WO2013046689A1 - Outdoor unit for air conditioning device - Google Patents

Outdoor unit for air conditioning device Download PDF

Info

Publication number
WO2013046689A1
WO2013046689A1 PCT/JP2012/006183 JP2012006183W WO2013046689A1 WO 2013046689 A1 WO2013046689 A1 WO 2013046689A1 JP 2012006183 W JP2012006183 W JP 2012006183W WO 2013046689 A1 WO2013046689 A1 WO 2013046689A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
air
outdoor unit
unit
heat exchanger
Prior art date
Application number
PCT/JP2012/006183
Other languages
French (fr)
Japanese (ja)
Inventor
洋 楊
西村 忠史
衛 奥本
柴田 豊
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP12835730.8A priority Critical patent/EP2767767B1/en
Priority to ES12835730T priority patent/ES2747474T3/en
Priority to CN201280048026.2A priority patent/CN103857964B/en
Priority to US14/348,361 priority patent/US20140263765A1/en
Publication of WO2013046689A1 publication Critical patent/WO2013046689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/42Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of the condensate, e.g. for enhanced cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0491Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid the liquid and the gas being mixed at least twice along the flow path of the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers

Definitions

  • the present invention relates to an outdoor unit of an air conditioner.
  • an outdoor unit of an air conditioner equipped with a spray device that sprays water on a heat exchanger from a spray nozzle to assistly cool the heat exchanger is known.
  • this outdoor unit since the heat exchanger is cooled by the sprayed water, an effect of reducing power (power consumption) required for the air conditioner can be obtained.
  • the heat exchanger may corrode when droplets adhere to the surface of the heat exchanger.
  • Patent Document 1 discloses an outdoor unit provided with a fine mist generating nozzle.
  • the fine mist generating nozzle is provided at a position upstream of the heat exchanger and away from the heat exchanger, and generates fine mist having a particle size of 10 ⁇ m or less by simultaneously injecting air and water.
  • This Patent Document 1 describes that the fine mist ejected from the fine mist generating nozzle evaporates before reaching the heat exchanger, so that droplets can be prevented from adhering to the heat exchanger. .
  • the droplets are refined by applying shearing force to the water with the pressure of the air. A lot of power is needed. Therefore, the power reduction effect as the whole air conditioning apparatus may not be sufficiently obtained.
  • An object of the present invention is to provide an outdoor unit that can reduce the power of the entire air conditioner while suppressing corrosion of the heat exchanger.
  • An outdoor unit of an air conditioner includes a heat exchanger, and a spray nozzle that sprays water onto the air toward the heat exchanger, the spray nozzle including an air guide unit through which air flows, and water A water guide portion in which air flowing through the air guide portion flows into the water to form water containing a large number of bubbles, and is located downstream of the water guide portion in the water flow direction, A spray unit that sprays water containing a large number of bubbles formed in the water guide unit to the outside.
  • the outdoor unit 11 is used in an air conditioner.
  • This air conditioner includes an outdoor unit 11 shown in FIG. 1, an unillustrated indoor unit, and an unillustrated refrigerant pipe connecting them.
  • the outdoor unit 11 includes a case 12, a heat exchanger 13, a blower 14, a compressor 15, a spray device 20, an outside air temperature sensor 18, a control unit 16, and the like.
  • the heat exchanger 13, the blower 14, the compressor 15, and the control unit 16 are disposed in the case 12.
  • the blower 14, the compressor 15, and the spray device 20 are controlled by the control unit 16.
  • the compressor 15 and the heat exchanger 13 are provided in the refrigerant circuit of the air conditioner.
  • Examples of the heat exchanger 13 include, but are not limited to, a cross fin coil type heat exchanger.
  • the cross fin coil heat exchanger includes a heat transfer tube and a number of plate fins through which the heat transfer tube passes.
  • the refrigerant flows inside the heat transfer tube, and the outside air flows between the plate fins. As a result, the refrigerant and the outside air exchange heat.
  • the heat exchanger 13 extends upward from the bottom plate of the case 12 and has a substantially U shape in plan view. That is, the heat exchanger 13 is erected with respect to the installation surface (horizontal plane) of the outdoor unit 11.
  • the heat exchanger 13 is erected with respect to the installation surface (horizontal plane) of the outdoor unit 11.
  • three side plates facing the heat exchanger 13 are provided with suction ports (not shown) for sucking outside air into the case 12.
  • the top plate of the case 12 is provided with an air outlet 17 for blowing the air in the case 12 to the outside.
  • the blower 14 includes an impeller 14a and a motor (not shown) that rotates the impeller 14a.
  • the blower 14 is disposed in the outdoor unit 11 on the inner side in the horizontal direction than the heat exchanger 13 and on the upper side of the heat exchanger 13.
  • the air blower 14 is provided in the upper part in the case 12 as shown in FIG. 1, and is arrange
  • the air conditioner During operation of the air conditioner, power is applied to the compressor 15 so that the refrigerant circulates in the refrigerant circuit between the outdoor unit 11 and the indoor unit, and power is applied to the motor of the blower 14.
  • the impeller 14a rotates and outside air is sucked into the case 12 from the suction port.
  • the outside air sucked into the case 12 exchanges heat with the refrigerant in the heat exchanger 13 and then blows out to the outside of the case 12 through the air outlet 17.
  • the outside air sucked into the case 12 exchanges heat with a high-temperature and high-pressure refrigerant flowing in the heat transfer tube via the heat transfer tube in the heat exchanger 13 functioning as a condenser.
  • the outside air cools the heat transfer tubes and the refrigerant of the heat exchanger 13.
  • coolant which flows through the said heat exchanger tube is cooled and condensed.
  • the spraying device 20 can cool the outside air toward the heat exchanger 13 during the cooling operation. That is, the spray device 20 reduces the temperature of the outside air toward the heat exchanger 13. Thereby, the effect which cools the heat exchanger tube and the refrigerant
  • the spraying device 20 can enhance the cooling capacity of the air conditioner by cooling the heat exchanger 13 and the refrigerant in an auxiliary manner.
  • the spray device 20 includes a plurality of spray nozzles 21, a water supply mechanism 60, an air supply mechanism 70, and a charging mechanism 80 as a charging unit.
  • each spray nozzle 21 is located upstream of the heat exchanger 13 in the direction of the airflow formed when the impeller 14a of the blower 14 rotates.
  • each spray nozzle 21 is disposed outside and above the heat exchanger 13 in the outdoor unit 11 and is disposed in such a posture that droplets (water droplets in the present embodiment) are sprayed downward.
  • each spray nozzle 21 is arranged so that its axial direction is directed in a direction substantially orthogonal to the flow of outside air (air) in the substantially horizontal direction toward the heat exchanger 13.
  • the water droplets sprayed from each spray nozzle 21 travel downward while diffusing radially, and move toward the heat exchanger 13 by the air flow. All or most of the water droplets are vaporized before reaching the heat exchanger 13.
