the outdoor heat exchanger 14 is not particularly limited, and examples thereof include a cross fin coil heat exchanger.
  • the cross fin coil heat exchanger includes a heat transfer tube and a large number of plate fins through which the heat transfer tube penetrates. A refrigerant flows through the heat transfer tube, and outside air flows between the plate fins.
  • the heat transfer tubes and plate fins of the outdoor heat exchanger 14 are made of metal such as aluminum, aluminum alloy, copper, copper alloy, or the like.
  • the outdoor heat exchanger 14 is provided along the four side surfaces of the outdoor unit casing 30 and is erected so as to extend upward with respect to the installation surface (horizontal plane) of the outdoor unit 2. As shown in FIG.
  • the outdoor heat exchanger 14 has a first heat exchange portion 14 a that spreads on the right side of the front surface and a second heat exchange portion that is curved so as to connect the front surface and the right side surface. 14b, the third heat exchange part 14c spreading on the right side, the fourth heat exchange part 14d curved so as to connect the right side and the back, the fifth heat exchange part 14e spreading on the back, and the back and the left side And the seventh heat exchange portion 14g spreading on the back side of the left side surface, and these are connected to each other so that the side surface of the outdoor unit casing 30 is edged. It is provided to take.
  • the portion of the outdoor heat exchanger 14 having the largest air passage area is the fifth heat exchange portion 14e, and the air passage area of the third heat exchange portion 14c and the seventh heat exchange portion 14g. It is comprised so that it may become larger than an air passage area.
  • the air passage area of the third heat exchange portion 14c is configured to be larger than the air passage area of the seventh heat exchange portion 14g.
  • the 2nd heat exchange part 14b, the 3rd heat exchange part 14c, the 4th heat exchange part 14d, and the 5th heat exchange which comprise the left side, the right side, and the back side among the outdoor heat exchangers 14 are carried out.
  • Outside air passing through the inside of the wind tunnel 8 described later is sent to the portion 14e, the sixth heat exchange portion 14f, and the seventh heat exchange portion 14g.
  • the second heat exchange part 14b, the third heat exchange part 14c, the fourth heat exchange part 14d, the fifth heat exchange part 14e, the sixth heat exchange part 14f of the outdoor heat exchanger 14 Air cooled by the transpiration of water droplets sprayed from the two-fluid sprayer 6 disposed inside the wind tunnel 8 is supplied to the seventh heat exchange portion 14g.
  • the refrigerant circulates between the outdoor unit 2 and the plurality of indoor units 3 by operating the compressor 11.
  • the outdoor fan 15 rotates when a fan motor (not shown) is operated, and the outside air is sucked into the inside from the lower periphery of the outdoor unit casing 30.
  • the 2nd heat exchange part 14b, the 3rd heat exchange part 14c, the 4th heat exchange part 14d, and the 5th heat exchange which comprise the left side, the right side, and the back side among the outdoor heat exchangers 14 are carried out. Cooled air is sent to the portion 14e, the sixth heat exchange portion 14f, and the seventh heat exchange portion 14g as the water droplets sprayed from the two-fluid sprayer 6 evaporate.
  • the air passing through the outdoor heat exchanger 14 exchanges heat with the refrigerant flowing inside the outdoor heat exchanger 14, and then blows out upward of the outdoor unit casing 30 through the upper outlet 15a.
  • two-fluid sprayer 6 there are a plurality of (two: seven: first two-fluid sprayer 6a, second two-fluid sprayer 6b, third two-fluid sprayer 6c, fourth A two-fluid sprayer 6d, a fifth two-fluid sprayer 6e, a sixth two-fluid sprayer 6f, and a seventh two-fluid sprayer 6g), which are arranged as shown in FIGS.
  • Each of the two-fluid sprayers 6 is located upstream of the outdoor heat exchanger 14 in the direction of the air flow F formed when the outdoor fan 15 is driven.
  • the plurality of two-fluid sprayers 6 are inside the wind tunnel 8 and on the back side (windward side) of the fifth heat exchange portion 14e of the outdoor heat exchanger 14. It is arranged on the same passage surface.
  • each two-fluid sprayer 6 is arrange
  • the first two-fluid sprayer 6a, the fourth two-fluid sprayer 6d, and the seventh two-fluid sprayer 6g are located near the center in the height direction of the fifth heat exchange portion 14e of the outdoor heat exchanger 14. It is arranged at the height position.
  • the first two-fluid sprayer 6a is disposed at a position closest to the rear-side left side surface portion 84 of the wind tunnel 8 described later among the plurality of two-fluid sprayers 6.
  • the 7th 2 fluid sprayer 6g is arrange
  • the 4th 2 fluid sprayer 6d is arrange
  • the 2nd 2 fluid sprayer 6b and the 3rd 2 fluid sprayer 6c are arrange
  • the second two-fluid sprayer 6b is disposed at a position higher than the height position of the first two-fluid sprayer 6a and the like, and the third two-fluid sprayer 6c is higher than the height position of the first two-fluid sprayer 6a and the like. Located in a low position.
  • the fifth two-fluid sprayer 6e and the sixth two-fluid sprayer 6f are disposed between the fourth two-fluid sprayer 6d and the seventh second-fluid sprayer 6g in the left-right direction.
  • the fifth two-fluid sprayer 6e is disposed at a position higher than the height position of the seventh second-fluid sprayer 6g and the like, and the sixth two-fluid sprayer 6f is higher than the height position of the seventh second-fluid sprayer 6g and the like. Located in a low position.
  • FIG. 5 is a cross-sectional view showing the two-fluid sprayer 6.
  • FIG. 6 is a sectional view showing the nozzle 62 of the two-fluid sprayer 6.
  • the central axis C is indicated by a dotted line.
  • the two-fluid sprayer 6 includes a gas-liquid mixing unit 61 constituted by a first mixing body 55 and a second mixing body 56, and a nozzle 62.
  • the 1st mixing body 55, the 2nd mixing body 56, and the nozzle 62 are arrange
  • the nozzle 62 is supported by a support member 57 as shown in FIG. 5, for example, and the support member 57 is fastened and fixed to the first mixing body 55 by, for example, a bolt (not shown).
  • the first mixing body 55 and the second mixing body 56 are used as separate members, but they may be formed integrally.
  • the liquid flow path 51 connected to the liquid feed pipe 93, the gas flow path 52 connected to the air feed pipe 91, the water flowing through the liquid flow path 51, and the gas flow path 52 flow.
  • a gas-liquid mixing channel 53 for mixing air for mixing air.
  • the gas-liquid mixed water generated in the gas-liquid mixing channel 53 is sent to the nozzle 62 via the communication channel 54 extending in the axial direction in the second mixing body 56.
  • the inner diameters of the gas-liquid mixing channel 53 and the communication channel 54 are larger than the inner diameter of the upstream small-diameter channel 58 of the nozzle 62 described later, and the inner diameter of the communication channel 54 is larger than the inner diameter of the gas-liquid mixing channel 53. .
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 6, and the lower view of FIG. 7 is a cross-sectional view taken along the line BB in FIG.
  • the central axis C is indicated by a dotted line.
  • the nozzle 62 has an inlet 58a, an upstream small-diameter channel 58, a downstream large-diameter channel 59, and one or a plurality of ejection holes 68.
  • the inflow port 58 a is an opening at the upstream end for guiding the gas-liquid mixed water generated in the gas-liquid mixing unit 61 into the nozzle 62.
  • the ejection hole 68 is a hole through which the gas-liquid mixed water is ejected from the nozzle 62.
  • the upstream small diameter flow path 58 and the downstream large diameter flow path 59 constitute a flow path from the inlet 58 a to the ejection hole 68 in the nozzle 62.
  • the upstream small-diameter channel 58 is a channel directly connected to the non-tip portion 63 of the downstream large-diameter channel 59.
  • the nozzle 62 includes a body in which an upstream small-diameter channel 58, a downstream large-diameter channel 59, and an ejection hole 68 are formed.
  • the body of the nozzle 62 includes a first nozzle body 62a and a second nozzle body 62b.
  • the downstream end of the first nozzle body 62a is fitted in a recess provided on the upstream side of the second nozzle body 62b, and the first nozzle body 62a and the second nozzle body 62b are integrated.
  • the upstream small-diameter channel 58 is defined by an inner peripheral surface of a through hole provided in the first nozzle body 62a of the nozzle 62, and is a portion having a constant inner diameter.
  • the upstream small-diameter channel 58 is a portion having an inner diameter smaller than that of the non-tip portion 63 of the downstream large-diameter channel 59 described later.
  • the upstream small-diameter channel 58 extends in parallel with the axial direction of the nozzle 62 while maintaining a constant inner diameter, and is a portion having a smaller inner diameter than the non-tip portion 63 of the downstream large-diameter channel 59.
  • the flow rate of the gas-liquid mixed water is increased and the flow mode is more stable.
  • the downstream large-diameter channel 59 is partitioned by the outlet side end surface of the first nozzle body 62a of the nozzle 62, the inner peripheral surface 64 of the recess provided in the second nozzle body 62b of the nozzle 62, and the tip surface 66 of the recess. ing.
  • the downstream large-diameter channel 59 has a large-diameter upstream portion 59a whose inner diameter is constant in the axial direction, and a large-diameter downstream portion 59b that decreases in diameter toward the distal end side (the ejection hole 68 side).
  • the tip surface 66 is a surface on which the gas-liquid mixed water that has flowed into the downstream large-diameter channel 59 collides with the tip side of the downstream large-diameter channel 59 as indicated by a dashed-dotted curve arrow in FIG.
  • the tip surface 66 is a surface extending in a direction intersecting with the axial direction of the nozzle 62 (the central axis C of the upstream small diameter flow path 58).
  • the tip surface 66 of the nozzle 62 includes a tapered surface 66a that tapers toward the tip, and a flat surface 66b connected to the tip of the tapered surface 66a.
  • the plane 66b is provided at the position of the tip of the downstream large-diameter channel 59 so as to block the circular tip of the tapered surface 66a, and is orthogonal to the axial direction of the nozzle 62 (the central axis C of the upstream small-diameter channel 58). It is the surface that extends in the direction to do.
  • the ejection hole 68 is provided in the tapered surface 66a in the vicinity of the boundary between the tapered surface 66a and the flat surface 66b.
  • the downstream large-diameter channel 59 includes a non-tip portion 63 having an inner diameter larger than the inner diameter of the upstream small-diameter channel 58. Further, the tip portion 65 is a portion on the tip side in the axial direction from the circle indicated by the dotted line in the lower diagram of FIG. 7, and is equal to or less than the inner diameter of the upstream small-diameter channel 58.
  • the non-tip portion 63 is constituted by the whole large-diameter upstream portion 59a and a part of the large-diameter downstream portion 59b, and the tip portion 65 is the remaining portion of the large-diameter downstream portion 59b (that is, the tip portion of the large-diameter downstream portion 59b).
  • the gas-liquid mixed water that has flowed out of the upstream small-diameter channel 58 first flows into the non-tip portion 63, flows toward the tip surface 66 while spreading outward in the radial direction at the non-tip portion 63, and urges the tip surface 66. It collides well, and, due to the impact at this time, it violently flows, for example, in a spiral shape in the downstream large-diameter channel 59 (mainly the non-tip portion 63).
  • the gas-liquid mixed water in the downstream large-diameter channel 59 is, for example, a bubble flow or a fluid state close thereto.
  • the ejection hole 68 is constituted by a through hole that communicates the downstream large-diameter channel 59 and the outside of the nozzle 62 (outside of the two-fluid sprayer 6) at the tip of the nozzle 62.
  • the length L1 in the axial direction of the upstream small-diameter channel 58 is larger than the length L2 in the axial direction of the downstream large-diameter channel 59, and the length L1 of the upstream small-diameter channel 58 and the downstream large-diameter flow
  • the ratio of the length L2 of the path 59 (L1 / L2) is preferably larger than 1.0 and smaller than 4.5. Thereby, the water droplet atomized by the average particle diameter of 60 micrometers or less can be sprayed. Further, from the viewpoint of further reducing the average particle diameter, the length ratio (L1 / L2) is preferably in the range of 1.27 or more and 3.45 or less.
  • the ratio (D2 / D1) between the maximum value D2 of the inner diameter of the non-tip portion 63 and the maximum value D1 of the inner diameter of the upstream small diameter channel 58 can be made larger than 1.1 and smaller than 20, for example 1.5. More preferably, it is in the range of 10.7 or less.
  • the length L1 of the upstream small-diameter channel 58 is set to a range of 5.0 mm to 38.8 mm
  • the length L2 of the downstream large-diameter channel 59 is set to a range of 2.9 mm to 12.9 mm.
  • the maximum value D1 of the inner diameter of the small-diameter channel 58 is preferably in the range of 0.6 mm to 2.0 mm, and the maximum value D2 of the inner diameter of the downstream large-diameter channel 59 is preferably in the range of 3.0 mm to 6.4 mm.
  • the minimum of the internal diameter of the ejection hole 68 is 0.4 mm or more, and it is more preferable that it is 0.6 mm or more.
  • the upper limit of the inner diameter of the ejection hole 68 is preferably 2.0 mm or less, and more preferably 1.6 mm or less.
  • the flow rate of water flowing into the two-fluid sprayer 6 is preferably 0.020 L / min to 2.0 L / min, and can be, for example, in the range of 0.040 L / min to 0.080 L / min.
  • the flow rate of air flowing into the two-fluid sprayer 6 is preferably 1.0 L / min or more and 50 L / min or less, and can be, for example, in the range of 3 L / min to 13 L / min.
  • the lower limit of the spray pressure of the two-fluid sprayer 6 is preferably 0.03 MPa or more and 0.5 MPa or less, and can be, for example, in the range of 0.04 MPa to 0.19 MPa.
  • the gas-liquid mixed water guided to the nozzle 62 is increased in flow velocity in the upstream small-diameter channel 58, and the flow mode is changed to, for example, an annular flow or a flow mode close thereto, and flows into the downstream large-diameter channel 59.
  • the gas-liquid mixed water that has flowed into the downstream large-diameter channel 59 flows toward the tip surface 66 while spreading radially outward at the non-tip portion 63, and collides with the tip surface 66 while the flow velocity does not decrease so much. To do. Due to the impact at this time, the gas-liquid mixed water flows vigorously in a spiral shape in the downstream large-diameter channel 59.
  • the gas-liquid mixed water in the downstream large-diameter channel 59 is, for example, a bubble flow or a fluid state close thereto.
  • gas-liquid mixed water in which a large number of fine bubbles are dispersed can be stably formed in the downstream large-diameter channel 59.
  • the gas-liquid mixed water that has reached the ejection hole 68 contains a large number of fine bubbles, and is sprayed to the outside of the two-fluid sprayer 6 together with these bubbles.
  • the bubbles expand and repel, thereby making the water droplets finer.
  • the two-fluid sprayer 6 can spray fine water droplets having an SMD (Sauter average particle diameter) of 30 ⁇ m or more and 60 ⁇ m.
  • SMD Human average particle diameter
  • substantially all for example, 70% by mass or more
  • substantially all can be evaporated before the sprayed water droplets reach the outdoor heat exchanger 14, and the outdoor heat
  • the air sent to the exchanger 14 can be cooled, and corrosion in the outdoor heat exchanger 14 can be made difficult to occur.
  • Wind tunnel The outdoor unit 2 of the present embodiment includes a second heat exchange part 14b, a third heat exchange part 14c, a second heat exchange part 14c, and a second heat exchange part 14c that constitute the left side, right side, and back side of the outdoor heat exchanger 14.
  • a wind tunnel 8 extending mainly on the back side of the outdoor unit 2 is provided so as to guide outside air to the fourth heat exchange part 14d, the fifth heat exchange part 14e, the sixth heat exchange part 14f, and the seventh heat exchange part 14g. ing.
  • the two-fluid sprayer 6 a is arranged as described above, and water droplets are sprayed on the windward side of the air flow with respect to the outdoor heat exchanger 14, and the water droplets evaporate, thereby the outdoor heat.
  • the wind tunnel 8 is continuous with the back-side extending portion 80 and the back-side extending portion 80 that constitute a portion of the outdoor unit casing 30 on the back side (the back side with respect to the back panel 34, the second column 31b, and the third column 31c). And a front side extending portion 70 that mainly covers the left and right side surfaces of the outdoor unit casing 30 on the front side of the rear side extending portion 80.
  • the back-side extending portion 80 has a square cylindrical shape extending in the front-rear direction, and includes a back-side top surface portion 81, a back-side bottom surface portion 82, a back-side right-side surface portion 83, and a back-side left-side surface portion 84. ,have.
  • the back side upper surface portion 81 extends from the lower side of the back panel 34 toward the back side from the left side of the second column 31b to the right side of the third column 31c. It constitutes a plane whose normal direction is the vertical direction.
  • the back-side upper surface portion 81 has a substantially rectangular shape in plan view.
  • the back side bottom surface part 82 faces the back side top surface part 81, and from the vicinity of the back base leg 36b to the back side from the left side further than the second column 31b to the right side than the third column 31c. It extends so as to extend toward the surface, and constitutes a surface whose normal direction is the vertical direction.
  • the back side bottom surface portion 82 has a substantially rectangular shape in plan view.
  • the back side right side surface part 83 spreads so as to connect the right side edge part of the back side top surface part 81 and the right side edge part of the back side bottom surface part 82 in the vertical direction, and the normal direction is a surface in the horizontal direction.
  • the back side right side surface portion 83 extends from the vicinity of the left end of the second support column 31b to the back side.
  • the back side left side 84 faces the back side right side 83 and extends so as to connect the left end of the back side top 81 and the left end of the back side 82 in the vertical direction. It is a surface in which the line direction is the horizontal direction.
  • the back side left side 84 extends from the vicinity of the right end of the third support column 31c to the back side.
  • the front side extending part 70 includes a right front side extending part 70a continuous with the back side extended part 80 on the right front side, and a left front side extending part 70b continuous with the back side extended part 80 on the left front side.
  • the right front side extending portion 70a has a right front side upper surface portion 71, a right front side bottom surface portion 72, a right front side surface portion 73, and a right front side front portion 74.
  • the upper surface portion 71 on the right front side extends on the same plane as the rear surface side upper surface portion 81 so as to be connected to the rear surface side upper surface portion 81 on the right front side.
  • the upper surface portion 71 on the right front side extends so that the normal direction is the vertical direction at a position corresponding to the right side surface of the outdoor unit casing 30.
  • the bottom surface portion 72 on the right front surface side is provided so as to face the top surface portion 71 on the right front surface side, and is connected to the back surface bottom surface portion 82 and the right front side on the same plane as the back surface bottom surface portion 82. Is growing.