  • each spray nozzle 21 sprays water droplets downward, even when a large water droplet that is difficult to vaporize is sprayed, the water droplet is caused by the external air depending on the sprayed momentum and the gravity applied to the water droplet. It crosses down and falls downward (such as the installation surface of the outdoor unit 11). This prevents the large water droplets from adhering to the heat exchanger 13 and getting wet.
  • the plurality of spray nozzles 21 are provided on the three side plates 12 a, 12 b, and 12 c facing the heat exchanger 13 so that the cooling effect by the spray device 20 is exerted over almost the entire heat exchanger 13. , Are spaced apart from each other in the horizontal direction. Specifically, based on the range in which water droplets sprayed from each spray nozzle 21 diffuse, that is, the range in which the outside air toward the heat exchanger 13 is cooled by each spray nozzle 21, the plurality of spray nozzles 21 are arranged in the horizontal direction. For example, with an interval of about several tens of centimeters.
  • the range (horizontal range) in which water droplets diffuse from each spray nozzle 21 is, for example, about 50 cm
  • the width of the side plate 12a is, for example, about 100 cm
  • the width of the side plates 12b, 12c is about 30 cm.
  • two spray nozzles 21 are arranged on the side plate 12a with a space in the horizontal direction, and one spray nozzle 21 is arranged on each of the side plate 12b and the side plate 12c.
  • the height position of each spray nozzle 21 is the same.
  • the water supply mechanism 60 includes a liquid feed pipe 61 and a liquid feed pump 62.
  • the liquid feed pipe 61 connects a water supply source (not shown) such as water supply and each spray nozzle 21.
  • the liquid feed pipe 61 includes a conductive pipe 61a (a metal pipe 61a in the present embodiment) located on the upstream side of the flow of water and an insulating pipe 61b (a resin pipe 61b in the present embodiment) located on the downstream side. Including.
  • the liquid feed pump 62 sends water to each spray nozzle 21 through the liquid feed pipe 61.
  • the air supply mechanism 70 includes an air feed pump 72 such as a compressor and an air feed pipe 71, for example.
  • the air feed pipe 71 connects the air feed pump 72 and each spray nozzle 21.
  • the charging mechanism 80 includes a charging power source (high voltage power source) 81, wirings 82 and 83, and an output adjustment unit 84.
  • the wiring 82 connects the positive electrode of the charging power supply 81 and the tip of each spray nozzle 21.
  • the wiring 83 connects the negative electrode of the charging power supply 81 and the conductive pipe 61 a of the liquid feeding pipe 61. Thereby, the water (each water droplet) sprayed from the spray nozzle 21 is charged positively.
  • the positive electrode of the charging power supply 81 is grounded so that the spray nozzle 21 is at the ground potential.
  • the resin pipe 61 b is made of a synthetic resin material having electrical insulation, and is located on the downstream side of the connection portion between the wiring 83 and the liquid feed pipe 61.
  • the output adjustment unit 84 adjusts the output of the charging power supply 81.
  • FIG. 1 shows a state in which the water supply mechanism 60, the air supply mechanism 70, and the charging mechanism 80 are connected to one spray nozzle 21, and illustration of the other spray nozzles 21 is omitted.
  • the water supply mechanism 60, the air supply mechanism 70, and the charging mechanism 80 are connected to the other spray nozzles 21 in the same manner as the connection state shown in FIG. Specifically, for example, the liquid supply pipe 61 of the water supply mechanism 60 is branched in the middle and connected to the plurality of spray nozzles 21, and the air supply pipe 71 of the air supply mechanism 70 is branched in the middle of the plurality of spray nozzles 21. Connected to the spray nozzle 21.
  • the plurality of spray nozzles 21 are connected to the charging power supply 81 of the charging mechanism 80 in parallel, for example.
  • the outside temperature sensor 18 can detect the outside temperature. For example, when the outside air temperature sensor 18 detects that the outside air temperature has reached a predetermined temperature or more, the control unit 16 determines that the cooling operation load has exceeded a predetermined level, and the liquid feed pump 62. And the spraying of water is started from the some spray nozzle 21 by controlling the air feed pump 72. For example, the control unit 16 controls the liquid feed pump 62 and the air feed pump 72 so that water is sprayed from each spray nozzle 21 continuously or intermittently for a predetermined time. Further, the control unit 16 controls the output adjusting unit 84 of the charging mechanism 80 to apply a voltage to each spray nozzle 21 by the charging power supply 81 in order to charge the water droplet sprayed from each spray nozzle 21.
  • FIG. 3 is a cross-sectional view showing one of the plurality of spray nozzles 21.
  • the spray nozzle 21 has a body portion 10 and an orifice portion 50 located downstream of the body portion 10 (downstream side in the water flow direction).
  • the barrel portion 10 has a function of guiding water supplied from an unillustrated water supply source to the orifice portion 50 and a function of mixing fine bubbles in the water supplied to the barrel portion 10.
  • the trunk portion 10 of the present embodiment extends in the vertical direction (up and down direction), and the orifice portion 50 is disposed on the lower side thereof. That is, the trunk
  • the orifice unit 50 receives water mixed with bubbles in the body unit 10 and guided to the orifice unit 50, stably sends the bubbles mixed with water to the outside of the spray nozzle 21, and has a pressure difference before and after the orifice. It has a function of expanding the air bubbles coming out of the orifices to make the water droplets fine and spraying.
  • the barrel 10 has a cylindrical outer shape that is longer in the axial direction than in the radial direction. That is, the trunk portion 10 has a cylindrical outer shape extending in the vertical direction.
  • the body portion 10 includes an air guide tube (outer cylindrical portion) 31 having a tube wall formed in a tube shape, and a water guide tube having a tube wall formed in a tube shape and disposed inside the air guide tube 31. (Inner cylindrical part) 41. That is, the water guide pipe 41 is inserted into the air guide pipe 31.
  • the water guide tube 41 is provided with a plurality of air introduction holes 43a that penetrate the tube wall in the thickness direction.
  • An air supply portion 32 for supplying air to the air flow path F ⁇ b> 1 is provided on the tube wall of the air guide tube 31.
  • the air supply part 32 has a cylindrical shape in which an air supply hole 32a communicating with the air flow path F1 is formed. 1 is connected to the air supply unit 32.
  • the axial direction of the air guide tube 31 and the axial direction of the water guide tube 41 are the same. Further, these axes are located on substantially the same straight line. That is, the air guide pipe 31 and the water guide pipe 41 have pipe shapes that extend in the vertical direction, and are arranged so that their center axes coincide or substantially coincide.
  • the water guide tube 41 has a cylindrical shape with an inner diameter D1 and an outer diameter D2.
  • the air guide tube 31 has a cylindrical shape having an inner diameter D3, an outer diameter D4, and a length L1.
  • the inner diameter D3 of the air guide tube 31 is larger than the outer diameter D2 of the water guide tube 41.
  • the inner peripheral surface of the air guide tube 31 and the outer peripheral surface of the water guide tube 41 are separated from each other in the radial direction.
  • One end (downstream end: lower end in the present embodiment) of the air guide pipe 31 and one end (downstream end: lower end in the present embodiment) of the water guide pipe 41 are at substantially the same position in the axial direction.
  • the other end (upstream end: upper end in the present embodiment) of the water guide pipe 41 is positioned upstream of the other end (upstream end: upper end in the present embodiment) of the air guide pipe 31. ing. That is, the portion on the other end side of the water guide tube 41 protrudes upstream from the other end of the air guide tube 31.
  • One end (the lower end in the present embodiment) of the air flow path F1 is blocked by the orifice 50, and the other end (the upper end in the present embodiment) of the air flow path F1 is blocked by the closing member 33. ing.
  • the trunk portion 10 includes an air guide portion 30, a water guide portion 40, and a bubble forming portion 43.
  • the water guide portion 40 is a water flow path F ⁇ b> 2 defined by the inner peripheral surface of the tube wall of the water guide tube 41.
  • the air guide 30 is an air flow path F ⁇ b> 1 that is partitioned by the outer peripheral surface of the water guide tube 41 and the inner peripheral surface of the tube wall of the air guide tube 31.
  • the bubble forming part 43 has a plurality of air introduction holes 43a. The plurality of air introduction holes 43 a are arranged at intervals in the circumferential direction and the axial direction of the water guide tube (inner cylindrical portion) 41.
  • each air introduction hole 43 a is smaller than the diameter of the supply hole 32 a in the air supply unit 32.
  • the bubble forming part 43 is a cylindrical part of the water guide pipe 41 from the air introduction hole 43a located at the most upstream to the air introduction hole 43a located at the most downstream.
  • the water guide unit 40 arranges water and air supplied from the air guide unit 30 through the air introduction holes 43 a of the bubble forming unit 43 into the water guide unit 40 on the lower side of the body unit 10. It guides toward the orifice portion 50 that is formed (that is, water containing bubbles is directed vertically downward).
  • the orifice part 50 has a spray part 51 for generating a pressure difference before and after that to atomize and spray water droplets by expansion of bubbles, and a closing part 52 for closing one end of the air flow path F1.
  • the spray unit 51 of the present embodiment sprays the fine water droplets downward.
  • the closed part 52 is an annular area on the radially outer side, and the spray part 51 is an area on the radially inner side with respect to the closed part 52.
  • the blocking portion 52 has an inner surface (upstream surface) 52a that contacts one end of the air guide tube 31 and one end of the water guide tube 41 and closes one end of the air flow path F1.
  • the spray part 51 has a communication hole that allows the water flow path F2 and the outside of the spray nozzle 21 to communicate with each other.
  • the communication hole includes a tapered hole 51a having a tapered surface whose inner diameter decreases toward the downstream side, and a spray hole 51b that is located on the downstream side of the tapered hole 51a and sprays water.
  • the distance between the spray hole 51b and the heat exchanger 13 and the hole diameter of the spray hole 51b are such that all or most of the water droplets sprayed from the spray hole 51b evaporate (vaporize) while moving toward the heat exchanger 13.
  • Set to The diameter of the spray hole 51b is smaller than the diameter of the air introduction hole 43a described later.
  • the inner diameter of the upstream end of the tapered hole 51a is designed to be about the same as or slightly smaller than the inner diameter D1 of one end of the water guide pipe 41.
  • One end of the water guide pipe 41 and the upstream end of the tapered hole 51a are preferably connected without any step.
  • the axial length of the taper hole 51a is larger than the axial length L4 of the spray hole 51b.
  • the water flowing downstream through the tapered hole 51a along the tapered surface is gradually increased in flow rate and reaches the spray hole 51b.
  • the water that has reached the spray hole 51b contains a large number of fine bubbles, and is sprayed to the outside of the spray nozzle 21 together with these bubbles. When water containing a large number of bubbles is sprayed from the spray holes 51b or after being sprayed from the spray holes 51b, the bubbles expand and are repelled to make water droplets fine.
  • the spray nozzle 21 of the present embodiment includes a supply region A1 provided with an air supply hole 32a, a bubble formation region A2 provided with a plurality of air introduction holes 43a, and a large number of bubbles formed in the bubble formation region A2. And a guide region A3 that guides water containing the water to the spray unit 51.
  • the guide area A3 guides the water containing a large number of bubbles downward (specifically, the spray part 51 provided on the lower side of the body part 10).
  • the guide area A3 also functions as a dispersion area (mixing area) for dispersing a large number of bubbles mixed in water to some extent in water.
  • the guide area A3 is located between the bubble forming area A2 and the spraying part 51.
  • the bubble formation area A2 is located downstream of the supply area A1. That is, in the axial direction, the supply region A1, the bubble formation region A2, the guide region A3, and the spray unit 51 are arranged in the order downstream.
  • the length L2 of the bubble formation region A2 is larger than the inner diameter D1 of the water guide tube 41.
  • air is mixed in the water flowing through the water guide pipe 41 in a wide area in the axial direction. For this reason, it can be efficiently mixed in water in a state where a large number of bubbles are more dispersed.
  • the length L3 of the guide region A3 is larger than the inner diameter D1 of the water guide tube 41. Thereby, a large number of bubbles mixed in water in the bubble formation region A2 can be effectively dispersed in water in the guide region A3.
  • Examples of water supply sources include water supplies such as waterworks.
  • a liquid feed pipe 61 is connected to the upstream end of the water guide pipe 41.
  • the liquid feeding pipe 61 is connected to a water tap (not shown).
  • water tap not shown.
  • the liquid feed pump 62 and the air feed pump 72 are driven, water is sprayed from the spray nozzle 21.
  • the liquid feed pump 62 may be omitted, and water may be sprayed from the spray nozzle 21 using the water pressure of the tap water. In this case, the cost necessary for providing the liquid feed pump 62 and the running cost for driving the liquid feed pump 62 can be reduced.
  • the water supply source may be a tank in which water is stored. In this case, the liquid feed pipe 61 is connected to a water supply port provided in the tank.
  • the average particle diameter of the water droplets is preferably, for example, 25 ⁇ m or less (required evaporation time is about 0.3 seconds or less).
  • the average particle diameter of the water droplets can be adjusted by adjusting the hole diameter of the spray hole 51b, the hole diameter of the air introduction hole 43a, the pressure applied to the water flow path F2, the pressure applied to the air flow path F1, and the like.
  • the ratio between the water supply amount and the air supply amount is preferably 0.1 or less in weight ratio (weight of air / weight of water), for example. By adjusting the weight ratio within this range, the power required to supply air can be kept small.