  • the bottom surface portion 72 on the right front surface extends at a position corresponding to the right surface of the outdoor unit casing 30 such that the normal direction is the vertical direction.
  • the side surface portion 73 on the right front side is provided so as to face the right side surface of the outdoor unit casing 30 and extends on the same plane as the back side right side surface portion 83.
  • the side part 73 on the right front side has the same width as the width in the vertical direction of the back side right side part 83, and the outdoor unit casing 30 extends further from the front side end of the back side right side part 83 toward the front side. It extends to the same position as the front of the.
  • the front part 74 on the right front side is flush with the front side of the outdoor unit casing 30 and extends from the right end of the first support column 31a to the front end of the side part 73 on the right front side. It is a surface having the normal direction as the front-rear direction.
  • the vertical width of the front surface portion 74 on the right front surface side corresponds to the vertical width of the side surface portion 73 on the right front surface side.
  • the left front side extending portion 70b includes a left front side upper surface 76, a left front side bottom surface 77, a left front side surface 78, and a left front side front 79.
  • the upper surface portion 76 on the left front surface extends on the same plane as the rear surface upper surface portion 81 so as to be connected to the rear surface upper surface portion 81 on the left front side.
  • the upper surface portion 71 on the left front side extends at a position corresponding to the left side surface of the outdoor unit casing 30 so that the normal direction is the vertical direction.
  • the bottom surface portion 77 on the left front surface side is provided so as to face the top surface portion 76 on the left front surface side, and is connected to the back surface bottom surface portion 82 on the left front side on the same plane as the back surface bottom surface portion 82. Is growing.
  • the bottom surface portion 77 on the left front side extends at a position corresponding to the left side surface of the outdoor unit casing 30 so that the normal direction is the vertical direction.
  • the side surface 78 on the left front side is provided so as to face the left side surface of the outdoor unit casing 30 and extends on the same plane as the back side left side surface portion 84.
  • the side portion 78 on the left front side has the same width as the width in the vertical direction of the back side left side 84, and the outdoor unit casing 30 further extends from the front side end of the back side left side 84 toward the front side. It extends to the same position as the front of the.
  • the front part 79 on the left front side is flush with the front side of the outdoor unit casing 30 and extends from the left end of the fourth support 31d to the front end of the side part 78 on the left front side. It is a surface having the normal direction as the front-rear direction.
  • the vertical width of the front surface portion 79 on the left front side corresponds to the vertical width of the side surface portion 78 on the left front surface side.
  • the wind tunnel 8 has a distance in the left-right direction (a distance indicated by “x” in FIG. 4) from the third heat exchange portion 14c to the side portion 73 on the right front surface side. 14e is configured to be shorter than the distance (the distance indicated by “b” in FIGS. 3 and 4) from the windward end of the air flow of the back side extending portion 80.
  • the wind tunnel 8 has a distance in the left-right direction (a distance indicated by “x” in FIG. 4) from the seventh heat exchange portion 14g to the side surface portion 78 on the left front surface side from the fifth heat exchange portion 14e. It is comprised so that it may become shorter than the distance (distance shown by "b” in FIG. 3, FIG.
  • FIG. 4 the distance of the portion indicated by “x” in FIG. 4 is 50 mm or more, and the distance from the fifth heat exchange portion 14e to the windward side end portion of the air flow of the rear side extending portion 80 (FIG. 3, FIG. 4 is preferably shorter than the distance indicated by “b”.
  • the distance between the left and right “x” in FIG. 4 is the same in the present embodiment, but may be configured to have different lengths.
  • cooling air obtained by transpiration of water droplets also in the third heat exchange portion 14c and the seventh heat exchange portion 14g of the outdoor heat exchanger 14 is used.
  • the width (W2) of the fifth heat exchange portion 14e in the left-right direction / the width (W1) of the back side extending portion 80 in the left-right direction is in the range of 0.5 to 0.9. It is preferable that
  • each of the two-fluid sprayers 6 is disposed on the airflow upstream side of the fifth heat exchange portion 14 e of the outdoor heat exchanger 14, and the third heat exchange portion 14 c of the outdoor heat exchanger 14. Is not disposed between the seventh heat exchange portion 14g of the outdoor heat exchanger 14 and the side surface portion 78 on the left front surface side.
  • the droplet is of a size that can float in the air and reaches the outdoor heat exchanger 14 to prevent corrosion in the outdoor heat exchanger 14 as early as possible.
  • the size of the droplets that can be produced without using energy that can be evaporated and that offsets the energy-saving effect of cooling the supply air to the outdoor heat exchanger 14 is 30 ⁇ m or more and 60 ⁇ m or less. It is preferable to spray the liquid droplets in a state mainly containing the liquid droplets (a state containing 70% by weight or more). Water droplets of this size can be obtained by adjusting the output of the liquid feed pump 94 and / or the air feed pump 92.
  • the size of the droplet can be measured, for example, by obtaining SMD (Sauter average particle diameter) using a phase Doppler laser particle analyzer.
  • the distance between the two-fluid sprayer 6 and the outdoor heat exchanger 14 is ensured as much as possible while suppressing water droplets from being scattered on the windward side of the wind tunnel 8. It becomes a problem that it becomes longer in the direction, leading to enlarging, and requiring a large installation space.
  • the wind tunnel 8 extends further to the windward side by 300 mm or more and 900 mm or less in the air flow direction than the installation position of the two-fluid sprayer 6. It is preferable. It is more preferable that the wind tunnel 8 extends further to the windward side by 400 mm or more and 800 mm or less in the air flow direction than the installation position of the two-fluid sprayer 6.
  • the arrangement of the two-fluid sprayer 6 should not be too close to the outdoor heat exchanger 14 so that water droplets sprayed from the two-fluid sprayer 6 can be evaporated in the entire air flow toward the outdoor heat exchanger 14.
  • the distance from the outdoor heat exchanger 14 is more preferably 100 mm or more, and further preferably 200 mm or more.
  • the spray of the water droplet from the two fluid sprayer 6 is not performed on the right side of the 3rd heat exchange part 14c of the outdoor heat exchanger 14, or the left side of the 7th heat exchange part 14g, such Cooling air obtained by the evaporation of water droplets sprayed from the two-fluid sprayer 6 on the windward side of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 even when the water droplets are not sprayed from various locations.
  • the third heat exchange portion 14c of the outdoor heat exchanger 14 and the third heat exchange portion 14c extending on the surface intersecting the surface of the fifth heat exchange portion 14e as well as the fifth heat exchange portion 14e of the outdoor heat exchanger 14 It is also possible to supply 7 heat exchange portions 14g.
  • the condensation efficiency improvement effect obtained by the cooling air by the water droplet sprayed on the windward side of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 is the side of the outdoor heat exchanger 14 where the water droplet is sprayed. It can be obtained not only on the surface but also on other surfaces.
  • the wind tunnel 8 of the outdoor unit 2 of the present embodiment has a fifth heat exchange portion in which the distance in the left-right direction from the third heat exchange portion 14c to the side portion 73 on the right front side (the distance indicated by “x” in FIG. 4) is 14e is configured to be shorter than the distance (the distance indicated by “b” in FIGS. 3 and 4) from the windward end of the air flow of the back side extending portion 80. Further, regarding the distance in the left-right direction from the seventh heat exchange portion 14g to the side surface portion 78 on the left front surface side (the distance indicated by “x” in FIG. 4), the air from the fifth heat exchange portion 14e to the back side extension portion 80 It is comprised so that it may become shorter than the distance (distance shown by "b” in FIG. 3, FIG. 4) to the windward end part of a flow.
  • the cooling effect by the water droplet sprayed on the windward side of the fifth heat exchange portion 14e in the outdoor heat exchanger 14 is obtained also in portions other than the fifth heat exchange portion 14e, and the outdoor unit 2 including the wind tunnel 8 It becomes possible to make the width in the left-right direction compact. Thereby, the space required for installation can be reduced.
  • the back side extending portion 80 of the wind tunnel 8 of the above embodiment is provided sufficiently long on the windward side from the place where the two-fluid sprayer 6 is installed, water droplets sprayed from the two-fluid sprayer 6 are wind tunnels. It is possible to evaporate water droplets inside the wind tunnel 8 and to use the cooling air without escaping while suppressing leakage from the windward side 8 to the outside.
  • the distance indicated by “x” in FIG. 4 is 10 mm
  • the example is 50 mm
  • the example is 100 mm
  • a simulation for confirming the degree of the effect of cooling air in the third heat exchange portion 14c and the seventh heat exchange portion 14g of the outdoor heat exchanger 14, and each heat exchange of the outdoor heat exchanger 14 A simulation for confirming the wind speed distribution in the portions 14a to 14g was performed.
  • the distance indicated by “x” in FIG. 4 is 10 mm, the example is 50 mm, and the example is 100 mm.
  • the configuration other than the wind tunnel is the same as that of the outdoor unit 2 according to the example of the present embodiment, and as shown in FIGS.
  • the wind tunnel 908 extends in the four directions.
  • the wind tunnel 908 of the outdoor unit 902 to be compared has a wind tunnel 908a, a wind tunnel 908b, a wind tunnel 908c, and a wind tunnel 908d in the front and rear and left and right directions of the outdoor unit casing 30, respectively.
  • FIG. 11 and FIG. 12 The simulation results showing the surface temperature distribution of the cooling effect in the outdoor heat exchanger 14 are shown in FIG. 11 and FIG. 12 (FIG. 12 shows the same result as FIG. 11 seen from different angles. .)
  • FIG. 11 and FIG. 12 the color tone is changed depending on the surface temperature of the outdoor heat exchanger 14, and the distribution of the high temperature region, the medium temperature region, and the low temperature region is generated.
  • the following table shows the simulation results showing the surface temperature distribution and the like in the outdoor heat exchanger 14.
  • Case 1 the case where the length of “x” is 10 mm is referred to as Case 1
  • Case 2 the case where the length of “x” is 50 mm is referred to as Case 2
  • Case 3 the case where the length of “x” is 100 mm is referred to as Case 3.
  • the outdoor unit 902 was referred to as Case 4.
  • heat exchange numbers” 1 to 7 correspond to the first heat exchange portion 14a to the seventh heat exchange portion 14g, respectively.
  • Modification (8-1) Modification A In the said embodiment, it has four surfaces (1st heat exchange part 14a, 3rd heat exchange part 14c, 5th heat exchange part 14e, 7th heat exchange part 14g) as the outdoor heat exchanger 14 in planar view. The case where it exists is described as an example.
  • the outdoor heat exchanger is not limited to one having four surfaces provided so as to intersect each other with such adjacent surfaces, for example, having only three surfaces, It may have only two surfaces. Even in these cases, it is possible to supply the cooling air even on the surface intersecting the surface where the two-fluid sprayer 6 is disposed.
  • the spraying direction of the water droplets from the two-fluid sprayer 6 is not particularly limited, and the outdoor heat from the two-fluid sprayer 6 can be used as long as the floating distance of the waterdrops with the outdoor heat exchanger 14 can be long. You may make it spray a water drop toward the exchanger 14 side.
  • Air conditioning equipment (refrigeration equipment) 2 Outdoor unit (heat source unit) 6 Two-fluid sprayer (sprayer) 8 Wind tunnel 14 Outdoor heat exchanger (heat exchanger) 14c 3rd heat exchange part (2nd heat exchange part, 3rd heat exchange part) 14e 5th heat exchange part (1st heat exchange part) 14g 7th heat exchange part (3rd heat exchange part, 2nd heat exchange part) 15 Outdoor fan (fan) 30 Outdoor unit casing (casing) 70 Front side extension part (second extension part, third extension part) 73 Side part on the right front side (second extending part, third extending part) 78 Side part on the left front side (third extension part, second extension part) 80 Back side extension part 83 Back side right side part (1st extension part) 84 Back side left side (first extension)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Provided is a refrigeration device-use heat source unit configured so that, even if using a heat exchanger in which air is caused to pass through a plurality of surfaces thereof, the unit is capable of supplying different surfaces of the heat exchanger with cooling air obtained by water that is sprayed from at least one sprayer. The present invention is an outdoor unit (2) of an air conditioner (1), the outdoor unit (2) being provided with: an outdoor heat exchanger (14); an outdoor fan (15); a wind tunnel (8); and a two-fluid sprayer (6) that sprays water drops inside the wind tunnel (8). A rear surface-side extension section (80) of the wind tunnel (8) extends to the rear surface side of the outdoor heat exchanger (14). A front surface-side extension section (70) of the wind tunnel (8) is continuous at the front surface side of the rear surface-side extension section (80), and widens while securing gaps farther outside of parts which constitute left-right side surface parts of the outdoor heat exchanger (14).

Description

冷凍装置の熱源ユニットRefrigeration unit heat source unit
 本発明は、冷凍装置の熱源ユニットに関する。 The present invention relates to a heat source unit of a refrigeration apparatus.
 従来より、熱交換器内部を流れる冷媒の凝縮効率や放熱効率を高めるために、熱交換器に対して送られる空気に噴霧された水を含ませている。これにより、熱交換器に到達するまでに当該水が気化した場合においてその気化熱の分だけ熱交換器に供給される空気の温度を下げることが可能になっている。 Conventionally, in order to increase the condensation efficiency and heat dissipation efficiency of the refrigerant flowing inside the heat exchanger, water sprayed on the air sent to the heat exchanger is included. Thereby, when the water is vaporized before reaching the heat exchanger, the temperature of the air supplied to the heat exchanger can be lowered by the amount of heat of vaporization.
 ここで、例えば、特許文献1(特開2013-76538号公報)に記載の例では、複数の方向から空気が送り込まれる熱交換器において、空気が送り込まれる方向のそれぞれに対応するように多くの噴霧器が設けられている。 Here, for example, in the example described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-76538), in a heat exchanger in which air is sent from a plurality of directions, a large number of the air flows in a corresponding direction. A nebulizer is provided.
 上述の特許文献1に記載の例では、熱交換器の周囲の複数の方向から水の噴霧が行われているため、熱交換器のより多くの面において送り込まれる空気の冷却効果を得ることが可能になっている。 In the example described in Patent Document 1 described above, since water is sprayed from a plurality of directions around the heat exchanger, it is possible to obtain a cooling effect on air fed into more surfaces of the heat exchanger. It is possible.
 ところが、上記特許文献1に記載の例では、熱交換器の周囲の複数の方向それぞれにおいて噴霧器が配置されているため、噴霧器の数が多く、コストが増大してしまっている。 However, in the example described in Patent Document 1, since the sprayers are arranged in each of a plurality of directions around the heat exchanger, the number of sprayers is large and the cost is increased.
 本発明の課題は、上述した点に鑑みてなされたものであり、複数の面において空気を通過させる熱交換器を用いた場合であっても、少なくとも1つの噴霧器から噴霧される水によって得られる冷却空気を異なる面に供給させることが可能な冷凍装置の熱源ユニットを提供することにある。 An object of the present invention is made in view of the above-described points, and is obtained by water sprayed from at least one sprayer even when a heat exchanger that allows air to pass through a plurality of surfaces is used. An object of the present invention is to provide a heat source unit of a refrigeration apparatus that can supply cooling air to different surfaces.
 第1観点に係る冷凍装置の熱源ユニットは、冷凍装置の熱源ユニットであって、熱交換器と、ファンと、風洞と、噴霧器と、を備えている。熱交換器は、第1面上に広がった第1熱交換部と、第1面に対して直交する第2面上に広がった第2熱交換部と、を少なくとも有している。ファンは、熱交換器を通過させる空気流れを生じさせる。風洞は、第1延伸部と、第1延伸部と連続している第2延伸部と、を有している。第1延伸部は、空気流れにおける第1熱交換部の風上側に向かって第1面と交差する方向に延びている。第2延伸部は、空気流れにおける第2熱交換部の風上側において第2熱交換部との間に隙間を確保しつつ広がっている。噴霧器は、風洞内であって空気流れにおける第1熱交換部の風上側において水を噴霧する。なお、この噴霧器の個数は特に限定されず、少なくとも1つ設けられている。 The heat source unit of the refrigeration apparatus according to the first aspect is a heat source unit of the refrigeration apparatus, and includes a heat exchanger, a fan, a wind tunnel, and a sprayer. The heat exchanger has at least a first heat exchange part that spreads on the first surface and a second heat exchange part that spreads on a second surface perpendicular to the first surface. The fan creates an air flow that passes through the heat exchanger. The wind tunnel has a first extending portion and a second extending portion that is continuous with the first extending portion. The first extending portion extends in a direction intersecting the first surface toward the windward side of the first heat exchange portion in the air flow. The second extending portion extends while securing a gap with the second heat exchanging portion on the windward side of the second heat exchanging portion in the air flow. The sprayer sprays water in the wind tunnel and on the windward side of the first heat exchange unit in the air flow. In addition, the number of this sprayer is not specifically limited, At least 1 is provided.
 ここで、熱交換器としては、第1面と第2面の2面のみにおいて広がった熱交換器であってもよいし、3面において広がった熱交換器であってもよいし、4面において広がった熱交換器であってもよい。 Here, the heat exchanger may be a heat exchanger spreading on only two sides of the first side and the second side, or a heat exchanger spreading on three sides, It may be a heat exchanger spread in
 第1面に交差する方向に延びる風洞としては、第1面と交差する方向のみに対して直線的に延びている風洞に限られず、例えば、部分的に絞られた箇所を有するように湾曲して形成されており主として第1面と交差する方向に延びている風洞も含まれる。 The wind tunnel extending in the direction intersecting the first surface is not limited to the wind tunnel extending linearly only in the direction intersecting the first surface. For example, the wind tunnel is curved so as to have a partially constricted portion. And a wind tunnel extending mainly in a direction intersecting the first surface.
 この冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧器から噴霧された水を、第1熱交換部に対してだけでなく、第1熱交換部の第1面に直交した第2面上に広がる第2熱交換部に対しても供給することが可能になる。これにより、第1熱交換部の風上側において噴霧された水による冷却効果を、第1熱交換部と第2熱交換部との両方で得ることが可能になる。 In the heat source unit of the refrigeration apparatus, the water sprayed from the sprayer on the windward side of the first heat exchange unit is not only for the first heat exchange unit but also for the first orthogonal to the first surface of the first heat exchange unit. It becomes possible to supply also to the 2nd heat exchange part which spreads on two surfaces. Thereby, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained by both the first heat exchange unit and the second heat exchange unit.
 第2観点に係る冷凍装置の熱源ユニットは、第1観点に係る冷凍装置の熱源ユニットであって、風洞は、第2面の法線方向における第2熱交換部から第2延伸部までの距離が、第1面の法線方向における第1熱交換部から第1延伸部の空気流れの風上側端部までの距離よりも短い。 The heat source unit of the refrigeration apparatus according to the second aspect is the heat source unit of the refrigeration apparatus according to the first aspect, and the wind tunnel is a distance from the second heat exchange part to the second extension part in the normal direction of the second surface. However, it is shorter than the distance from the 1st heat exchange part in the normal line direction of a 1st surface to the windward side edge part of the airflow of a 1st extending | stretching part.
 この冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧された水による冷却効果を第1熱交換部と第2熱交換部との両方で得つつ、第2熱交換部の風上側をコンパクト化することで狭い設置スペースであっても設置が可能になる。 In the heat source unit of this refrigeration apparatus, the cooling effect by the water sprayed on the windward side of the first heat exchange unit is obtained by both the first heat exchange unit and the second heat exchange unit, and the wind of the second heat exchange unit By making the upper side compact, installation is possible even in a narrow installation space.
 また、水の噴霧が行われる第1熱交換部の風上側については第1延伸部が第2延伸部よりも長めに設けられているために、噴霧された水を風洞の第1延伸部の外側に逃がしにくく噴霧された水をより確実に捕らえて、冷却効果をより確実に得ることが可能になる。 Moreover, since the 1st extending | stretching part is provided longer than the 2nd extending | stretching part about the windward side of the 1st heat exchange part in which water spraying is performed, the sprayed water is supplied to the 1st extending | stretching part of a wind tunnel. It becomes possible to more reliably capture the sprayed water that is difficult to escape to the outside and to obtain a cooling effect more reliably.
 第3観点に係る冷凍装置の熱源ユニットは、第2観点に係る冷凍装置の熱源ユニットであって、第2面の法線方向における第2熱交換部から第2延伸部までの距離は、50mm以上である。 The heat source unit of the refrigeration apparatus according to the third aspect is the heat source unit of the refrigeration apparatus according to the second aspect, and the distance from the second heat exchange part to the second extension part in the normal direction of the second surface is 50 mm. That's it.
 なお、第2面の法線方向における第2熱交換部から第2延伸部までの距離は、噴霧された水が風洞外に拡散してしまうことを抑制する観点から、特に限定されないが、例えば、250mm以下としてもよい。 The distance from the second heat exchange part to the second extension part in the normal direction of the second surface is not particularly limited from the viewpoint of suppressing the sprayed water from diffusing outside the wind tunnel. , 250 mm or less.
 この冷凍装置の熱源ユニットでは、第2面の法線方向における第2熱交換部から第2延伸部までの距離を50mm以上確保することにより、第1熱交換部の風上側において噴霧された水を第2熱交換部の全体に対してもより十分に供給することが可能になるとともに、第2熱交換部における風速も十分に確保しやすくなり、第2熱交換部においても十分に熱交換を行わせることが可能になる。 In the heat source unit of the refrigeration apparatus, the water sprayed on the windward side of the first heat exchange unit is secured by securing a distance of 50 mm or more from the second heat exchange unit to the second extending unit in the normal direction of the second surface. Can be sufficiently supplied to the entire second heat exchanging part, and the air speed in the second heat exchanging part can be sufficiently secured, so that the second heat exchanging part also has sufficient heat exchange. Can be performed.
 第4観点に係る冷凍装置の熱源ユニットは、第1観点から第3観点のいずれかに係る冷凍装置の熱源ユニットであって、第2面の法線方向における第1延伸部の幅に対する第2面の法線方向における第1熱交換部の幅の比(第2面の法線方向における第1熱交換部の幅/第2面の法線方向における第1延伸部の幅)の値が、0.5以上0.9以下である。 The heat source unit of the refrigeration apparatus according to the fourth aspect is a heat source unit of the refrigeration apparatus according to any one of the first to third aspects, and is a second with respect to the width of the first extending portion in the normal direction of the second surface. The ratio of the width of the first heat exchanging portion in the normal direction of the surface (the width of the first heat exchanging portion in the normal direction of the second surface / the width of the first extending portion in the normal direction of the second surface) is 0.5 or more and 0.9 or less.
 この冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧された水による冷却効果を、第2熱交換部においてもより十分に得ることが可能になる。 In the heat source unit of this refrigeration apparatus, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained more sufficiently in the second heat exchange unit.
 第5観点に係る冷凍装置の熱源ユニットは、第1観点から第4観点のいずれかに係る冷凍装置の熱源ユニットであって、第2熱交換部と第2延伸部との間の隙間空間では、水が噴霧されない。 The heat source unit of the refrigeration apparatus according to the fifth aspect is a heat source unit of the refrigeration apparatus according to any one of the first to fourth aspects, and in the gap space between the second heat exchange unit and the second extension unit. , Water is not sprayed.
 この冷凍装置の熱源ユニットでは、第2熱交換部と第2延伸部との間において水を噴霧させない場合であっても、第1熱交換部の風上側において噴霧された水による冷却効果を第1熱交換部と第2熱交換部との両方で得ることが可能になる。これにより、第2熱交換部と第2延伸部との間において水の噴霧を行う噴霧器を設けない(水が噴霧される噴霧口を第2熱交換部と第2延伸部との間に設けない)場合であっても、噴霧された水による冷却効果を第1熱交換部と第2熱交換部との両方で得ることが可能になる。 In the heat source unit of the refrigeration apparatus, even when water is not sprayed between the second heat exchange unit and the second extension unit, the cooling effect by the water sprayed on the windward side of the first heat exchange unit is the first. It can be obtained by both the first heat exchange unit and the second heat exchange unit. Thereby, the sprayer which sprays water between a 2nd heat exchange part and a 2nd extending | stretching part is not provided (the spraying port in which water is sprayed is provided between the 2nd heat exchanging part and the 2nd extending | stretching part. Even if it is a case, the cooling effect by the sprayed water can be obtained by both the first heat exchange unit and the second heat exchange unit.
 第6観点に係る冷凍装置の熱源ユニットは、第1観点から第5観点のいずれかに係る冷凍装置の熱源ユニットであって、第1熱交換部の空気流れの通過面積は、第2熱交換部の空気流れの通過面積よりも広い。 The heat source unit of the refrigeration apparatus according to the sixth aspect is a heat source unit of the refrigeration apparatus according to any of the first to fifth aspects, and the passage area of the air flow of the first heat exchange unit is the second heat exchange. It is wider than the passage area of the air flow of the part.
 ここで、第2熱交換部が複数設けられている場合には、第2熱交換部のうち空気流れの通過面積が最も広いものよりも第1熱交換部の空気流れの通過面積が広いことを意味する。 Here, when a plurality of second heat exchange units are provided, the air flow passage area of the first heat exchange unit is larger than that of the second heat exchange unit having the largest air flow passage area. Means.
 この冷凍装置の熱源ユニットでは、空気流れの通過面積が第2熱交換部よりも広い第1熱交換部において噴霧された水による空気の冷却効果をより確実に得ることができるため、所望の省エネ効果をより確実に得ることが可能になる。 In the heat source unit of this refrigeration apparatus, since the air cooling effect by the water sprayed in the first heat exchange section having a larger air flow passage area than the second heat exchange section can be obtained more reliably, desired energy saving can be achieved. An effect can be obtained more reliably.
 第7観点に係る冷凍装置の熱源ユニットは、第1観点から第6観点のいずれかに係る冷凍装置の熱源ユニットであって、熱交換器は、第3熱交換部をさらに有している。第3熱交換部は、第1面に対して直交しつつ第2面と対面する第3面上に広がっている。風洞は、第1延伸部と連続している第3延伸部をさらに有している。第3延伸部は、空気流れにおける第3熱交換部の風上側において第3熱交換部との間に隙間を確保しつつ広がっている。 The heat source unit of the refrigeration apparatus according to the seventh aspect is the heat source unit of the refrigeration apparatus according to any of the first to sixth aspects, and the heat exchanger further includes a third heat exchange unit. The third heat exchange part extends on the third surface facing the second surface while being orthogonal to the first surface. The wind tunnel further includes a third extending portion that is continuous with the first extending portion. The third extending portion extends while securing a gap with the third heat exchanging portion on the windward side of the third heat exchanging portion in the air flow.
 この冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧器から噴霧された水を、第1熱交換部や第2熱交換部に対してだけでなく、第1熱交換部が広がっている第1面に直交した第3面上に広がる第3熱交換部に対しても供給することが可能になる。これにより、第1熱交換部の風上側において噴霧された水による冷却効果を、第1熱交換部と第2熱交換部と第3熱交換部のいずれにおいても得ることが可能になる。 In the heat source unit of the refrigeration apparatus, the water sprayed from the sprayer on the windward side of the first heat exchanging unit spreads not only the first heat exchanging unit and the second heat exchanging unit but also the first heat exchanging unit. It is also possible to supply to the third heat exchanging portion that spreads on the third surface orthogonal to the first surface. Thereby, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained in any of the first heat exchange unit, the second heat exchange unit, and the third heat exchange unit.
 第1観点に係る冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧された水による冷却効果を、第1熱交換部と第2熱交換部との両方で得ることが可能になる。 In the heat source unit of the refrigeration apparatus according to the first aspect, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be obtained by both the first heat exchange unit and the second heat exchange unit. Become.
 第2観点に係る冷凍装置の熱源ユニットでは、第1熱交換部と第2熱交換部との両方で冷却効果を得つつ、狭い設置スペースであっても設置が可能になる。 The heat source unit of the refrigeration apparatus according to the second aspect can be installed even in a narrow installation space while obtaining a cooling effect in both the first heat exchange unit and the second heat exchange unit.
 第3観点に係る冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧された水を第2熱交換部の全体に対してもより十分に供給することが可能になるとともに、第2熱交換部における風速も十分に確保しやすくなり、第2熱交換部においても十分に熱交換を行わせることが可能になる。 In the heat source unit of the refrigeration apparatus according to the third aspect, the water sprayed on the windward side of the first heat exchange unit can be more sufficiently supplied to the entire second heat exchange unit, and the first It becomes easy to sufficiently secure the wind speed in the two heat exchanging units, and it is possible to cause the second heat exchanging units to sufficiently perform the heat exchange.
 第4観点に係る冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧された水による冷却効果を、第2熱交換部においてもより十分に得ることが可能になる。 In the heat source unit of the refrigeration apparatus according to the fourth aspect, the cooling effect by the water sprayed on the windward side of the first heat exchange unit can be more sufficiently obtained also in the second heat exchange unit.
 第5観点に係る冷凍装置の熱源ユニットでは、第2熱交換部と第2延伸部との間において水の噴霧を行う噴霧器を設けない場合であっても、噴霧された水による冷却効果を第1熱交換部と第2熱交換部との両方で得ることが可能になる。 In the heat source unit of the refrigeration apparatus according to the fifth aspect, even when a sprayer that sprays water is not provided between the second heat exchange unit and the second extension unit, the cooling effect by the sprayed water is reduced. It can be obtained by both the first heat exchange unit and the second heat exchange unit.
 第6観点に係る冷凍装置の熱源ユニットでは、所望の省エネ効果をより確実に得ることが可能になる。 In the heat source unit of the refrigeration apparatus according to the sixth aspect, a desired energy saving effect can be obtained more reliably.
 第7観点に係る冷凍装置の熱源ユニットでは、第1熱交換部の風上側において噴霧された水による冷却効果を、第1熱交換部と第2熱交換部と第3熱交換部のいずれにおいても得ることが可能になる。 In the heat source unit of the refrigeration apparatus according to the seventh aspect, the cooling effect by the water sprayed on the windward side of the first heat exchange unit is determined in any of the first heat exchange unit, the second heat exchange unit, and the third heat exchange unit. Can also be obtained.
空気調和装置の冷媒回路を含む概略構成図である。It is a schematic block diagram including the refrigerant circuit of an air conditioning apparatus. 室外ユニット(風洞を除く)の前面側を含む概略斜視図である。It is a schematic perspective view including the front side of an outdoor unit (excluding a wind tunnel). 室外ユニットの概略側面図である。It is a schematic side view of an outdoor unit. 室外ユニットの概略平面図である。It is a schematic plan view of an outdoor unit. 二流体噴霧器の断面図である。It is sectional drawing of a two-fluid sprayer. 二流体噴霧器のノズルの断面図である。It is sectional drawing of the nozzle of a two-fluid sprayer. 上図は図6におけるA-A断面図であり、下図は図6におけるB-B断面図である。The upper diagram is a cross-sectional view along AA in FIG. 6, and the lower diagram is a cross-sectional view along BB in FIG. 比較対象の風洞を備えた室外ユニットの平面図である。It is a top view of the outdoor unit provided with the wind tunnel of a comparison object. 比較対象の風洞を備えた室外ユニットの正面図である。It is a front view of the outdoor unit provided with the wind tunnel of a comparison object. 比較対象の風洞を備えた室外ユニットの側面図である。It is a side view of the outdoor unit provided with the wind tunnel of a comparison object. 冷却効果の分布の様子のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the mode of distribution of a cooling effect. 図11と同一内容について異なる角度から見た場合の冷却効果の分布の様子のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the mode of the distribution of the cooling effect at the time of seeing from the different angle about the same content as FIG.
 以下、一実施形態を例に挙げて説明するが、本発明はこれに限定されるものではない。 Hereinafter, one embodiment will be described as an example, but the present invention is not limited to this.
 (1)空気調和装置の構成
 本発明の一実施形態に係る室外ユニット2を含む空気調和装置1の冷媒回路10等を、図1に示す。
(1) Configuration of Air Conditioner FIG. 1 shows a refrigerant circuit 10 and the like of an air conditioner 1 including an outdoor unit 2 according to an embodiment of the present invention.
 空気調和装置1は、ビル用のマルチタイプの空気調和装置であって、1つ又は複数の熱源ユニットとしての室外ユニット2に対して複数の利用ユニットとしての室内ユニット3が並列に接続されて構成されている。 The air conditioner 1 is a multi-type air conditioner for buildings, and is configured by connecting an indoor unit 3 as a plurality of utilization units in parallel to an outdoor unit 2 as one or a plurality of heat source units. Has been.
 空気調和装置1の冷媒回路10は、主として、圧縮機11、四路切換弁12、室外熱交換器14、室外膨張弁16、室内膨張弁17、室内熱交換器18が順に接続されたものであり、蒸気圧縮式の冷凍サイクルとなっている。冷媒回路10は、四路切換弁12の接続状態が切り換えられることで、冷房運転と暖房運転を切り換えて行うことが可能である。 The refrigerant circuit 10 of the air conditioner 1 is mainly composed of a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 14, an outdoor expansion valve 16, an indoor expansion valve 17, and an indoor heat exchanger 18 connected in order. Yes, it is a vapor compression refrigeration cycle. The refrigerant circuit 10 can be switched between the cooling operation and the heating operation by switching the connection state of the four-way switching valve 12.
 圧縮機11、四路切換弁12、室外熱交換器14および室外膨張弁16は室外ユニット2に含まれている。なお、室外ユニット2には、圧縮機11の吸入側と四路切換弁12との間においてアキュームレータ13が設けられている。また、室外ユニット2には、室外熱交換器14に空気を当てて冷媒と空気との熱交換を促進させる室外ファン15が設けられている。また、圧縮機11としては、特に限定されないが、インバータによる回転数制御を行う容量可変の圧縮機(インバータ圧縮機)と、オンオフ制御が行われる定容量の圧縮機(定容量圧縮機)とが組み合わされたものであってもよい。 The compressor 11, the four-way switching valve 12, the outdoor heat exchanger 14, and the outdoor expansion valve 16 are included in the outdoor unit 2. The outdoor unit 2 is provided with an accumulator 13 between the suction side of the compressor 11 and the four-way switching valve 12. The outdoor unit 2 is provided with an outdoor fan 15 that applies air to the outdoor heat exchanger 14 to promote heat exchange between the refrigerant and the air. Further, the compressor 11 is not particularly limited, but includes a variable capacity compressor (inverter compressor) that performs rotation speed control by an inverter and a constant capacity compressor (constant capacity compressor) that performs on / off control. It may be combined.
 室内膨張弁17および室内熱交換器18は室内ユニット3に含まれている。また、室内ユニット3には、室内熱交換器18に空気を当てて冷媒と空気との熱交換を促進させる室内ファン19が設けられている。 The indoor expansion valve 17 and the indoor heat exchanger 18 are included in the indoor unit 3. The indoor unit 3 is provided with an indoor fan 19 that applies air to the indoor heat exchanger 18 to promote heat exchange between the refrigerant and the air.
 また、四路切換弁12と室内熱交換器18との間は、ガス側冷媒連絡配管5により接続されている。室外膨張弁16と室内膨張弁17との間は、液側冷媒連絡配管4により接続されている。液側冷媒連絡配管4およびガス側冷媒連絡配管5は、室外ユニット2と室内ユニット3との間に配置される。また、室外ユニット2内には、上述した以外にも付属機器も設けられているが、ここでは図示を省略している。 Further, the four-way switching valve 12 and the indoor heat exchanger 18 are connected by a gas side refrigerant communication pipe 5. The outdoor expansion valve 16 and the indoor expansion valve 17 are connected by a liquid side refrigerant communication pipe 4. The liquid side refrigerant communication pipe 4 and the gas side refrigerant communication pipe 5 are disposed between the outdoor unit 2 and the indoor unit 3. Further, in the outdoor unit 2, in addition to those described above, accessory devices are also provided, but are not illustrated here.
 室外ユニット2の内部冷媒回路の末端部には、ガス側閉鎖弁20bと液側閉鎖弁20aとが設けられている。ガス側閉鎖弁20bは、四路切換弁12側に配置されており、ガス側冷媒連絡配管5が接続されている。液側閉鎖弁20aは、室外膨張弁16側に配置されており、液側冷媒連絡配管4が接続されている。これらのガス側閉鎖弁20bと液側閉鎖弁20aは、室外ユニット2や室内ユニット3を設置する時には閉状態にされている。そして、ガス側閉鎖弁20bと液側閉鎖弁20aは、室外ユニット2や室内ユニット3を現地に設置しガス側冷媒連絡配管5および液側冷媒連絡配管4をガス側閉鎖弁20bと液側閉鎖弁20aに接続した後に開状態とされる。 A gas side closing valve 20b and a liquid side closing valve 20a are provided at the end of the internal refrigerant circuit of the outdoor unit 2. The gas side shut-off valve 20b is disposed on the four-way switching valve 12 side, and the gas side refrigerant communication pipe 5 is connected thereto. The liquid side closing valve 20a is disposed on the outdoor expansion valve 16 side, and the liquid side refrigerant communication pipe 4 is connected thereto. The gas side shutoff valve 20b and the liquid side shutoff valve 20a are closed when the outdoor unit 2 and the indoor unit 3 are installed. The gas-side shutoff valve 20b and the liquid-side shutoff valve 20a are configured such that the outdoor unit 2 and the indoor unit 3 are installed on the site, and the gas-side refrigerant communication pipe 5 and the liquid-side refrigerant communication pipe 4 are closed with the gas-side shutoff valve 20b. After being connected to the valve 20a, the valve is opened.