  • weight ratio weight of air / weight of water
  • the weight ratio is 0.4 or more. For this reason, in the conventional two-fluid nozzle, the power required for supplying air becomes large.
  • FIG. 4 is a cross-sectional view showing the spray nozzle 21 in the outdoor unit 11 according to the second embodiment of the present invention.
  • the outdoor unit 11 according to the second embodiment is different from the outdoor unit 11 according to the first embodiment in the structure of the spray nozzle 21.
  • the same components as those in the first embodiment are denoted by the same reference numerals as those in FIG.
  • the spray nozzle 21 in the second embodiment is similar to the first embodiment in the supply area A1, the bubble formation area A2, and the bubble formation area A2 provided with the air supply holes 32a. And a guide region A3 that guides the water including a large number of formed bubbles to the spray unit 51.
  • the water guide tube 41 is provided with a bubble forming portion 43.
  • the bubble forming part 43 includes a porous part 42 made of a porous material.
  • the porous portion 42 is made of, for example, a foam metal.
  • the porous part 42 has a large number of air introduction holes 43a.
  • the bubble forming portion 43 refers to a region of the water guide tube 41 from the most upstream end to the most downstream end of the porous portion 42.
  • the porous portion 42 in the present embodiment has a cylindrical shape that has substantially the same diameter as other portions of the water guide tube 41, but is not limited thereto.
  • the water guide tube 41 may be provided with a plurality of porous portions 42 that are arranged independently of each other so as to be scattered in the circumferential direction and / or the direction in which the water guide tube 41 extends.
  • the porous part 42 has a large number of continuous pores (a large number of air introduction holes 43a) in which the pores are connected to each other. Therefore, the air flowing through the air flow path F1 flows into the water flow path F2 through the numerous air introduction holes 43a.
  • the porosity (void ratio) in the bubble formation region A2 can be increased as compared with the first embodiment.
  • FIG. 5 is a cross-sectional view showing the spray nozzle 21 in the outdoor unit 11 according to the third embodiment of the present invention.
  • the outdoor unit 11 according to the third embodiment is different from the outdoor unit 11 according to the first embodiment in the structure of the spray nozzle 21.
  • the spray nozzle 21 in the third embodiment includes an air guide part 30, a water guide part 40, a bubble forming part 43, and a spray part 51.
  • the water guide 40 includes a cylindrical water guide tube 44.
  • the air guide portion 30 includes a cylindrical air guide tube 34 connected to a side portion (tube wall) of the water guide tube 44.
  • the tip of the air guide tube 34 enters the inside of the water guide tube 44.
  • the spray unit 51 is provided at the tip (downstream end) of the water guide tube 44.
  • the spray nozzle 21 has an air flow path F1 and a water flow path F2.
  • the water flow path F ⁇ b> 2 is a space defined by the inner peripheral surface of the water guide tube 44.
  • the air flow path F ⁇ b> 1 is a space defined by the inner peripheral surface of the air guide tube 34.
  • the outer diameter of the air guide tube 34 is smaller than the outer diameter of the water guide tube 44.
  • the spray part 51 has a communication hole that allows the water flow path F2 and the outside of the spray nozzle 21 to communicate with each other.
  • the communication hole includes a tapered hole 51a having a tapered surface whose inner diameter becomes smaller toward the downstream side, and a spray hole 51b that is located downstream of the tapered hole 51a and sprays water to the outside.
  • FIG. 1 is connected to the upstream end of the air guide pipe 34, and the liquid supply pipe 61 shown in FIG. 1 is connected to the upstream end of the water guide pipe 44.
  • the air supplied from the air supply source flows through the air guide tube 34 and is introduced into the water flowing through the water guide tube 44 through the plurality of air introduction holes 43a.
  • FIG. 6A is a perspective view showing the air guide tube 34 of the spray nozzle 21 in the third embodiment.
  • the air guide tube 34 has a cylindrical shape in which the outer diameter and the inner diameter are substantially uniform in the axial direction.
  • the bubble forming portion 43 is located at the tip of the air guide tube 34.
  • the bubble forming part 43 is a circular plate-like body arranged so as to cover the opening at the tip of the air guide tube 34, and a plurality of air introduction holes 43a are scattered over almost the entire area of the plate-like body. Is formed.
  • the bubble forming portion 43 is disposed in the water flow path F ⁇ b> 2 of the water guide tube 44.
  • the air blown out from the plurality of air introduction holes 43a is easily miniaturized by the shearing force of the water flow. Therefore, compared with the case where air is blown downstream from the plurality of air introduction holes 43a in the direction parallel to the direction of water flow in the water flow path F2, the bubbles can be made finer.
  • FIG. 6B is a perspective view showing Modification 1 of the air guide tube 34.
  • the upstream side portion of the air guide tube 34 has a cylindrical shape with substantially uniform outer diameter and inner diameter in the axial direction, and the downstream side (tip side) portion of the air guide tube 34 is The outer diameter and the inner diameter increase toward the downstream side.
  • a bubble forming portion 43 having a plurality of air introduction holes 43 a is provided at the tip of the air guide tube 34.
  • the area of the bubble forming portion 43 of the plate-like body can be increased as compared with the form shown in FIG. 6 (A). Accordingly, in FIGS. 6A and 6B, when the number of the air introduction holes 43a is the same, in the first modification, the air introduction holes 43a are different from each other in the form shown in FIG. 6A. Since the interval between the bubbles can be increased, reaggregation of bubbles can be suppressed.
  • FIG. 6C is a perspective view showing a second modification of the air guide tube 34.
  • the air guide tube 34 has a cylindrical shape whose outer diameter and inner diameter are substantially uniform in the axial direction.
  • a bubble forming portion 43 is provided at the tip of the air guide tube 34.
  • the bubble forming portion 43 is a porous body (porous portion) made of a porous material.
  • the porous part has a large number of air introduction holes 43a.
  • the porous body is made of foam metal, for example.
  • the porous body has a large number of continuous pores (a large number of air introduction holes 43a) in which the pores are connected to each other.
  • the porosity (porosity) in the bubble forming portion 43 is increased as compared with the embodiment shown in FIGS. 6 (A) and 6 (B). Can do.
  • the spray nozzle 21 includes the air guide unit 30 through which air flows, the water guide unit 40 through which water flows, and the air of the air guide unit 30 in the water of the water guide unit 40.
  • a bubble forming part 43 that forms a large number of bubbles in water by flowing in, and is located downstream of the water guide part 40 in the water flow direction, and water containing a large number of bubbles in the water guide part 40 A spraying part 51 for spraying. For this reason, the motive power as the whole air conditioning apparatus can be reduced, suppressing the corrosion of a heat exchanger.
  • a double pipe structure in which the air guide pipe 31 is arranged so as to surround the outer periphery of the water guide pipe 41 provided with one or a plurality of air introduction holes 43a is adopted. Yes. Therefore, the spray nozzle 21 provided with the water guide part 40, the air guide part 30, and the bubble formation part 43 can be manufactured at low cost.