 室外ユニット2には、室外熱交換器14における冷媒の凝縮効率を高めるために、室外熱交換器14に送られる空気を冷却するための二流体噴霧器6が設けられている。本実施形態では、二流体噴霧器6は複数(7つ:第1二流体噴霧器6a~第7二流体噴霧器6g)設けられているが、二流体噴霧器6の数については特に限定されず、1つであってもよい。二流体噴霧器6は、空気と水の混合物を噴霧する。二流体噴霧器6は、室外ファン15が形成させる空気流れにおいて室外熱交換器14よりも風上側であって後述する風洞8で囲われた位置に配置されている。特に限定されないが、本実施形態では、二流体噴霧器6は、室外熱交換器14側とは反対側に向けて水滴を放射状に噴霧するように構成されている。風洞8内において二流体噴霧器6から室外熱交換器14側とは反対側に向けて放射状に噴霧された水滴は、拡散されながら室外ファン15が生じさせる空気流れによって次第に室外熱交換器14側に流れを変えて、室外熱交換器14に到達する前に実質的に全て水滴が気化する。これにより、室外熱交換器14に送られる空気を冷却させることができ、室外熱交換器14における冷媒の凝縮効率を高めることができている。なお、二流体噴霧器6から噴霧された水滴が室外熱交換器14に到達する前に実質的に全て気化するように構成されていることから、主として金属によって構成されている室外熱交換器14における腐食を抑制することが可能となっている。 The outdoor unit 2 is provided with a two-fluid sprayer 6 for cooling the air sent to the outdoor heat exchanger 14 in order to increase the condensation efficiency of the refrigerant in the outdoor heat exchanger 14. In the present embodiment, a plurality of the two-fluid sprayers 6 (seven: the first two-fluid sprayers 6a to the sixth two-fluid sprayers 6g) are provided, but the number of the two-fluid sprayers 6 is not particularly limited. It may be. The two-fluid sprayer 6 sprays a mixture of air and water. The two-fluid sprayer 6 is disposed at a position on the windward side of the outdoor heat exchanger 14 and surrounded by a wind tunnel 8 described later in the air flow formed by the outdoor fan 15. Although not particularly limited, in the present embodiment, the two-fluid sprayer 6 is configured to spray water droplets radially toward the side opposite to the outdoor heat exchanger 14 side. Water droplets sprayed radially from the two-fluid sprayer 6 toward the side opposite to the outdoor heat exchanger 14 side in the wind tunnel 8 are gradually diffused to the outdoor heat exchanger 14 side by the air flow generated by the outdoor fan 15 while being diffused. The flow is changed so that substantially all water droplets are vaporized before reaching the outdoor heat exchanger 14. Thereby, the air sent to the outdoor heat exchanger 14 can be cooled, and the condensation efficiency of the refrigerant | coolant in the outdoor heat exchanger 14 can be improved. In addition, since it is comprised so that the water droplet sprayed from the two-fluid sprayer 6 may vaporize substantially all before reaching the outdoor heat exchanger 14, in the outdoor heat exchanger 14 mainly comprised with the metal. Corrosion can be suppressed.
 二流体噴霧器6には、噴霧対象の水が、水供給源95から液送配管93を介して供給される。液送配管93の途中には液送ポンプ94が設けられており、液送配管93を流れる水の量を調節することが可能になっている。なお、図示は省略するが、本実施形態の7つの二流体噴霧器6それぞれに対して、分岐された液送配管93が接続されている。 The water to be sprayed is supplied to the two-fluid sprayer 6 from the water supply source 95 through the liquid feed pipe 93. A liquid feed pump 94 is provided in the middle of the liquid feed pipe 93 so that the amount of water flowing through the liquid feed pipe 93 can be adjusted. In addition, although illustration is abbreviate | omitted, the branched liquid feeding piping 93 is connected with respect to each of the seven two fluid sprayers 6 of this embodiment.
 また、二流体噴霧器6には、噴霧対象の水と混ぜ合わせるための空気が、気送配管91を介して供給される。気送配管91の途中にはコンプレッサー等の気送ポンプ92が設けられており、気送配管91を流れる空気の量を調節することが可能になっている。なお、図示は省略するが、本実施形態の7つの二流体噴霧器6それぞれに対して、分岐された気送配管91が接続されている。 Further, the air for mixing with the water to be sprayed is supplied to the two-fluid sprayer 6 through the air supply pipe 91. A pneumatic pump 92 such as a compressor is provided in the middle of the pneumatic pipeline 91 so that the amount of air flowing through the pneumatic pipeline 91 can be adjusted. In addition, although illustration is abbreviate | omitted, the branched air supply piping 91 is connected with respect to each of the seven two fluid sprayers 6 of this embodiment.
 なお、詳細は後述するが、二流体噴霧器6では、液送配管93を介して送られてきた水と気送配管91を介して送られてきた空気とを気液混合部61において混合し、得られた気液混合水をノズル62から噴霧させる。 Although details will be described later, in the two-fluid sprayer 6, the water sent via the liquid feed pipe 93 and the air sent via the air feed pipe 91 are mixed in the gas-liquid mixing unit 61, The obtained gas-liquid mixed water is sprayed from the nozzle 62.
 なお、空気調和装置1は、各種制御を行う制御部98を有している。制御部98は、室内ユニット3内に設けられた室内制御部96と、室外ユニット2内に設けられた室外制御部97と、を有して構成されている。室内制御部96および室外制御部97は、それぞれROM、RAM、CPU等を有している。制御部98は、圧縮機11の周波数制御、四路切換弁12の切り換え制御、室外ファン15の風量制御、室外膨張弁16の弁開度制御、室内膨張弁17の弁開度制御、室内ファン19の風量制御、液送ポンプ94の出力制御、気送ポンプ92の出力制御等を行う。 The air conditioner 1 has a control unit 98 that performs various controls. The control unit 98 includes an indoor control unit 96 provided in the indoor unit 3 and an outdoor control unit 97 provided in the outdoor unit 2. The indoor control unit 96 and the outdoor control unit 97 each have a ROM, a RAM, a CPU, and the like. The control unit 98 controls the frequency of the compressor 11, the switching control of the four-way switching valve 12, the air volume control of the outdoor fan 15, the valve opening control of the outdoor expansion valve 16, the valve opening control of the indoor expansion valve 17, and the indoor fan. 19 air volume control, liquid feed pump 94 output control, air feed pump 92 output control, and the like.
 (2)空気調和装置の動作
 次に、この空気調和装置1の運転動作について説明する。
(2) Operation of Air Conditioner Next, the operation of the air conditioner 1 will be described.
 冷房運転時は、四路切換弁12が図1において実線で示す状態に保持される。圧縮機11から吐出された高温高圧のガス冷媒は、四路切換弁12を介して室外熱交換器14に流入し、室外空気と熱交換して凝縮・液化する。なお、冷房運転時には二流体噴霧器6からの水の噴霧が行われ、室外熱交換器14に向けて流れる空気が冷却され、室外熱交換器14における冷媒の凝縮効率を向上させている。なお、ここでの二流体噴霧器6からの水の噴霧は、冷房運転時において所定の負荷レベルを超えた場合に実行されるようにしてもよい。この場合、例えば、所定時間の間、各二流体噴霧器6から連続的に又は間欠的に水が噴霧されるように液送ポンプ94および気送ポンプ92が制御される。室外熱交換器14において液化した冷媒は、全開状態の室外膨張弁16を通過し、液側冷媒連絡配管4を通って各室内ユニット3に流入する。室内ユニット3において、冷媒は、室内膨張弁17で所定の低圧に減圧され、さらに室内熱交換器18で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室内空気は、室内ファン19によって室内へと吹き出され、室内を冷房する。また、室内熱交換器18で蒸発して気化した冷媒は、ガス側冷媒連絡配管5を通って室外ユニット2に戻り、四路切換弁12およびアキュームレータ13を通過した後に圧縮機11に吸入される。 During the cooling operation, the four-way switching valve 12 is maintained in the state indicated by the solid line in FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 14 through the four-way switching valve 12, and is condensed and liquefied by exchanging heat with outdoor air. In the cooling operation, water is sprayed from the two-fluid sprayer 6 to cool the air flowing toward the outdoor heat exchanger 14 and improve the condensation efficiency of the refrigerant in the outdoor heat exchanger 14. The spray of water from the two-fluid sprayer 6 here may be executed when a predetermined load level is exceeded during the cooling operation. In this case, for example, the liquid feed pump 94 and the air feed pump 92 are controlled so that water is sprayed continuously or intermittently from each of the two fluid sprayers 6 for a predetermined time. The refrigerant liquefied in the outdoor heat exchanger 14 passes through the fully opened outdoor expansion valve 16 and flows into the indoor units 3 through the liquid side refrigerant communication pipe 4. In the indoor unit 3, the refrigerant is depressurized to a predetermined low pressure by the indoor expansion valve 17, and is further evaporated by exchanging heat with indoor air in the indoor heat exchanger 18. The indoor air cooled by the evaporation of the refrigerant is blown out into the room by the indoor fan 19 to cool the room. The refrigerant evaporated and vaporized in the indoor heat exchanger 18 returns to the outdoor unit 2 through the gas side refrigerant communication pipe 5, passes through the four-way switching valve 12 and the accumulator 13, and then is sucked into the compressor 11. .
 暖房運転時は、四路切換弁12が図1において破線で示す状態に保持される。圧縮機11から吐出された高温高圧のガス冷媒は、四路切換弁12を介して各室内ユニット3の室内熱交換器18に流入し、室内空気と熱交換して凝縮・液化する。冷媒の凝縮によって加熱された室内空気は、室内ファン19によって室内へと吹き出され、室内を暖房する。室内熱交換器18において液化した冷媒は、全開状態の室内膨張弁17から液側冷媒連絡配管4を通って室外ユニット2に戻る。室外ユニット2に戻った冷媒は、室外膨張弁16で所定の低圧に減圧され、さらに室外熱交換器14で室外空気と熱交換して蒸発する。ここで、冷房運転時に行われていた二流体噴霧器6からの水の噴霧は、暖房運転時には行われない。そして、室外熱交換器14で蒸発して気化した冷媒は、四路切換弁12およびアキュームレータ13を介して圧縮機11に吸入される。 During the heating operation, the four-way switching valve 12 is held in a state indicated by a broken line in FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 18 of each indoor unit 3 via the four-way switching valve 12, and exchanges heat with indoor air to condense and liquefy. The indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 19 to heat the room. The refrigerant liquefied in the indoor heat exchanger 18 returns from the fully expanded indoor expansion valve 17 to the outdoor unit 2 through the liquid side refrigerant communication pipe 4. The refrigerant that has returned to the outdoor unit 2 is decompressed to a predetermined low pressure by the outdoor expansion valve 16, and further evaporates by exchanging heat with outdoor air by the outdoor heat exchanger 14. Here, the spraying of water from the two-fluid sprayer 6 performed during the cooling operation is not performed during the heating operation. The refrigerant evaporated and evaporated in the outdoor heat exchanger 14 is sucked into the compressor 11 through the four-way switching valve 12 and the accumulator 13.
 (3)室外ユニットの詳細構成
 次に、図2~図4を参照して、室外ユニット2について詳述する。
(3) Detailed Configuration of Outdoor Unit Next, the outdoor unit 2 will be described in detail with reference to FIGS.
 図2は、室外ユニット2(風洞を除く)の前面側を含む概略斜視図である。図3は、室外ユニット2の概略側面図である。図4は、室外ユニット2の概略平面図である。 FIG. 2 is a schematic perspective view including the front side of the outdoor unit 2 (excluding the wind tunnel). FIG. 3 is a schematic side view of the outdoor unit 2. FIG. 4 is a schematic plan view of the outdoor unit 2.
 室外ユニット2は、室外熱交換器14、室外ファン15、圧縮機11、アキュームレータ13、および室外膨張弁16を内部に収容する室外機ケーシング30を有している。 The outdoor unit 2 has an outdoor unit casing 30 that accommodates an outdoor heat exchanger 14, an outdoor fan 15, a compressor 11, an accumulator 13, and an outdoor expansion valve 16.
 室外機ケーシング30は、略直方体形状であり、第1支柱31a、第2支柱31b、第3支柱31c、第4支柱31d、補強部材31x、前面基礎脚36a、背面基礎脚36b、前面上部パネル32a、前面左側下部パネル32b、右側パネル33、背面パネル34、左側上部パネル35a、左前側下部パネル35b、上部吹出口15a、および底フレーム37等を有している。 The outdoor unit casing 30 has a substantially rectangular parallelepiped shape, and includes a first support 31a, a second support 31b, a third support 31c, a fourth support 31d, a reinforcing member 31x, a front base leg 36a, a back base leg 36b, and a front upper panel 32a. A front left lower panel 32b, a right panel 33, a back panel 34, a left upper panel 35a, a left front lower panel 35b, an upper outlet 15a, a bottom frame 37, and the like.
 支柱は、前面右側において鉛直方向に伸びる第1支柱31aと、背面右側において鉛直方向に伸びる第2支柱31bと、背面左側において鉛直方向に伸びる第3支柱31cと、前面左側において鉛直方向に伸びる第4支柱31dと、を有している。 The support column includes a first support column 31a extending in the vertical direction on the right side of the front surface, a second support column 31b extending in the vertical direction on the right side of the rear surface, a third support column 31c extending in the vertical direction on the left side of the rear surface, and a first support column extending in the vertical direction on the left side of the front surface. 4 columns 31d.
 補強部材31xは、第1支柱31aと第2支柱31bとを、中間程度の高さ位置において複数個所連絡するように設けられており、室外機ケーシング30の強度を高めている。 The reinforcing member 31x is provided so as to connect the first support post 31a and the second support post 31b at a plurality of positions at an intermediate height, thereby increasing the strength of the outdoor unit casing 30.
 前面基礎脚36aは、室外機ケーシング30の前面側下端部において左右に伸びている。背面基礎脚36bは、室外機ケーシング30の背面側下端部において左右に伸びている。 The front base leg 36 a extends to the left and right at the front side lower end of the outdoor unit casing 30. The back base leg 36 b extends to the left and right at the back side lower end portion of the outdoor unit casing 30.
 前面上部パネル32aは、室外機ケーシング30の前面上方において室外ファン15の前側を覆っている。前面左側下部パネル32bは、室外機ケーシング30のうち前面左下方を覆うように広がっている。右側パネル33は、室外機ケーシング30の右側面上方において室外ファン15の右側を覆うように設けられている。背面パネル34は、室外機ケーシング30の背面上方において室外ファン15の背面側を覆うように設けられている。左側上部パネル35aは、室外機ケーシング30の左側面上方において室外ファン15の左側を覆うように設けられている。左前側下部パネル35bは、室外機ケーシング30のうち左側面の前側下方を覆うように広がっている。上部吹出口15aは、室外機ケーシング30の上面において鉛直方向に貫通するように設けられた開口であり、室外ファン15により生じる空気流れFを鉛直上方に向けて送り出す。底フレーム37は、支柱31a~31dの下端近傍において、支柱31a~31dに対して固定され、平面上に広がっている。 The front upper panel 32 a covers the front side of the outdoor fan 15 above the front surface of the outdoor unit casing 30. The front left lower panel 32 b extends so as to cover the lower left front of the outdoor unit casing 30. The right panel 33 is provided so as to cover the right side of the outdoor fan 15 above the right side surface of the outdoor unit casing 30. The back panel 34 is provided so as to cover the back side of the outdoor fan 15 above the back of the outdoor unit casing 30. The left upper panel 35 a is provided above the left side surface of the outdoor unit casing 30 so as to cover the left side of the outdoor fan 15. The left front lower panel 35 b extends so as to cover the lower front side of the left side surface of the outdoor unit casing 30. The upper air outlet 15a is an opening provided so as to penetrate in the vertical direction on the upper surface of the outdoor unit casing 30, and sends the air flow F generated by the outdoor fan 15 vertically upward. The bottom frame 37 is fixed to the columns 31a to 31d in the vicinity of the lower ends of the columns 31a to 31d and spreads on a plane.
 室外ファン15は、室外機ケーシング30内の上方であって、室外熱交換器14よりも空気流れの下流側(風下側)に配置されている。室外ファン15としては、特に限定されないが、例えば、軸流送風機、遠心送風機、斜流送風機などを用いることができる。上面視における室外機ケーシング30の長手方向に並列に並ぶようにして2台設けられている。室外ファン15は、それぞれ回転軸が鉛直上方を向くように設けられている。複数の室外ファン15それぞれの周囲には、鉛直方向に円筒状に伸びたベルマウス15bが設けられている。室外ファン15により生じる空気流れの室外熱交換器14の第5熱交部分14eの中心直前の風速は、0.5m/s以上2.0m/s以下の範囲で運転されることが好ましく、0.8m/s以上1.7m/s以下の範囲で運転されることがより好ましい。 The outdoor fan 15 is disposed above the outdoor unit casing 30 and downstream of the outdoor heat exchanger 14 (downward side). Although it does not specifically limit as the outdoor fan 15, For example, an axial blower, a centrifugal blower, a mixed flow blower, etc. can be used. Two units are provided so as to be arranged in parallel in the longitudinal direction of the outdoor unit casing 30 in a top view. The outdoor fans 15 are provided such that their rotation axes are directed vertically upward. Around each of the plurality of outdoor fans 15, a bell mouth 15b extending in a cylindrical shape in the vertical direction is provided. The wind speed immediately before the center of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 of the air flow generated by the outdoor fan 15 is preferably operated in the range of 0.5 m / s to 2.0 m / s. It is more preferable to operate in the range of not less than 0.8 m / s and not more than 1.7 m / s.