  • the air introduction hole 43a is provided in the circumferential direction of the water guide pipe 41, and the direction where the water guide pipe 41 extends mutually spaced apart.
  • the air introduction hole 43a is provided.
  • the resistance to allow air to flow into water is reduced, and the pressure required to allow air to flow into water can be set low. Thereby, motive power can further be reduced.
  • the bubble forming part 43 since the bubble forming part 43 includes the porous part 42 having the plurality of air introduction holes 43a, the porosity of the bubble forming part 43 can be increased. Thereby, the resistance when air is introduced into the water of the water guide pipe 41 through the bubble forming part 43 can be further reduced. Thereby, the pressure required to allow air to flow into water can be further reduced.
  • the second embodiment it is possible to reduce the variation in the hole diameters of the plurality of air introduction holes (43a) by forming the porous portion 42 from a foam metal. Thereby, since the diameter of the bubble formed in the bubble formation part 43 can be equalized to some extent, the dispersion
  • the third embodiment includes a water guide pipe 44 and an air guide pipe 34 connected to the water guide pipe 44 and provided with one or a plurality of air introduction holes 43a at an end portion on the water guide pipe 44 side.
  • the water guide section 40 includes a water flow path F2 defined by the inner peripheral surface of the water guide pipe 44
  • the air guide section 30 includes an air flow path F1 defined by the inner peripheral surface of the air guide pipe 34
  • the bubble forming part 43 includes one or a plurality of air introduction holes 43a.
  • the spray nozzle 21 can be formed with such a simple structure.
  • a charging mechanism 80 for charging water sprayed from the spray nozzle 21 is further provided.
  • Each water droplet sprayed from the spraying part 51 moves in the air in a charged state. Accordingly, the water droplets repel each other due to the electrostatic repulsive force, so that reaggregation of the water droplets is suppressed. Thereby, it can suppress that the diameter of a water droplet becomes large by re-aggregation. Moreover, since water droplets repel each other by an electrostatic repulsive force, a water droplet can be diffused in a wide range.
  • the water guide unit 40 guides water containing bubbles in the vertical direction. Thereby, since the uneven flow of water and air (bubbles) in the flow of water containing bubbles in the water guide unit 40 is suppressed, stable conditions in which sufficiently fine water droplets are stably sprayed from the spray unit 51. That is, the range in which sufficiently fine water droplets are stably sprayed even if the flow rate of water and air supplied to the spray nozzle 21 is changed is widened. That is, in the case where water containing bubbles is guided in the vertical direction, in the flow of water containing bubbles in the water guide section 40, as in the case where water containing bubbles is guided in another direction (for example, the horizontal direction).
  • the water guide part 40 guides the water containing air bubbles downward, and the spray part 51 sprays this downward. For this reason, compared with the case where the water guide part 40 guides the water containing air bubbles in another direction (for example, upward or horizontal direction) and the spray part 51 sprays this water in the same direction, the stable condition (spray part 51). From the above, the supply conditions such as water and air in which sufficiently fine water droplets are stably sprayed become the widest.
  • the large water droplet is sprayed downward, so that it is applied to the heat exchanger 13 by the sprayed momentum and the gravity applied to the water droplet. It falls downward (for example, the installation surface of the outdoor unit 11 or the like) across the air flow in the substantially horizontal direction. For this reason, the heat exchanger 13 is prevented from getting wet by the large water droplets.
  • each spray nozzle 21 sprays water droplets downward on the three side plates 12a, 12b, 12c facing the heat exchanger 13 and has the same height.
  • the present invention is not limited to this. Since the cooling effect by the spray device 20 only needs to be exerted almost uniformly over almost the entire heat exchanger 13, for example, each spray nozzle 21 has water droplets toward the heat exchanger 13 as in the outdoor unit 11A shown in FIG. (In other words, water droplets are sprayed along the flow of outside air toward the heat exchanger 13).
  • Specific examples are as follows.
  • Each spray nozzle 21 is arranged in a posture in which water droplets are sprayed toward the heat exchanger 13. That is, each spray nozzle 21 is arranged in a state where its axial direction is directed in a direction along the air flow (air flow) direction. Water droplets sprayed from each spray nozzle 21 move toward the heat exchanger 13 along the direction of the air flow while diffusing radially. All or most of the water droplets are vaporized before reaching the heat exchanger 13.
  • each spray nozzle 21 When each spray nozzle 21 is provided in the outdoor unit 11A in a posture in which water droplets are sprayed in the horizontal or slightly inclined direction as described above, the plurality of spray nozzles 21 are connected to the heat exchanger 13 as shown in FIG. It is preferable that the three side plates 12a, 12b, and 12c facing each other are arranged with a space therebetween. More specifically, based on the range in which the water droplets sprayed from each spray nozzle 21 diffuse, that is, the range in which the air toward the heat exchanger 13 is cooled by each spray nozzle 21, the plurality of spray nozzles 21 are mutually connected. For example, they are arranged so as to be scattered at intervals of about several tens of centimeters in the vertical direction and the horizontal direction.
  • each spray nozzle 21 the range in which water droplets diffuse from each spray nozzle 21 is, for example, about 50 cm in diameter
  • the width of the side plate 12a is, for example, about 100 cm
  • the width of the side plates 12b, 12c is about 30 cm
  • the height of each side plate The case where thickness is about 80 cm is illustrated.
  • the four spray nozzles 21 are arranged in the vertical direction and the horizontal direction on the side plate 12a, and the two spray nozzles 21 are arranged in the vertical direction on the side plate 12b and the side plate 12c, respectively.
  • the plurality of spray nozzles 21 are, for example, heat In some regions of the exchanger 13, the regions may be arranged in a biased manner so that a higher cooling effect can be obtained than in other regions. Specific examples are as follows.
  • FIG. 9 is a schematic diagram for explaining another arrangement example of the spray nozzle 21 with respect to the heat exchanger 13.
  • the heat exchanger 13 shown in FIG. 9 has three heat transfer tubes P1, P2, and P3.
  • the three heat transfer tubes P1, P2, P3 have mutually independent refrigerant paths.
  • Each heat transfer tube has a refrigerant path that is folded and meanders at both ends in the width direction of the heat exchanger 13.
  • a refrigerant inlet is provided at one end (right end in FIG. 9) of each heat transfer tube, and a refrigerant outlet is provided at the other end (left end in FIG. 9).
  • the spray nozzle 21 is intensively provided in a part of the region
  • the following forms may be mentioned.
  • a form in which the spray nozzles 21 are densely provided at a position facing the SB 3 is exemplified.
  • each spray nozzle 21 may be arranged so as to spray water droplets upward as shown in FIG.
  • each spray nozzle 21 is disposed outside and below the heat exchanger 13 in the outdoor unit 11B.