 室外熱交換器14は、特に限定されず、例えばクロスフィンコイル式の熱交換器が挙げられる。クロスフィンコイル式の熱交換器は、伝熱管と、伝熱管が貫通する多数のプレートフィンとを備えており、伝熱管の内部を冷媒が流れ、プレートフィン同士の間を外気が流れる。なお、室外熱交換器14の伝熱管やプレートフィンは、例えば、アルミニウム、アルミニウム合金、銅、銅合金等の金属によって構成されている。室外熱交換器14は、室外機ケーシング30の4つの側面に沿うように設けられており、室外ユニット2の設置面(水平面)に対して上方伸びるように立設されている。室外熱交換器14は、上面視において、図4に示すように、前面の右側において広がる第1熱交部分14a、前面と右側面との間を繋ぐように湾曲している第2熱交部分14b、右側面において広がる第3熱交部分14c、右側面と背面とを繋ぐように湾曲している第4熱交部分14d、背面において広がる第5熱交部分14e、背面と左側面とを繋ぐように湾曲している第6熱交部分14f、および左側面の背面側において広がった第7熱交部分14gを有しており、これらが互いに連なるようにして、室外機ケーシング30の側面を縁取るように設けられている。なお、本実施形態において、室外熱交換器14のうち空気通過面積が最も広い箇所は、第5熱交部分14eであり、第3熱交部分14cの空気通過面積や第7熱交部分14gの空気通過面積よりも大きくなるように構成されている。なお、第3熱交部分14cの空気通過面積は、第7熱交部分14gの空気通過面積よりも大きくなるように構成されている。室外熱交換器14の各熱交部分に対しては、室外機ケーシング30のうち対向して開口している部分を介して取り込まれた外気が通過することになる。 The outdoor heat exchanger 14 is not particularly limited, and examples thereof include a cross fin coil heat exchanger. The cross fin coil heat exchanger includes a heat transfer tube and a large number of plate fins through which the heat transfer tube penetrates. A refrigerant flows through the heat transfer tube, and outside air flows between the plate fins. Note that the heat transfer tubes and plate fins of the outdoor heat exchanger 14 are made of metal such as aluminum, aluminum alloy, copper, copper alloy, or the like. The outdoor heat exchanger 14 is provided along the four side surfaces of the outdoor unit casing 30 and is erected so as to extend upward with respect to the installation surface (horizontal plane) of the outdoor unit 2. As shown in FIG. 4, the outdoor heat exchanger 14 has a first heat exchange portion 14 a that spreads on the right side of the front surface and a second heat exchange portion that is curved so as to connect the front surface and the right side surface. 14b, the third heat exchange part 14c spreading on the right side, the fourth heat exchange part 14d curved so as to connect the right side and the back, the fifth heat exchange part 14e spreading on the back, and the back and the left side And the seventh heat exchange portion 14g spreading on the back side of the left side surface, and these are connected to each other so that the side surface of the outdoor unit casing 30 is edged. It is provided to take. In the present embodiment, the portion of the outdoor heat exchanger 14 having the largest air passage area is the fifth heat exchange portion 14e, and the air passage area of the third heat exchange portion 14c and the seventh heat exchange portion 14g. It is comprised so that it may become larger than an air passage area. In addition, the air passage area of the third heat exchange portion 14c is configured to be larger than the air passage area of the seventh heat exchange portion 14g. The outdoor air taken in through the portion of the outdoor unit casing 30 that opens facing each other passes through each heat exchange portion of the outdoor heat exchanger 14.
 ここで、室外熱交換器14のうち左側面側と右側面側と背面側を構成している第2熱交部分14b、第3熱交部分14c、第4熱交部分14d、第5熱交部分14e、第6熱交部分14f、第7熱交部分14gに対しては、後述する風洞8の内部を通過する外気が送られることになる。そして、後述するように、室外熱交換器14のうちの第2熱交部分14b、第3熱交部分14c、第4熱交部分14d、第5熱交部分14e、第6熱交部分14f、第7熱交部分14gに対しては、風洞8の内側に配置されている二流体噴霧器6から噴霧された水滴の蒸散によって冷却された空気が供給されることになる。 Here, the 2nd heat exchange part 14b, the 3rd heat exchange part 14c, the 4th heat exchange part 14d, and the 5th heat exchange which comprise the left side, the right side, and the back side among the outdoor heat exchangers 14 are carried out. Outside air passing through the inside of the wind tunnel 8 described later is sent to the portion 14e, the sixth heat exchange portion 14f, and the seventh heat exchange portion 14g. And as will be described later, the second heat exchange part 14b, the third heat exchange part 14c, the fourth heat exchange part 14d, the fifth heat exchange part 14e, the sixth heat exchange part 14f of the outdoor heat exchanger 14, Air cooled by the transpiration of water droplets sprayed from the two-fluid sprayer 6 disposed inside the wind tunnel 8 is supplied to the seventh heat exchange portion 14g.
 空気調和装置1の運転時には、圧縮機11が運転されることにより冷媒が室外ユニット2と複数の室内ユニット3との間を循環する。ここで、室外ファン15は、図示しないファンモータが運転されることにより回転し、外気が室外機ケーシング30の下方周囲から内部に吸い込まれる。ここで、室外熱交換器14のうち左側面側と右側面側と背面側を構成している第2熱交部分14b、第3熱交部分14c、第4熱交部分14d、第5熱交部分14e、第6熱交部分14f、第7熱交部分14gに対しては、二流体噴霧器6から噴霧された水滴が蒸散することにより冷却された空気が送られることになる。室外熱交換器14を通過する空気は、室外熱交換器14の内部を流れる冷媒と熱交換した後、上部吹出口15aを通じて上方に向けて室外機ケーシング30の外部に吹き出される。 When the air conditioner 1 is in operation, the refrigerant circulates between the outdoor unit 2 and the plurality of indoor units 3 by operating the compressor 11. Here, the outdoor fan 15 rotates when a fan motor (not shown) is operated, and the outside air is sucked into the inside from the lower periphery of the outdoor unit casing 30. Here, the 2nd heat exchange part 14b, the 3rd heat exchange part 14c, the 4th heat exchange part 14d, and the 5th heat exchange which comprise the left side, the right side, and the back side among the outdoor heat exchangers 14 are carried out. Cooled air is sent to the portion 14e, the sixth heat exchange portion 14f, and the seventh heat exchange portion 14g as the water droplets sprayed from the two-fluid sprayer 6 evaporate. The air passing through the outdoor heat exchanger 14 exchanges heat with the refrigerant flowing inside the outdoor heat exchanger 14, and then blows out upward of the outdoor unit casing 30 through the upper outlet 15a.
 (4)二流体噴霧器およびその周辺の詳細構成
 本実施形態では、二流体噴霧器6は複数(7つ:第1二流体噴霧器6a、第2二流体噴霧器6b、第3二流体噴霧器6c、第4二流体噴霧器6d、第5二流体噴霧器6e、第6二流体噴霧器6f、第7二流体噴霧器6g)設けられており、図3、図4に示すように配置されている。
(4) Detailed configuration of two-fluid sprayer and its surroundings In the present embodiment, there are a plurality of (two: seven: first two-fluid sprayer 6a, second two-fluid sprayer 6b, third two-fluid sprayer 6c, fourth A two-fluid sprayer 6d, a fifth two-fluid sprayer 6e, a sixth two-fluid sprayer 6f, and a seventh two-fluid sprayer 6g), which are arranged as shown in FIGS.
 各二流体噴霧器6は、室外ファン15が駆動することにより形成される空気流れFの方向において、室外熱交換器14よりも上流側に位置している。特に限定されるものではないが、本実施形態では、複数の二流体噴霧器6は、風洞8の内部であって、室外熱交換器14の第5熱交部分14eの背面側(風上側)の同一通過面上に配置されている。ここで、各二流体噴霧器6は、左右方向に所定の間隔を開けて配置されている。二流体噴霧器6のうち、第1二流体噴霧器6aと第4二流体噴霧器6dと第7二流体噴霧器6gについては、室外熱交換器14の第5熱交部分14eの高さ方向における中央近傍の高さ位置に配置されている。第1二流体噴霧器6aは、複数の二流体噴霧器6のなかでも後述する風洞8の背面側左側面部84に最も近い位置に配置されている。第7二流体噴霧器6gは、複数の二流体噴霧器6のなかでも後述する風洞8の背面側右側面部83に最も近い位置に配置されている。第4二流体噴霧器6dは、左右方向における中央近傍に配置されている。第2二流体噴霧器6bおよび第3二流体噴霧器6cは、左右方向における第1二流体噴霧器6aと第4二流体噴霧器6dとの間に配置されている。第2二流体噴霧器6bは、第1二流体噴霧器6a等の高さ位置よりも高い位置に配置されており、第3二流体噴霧器6cは、第1二流体噴霧器6a等の高さ位置よりも低い位置に配置されている。第5二流体噴霧器6eおよび第6二流体噴霧器6fは、左右方向における第4二流体噴霧器6dと第7二流体噴霧器6gとの間に配置されている。第5二流体噴霧器6eは、第7二流体噴霧器6g等の高さ位置よりも高い位置に配置されており、第6二流体噴霧器6fは、第7二流体噴霧器6g等の高さ位置よりも低い位置に配置されている。 Each of the two-fluid sprayers 6 is located upstream of the outdoor heat exchanger 14 in the direction of the air flow F formed when the outdoor fan 15 is driven. Although not particularly limited, in the present embodiment, the plurality of two-fluid sprayers 6 are inside the wind tunnel 8 and on the back side (windward side) of the fifth heat exchange portion 14e of the outdoor heat exchanger 14. It is arranged on the same passage surface. Here, each two-fluid sprayer 6 is arrange | positioned at predetermined intervals in the left-right direction. Among the two-fluid sprayer 6, the first two-fluid sprayer 6a, the fourth two-fluid sprayer 6d, and the seventh two-fluid sprayer 6g are located near the center in the height direction of the fifth heat exchange portion 14e of the outdoor heat exchanger 14. It is arranged at the height position. The first two-fluid sprayer 6a is disposed at a position closest to the rear-side left side surface portion 84 of the wind tunnel 8 described later among the plurality of two-fluid sprayers 6. The 7th 2 fluid sprayer 6g is arrange | positioned in the position nearest to the back side right side surface part 83 of the wind tunnel 8 mentioned later among the some 2 fluid sprayers 6. FIG. The 4th 2 fluid sprayer 6d is arrange | positioned in the center vicinity in the left-right direction. The 2nd 2 fluid sprayer 6b and the 3rd 2 fluid sprayer 6c are arrange | positioned between the 1st 2 fluid sprayer 6a and the 4th 2 fluid sprayer 6d in the left-right direction. The second two-fluid sprayer 6b is disposed at a position higher than the height position of the first two-fluid sprayer 6a and the like, and the third two-fluid sprayer 6c is higher than the height position of the first two-fluid sprayer 6a and the like. Located in a low position. The fifth two-fluid sprayer 6e and the sixth two-fluid sprayer 6f are disposed between the fourth two-fluid sprayer 6d and the seventh second-fluid sprayer 6g in the left-right direction. The fifth two-fluid sprayer 6e is disposed at a position higher than the height position of the seventh second-fluid sprayer 6g and the like, and the sixth two-fluid sprayer 6f is higher than the height position of the seventh second-fluid sprayer 6g and the like. Located in a low position.
 図5は、二流体噴霧器6を示す断面図である。図6は、二流体噴霧器6のノズル62を示す断面図である。なお、中心軸Cを点線で示している。 FIG. 5 is a cross-sectional view showing the two-fluid sprayer 6. FIG. 6 is a sectional view showing the nozzle 62 of the two-fluid sprayer 6. The central axis C is indicated by a dotted line.
 図5に示すように、二流体噴霧器6は、第1混合胴体55と第2混合胴体56によって構成される気液混合部61と、ノズル62と、を有している。第1混合胴体55と第2混合胴体56とノズル62とは、気液混合水が流れる方向に並ぶように配置され、互いに連結されている。ノズル62は、例えば図5に示すような支持部材57によって支持されており、支持部材57は、例えば、図示しないボルト等によって第1混合胴体55に対して締結固定される。本実施形態では、第1混合胴体55と第2混合胴体56とは、別々の部材として用いられているが、これらは一体的に形成されたものであってもよい。 As shown in FIG. 5, the two-fluid sprayer 6 includes a gas-liquid mixing unit 61 constituted by a first mixing body 55 and a second mixing body 56, and a nozzle 62. The 1st mixing body 55, the 2nd mixing body 56, and the nozzle 62 are arrange | positioned so that a gas-liquid mixed water may flow in a line, and are mutually connected. The nozzle 62 is supported by a support member 57 as shown in FIG. 5, for example, and the support member 57 is fastened and fixed to the first mixing body 55 by, for example, a bolt (not shown). In the present embodiment, the first mixing body 55 and the second mixing body 56 are used as separate members, but they may be formed integrally.
 第1混合胴体55には、液送配管93と接続される液体流路51と、気送配管91と接続される気体流路52と、液体流路51を流れる水と気体流路52を流れる空気を混合させる気液混合流路53と、を有している。気液混合流路53において生成された気液混合水は、第2混合胴体56内において軸方向に伸びる連絡流路54を介してノズル62に送られる。気液混合流路53および連絡流路54の内径は、後述するノズル62の上流小径流路58の内径よりも大きく、連絡流路54の内径は、気液混合流路53の内径よりも大きい。 In the first mixing body 55, the liquid flow path 51 connected to the liquid feed pipe 93, the gas flow path 52 connected to the air feed pipe 91, the water flowing through the liquid flow path 51, and the gas flow path 52 flow. And a gas-liquid mixing channel 53 for mixing air. The gas-liquid mixed water generated in the gas-liquid mixing channel 53 is sent to the nozzle 62 via the communication channel 54 extending in the axial direction in the second mixing body 56. The inner diameters of the gas-liquid mixing channel 53 and the communication channel 54 are larger than the inner diameter of the upstream small-diameter channel 58 of the nozzle 62 described later, and the inner diameter of the communication channel 54 is larger than the inner diameter of the gas-liquid mixing channel 53. .
 図7の上図は、図6におけるA-A線断面図であり、図7の下図は、図6におけるB-B線断面図である。なお、中心軸Cを点線で示している。 7 is a cross-sectional view taken along the line AA in FIG. 6, and the lower view of FIG. 7 is a cross-sectional view taken along the line BB in FIG. The central axis C is indicated by a dotted line.
 ノズル62は、流入口58aと、上流小径流路58と、下流大径流路59と、1つ又は複数の噴出孔68とを有する。流入口58aは、気液混合部61において生成された気液混合水をノズル62内部に導くための上流側端部の開口である。噴出孔68は、ノズル62から気液混合水が噴出する孔である。上流小径流路58と下流大径流路59は、ノズル62において流入口58aから噴出孔68までの流路を構成している。上流小径流路58は、下流大径流路59の非先端部63に直接接続されている流路である。 The nozzle 62 has an inlet 58a, an upstream small-diameter channel 58, a downstream large-diameter channel 59, and one or a plurality of ejection holes 68. The inflow port 58 a is an opening at the upstream end for guiding the gas-liquid mixed water generated in the gas-liquid mixing unit 61 into the nozzle 62. The ejection hole 68 is a hole through which the gas-liquid mixed water is ejected from the nozzle 62. The upstream small diameter flow path 58 and the downstream large diameter flow path 59 constitute a flow path from the inlet 58 a to the ejection hole 68 in the nozzle 62. The upstream small-diameter channel 58 is a channel directly connected to the non-tip portion 63 of the downstream large-diameter channel 59.
 ノズル62は、上流小径流路58、下流大径流路59および噴出孔68が形成された胴体を備えている。本実施形態では、ノズル62の前記胴体は、第1ノズル胴体62aと、第2ノズル胴体62bとを含んでいる。第1ノズル胴体62aの下流側端部は、第2ノズル胴体62bの上流側に設けられた凹部に嵌合されており、第1ノズル胴体62aと第2ノズル胴体62bが一体化されている。 The nozzle 62 includes a body in which an upstream small-diameter channel 58, a downstream large-diameter channel 59, and an ejection hole 68 are formed. In the present embodiment, the body of the nozzle 62 includes a first nozzle body 62a and a second nozzle body 62b. The downstream end of the first nozzle body 62a is fitted in a recess provided on the upstream side of the second nozzle body 62b, and the first nozzle body 62a and the second nozzle body 62b are integrated.
 上流小径流路58は、ノズル62の第1ノズル胴体62aに設けられた貫通孔の内周面によって区画されており、内径が一定の部位である。上流小径流路58は、後述する下流大径流路59の非先端部63よりも内径が小さい部位である。このように上流小径流路58は、ノズル62の軸方向に平行に内径が一定のままで伸びており、下流大径流路59の非先端部63よりも内径が小さい部位であるので、気液混合部61を流れるときに比べて、上流小径流路58では、気液混合水は流速が高められ且つ流動様式が安定しやすくなっている。 The upstream small-diameter channel 58 is defined by an inner peripheral surface of a through hole provided in the first nozzle body 62a of the nozzle 62, and is a portion having a constant inner diameter. The upstream small-diameter channel 58 is a portion having an inner diameter smaller than that of the non-tip portion 63 of the downstream large-diameter channel 59 described later. As described above, the upstream small-diameter channel 58 extends in parallel with the axial direction of the nozzle 62 while maintaining a constant inner diameter, and is a portion having a smaller inner diameter than the non-tip portion 63 of the downstream large-diameter channel 59. Compared to when flowing through the mixing portion 61, in the upstream small-diameter channel 58, the flow rate of the gas-liquid mixed water is increased and the flow mode is more stable.
 下流大径流路59は、ノズル62の第1ノズル胴体62aの出口側端面と、ノズル62の第2ノズル胴体62bに設けられた凹部の内周面64と、凹部の先端面66とによって区画されている。下流大径流路59は、内径が軸方向において一定の大径上流部分59aと、内径が先端側(噴出孔68側)に向かうにつれて小さくなる大径下流部分59bと、を有する。 The downstream large-diameter channel 59 is partitioned by the outlet side end surface of the first nozzle body 62a of the nozzle 62, the inner peripheral surface 64 of the recess provided in the second nozzle body 62b of the nozzle 62, and the tip surface 66 of the recess. ing. The downstream large-diameter channel 59 has a large-diameter upstream portion 59a whose inner diameter is constant in the axial direction, and a large-diameter downstream portion 59b that decreases in diameter toward the distal end side (the ejection hole 68 side).
 先端面66は、図6に一点鎖線の曲線の矢印で示すように下流大径流路59に流入した気液混合水が下流大径流路59の先端側において衝突する面である。先端面66は、ノズル62の軸方向(上流小径流路58の中心軸C)に対して交わる方向に伸びる面である。ノズル62の先端面66は、先端に向かうにつれて先細りするテーパー面66aと、テーパー面66aの先端に接続されている平面66bとによって構成されている。平面66bは、テーパー面66aの円形の先端を塞ぐように下流大径流路59の先端の位置に設けられており、ノズル62の軸方向(上流小径流路58の中心軸C)に対して直交する方向に伸びる面である。 The tip surface 66 is a surface on which the gas-liquid mixed water that has flowed into the downstream large-diameter channel 59 collides with the tip side of the downstream large-diameter channel 59 as indicated by a dashed-dotted curve arrow in FIG. The tip surface 66 is a surface extending in a direction intersecting with the axial direction of the nozzle 62 (the central axis C of the upstream small diameter flow path 58). The tip surface 66 of the nozzle 62 includes a tapered surface 66a that tapers toward the tip, and a flat surface 66b connected to the tip of the tapered surface 66a. The plane 66b is provided at the position of the tip of the downstream large-diameter channel 59 so as to block the circular tip of the tapered surface 66a, and is orthogonal to the axial direction of the nozzle 62 (the central axis C of the upstream small-diameter channel 58). It is the surface that extends in the direction to do.
 噴出孔68は、テーパー面66aと平面66bとの境界近傍におけるテーパー面66aに設けられている。 The ejection hole 68 is provided in the tapered surface 66a in the vicinity of the boundary between the tapered surface 66a and the flat surface 66b.
 下流大径流路59は、上流小径流路58の内径よりも大きな内径を有する非先端部63を含んでいる。また、先端部65は、図7の下図に点線で示す円よりも軸方向先端側の部分であり、上流小径流路58の内径と同等以下になっている。非先端部63は、大径上流部分59aの全体と大径下流部分59bの一部によって構成されており、先端部65は、大径下流部分59bの残部(すなわち大径下流部分59bの先端部)によって構成されている。したがって、上流小径流路58を流出した気液混合水は、まず、非先端部63に流入し、非先端部63において径方向外側に広がりながら先端面66に向かって流れ、先端面66に勢いよく衝突し、このときの衝撃によって下流大径流路59(主に非先端部63)において例えば渦状に激しく流動する。これにより、下流大径流路59内において水中の大きな空気塊が微細な多数の気泡に分解されるので、下流大径流路59内の気液混合水は、例えば気泡流又はこれに近い流動状態となる。 The downstream large-diameter channel 59 includes a non-tip portion 63 having an inner diameter larger than the inner diameter of the upstream small-diameter channel 58. Further, the tip portion 65 is a portion on the tip side in the axial direction from the circle indicated by the dotted line in the lower diagram of FIG. 7, and is equal to or less than the inner diameter of the upstream small-diameter channel 58. The non-tip portion 63 is constituted by the whole large-diameter upstream portion 59a and a part of the large-diameter downstream portion 59b, and the tip portion 65 is the remaining portion of the large-diameter downstream portion 59b (that is, the tip portion of the large-diameter downstream portion 59b). ). Therefore, the gas-liquid mixed water that has flowed out of the upstream small-diameter channel 58 first flows into the non-tip portion 63, flows toward the tip surface 66 while spreading outward in the radial direction at the non-tip portion 63, and urges the tip surface 66. It collides well, and, due to the impact at this time, it violently flows, for example, in a spiral shape in the downstream large-diameter channel 59 (mainly the non-tip portion 63). Thereby, since a large air mass in water is decomposed into a large number of fine bubbles in the downstream large-diameter channel 59, the gas-liquid mixed water in the downstream large-diameter channel 59 is, for example, a bubble flow or a fluid state close thereto. Become.
 噴出孔68は、ノズル62の先端部において、下流大径流路59とノズル62の外部(二流体噴霧器6の外部)とを連通する貫通孔によって構成されている。 The ejection hole 68 is constituted by a through hole that communicates the downstream large-diameter channel 59 and the outside of the nozzle 62 (outside of the two-fluid sprayer 6) at the tip of the nozzle 62.
 次に、ノズル62の上流小径流路58の長さおよび内径と、下流大径流路59の長さおよび内径との関係について説明する。 Next, the relationship between the length and inner diameter of the upstream small-diameter channel 58 of the nozzle 62 and the length and inner diameter of the downstream large-diameter channel 59 will be described.
 図6に示すように、上流小径流路58の軸方向の長さL1は、下流大径流路59の軸方向の長さL2よりも大きく、上流小径流路58の長さL1と下流大径流路59の長さL2の比(L1/L2)は、1.0よりも大きく4.5よりも小さいことが好ましい。これにより、平均粒子径60μm以下に微粒化された水滴を噴霧することができる。また、平均粒子径をさらに小さくする観点からは、長さの比(L1/L2)が1.27以上3.45以下の範囲にあることが好ましい。非先端部63の内径の最大値D2と上流小径流路58の内径の最大値D1の比(D2/D1)は、例えば1.1よりも大きく20よりも小さくすることができ、1.5以上10.7以下の範囲にあることがより好ましい。特に限定されないが、例えば、上流小径流路58の長さL1を5.0mm~38.8mmの範囲とし、下流大径流路59の長さL2を2.9mm~12.9mmの範囲とし、上流小径流路58の内径の最大値D1を0.6mm~2.0mmの範囲とし、下流大径流路59の内径の最大値D2を3.0mm~6.4mmの範囲とすることが好ましい。なお、噴出孔68の内径の下限は、0.4mm以上であるのが好ましく、0.6mm以上であるのがより好ましい。噴出孔68の内径の上限は、2.0mm以下であるのが好ましく、1.6mm以下であるのがより好ましい。 As shown in FIG. 6, the length L1 in the axial direction of the upstream small-diameter channel 58 is larger than the length L2 in the axial direction of the downstream large-diameter channel 59, and the length L1 of the upstream small-diameter channel 58 and the downstream large-diameter flow The ratio of the length L2 of the path 59 (L1 / L2) is preferably larger than 1.0 and smaller than 4.5. Thereby, the water droplet atomized by the average particle diameter of 60 micrometers or less can be sprayed. Further, from the viewpoint of further reducing the average particle diameter, the length ratio (L1 / L2) is preferably in the range of 1.27 or more and 3.45 or less. The ratio (D2 / D1) between the maximum value D2 of the inner diameter of the non-tip portion 63 and the maximum value D1 of the inner diameter of the upstream small diameter channel 58 can be made larger than 1.1 and smaller than 20, for example 1.5. More preferably, it is in the range of 10.7 or less. Although not particularly limited, for example, the length L1 of the upstream small-diameter channel 58 is set to a range of 5.0 mm to 38.8 mm, and the length L2 of the downstream large-diameter channel 59 is set to a range of 2.9 mm to 12.9 mm. The maximum value D1 of the inner diameter of the small-diameter channel 58 is preferably in the range of 0.6 mm to 2.0 mm, and the maximum value D2 of the inner diameter of the downstream large-diameter channel 59 is preferably in the range of 3.0 mm to 6.4 mm. In addition, it is preferable that the minimum of the internal diameter of the ejection hole 68 is 0.4 mm or more, and it is more preferable that it is 0.6 mm or more. The upper limit of the inner diameter of the ejection hole 68 is preferably 2.0 mm or less, and more preferably 1.6 mm or less.
 二流体噴霧器6に流入する水流量は、0.020L/分以上2.0L/分以下が好ましく、例えば0.040L/分~0.080L/分の範囲とすることができる。 The flow rate of water flowing into the two-fluid sprayer 6 is preferably 0.020 L / min to 2.0 L / min, and can be, for example, in the range of 0.040 L / min to 0.080 L / min.
 二流体噴霧器6に流入する空気流量は、1.0L/分以上50L/分以下が好ましく、例えば、3L/分~13L/分の範囲とすることができる。 The flow rate of air flowing into the two-fluid sprayer 6 is preferably 1.0 L / min or more and 50 L / min or less, and can be, for example, in the range of 3 L / min to 13 L / min.
 二流体噴霧器6の噴霧圧力の下限は、0.03MPa以上0.5MPa以下が好ましく、例えば0.04MPa~0.19MPaの範囲とすることができる。 The lower limit of the spray pressure of the two-fluid sprayer 6 is preferably 0.03 MPa or more and 0.5 MPa or less, and can be, for example, in the range of 0.04 MPa to 0.19 MPa.
 なお、上述の二流体噴霧器6について、液送ポンプ94および気送ポンプ92が運転されると、液送配管93を通じて二流体噴霧器6の気液混合部61に水が供給されるとともに、気送配管91を通じて気液混合部61にガス(空気)が供給される。これにより、気液混合部61において気液混合水が生成される。生成された気液混合水は、ノズル62に案内される。 Regarding the above-described two-fluid sprayer 6, when the liquid feed pump 94 and the air feed pump 92 are operated, water is supplied to the gas-liquid mixing unit 61 of the two-fluid sprayer 6 through the liquid feed pipe 93 and the air feed is also performed. Gas (air) is supplied to the gas-liquid mixing unit 61 through the pipe 91. As a result, gas-liquid mixed water is generated in the gas-liquid mixing unit 61. The generated gas-liquid mixed water is guided to the nozzle 62.
 ノズル62に案内された気液混合水は、上流小径流路58において流速が高められるとともに流動様式が例えば環状流又はこれに近い流動様式に変化し、下流大径流路59に流入する。下流大径流路59に流入した気液混合水は、非先端部63において径方向外側に広がりながら先端面66に向かって流れ、流速があまり減少していない勢いのあるうちに先端面66に衝突する。このときの衝撃によって下流大径流路59内において気液混合水は渦状に激しく流動する。これにより、下流大径流路59内において水中の大きな空気塊が微細な多数の気泡に分解されるので、下流大径流路59内の気液混合水は、例えば気泡流又はこれに近い流動状態となる。 The gas-liquid mixed water guided to the nozzle 62 is increased in flow velocity in the upstream small-diameter channel 58, and the flow mode is changed to, for example, an annular flow or a flow mode close thereto, and flows into the downstream large-diameter channel 59. The gas-liquid mixed water that has flowed into the downstream large-diameter channel 59 flows toward the tip surface 66 while spreading radially outward at the non-tip portion 63, and collides with the tip surface 66 while the flow velocity does not decrease so much. To do. Due to the impact at this time, the gas-liquid mixed water flows vigorously in a spiral shape in the downstream large-diameter channel 59. Thereby, since a large air mass in water is decomposed into a large number of fine bubbles in the downstream large-diameter channel 59, the gas-liquid mixed water in the downstream large-diameter channel 59 is, for example, a bubble flow or a fluid state close thereto. Become.
 このようにノズル62の噴出孔68から噴出する直前に、下流大径流路59において微細な多数の気泡が分散した気液混合水を安定して形成することができる。噴出孔68に到達した気液混合水は、多数の微細な気泡を含んでおり、これらの気泡とともに二流体噴霧器6の外部に噴霧される。多数の気泡を含む水が噴出孔68から噴霧されるとき又は噴出孔68から噴霧された後、気泡が膨張し、はじけることによって水滴が微細化される。 Thus, immediately before jetting from the jet hole 68 of the nozzle 62, gas-liquid mixed water in which a large number of fine bubbles are dispersed can be stably formed in the downstream large-diameter channel 59. The gas-liquid mixed water that has reached the ejection hole 68 contains a large number of fine bubbles, and is sprayed to the outside of the two-fluid sprayer 6 together with these bubbles. When water containing a large number of bubbles is sprayed from the ejection holes 68 or after being sprayed from the ejection holes 68, the bubbles expand and repel, thereby making the water droplets finer.
 以上のようにして、二流体噴霧器6からは、SMD(ザウター平均粒子径)が30μm以上60μmである微細化された水滴を噴霧させることが可能になる。このように微細化された水滴を噴霧させることで、噴霧した水滴が室外熱交換器14に到達する前に実質的に全て(例えば70質量%以上)を蒸散させることが可能になり、室外熱交換器14に送られる空気を冷却することができると共に、室外熱交換器14における腐食を生じさせにくくすることが可能になっている。 As described above, the two-fluid sprayer 6 can spray fine water droplets having an SMD (Sauter average particle diameter) of 30 μm or more and 60 μm. By spraying the water droplets thus refined, substantially all (for example, 70% by mass or more) can be evaporated before the sprayed water droplets reach the outdoor heat exchanger 14, and the outdoor heat The air sent to the exchanger 14 can be cooled, and corrosion in the outdoor heat exchanger 14 can be made difficult to occur.
 (5)風洞
 本実施形態の室外ユニット2は、室外熱交換器14のうち左側面側と右側面側と背面側を構成している第2熱交部分14b、第3熱交部分14c、第4熱交部分14d、第5熱交部分14e、第6熱交部分14f、第7熱交部分14gに対して外気を導くように、主として室外ユニット2における背面側に伸びた風洞8が設けられている。そして、風洞8内には、上述のように二流体噴霧器6aが配置されており、室外熱交換器14に対して空気流れ風上側において水滴が噴霧され、当該水滴が蒸散することにより、室外熱交換器14のうちの第2熱交部分14b、第3熱交部分14c、第4熱交部分14d、第5熱交部分14e、第6熱交部分14f、第7熱交部分14gに対して、冷却された空気を供給することができる。
(5) Wind tunnel The outdoor unit 2 of the present embodiment includes a second heat exchange part 14b, a third heat exchange part 14c, a second heat exchange part 14c, and a second heat exchange part 14c that constitute the left side, right side, and back side of the outdoor heat exchanger 14. A wind tunnel 8 extending mainly on the back side of the outdoor unit 2 is provided so as to guide outside air to the fourth heat exchange part 14d, the fifth heat exchange part 14e, the sixth heat exchange part 14f, and the seventh heat exchange part 14g. ing. In the wind tunnel 8, the two-fluid sprayer 6 a is arranged as described above, and water droplets are sprayed on the windward side of the air flow with respect to the outdoor heat exchanger 14, and the water droplets evaporate, thereby the outdoor heat. For the second heat exchange part 14b, the third heat exchange part 14c, the fourth heat exchange part 14d, the fifth heat exchange part 14e, the sixth heat exchange part 14f, and the seventh heat exchange part 14g of the exchanger 14. Can supply cooled air.
 風洞8は、室外機ケーシング30の背面側(背面パネル34、第2支柱31b、第3支柱31cよりも背面側)の部分を構成する背面側延伸部80と、背面側延伸部80と連続した部分を有しており背面側延伸部80よりも前側において主として室外機ケーシング30の左右の側面を覆っている前面側延伸部70と、を有している。 The wind tunnel 8 is continuous with the back-side extending portion 80 and the back-side extending portion 80 that constitute a portion of the outdoor unit casing 30 on the back side (the back side with respect to the back panel 34, the second column 31b, and the third column 31c). And a front side extending portion 70 that mainly covers the left and right side surfaces of the outdoor unit casing 30 on the front side of the rear side extending portion 80.
 背面側延伸部80は、前後方向に伸びた四角筒状の形状を有しており、背面側上面部81と、背面側底面部82と、背面側右側面部83と、背面側左側面部84と、を有している。 The back-side extending portion 80 has a square cylindrical shape extending in the front-rear direction, and includes a back-side top surface portion 81, a back-side bottom surface portion 82, a back-side right-side surface portion 83, and a back-side left-side surface portion 84. ,have.
 背面側上面部81は、第2支柱31bよりもさらに左側から第3支柱31cよりもさらに右側に到るまでの間において背面パネル34の下方から背面側に向けて広がるようにして伸びており、法線方向が鉛直方向である面を構成している。背面側上面部81は、平面視において略長方形の形状を有している。 The back side upper surface portion 81 extends from the lower side of the back panel 34 toward the back side from the left side of the second column 31b to the right side of the third column 31c. It constitutes a plane whose normal direction is the vertical direction. The back-side upper surface portion 81 has a substantially rectangular shape in plan view.
 背面側底面部82は、背面側上面部81と対面しており、第2支柱31bよりもさらに左側から第3支柱31cよりもさらに右側に到るまでの間において背面基礎脚36b近傍から背面側に向けて広がるようにして伸びており、法線方向が鉛直方向である面を構成している。背面側底面部82は、平面視において略長方形の形状を有している。 The back side bottom surface part 82 faces the back side top surface part 81, and from the vicinity of the back base leg 36b to the back side from the left side further than the second column 31b to the right side than the third column 31c. It extends so as to extend toward the surface, and constitutes a surface whose normal direction is the vertical direction. The back side bottom surface portion 82 has a substantially rectangular shape in plan view.
 背面側右側面部83は、背面側上面部81の右側端部と背面側底面部82の右側端部とを上下方向に繋ぐように広がっており、法線方向が水平方向となる面である。背面側右側面部83は、第2支柱31bの左側端部近傍から背面側に伸びている。 The back side right side surface part 83 spreads so as to connect the right side edge part of the back side top surface part 81 and the right side edge part of the back side bottom surface part 82 in the vertical direction, and the normal direction is a surface in the horizontal direction. The back side right side surface portion 83 extends from the vicinity of the left end of the second support column 31b to the back side.
 背面側左側面部84は、背面側右側面部83と対面しており、背面側上面部81の左側端部と背面側底面部82の左側端部とを上下方向に繋ぐように広がっており、法線方向が水平方向となる面である。背面側左側面部84は、第3支柱31cの右側端部近傍から背面側に伸びている。 The back side left side 84 faces the back side right side 83 and extends so as to connect the left end of the back side top 81 and the left end of the back side 82 in the vertical direction. It is a surface in which the line direction is the horizontal direction. The back side left side 84 extends from the vicinity of the right end of the third support column 31c to the back side.
 前面側延伸部70は、背面側延伸部80と右前側において連続している右前面側延伸部70aと、背面側延伸部80と左前側において連続している左前面側延伸部70bと、を有している。 The front side extending part 70 includes a right front side extending part 70a continuous with the back side extended part 80 on the right front side, and a left front side extending part 70b continuous with the back side extended part 80 on the left front side. Have.
 右前面側延伸部70aは、右前面側の上面部71と、右前面側の底面部72と、右前面側の側面部73と、右前面側の前面部74と、を有している。 The right front side extending portion 70a has a right front side upper surface portion 71, a right front side bottom surface portion 72, a right front side surface portion 73, and a right front side front portion 74.
 右前面側の上面部71は、背面側上面部81と同一平面上において、背面側上面部81と右前側において繋がるようにして伸びている。右前面側の上面部71は、室外機ケーシング30の右側面と対応する位置において、法線方向が鉛直方向となるように広がっている。右前面側の底面部72は、右前面側の上面部71と対面するようにして設けられており、背面側底面部82と同一平面上において、背面側底面部82と右前側において繋がるようにして伸びている。右前面側の底面部72は、室外機ケーシング30の右側面と対応する位置において、法線方向が鉛直方向となるように広がっている。右前面側の側面部73は、室外機ケーシング30の右側面と対面するように設けられており、背面側右側面部83と同一平面上に広がっている。右前面側の側面部73は、背面側右側面部83の上下方向の幅と同じ幅を有しており、背面側右側面部83の前面側端部からさらに前面側に向けて、室外機ケーシング30の前面と同じ位置まで伸びている。右前面側の前面部74は、室外機ケーシング30の前面側と同一面上であって、第1支柱31aの右側端部から右前面側の側面部73の前側端部に到るまでの間で広がっており、法線方向を前後方向とする面である。右前面側の前面部74の上下方向の幅は、右前面側の側面部73の上下方向の幅と対応している。 The upper surface portion 71 on the right front side extends on the same plane as the rear surface side upper surface portion 81 so as to be connected to the rear surface side upper surface portion 81 on the right front side. The upper surface portion 71 on the right front side extends so that the normal direction is the vertical direction at a position corresponding to the right side surface of the outdoor unit casing 30. The bottom surface portion 72 on the right front surface side is provided so as to face the top surface portion 71 on the right front surface side, and is connected to the back surface bottom surface portion 82 and the right front side on the same plane as the back surface bottom surface portion 82. Is growing. The bottom surface portion 72 on the right front surface extends at a position corresponding to the right surface of the outdoor unit casing 30 such that the normal direction is the vertical direction. The side surface portion 73 on the right front side is provided so as to face the right side surface of the outdoor unit casing 30 and extends on the same plane as the back side right side surface portion 83. The side part 73 on the right front side has the same width as the width in the vertical direction of the back side right side part 83, and the outdoor unit casing 30 extends further from the front side end of the back side right side part 83 toward the front side. It extends to the same position as the front of the. The front part 74 on the right front side is flush with the front side of the outdoor unit casing 30 and extends from the right end of the first support column 31a to the front end of the side part 73 on the right front side. It is a surface having the normal direction as the front-rear direction. The vertical width of the front surface portion 74 on the right front surface side corresponds to the vertical width of the side surface portion 73 on the right front surface side.