  • the water guide unit 40 guides water containing bubbles upward, and the spray unit 51 sprays water containing many bubbles guided by the water guide unit 40 upward.
  • the plurality of spray nozzles 21 are arranged to spray water droplets upward on the three side plates 12a, 12b, 12c facing the heat exchanger 13 and at the same height position (lower than the heat exchanger 13). Position), and are spaced apart from each other in the horizontal direction.
  • the water in the water flow including the bubbles in the water guide 40 is also obtained when the water guide 40 guides the water containing the bubbles upward and the spraying unit 51 sprays the water upward. And the water droplets sufficiently refined from the spraying part 51 are stably sprayed.
  • the spray nozzle 21 is directed upward from the lower side with respect to the flow of outside air toward the heat exchanger 13 having a wind speed distribution (wind speed distribution resulting from the positional relationship between the heat exchanger 13 and the blower 14) that flows faster toward the upper side. Since the water droplets are sprayed toward the heat exchanger 13, sufficient dwell times are secured for vaporization of the water droplets directed to the respective portions in the height direction of the heat exchanger 13 before reaching the portions of the heat exchanger 13. Details are as follows.
  • the outdoor unit 11B (see FIG. 10) in which the heat exchanger 13 is erected with respect to the installation surface (horizontal plane) and the blower 14 is disposed in the case 2 on the inner side in the horizontal direction and on the upper side of the heat exchanger 13. ),
  • the air flow toward the heat exchanger 13 is not uniform, and as shown in FIG. This is because the flow of air sucked in the suction port (not shown) provided in the side plates 12a, 12b, and 12c of the case 2 becomes faster toward the position closer to the blower 14 (upper side).
  • the horizontal arrow toward the heat exchanger 13 is formed when the air blower 14 discharges the air inside the outdoor unit 11B (case 2) to the outside (see the upward arrow in FIG. 11). This shows the flow of outside air (air) that flows toward the heat exchanger 13.
  • the length of each arrow indicating the air flow indicates the magnitude of the wind speed at the height position.
  • the entire water guide portion 40 has a shape that guides water in the vertical direction, but is not limited to this shape.
  • at least a portion corresponding to the guide region A3 in the water guide unit 40 may be configured to guide water in the vertical direction (downward in each of the above embodiments).
  • at least a part downstream of the bubble forming part 43 (more specifically, at least a part of the water guide pipe 41 downstream of the most downstream air introduction hole 43a). ) May be configured to guide water containing bubbles in the vertical direction toward the spray unit 51. According to such a configuration, there is an effect that uneven flow of air and water in the flow of water including bubbles in the water guide unit 40 is suppressed, and sufficiently fine water droplets are stably sprayed from the spray unit 51. can get.
  • the water sprayed from the spraying device 20 is charged by passing an electric current through the water supplied from the water supply mechanism 60 (energizing the water). It is not limited.
  • the water to be sprayed may be charged using electrostatic induction as shown in FIGS. 12 (A) and 12 (B), or by discharge in air as shown in FIG.
  • the sprayed water may be charged. Specifically, it is as follows.
  • FIG. 12A is a schematic diagram for explaining a first modification of the charging mechanism 80
  • FIG. 12B is an enlarged perspective view for explaining the spray nozzle 21 and the induction electrode 85.
  • the insulating pipe 61b as in the above embodiment may not be provided in the liquid feeding pipe 61 of the water supply mechanism 60 in the spray device 20. That is, the entire liquid feeding pipe 61 is formed by the conductive member. In the liquid feeding pipe 61, at least the portion from the portion where the electrode of the charging power supply 81 is connected to the spray nozzle 21 may be formed by a conductive member. For example, upstream of the portion where the electrode is connected. The side portion may be formed of an insulating member.
  • the charging mechanism 80 includes a charging power supply 81 and an induction electrode 85.
  • the charging power supply 81 has one electrode connected to the spray nozzle 21 and the other electrode connected to the induction electrode 85. Thereby, the charging power source 81 can apply a voltage between the spray nozzle 21 and the induction electrode 85.
  • a positive electrode is connected to the spray nozzle 21 and a negative electrode is connected to the induction electrode 85. Thereby, the water (each water droplet) sprayed from the spray nozzle 21 is charged positively.
  • the positive electrode of the charging power supply 81 is grounded so that the spray nozzle 21 is at the ground potential.
  • the induction electrode 85 is arranged at a predetermined interval from the spray nozzle 21, and causes electrostatic induction in water passing through the spray nozzle 21 when a predetermined voltage is applied between the spray nozzle 21.
  • the induction electrode 85 is an annular electrode having an inner diameter larger than the outer diameter of the spray nozzle 21 (see FIG. 12B).
  • This induction electrode 85 has the axis (center axis) of the spray nozzle 21 and the center axis of the induction electrode 85 coincident with each other, and the tip position of the spray nozzle 21 in the axial direction of the spray nozzle 21 or a slightly proximal side thereof. It is arranged at the position.
  • the induction electrode 85 may be disposed in front of the spray nozzle 21 (on the heat exchanger side) in the axial direction of the spray nozzle 21, but dirt or the like is generated in contact with the mist-like water sprayed by the spray nozzle 21. For this reason, it is preferable that the spray nozzle 21 is disposed at the distal end position or a slightly proximal end position.
  • electrostatic induction is generated in water passing through the spray nozzle 21 when the charging power source 81 applies a predetermined voltage (for example, 5000 V to 10000 V) between the spray nozzle 21 and the induction electrode 85.
  • a predetermined voltage for example, 5000 V to 10000 V
  • the water in this state is sprayed from the spray nozzle 21 so that each water droplet is charged.
  • FIG. 13 is a schematic diagram for explaining a second modification of the charging mechanism 80.
  • the liquid supply pipe 61 of the water supply mechanism 60 in the spray apparatus 20 of the type may not be provided with the insulating pipe as in the above embodiment.
  • the charging mechanism 80 includes a charging power supply 81 and a pair of discharge electrodes (a first discharge electrode 86 and a second discharge electrode 87).
  • the charging power supply 81 has a positive electrode connected to the first discharge electrode 86 and a negative electrode connected to the second discharge electrode 87.
  • the negative electrode is grounded so that the second discharge electrode 87 is at the ground potential. Thereby, the charging power supply 81 can apply a voltage between the first discharge electrode 86 and the second discharge electrode 87 (between a pair of discharge electrodes).
  • the pair of discharge electrodes 86 and 87 are arranged so as to sandwich an area through which mist-like water sprayed from the spray nozzle 21 passes.
  • the charging power source 81 applies a predetermined voltage (for example, 5000 V to 10000 V) between the pair of discharge electrodes 86 and 87, thereby discharging (for example, corona discharge) between the discharge electrodes 86 and 87.
  • a predetermined voltage for example, 5000 V to 10000 V
  • discharging for example, corona discharge
  • the charging mechanism 80 of each embodiment (charging mechanism for energizing water), as shown in FIG. 1, a voltage is applied between the spray nozzle 21 and the metal pipe 61a with the insulating pipe 61b interposed therebetween.
  • the water flowing through the insulating pipe 61b is energized.
  • the sprayed water is charged, but the position to be energized is not limited to this position.
  • the water supply mechanism 60 has a water supply source such as a tank
  • the water supply mechanism 60 may be charged by energizing the water stored in the water supply source and supply the charged water to the spray nozzle. Good.
  • charging is performed by energizing water, but it is not necessary to provide an insulating pipe in the water guide pipe of the water supply mechanism.
  • the spray device 20 includes the charging mechanism 80 as a charging unit has been described as an example.
  • the charging unit is not an essential configuration in the present invention and may be omitted. When the charging unit is omitted, it is not necessary to use the resin pipe 61b, and the entire liquid feed pipe 61 can be formed by the metal pipe 61a.
  • the guide area A3 is provided between the bubble forming area A2 and the spray unit 51 in the first embodiment and the second embodiment, but the guide area A3 may be omitted.
  • an air introduction hole 43a is formed in the water guide pipe 41 at a position in the vicinity of the tapered hole 51a.
  • the guide area A3 is provided as shown in FIG. 3
  • a large number of bubbles mixed in water are more easily dispersed in water than in the case where the guide area A3 is not provided. Therefore, more uniform water droplets can be sprayed from the spray unit 51.
  • blower 14 is located downstream of the heat exchanger 13 in the air flow direction, but the present invention is not limited to this.
  • the blower 14, the spray nozzle 21, and the heat exchanger 13 may be arranged in this order in the downstream direction.
  • porous portion 42 is formed of a foam metal
  • the porous portion 42 is not necessarily formed of a metal, and may be formed of, for example, a synthetic resin.
  • the air guide pipe (second guide pipe) 34 is connected to the side of the water guide pipe (first guide pipe) 44 is illustrated, but the present invention is not limited to this.
  • the air guide tube 34 may be connected to the end portion (upstream end portion) of the water guide tube 44 in the longitudinal direction. In this case, the direction in which the water guide tube 44 extends and the direction in which the air guide tube 34 extend are substantially in the same direction.
  • the power of the entire air conditioner can be reduced while suppressing corrosion of the heat exchanger. Specifically, it is as follows.
  • the water containing many bubbles is formed in the water guide part (40), and the water containing these many bubbles is sprayed from the spray part (51). At this time or after being sprayed from the spraying part (51), bubbles are repelled and droplets are made finer. Since the droplets thus made finer are easily vaporized (evaporated) before reaching the heat exchanger (13), the droplets are prevented from adhering to the heat exchanger (13). Thereby, corrosion of a heat exchanger (13) is suppressed.
  • the air toward the heat exchanger (13) is cooled by the latent heat (heat of vaporization). Therefore, since the temperature of the air passing through the heat exchanger (13) is lower than when water is not sprayed, it is necessary to drive the compressor, blower, etc. during the cooling operation of the air conditioner. Power can be reduced.
  • large power for injecting air into water at high speed is not required in the spray hole of the spray nozzle. That is, in this configuration, only the power for forming a large number of bubbles in the water flowing through the water guide portion (40) is required. The power required to send the power can be reduced. Thereby, the motive power as the whole air conditioning apparatus can be reduced effectively.
  • the water guide part (40) has a tube wall formed in a tube shape, and has one or more air introduction holes (43a) penetrating the tube wall in the thickness direction.
  • the air guide (30) has a tubular shape surrounding the outer periphery of the water guide (40).
  • the spray nozzle (21) can be manufactured at low cost.
  • the water guide part (40) has the plurality of air introduction holes (43a), and the plurality of air introduction holes (43a) are formed in the water guide part (40). It is preferable that it is provided at intervals in the circumferential direction and the direction in which the water guide portion (40) extends.
  • the plurality of air introduction holes (43a) are provided at intervals in the circumferential direction of the water guide portion (40) and the direction in which the water guide portion (40) extends.
  • air is made to flow into the water of the water guide part (40) from a plurality of parts spaced apart from each other in the circumferential direction and the direction in which the water guide part (40) extends. be able to. Accordingly, it is possible to efficiently disperse the bubbles in the water flowing through the water guide portion (40).
  • the resistance to allow air to flow into water is reduced, and the pressure required to allow air to flow into water is set low. be able to. Thereby, motive power can further be reduced.
  • the water guide part (40) has a tubular shape, and has a porous part (42) at least partially, and the air guide part (30) You may have the pipe shape surrounding the outer periphery of a guide part (40).
  • the water guide part (40) has the porous part (42), the diameters of the bubbles are easily uniformed, and variations in the diameters of the droplets sprayed in the spray part (51) can be reduced. .
  • the porous portion (42) can be exemplified by a form formed of a foam metal.
  • the porous portion (42) is formed of a foam metal. Since the porous portion (42) has a high porosity, it is possible to reduce resistance when air is introduced into the water of the water guide tube (41) through the porous portion (42). Thereby, the pressure required to allow air to flow into water can be reduced.
  • the water guide portion (40) has a tube shape
  • the air guide portion (30) has a tube shape
  • a tip end portion of the water guide portion (40). ) May be connected.
  • the spray nozzle 21 can be formed with a simple structure in which the air guide (30) is connected to the water guide (40).
  • the air guide part (30) preferably has a porous part (42) at its tip.
  • the air guide part (30) has the porous part (42), the diameters of the bubbles are easily made uniform, and variation in the diameters of the droplets sprayed in the spray part (51) can be reduced. .
  • the outdoor unit further includes a charging unit (80) for charging water sprayed from the spray nozzle (21).
  • each droplet sprayed from the spray section (51) moves in the air in a charged state. Therefore, since the droplets repel each other due to the electrostatic repulsive force, reaggregation of the droplets is suppressed. Thereby, it can suppress that the diameter of a droplet becomes large by re-aggregation. Further, since the droplets repel each other by the electrostatic repulsion force, the droplets can be diffused over a wide range.
  • the water guide section (40) guides water containing bubbles in the vertical direction.
  • the water guide part (40) guides the water containing bubbles in the vertical direction
  • the uneven flow of water and air (bubbles) in the flow of water containing the bubbles in the water guide part (40) can be suppressed.
  • the stable conditions for spraying sufficiently fine droplets from the spraying part (51) stably become wide. In other words, even if the flow rate of water and air supplied to the spray nozzle (21) is changed, the range in which sufficiently fine droplets are stably sprayed becomes wide.
  • the water containing bubbles in the water guide section (40) is used as in the case where the water containing bubbles is guided in another direction (for example, the horizontal direction).
  • air (bubbles) gathers on the upper side, and air and water are prevented from flowing unevenly (unevenly flowing).