 左前面側延伸部70bは、左前面側の上面部76と、左前面側の底面部77と、左前面側の側面部78と、左前面側の前面部79と、を有している。 The left front side extending portion 70b includes a left front side upper surface 76, a left front side bottom surface 77, a left front side surface 78, and a left front side front 79.
 左前面側の上面部76は、背面側上面部81と同一平面上において、背面側上面部81と左前側において繋がるようにして伸びている。左前面側の上面部71は、室外機ケーシング30の左側面と対応する位置において、法線方向が鉛直方向となるように広がっている。左前面側の底面部77は、左前面側の上面部76と対面するようにして設けられており、背面側底面部82と同一平面上において、背面側底面部82と左前側において繋がるようにして伸びている。左前面側の底面部77は、室外機ケーシング30の左側面と対応する位置において、法線方向が鉛直方向となるように広がっている。左前面側の側面部78は、室外機ケーシング30の左側面と対面するように設けられており、背面側左側面部84と同一平面上に広がっている。左前面側の側面部78は、背面側左側面部84の上下方向の幅と同じ幅を有しており、背面側左側面部84の前面側端部からさらに前面側に向けて、室外機ケーシング30の前面と同じ位置まで伸びている。左前面側の前面部79は、室外機ケーシング30の前面側と同一面上であって、第4支柱31dの左側端部から左前面側の側面部78の前側端部に到るまでの間で広がっており、法線方向を前後方向とする面である。左前面側の前面部79の上下方向の幅は、左前面側の側面部78の上下方向の幅と対応している。 The upper surface portion 76 on the left front surface extends on the same plane as the rear surface upper surface portion 81 so as to be connected to the rear surface upper surface portion 81 on the left front side. The upper surface portion 71 on the left front side extends at a position corresponding to the left side surface of the outdoor unit casing 30 so that the normal direction is the vertical direction. The bottom surface portion 77 on the left front surface side is provided so as to face the top surface portion 76 on the left front surface side, and is connected to the back surface bottom surface portion 82 on the left front side on the same plane as the back surface bottom surface portion 82. Is growing. The bottom surface portion 77 on the left front side extends at a position corresponding to the left side surface of the outdoor unit casing 30 so that the normal direction is the vertical direction. The side surface 78 on the left front side is provided so as to face the left side surface of the outdoor unit casing 30 and extends on the same plane as the back side left side surface portion 84. The side portion 78 on the left front side has the same width as the width in the vertical direction of the back side left side 84, and the outdoor unit casing 30 further extends from the front side end of the back side left side 84 toward the front side. It extends to the same position as the front of the. The front part 79 on the left front side is flush with the front side of the outdoor unit casing 30 and extends from the left end of the fourth support 31d to the front end of the side part 78 on the left front side. It is a surface having the normal direction as the front-rear direction. The vertical width of the front surface portion 79 on the left front side corresponds to the vertical width of the side surface portion 78 on the left front surface side.
 ここで、本実施形態では、風洞8は、第3熱交部分14cから右前面側の側面部73までの左右方向における距離(図4において「x」で示す距離)が、第5熱交部分14eから背面側延伸部80の空気流れの風上側端部までの距離(図3、図4において「b」で示す距離)よりも短くなるように構成されている。また、同様に、風洞8は、第7熱交部分14gから左前面側の側面部78までの左右方向における距離(図4において「x」で示す距離)が、第5熱交部分14eから背面側延伸部80の空気流れの風上側端部までの距離(図3、図4において「b」で示す距離)よりも短くなるように構成されている。また、図4において「x」で示す部分の距離は、50mm以上であり、且つ、第5熱交部分14eから背面側延伸部80の空気流れの風上側端部までの距離(図3、図4において「b」で示す距離)よりも短いことが好ましい。 Here, in the present embodiment, the wind tunnel 8 has a distance in the left-right direction (a distance indicated by “x” in FIG. 4) from the third heat exchange portion 14c to the side portion 73 on the right front surface side. 14e is configured to be shorter than the distance (the distance indicated by “b” in FIGS. 3 and 4) from the windward end of the air flow of the back side extending portion 80. Similarly, the wind tunnel 8 has a distance in the left-right direction (a distance indicated by “x” in FIG. 4) from the seventh heat exchange portion 14g to the side surface portion 78 on the left front surface side from the fifth heat exchange portion 14e. It is comprised so that it may become shorter than the distance (distance shown by "b" in FIG. 3, FIG. 4) to the windward side edge part of the airflow of the side extending | stretching part 80. FIG. In addition, the distance of the portion indicated by “x” in FIG. 4 is 50 mm or more, and the distance from the fifth heat exchange portion 14e to the windward side end portion of the air flow of the rear side extending portion 80 (FIG. 3, FIG. 4 is preferably shorter than the distance indicated by “b”.
 ここで、図4において左右の「x」で示す部分の距離は、本実施形態では同一であるが、互いに異なる長さとなるように構成されていてもよい。 Here, the distance between the left and right “x” in FIG. 4 is the same in the present embodiment, but may be configured to have different lengths.
 また、本実施形態における風洞8と室外熱交換器14との関係としては、室外熱交換器14の第3熱交部分14cや第7熱交部分14gにおいても水滴の蒸散により得られる冷却空気を供給しやすくする観点から、例えば、左右方向における第5熱交部分14eの幅(W2)/左右方向における背面側延伸部80の幅(W1)が、0.5以上0.9以下の範囲となっていることが好ましい。 Moreover, as a relationship between the wind tunnel 8 and the outdoor heat exchanger 14 in the present embodiment, cooling air obtained by transpiration of water droplets also in the third heat exchange portion 14c and the seventh heat exchange portion 14g of the outdoor heat exchanger 14 is used. From the viewpoint of facilitating supply, for example, the width (W2) of the fifth heat exchange portion 14e in the left-right direction / the width (W1) of the back side extending portion 80 in the left-right direction is in the range of 0.5 to 0.9. It is preferable that
 本実施形態において、二流体噴霧器6は、いずれも室外熱交換器14の第5熱交部分14eに対して空気流れ風上側に配置されており、室外熱交換器14の第3熱交部分14cと右前面側の側面部73との間には配置されておらず、室外熱交換器14の第7熱交部分14gと左前面側の側面部78との間にも配置されていない。 In the present embodiment, each of the two-fluid sprayers 6 is disposed on the airflow upstream side of the fifth heat exchange portion 14 e of the outdoor heat exchanger 14, and the third heat exchange portion 14 c of the outdoor heat exchanger 14. Is not disposed between the seventh heat exchange portion 14g of the outdoor heat exchanger 14 and the side surface portion 78 on the left front surface side.
 (6)水滴の大きさと噴霧位置の関係
 空中に浮遊できる程度の大きさの液滴であって、室外熱交換器14に到達して室外熱交換器14において腐食を生じさせにくいようにできるだけ早期に蒸散させることができ、室外熱交換器14への供給空気の冷却による省エネ効果を相殺してしまうようなエネルギを用いることなく生成することができる液滴の大きさとしては、30μm以上60μm以下の液滴を主として含んだ状態(70重量%以上含んだ状態)で液滴を噴霧することが好ましい。当該大きさの水滴は、液送ポンプ94および/または気送ポンプ92における出力を調節することで得られる。
(6) Relationship between the size of the water droplet and the spray position The droplet is of a size that can float in the air and reaches the outdoor heat exchanger 14 to prevent corrosion in the outdoor heat exchanger 14 as early as possible. The size of the droplets that can be produced without using energy that can be evaporated and that offsets the energy-saving effect of cooling the supply air to the outdoor heat exchanger 14 is 30 μm or more and 60 μm or less. It is preferable to spray the liquid droplets in a state mainly containing the liquid droplets (a state containing 70% by weight or more). Water droplets of this size can be obtained by adjusting the output of the liquid feed pump 94 and / or the air feed pump 92.
 なお、液滴の大きさは、例えば、位相ドップラー式レーザー粒子分析器を用いて、SMD(ザウター平均粒子径)を求めることにより測定することができる。 The size of the droplet can be measured, for example, by obtaining SMD (Sauter average particle diameter) using a phase Doppler laser particle analyzer.
 ここで、室外熱交換器14に到達させる前に液滴を蒸散させるためには、二流体噴霧器6と室外熱交換器14との距離をできるだけ確保することが望ましい。ここで、二流体噴霧器6と室外熱交換器14との距離を長く確保する場合には、二流体噴霧器6から噴霧された水滴が風洞8の風上側(室外熱交換器14側とは反対側)の外部に向けて飛散していってしまうことが生じにくいように、二流体噴霧器6よりもさらに空気流れ風上側まで風洞8を伸ばして配置することが望ましい。ところが、このように二流体噴霧器6と室外熱交換器14との距離をできるだけ確保しつつ風洞8の風上側に水滴が飛散していってしまうことを抑制するということは、風洞8が空気流れ方向に長くなり、巨大化することに繋がり、設置スペースが広く必要になってしまうことが問題になる。 Here, in order to evaporate the droplets before reaching the outdoor heat exchanger 14, it is desirable to secure the distance between the two-fluid sprayer 6 and the outdoor heat exchanger 14 as much as possible. Here, when a long distance between the two-fluid sprayer 6 and the outdoor heat exchanger 14 is secured, water droplets sprayed from the two-fluid sprayer 6 are on the windward side of the wind tunnel 8 (on the side opposite to the outdoor heat exchanger 14 side). ), It is desirable to extend the wind tunnel 8 further to the windward side of the air flow than the two-fluid sprayer 6 so as not to be scattered toward the outside. However, in this way, the distance between the two-fluid sprayer 6 and the outdoor heat exchanger 14 is ensured as much as possible while suppressing water droplets from being scattered on the windward side of the wind tunnel 8. It becomes a problem that it becomes longer in the direction, leading to enlarging, and requiring a large installation space.
 そこで、できるだけ少ないエネルギで生成される液滴として30μm以上60μm以下の平均粒径を有する水滴を噴霧させ、当該水滴を、噴霧された水滴の大部分(例えば80重量%以上)を風洞8の風上側から外部に向けて飛散させることなく風洞8の内部で蒸散させるために、風洞8は、二流体噴霧器6の設置位置よりもさらに空気流れ方向の300mm以上900mm以下分だけ風上側に伸びていることが好ましい。風洞8は、二流体噴霧器6の設置位置よりもさらに空気流れ方向の400mm以上800mm以下分だけ風上側に伸びていることがより好ましい。 Therefore, water droplets having an average particle size of 30 μm or more and 60 μm or less are sprayed as droplets generated with as little energy as possible, and the majority of the sprayed water droplets (for example, 80% by weight or more) are winded in the wind tunnel 8. In order to evaporate inside the wind tunnel 8 without scattering from the upper side to the outside, the wind tunnel 8 extends further to the windward side by 300 mm or more and 900 mm or less in the air flow direction than the installation position of the two-fluid sprayer 6. It is preferable. It is more preferable that the wind tunnel 8 extends further to the windward side by 400 mm or more and 800 mm or less in the air flow direction than the installation position of the two-fluid sprayer 6.
 また、二流体噴霧器6から噴霧された水滴を、室外熱交換器14に向かう空気流れの全体において蒸散させることができるように、二流体噴霧器6の配置は室外熱交換器14に近すぎないことが好ましく、例えば、室外熱交換器14から100mm以上離れていることがより好ましく、200mm以上離れていることがさらに好ましい。 Further, the arrangement of the two-fluid sprayer 6 should not be too close to the outdoor heat exchanger 14 so that water droplets sprayed from the two-fluid sprayer 6 can be evaporated in the entire air flow toward the outdoor heat exchanger 14. For example, the distance from the outdoor heat exchanger 14 is more preferably 100 mm or more, and further preferably 200 mm or more.
 (7)本実施形成の特徴
  (7-1)
 本実施形態の室外ユニット2では、室外熱交換器14の第5熱交部分14eの風上側において二流体噴霧器6から噴霧された水滴を、室外熱交換器14のうちの第5熱交部分14eに対してだけでなく、室外熱交換器14の左右の側面を構成する第3熱交部分14cや第7熱交部分14gに対しても供給することが可能になっている。
(7) Features of this embodiment (7-1)
In the outdoor unit 2 of the present embodiment, water droplets sprayed from the two-fluid sprayer 6 on the windward side of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 are converted into the fifth heat exchange portion 14e of the outdoor heat exchanger 14. It is possible to supply not only to the third heat exchange portion 14c and the seventh heat exchange portion 14g constituting the left and right side surfaces of the outdoor heat exchanger 14.
 そして、上記実施形態では、室外熱交換器14の第3熱交部分14cの右側や第7熱交部分14gの左側においては、二流体噴霧器6からの水滴の噴霧が行われないが、このような箇所から水滴の噴霧が行われない構成であっても、室外熱交換器14の第5熱交部分14eの風上側において二流体噴霧器6から噴霧された水滴が蒸散することで得られる冷却空気を、室外熱交換器14の第5熱交部分14eだけでなく、第5熱交部分14eの広がる面と交差する面上で広がっている室外熱交換器14の第3熱交部分14cや第7熱交部分14gにも供給することが可能になっている。 And in the said embodiment, although the spray of the water droplet from the two fluid sprayer 6 is not performed on the right side of the 3rd heat exchange part 14c of the outdoor heat exchanger 14, or the left side of the 7th heat exchange part 14g, such Cooling air obtained by the evaporation of water droplets sprayed from the two-fluid sprayer 6 on the windward side of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 even when the water droplets are not sprayed from various locations. The third heat exchange portion 14c of the outdoor heat exchanger 14 and the third heat exchange portion 14c extending on the surface intersecting the surface of the fifth heat exchange portion 14e as well as the fifth heat exchange portion 14e of the outdoor heat exchanger 14 It is also possible to supply 7 heat exchange portions 14g.
 これにより、室外熱交換器14の第5熱交部分14eの風上側において噴霧された水滴による冷却空気によって得られる凝縮効率向上効果を、室外熱交換器14のうち水滴の噴霧が行われた側の面だけでなくそれ以外の面においても得ることが可能になる。 Thereby, the condensation efficiency improvement effect obtained by the cooling air by the water droplet sprayed on the windward side of the fifth heat exchange portion 14e of the outdoor heat exchanger 14 is the side of the outdoor heat exchanger 14 where the water droplet is sprayed. It can be obtained not only on the surface but also on other surfaces.
  (7-2)
 本実施形態の室外ユニット2の風洞8は、第3熱交部分14cから右前面側の側面部73までの左右方向における距離(図4において「x」で示す距離)が、第5熱交部分14eから背面側延伸部80の空気流れの風上側端部までの距離(図3、図4において「b」で示す距離)よりも短くなるように構成されている。また、第7熱交部分14gから左前面側の側面部78までの左右方向における距離(図4において「x」で示す距離)についても、第5熱交部分14eから背面側延伸部80の空気流れの風上側端部までの距離(図3、図4において「b」で示す距離)よりも短くなるように構成されている。
(7-2)
The wind tunnel 8 of the outdoor unit 2 of the present embodiment has a fifth heat exchange portion in which the distance in the left-right direction from the third heat exchange portion 14c to the side portion 73 on the right front side (the distance indicated by “x” in FIG. 4) is 14e is configured to be shorter than the distance (the distance indicated by “b” in FIGS. 3 and 4) from the windward end of the air flow of the back side extending portion 80. Further, regarding the distance in the left-right direction from the seventh heat exchange portion 14g to the side surface portion 78 on the left front surface side (the distance indicated by “x” in FIG. 4), the air from the fifth heat exchange portion 14e to the back side extension portion 80 It is comprised so that it may become shorter than the distance (distance shown by "b" in FIG. 3, FIG. 4) to the windward end part of a flow.
 このため、室外熱交換器14のうち第5熱交部分14eの風上側において噴霧された水滴による冷却効果を第5熱交部分14e以外の部分でも得つつ、風洞8を含めた室外ユニット2の左右方向の幅をコンパクトにすることが可能になる。これにより、設置に要するスペースを小さくすることが可能になる。 For this reason, the cooling effect by the water droplet sprayed on the windward side of the fifth heat exchange portion 14e in the outdoor heat exchanger 14 is obtained also in portions other than the fifth heat exchange portion 14e, and the outdoor unit 2 including the wind tunnel 8 It becomes possible to make the width in the left-right direction compact. Thereby, the space required for installation can be reduced.
 また、上記実施形態の風洞8の背面側延伸部80は、二流体噴霧器6が設置されている箇所からさらに風上側に十分長く設けられているため、二流体噴霧器6から噴霧された水滴が風洞8の風上側から外部に漏れ出してしまうことを抑制しつつ、風洞8内部で水滴を蒸散させ、冷却空気を逃さずに用いることが可能になっている。 Moreover, since the back side extending portion 80 of the wind tunnel 8 of the above embodiment is provided sufficiently long on the windward side from the place where the two-fluid sprayer 6 is installed, water droplets sprayed from the two-fluid sprayer 6 are wind tunnels. It is possible to evaporate water droplets inside the wind tunnel 8 and to use the cooling air without escaping while suppressing leakage from the windward side 8 to the outside.
  (7-3)
 本実施形態の例による室外ユニット2において図4の「x」で示す距離が10mmである例、50mmである例、100mmである例、および、図8、図9、図10に示す比較対象の室外ユニット902、を対象として、室外熱交換器14の第3熱交部分14cや第7熱交部分14gにおける冷却空気による効果の程度について確認するシミュレーション、および、室外熱交換器14の各熱交部分14a~gにおける風速分布等を確認するシミュレーションを行った。
(7-3)
In the outdoor unit 2 according to the embodiment of the present embodiment, the distance indicated by “x” in FIG. 4 is 10 mm, the example is 50 mm, the example is 100 mm, and the comparison target shown in FIGS. For the outdoor unit 902, a simulation for confirming the degree of the effect of cooling air in the third heat exchange portion 14c and the seventh heat exchange portion 14g of the outdoor heat exchanger 14, and each heat exchange of the outdoor heat exchanger 14 A simulation for confirming the wind speed distribution in the portions 14a to 14g was performed.
 ここで、本実施形態の例による室外ユニット2では、図4の「x」で示す距離が10mmである例、50mmである例、100mmである例のいずれにおいても、図3および図4に示す「a」、「b」、「c」、「d」、「e」、「f」、「g」、「h」の各寸法を、それぞれ次の通りとした。すなわち、a=300mm、b=1000mm、c=1000mm、d=300mm、e=500mm、f=700mm、g=300mm、h=500mmとした。 Here, in the outdoor unit 2 according to the example of the present embodiment, the distance indicated by “x” in FIG. 4 is 10 mm, the example is 50 mm, and the example is 100 mm. The dimensions of “a”, “b”, “c”, “d”, “e”, “f”, “g”, and “h” were as follows. That is, a = 300 mm, b = 1000 mm, c = 1000 mm, d = 300 mm, e = 500 mm, f = 700 mm, g = 300 mm, h = 500 mm.
 また、比較対象の室外ユニット902では、風洞以外の構成は上記本実施形態の例による室外ユニット2と同様とし、図8、図9、図10に示すように、室外機ケーシング30の前後および左右の4方向に伸びた風洞908を有するものとした。比較対象の室外ユニット902の風洞908は、室外機ケーシング30の前後および左右の4方向において、それぞれ風洞908a、風洞908b、風洞908c、風洞908dを有している。ここで、比較対象の室外ユニット902では、図8、図9、図10に示す「j」、「k」、「l」、「m」、「n」、「o」、「p」の各寸法を、それぞれ次の通りとした。すなわち、j=300mm、k=1000mm、l=300mm、m=500mm、n=300mm、o=700mm、p=1000mmとした。 Moreover, in the outdoor unit 902 to be compared, the configuration other than the wind tunnel is the same as that of the outdoor unit 2 according to the example of the present embodiment, and as shown in FIGS. The wind tunnel 908 extends in the four directions. The wind tunnel 908 of the outdoor unit 902 to be compared has a wind tunnel 908a, a wind tunnel 908b, a wind tunnel 908c, and a wind tunnel 908d in the front and rear and left and right directions of the outdoor unit casing 30, respectively. Here, in the outdoor unit 902 to be compared, each of “j”, “k”, “l”, “m”, “n”, “o”, “p” shown in FIG. 8, FIG. 9, and FIG. The dimensions were as follows. That is, j = 300 mm, k = 1000 mm, l = 300 mm, m = 500 mm, n = 300 mm, o = 700 mm, and p = 1000 mm.
 なお、いずれも、二流体噴霧器6からは背面側に水滴が噴霧されるものとした。 In both cases, water droplets are sprayed from the two-fluid sprayer 6 to the back side.
 以上の室外熱交換器14における冷却効果の表面温度分布の様子を示すシミュレーション結果を、図11、図12に示す(図12は、図11と同じ結果を異なる角度から見た様子を示している。)。この図11、図12では、室外熱交換器14の表面温度によって色調を変えて示しており、高温領域、中温領域、低温領域の分布が生じていることを示している。 The simulation results showing the surface temperature distribution of the cooling effect in the outdoor heat exchanger 14 are shown in FIG. 11 and FIG. 12 (FIG. 12 shows the same result as FIG. 11 seen from different angles. .) In FIG. 11 and FIG. 12, the color tone is changed depending on the surface temperature of the outdoor heat exchanger 14, and the distribution of the high temperature region, the medium temperature region, and the low temperature region is generated.
 また、以下の表に、室外熱交換器14における表面温度の分布等を示すシミュレーション結果を示す。 Also, the following table shows the simulation results showing the surface temperature distribution and the like in the outdoor heat exchanger 14.
 ここで、「x」の長さが10mmである場合をCase1とし、「x」の長さが50mmである場合をCase2とし、「x」の長さが100mmである場合をCase3とし、比較対象の室外ユニット902をCase4とした。また、「熱交番号」の1~7は、それぞれ第1熱交部分14a~第7熱交部分14gに対応している。 Here, the case where the length of “x” is 10 mm is referred to as Case 1, the case where the length of “x” is 50 mm is referred to as Case 2, and the case where the length of “x” is 100 mm is referred to as Case 3. The outdoor unit 902 was referred to as Case 4. Further, “heat exchange numbers” 1 to 7 correspond to the first heat exchange portion 14a to the seventh heat exchange portion 14g, respectively.
Figure JPOXMLDOC01-appb-T000001
 以上の冷却効果のシミュレーション結果によれば、いずれの例についても、室外熱交換器14のうち第5熱交部分14eだけでなく、第3熱交部分14cや第7熱交部分14gにおいても冷却効果を得ることができていることが確認できた。
Figure JPOXMLDOC01-appb-T000001
According to the simulation results of the cooling effect described above, in any example, not only the fifth heat exchange portion 14e but also the third heat exchange portion 14c and the seventh heat exchange portion 14g of the outdoor heat exchanger 14 are cooled. It was confirmed that the effect could be obtained.
 さらに、以下に室外熱交換器14における風速分布等のシミュレーションの結果を示す。 Furthermore, the results of simulation such as wind speed distribution in the outdoor heat exchanger 14 are shown below.
Figure JPOXMLDOC01-appb-T000002
 以上のシミュレーション結果によれば、「x」の長さが10mm程度しか無い場合においては、第3熱交部分14cや第7熱交部分14gにおいて風速が小さくなってしまっており、当該箇所において十分な熱交換を行わせることができないおそれがあることが確認された。他方で、「x」の長さが50mm以上である場合には、第3熱交部分14cや第7熱交部分14gにおいても十分な風速が確保されることが確認された。
Figure JPOXMLDOC01-appb-T000002
According to the above simulation results, when the length of “x” is only about 10 mm, the wind speed is small in the third heat exchange portion 14c and the seventh heat exchange portion 14g, and the portion is sufficiently in the place. It was confirmed that there was a possibility that it was not possible to perform proper heat exchange. On the other hand, when the length of “x” is 50 mm or more, it was confirmed that a sufficient wind speed was secured also in the third heat exchange portion 14c and the seventh heat exchange portion 14g.
 (8)変形例
  (8-1)変形例A
 上記実施形態では、平面視において室外熱交換器14として、4面(第1熱交部分14a、第3熱交部分14c、第5熱交部分14e、第7熱交部分14g)を有している場合を例に挙げて説明した。
(8) Modification (8-1) Modification A
In the said embodiment, it has four surfaces (1st heat exchange part 14a, 3rd heat exchange part 14c, 5th heat exchange part 14e, 7th heat exchange part 14g) as the outdoor heat exchanger 14 in planar view. The case where it exists is described as an example.
 しかし、室外熱交換器としては、このような隣接する面と互いに交差するように設けられた4つの面を有しているものに限られず、例えば、3面のみを有するものであっても、2面のみを有するものであってもよい。これらの場合であっても、二流体噴霧器6が配置されている面と交差する面においても冷却空気を供給することが可能である。 However, the outdoor heat exchanger is not limited to one having four surfaces provided so as to intersect each other with such adjacent surfaces, for example, having only three surfaces, It may have only two surfaces. Even in these cases, it is possible to supply the cooling air even on the surface intersecting the surface where the two-fluid sprayer 6 is disposed.
  (8-2)変形例B
 上記実施形態では、二流体噴霧器6が室外熱交換器14側とは反対側に向けて水滴を放射状に噴霧するように構成されている場合について例に挙げて説明した。
(8-2) Modification B
In the above embodiment, the case where the two-fluid sprayer 6 is configured to spray water droplets radially toward the side opposite to the outdoor heat exchanger 14 side has been described as an example.
 しかし、二流体噴霧器6からの水滴の噴霧方向については、特に限定されず、室外熱交換器14との間における水滴の浮遊距離を長く設けることができるのであれば、二流体噴霧器6から室外熱交換器14側に向けて水滴を噴霧させるようにしてもよい。 However, the spraying direction of the water droplets from the two-fluid sprayer 6 is not particularly limited, and the outdoor heat from the two-fluid sprayer 6 can be used as long as the floating distance of the waterdrops with the outdoor heat exchanger 14 can be long. You may make it spray a water drop toward the exchanger 14 side.
  1  空気調和装置(冷凍装置)
  2  室外ユニット(熱源ユニット)
  6  二流体噴霧器(噴霧器)
  8  風洞
 14  室外熱交換器(熱交換器)
 14c 第3熱交部分(第2熱交換部、第3熱交換部)
 14e 第5熱交部分(第1熱交換部)
 14g 第7熱交部分(第3熱交換部、第2熱交換部)
 15  室外ファン(ファン)
 30  室外機ケーシング(ケーシング)
 70  前面側延伸部(第2延伸部、第3延伸部)
 73  右前面側の側面部(第2延伸部、第3延伸部)
 78  左前面側の側面部(第3延伸部、第2延伸部)
 80  背面側延伸部
 83  背面側右側面部(第1延伸部)
 84  背面側左側面部(第1延伸部)
1 Air conditioning equipment (refrigeration equipment)
2 Outdoor unit (heat source unit)
6 Two-fluid sprayer (sprayer)
8 Wind tunnel 14 Outdoor heat exchanger (heat exchanger)
14c 3rd heat exchange part (2nd heat exchange part, 3rd heat exchange part)
14e 5th heat exchange part (1st heat exchange part)
14g 7th heat exchange part (3rd heat exchange part, 2nd heat exchange part)
15 Outdoor fan (fan)
30 Outdoor unit casing (casing)
70 Front side extension part (second extension part, third extension part)
73 Side part on the right front side (second extending part, third extending part)
78 Side part on the left front side (third extension part, second extension part)
80 Back side extension part 83 Back side right side part (1st extension part)
84 Back side left side (first extension)
特開2013-76538号公報JP 2013-76538 A

Claims (7)

  1.  冷凍装置(1)の熱源ユニット(2)であって、
     第1面上に広がった第1熱交換部(14e)と、前記第1面に対して直交する第2面上に広がった第2熱交換部(14c、14g)と、を少なくとも有している熱交換器(14)と、
     前記熱交換器を通過させる空気流れを生じさせるファン(15)と、
     前記空気流れにおける前記第1熱交換部の風上側に向かって前記第1面と交差する方向に延びている第1延伸部(80、83、84)と、前記空気流れにおける前記第2熱交換部の風上側において前記第2熱交換部との間に隙間を確保しつつ広がっており、前記第1延伸部と連続している第2延伸部(70、73、78)と、を有する風洞(8)と、
     前記風洞内であって前記空気流れにおける前記第1熱交換部の風上側において水を噴霧する噴霧器(6)と、
    を備えた冷凍装置(1)の熱源ユニット(2)。
    A heat source unit (2) of the refrigeration apparatus (1),
    It has at least a first heat exchange part (14e) spread on the first surface and a second heat exchange part (14c, 14g) spread on a second surface orthogonal to the first surface. A heat exchanger (14),
    A fan (15) for creating an air flow through the heat exchanger;
    A first extending portion (80, 83, 84) extending in a direction intersecting the first surface toward the windward side of the first heat exchange portion in the air flow, and the second heat exchange in the air flow. A wind tunnel having a second extending portion (70, 73, 78) extending on the windward side of the portion while ensuring a gap with the second heat exchanging portion and continuing to the first extending portion (8) and
    A sprayer (6) for spraying water in the wind tunnel and on the windward side of the first heat exchange part in the air flow;
    A heat source unit (2) of a refrigeration apparatus (1) comprising:
  2.  前記風洞は、前記第2面の法線方向における前記第2熱交換部から前記第2延伸部までの距離が、前記第1面の法線方向における前記第1熱交換部から前記第1延伸部の前記空気流れの風上側端部までの距離よりも短い、
    請求項1に記載の冷凍装置の熱源ユニット。
    The wind tunnel has a distance from the second heat exchanging portion to the second extending portion in the normal direction of the second surface such that the distance from the first heat exchanging portion in the normal direction of the first surface to the first extending portion. Shorter than the distance to the windward end of the air flow of the part,
    The heat source unit of the refrigeration apparatus according to claim 1.
  3.  前記第2面の法線方向における前記第2熱交換部から前記第2延伸部までの距離は、50mm以上である、
    請求項2に記載の冷凍装置の熱源ユニット。
    The distance from the second heat exchange part to the second extension part in the normal direction of the second surface is 50 mm or more.
    The heat source unit of the refrigeration apparatus according to claim 2.
  4.  前記第2面の法線方向における前記第1延伸部の幅に対する前記第2面の法線方向における前記第1熱交換部の幅の比(前記第2面の法線方向における前記第1熱交換部の幅/前記第2面の法線方向における前記第1延伸部の幅)の値が、0.5以上0.9以下である、
    請求項1から3のいずれか1項に記載の冷凍装置の熱源ユニット。
    Ratio of the width of the first heat exchange part in the normal direction of the second surface to the width of the first extension part in the normal direction of the second surface (the first heat in the normal direction of the second surface) The value of the width of the exchange part / the width of the first extension part in the normal direction of the second surface) is 0.5 or more and 0.9 or less.
    The heat source unit of the refrigeration apparatus according to any one of claims 1 to 3.
  5.  前記第2熱交換部と前記第2延伸部との間の隙間空間では、水が噴霧されない、
    請求項1から4のいずれか1項に記載の冷凍装置の熱源ユニット。
    In the gap space between the second heat exchange part and the second extension part, water is not sprayed.
    The heat source unit of the refrigeration apparatus according to any one of claims 1 to 4.
  6.  前記第1熱交換部(14e)の前記空気流れの通過面積は、前記第2熱交換部(14c、14g)の前記空気流れの通過面積よりも広い、
    請求項1から5のいずれか1項に記載の冷凍装置の熱源ユニット。
    The air flow passage area of the first heat exchange part (14e) is wider than the air flow passage area of the second heat exchange part (14c, 14g),
    The heat source unit of the refrigeration apparatus according to any one of claims 1 to 5.
  7.  前記熱交換器は、前記第1面に対して直交しつつ前記第2面と対面する第3面上に広がった第3熱交換部(14g、14c)をさらに有しており、
     前記風洞は、前記空気流れにおける前記第3熱交換部の風上側において前記第3熱交換部との間に隙間を確保しつつ広がっており、前記第1延伸部と連続している第3延伸部(70、78、73)をさらに有している、
    請求項1から6のいずれか1項に記載の冷凍装置の熱源ユニット。
    The heat exchanger further includes a third heat exchanging portion (14g, 14c) extending on a third surface facing the second surface while being orthogonal to the first surface,
    The wind tunnel expands while securing a gap with the third heat exchange part on the windward side of the third heat exchange part in the air flow, and is continuous with the first extension part. Part (70, 78, 73),
    The heat source unit of the refrigeration apparatus according to any one of claims 1 to 6.
PCT/JP2016/073656 2015-08-21 2016-08-10 Refrigeration device-use heat source unit WO2017033756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680047843.4A CN107923634B (en) 2015-08-21 2016-08-10 The heat source unit of refrigerating plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015163961A JP6094646B2 (en) 2015-08-21 2015-08-21 Refrigeration unit heat source unit
JP2015-163961 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033756A1 true WO2017033756A1 (en) 2017-03-02

Family

ID=58099997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073656 WO2017033756A1 (en) 2015-08-21 2016-08-10 Refrigeration device-use heat source unit

Country Status (3)

Country Link
JP (1) JP6094646B2 (en)
CN (1) CN107923634B (en)
WO (1) WO2017033756A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080305B (en) * 2020-10-08 2021-06-15 杨松 Preparation method of special rotary rake roller for waste tire pyrolysis reaction furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287880A (en) * 2008-05-30 2009-12-10 Mitsubishi Electric Corp Water sprinkler for air conditioner
JP2013015256A (en) * 2011-07-04 2013-01-24 Ikeuchi:Kk Outdoor unit cooling device
JP2013148231A (en) * 2012-01-17 2013-08-01 Sharp Corp Outdoor unit for air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813342A (en) * 2010-03-09 2010-08-25 海信科龙电器股份有限公司 Power-saving spraying device for air conditioner and operating method thereof
JP5310917B2 (en) * 2011-09-30 2013-10-09 ダイキン工業株式会社 Air conditioner outdoor unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287880A (en) * 2008-05-30 2009-12-10 Mitsubishi Electric Corp Water sprinkler for air conditioner
JP2013015256A (en) * 2011-07-04 2013-01-24 Ikeuchi:Kk Outdoor unit cooling device
JP2013148231A (en) * 2012-01-17 2013-08-01 Sharp Corp Outdoor unit for air conditioner

Also Published As

Publication number Publication date
JP2017040460A (en) 2017-02-23
JP6094646B2 (en) 2017-03-15
CN107923634B (en) 2019-01-08
CN107923634A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US8650905B2 (en) Falling film evaporator
US20200248937A1 (en) Suction duct and multiple suction ducts inside a shell of a flooded evaporator
JP6031684B2 (en) Ejector and heat pump device using the same
JP2013224813A (en) Spot air conditioner
US9903623B2 (en) Ejector having an atomization mechanism and heat pump apparatus
CN101608642A (en) Sparger
WO2014144105A1 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
WO2013046689A1 (en) Outdoor unit for air conditioning device
JP5880019B2 (en) Air conditioner outdoor unit
JP6094646B2 (en) Refrigeration unit heat source unit
EP2865969A1 (en) Refrigeration-cycle equipment
JP2017040459A (en) Heat source unit of refrigeration device
CN104296550A (en) Gas refrigeration system
JP5998476B2 (en) Air conditioner
EP3141845B1 (en) Ejector and heat pump apparatus
JP2013002773A (en) Heat exchanger and air conditioner with the same
JP4529954B2 (en) Vapor compression refrigeration cycle
KR20180024577A (en) Heat exchanger
JP4027932B2 (en) Air conditioner
JP2015127596A (en) Outdoor equipment of air conditioner
JP2015192956A (en) Two-fluid atomizer and out-door unit of air conditioning equipment provided with the same
JP7085198B2 (en) Intake cooling device and intake cooling method
JP6887128B2 (en) Cooling system
CN201476422U (en) Condenser
JP2014126325A (en) Outdoor equipment of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839103

Country of ref document: EP

Kind code of ref document: A1