  • the spray state is disturbed due to the drift in a wide range (if the droplets are not sufficiently refined, The unevenness of the size of the droplets is suppressed), and the sufficiently fine droplets are stably sprayed from the spraying part (51).
  • the spray nozzle (21) is more than the heat exchanger (13) in the outdoor unit (11).
  • the water guide part (40) is arranged outside and guides the water containing bubbles downward, and the spray part (51) is arranged below the water guide part (40) and the water.
  • the form which sprays the water containing the said many bubbles guided by the guide part (40) toward the downward direction is more preferable.
  • the water guide part (40) guides the water containing bubbles downward, and the spray part (51) sprays the water downward, so that the other direction (for example, upward or horizontal direction).
  • the stability condition becomes the widest. That is, the supply conditions such as water and air are such that the sufficiently fine droplets are stably sprayed from the spray section (51).
  • the outdoor unit (11) When the water guide part (40) contains bubbles and guides the water in the vertical direction, the outdoor unit (11) includes a blower (14) that forms a flow of air toward the heat exchanger (13), The blower (14) is disposed inside and above the heat exchanger (13) in the outdoor unit (11), flows into the outdoor unit (11), and the heat exchanger (13). The air after heat exchange is directed upward and discharged to the outside of the outdoor unit (11), and the spray nozzle (21) is arranged outside the heat exchanger (13) in the outdoor unit (11).
  • the water guide part (40) guides water containing bubbles upward, and the spray part (51) is disposed above the water guide part (40), and the water guide part (40) In the form of spraying upward the water containing the numerous bubbles guided by There may be.
  • the water guide part (40) also guides the water containing bubbles upward, and the spray part (51) sprays upwards, so that the bubbles in the guide part (40) are included.
  • the uneven flow of air and water in the water flow is suppressed, and sufficiently fine droplets are stably sprayed from the spray section (51).
  • the droplets directed toward the portion of the heat exchanger (13) at a height position where the wind speed is higher are closer to the heat exchanger from the spray nozzle (21).
  • the distance from the spray nozzle (21) to the relevant part of the heat exchanger (13) increases as the distance to the relevant part of (13) increases and the liquid droplets toward the part of the heat exchanger (13) at the height position where the wind speed is low Since the distance becomes small, a sufficient dwell time for vaporization is ensured in each droplet. Thereby, each droplet sprayed from the spray nozzle (21) is vaporized before reaching the heat exchanger (13), and as a result, the heat exchanger (13) is sprayed from the spray nozzle (21). It is prevented from getting wet by droplets.
  • the power of the entire air conditioner can be reduced while suppressing corrosion of the heat exchanger.

Abstract

The spray nozzle (21) of an outdoor unit (11) is provided with: an air guide section (30) through which air flows; a water guide section (40) through which water flows and which causes the air having flowed through the air guide section (30) to flow into water to form water which contains a large number of bubbles; and a spray section (51) which is located downstream of the water guide section (40) in the direction of water flow and which sprays to the outside the water having been formed by the water guide section (40) and containing a large number of bubbles.

Description

空気調和装置の室外機Air conditioner outdoor unit
 本発明は、空気調和装置の室外機に関する。 The present invention relates to an outdoor unit of an air conditioner.
 従来、水を噴霧ノズルから熱交換器に噴霧して熱交換器を補助的に冷却する噴霧装置を備えた空気調和装置の室外機が知られている。この室外機では、噴霧された水により熱交換器が冷却されるので、空気調和装置に必要とされる動力(消費電力)を削減する効果が得られる。この種の空気調和装置では、熱交換器の表面に液滴が付着すると熱交換器が腐食する場合がある。 Conventionally, an outdoor unit of an air conditioner equipped with a spray device that sprays water on a heat exchanger from a spray nozzle to assistly cool the heat exchanger is known. In this outdoor unit, since the heat exchanger is cooled by the sprayed water, an effect of reducing power (power consumption) required for the air conditioner can be obtained. In this type of air conditioner, the heat exchanger may corrode when droplets adhere to the surface of the heat exchanger.
 特許文献1には、微細ミスト発生ノズルが設けられた室外機が開示されている。この微細ミスト発生ノズルは、熱交換器の上流側で且つ熱交換器から離れた位置に設けられており、空気と水を同時に噴射することによって粒径10μm以下の微細ミストを発生させる。この特許文献1には、微細ミスト発生ノズルから噴射された微細ミストは、熱交換器に到達する前に蒸発するので、熱交換器に液滴が付着することを防止できる、と記載されている。 Patent Document 1 discloses an outdoor unit provided with a fine mist generating nozzle. The fine mist generating nozzle is provided at a position upstream of the heat exchanger and away from the heat exchanger, and generates fine mist having a particle size of 10 μm or less by simultaneously injecting air and water. This Patent Document 1 describes that the fine mist ejected from the fine mist generating nozzle evaporates before reaching the heat exchanger, so that droplets can be prevented from adhering to the heat exchanger. .
特開2008-128500号公報JP 2008-128500 A
 しかしながら、噴霧ノズルの噴霧孔において空気と水を同時に噴射する従来の二流体ノズルでは、空気の圧力で水に剪断力を加えて液滴を微細化しているので、高速の空気を噴射させるための大きな動力が必要になる。したがって、空気調和装置全体としての動力低減効果が十分に得られない場合がある。 However, in the conventional two-fluid nozzle that simultaneously injects air and water in the spray hole of the spray nozzle, the droplets are refined by applying shearing force to the water with the pressure of the air. A lot of power is needed. Therefore, the power reduction effect as the whole air conditioning apparatus may not be sufficiently obtained.
 本発明の目的は、熱交換器の腐食を抑制しつつ、空気調和装置全体としての動力を低減することができる室外機を提供することである。 An object of the present invention is to provide an outdoor unit that can reduce the power of the entire air conditioner while suppressing corrosion of the heat exchanger.
 本発明の空気調和装置の室外機は、熱交換器と、前記熱交換器に向かう空気に水を噴霧する噴霧ノズルと、を備え、前記噴霧ノズルは、空気が流れるエア案内部と、水が流れるとともに、前記エア案内部を流れる空気が水の中に流入して多数の気泡を含む水が形成される水案内部と、前記水案内部よりも水の流れ方向の下流側に位置し、前記水案内部において形成された多数の気泡を含む水を外部に噴霧する噴霧部と、を備えている。 An outdoor unit of an air conditioner according to the present invention includes a heat exchanger, and a spray nozzle that sprays water onto the air toward the heat exchanger, the spray nozzle including an air guide unit through which air flows, and water A water guide portion in which air flowing through the air guide portion flows into the water to form water containing a large number of bubbles, and is located downstream of the water guide portion in the water flow direction, A spray unit that sprays water containing a large number of bubbles formed in the water guide unit to the outside.
本発明の第1実施形態に係る室外機を示す概略図である。It is the schematic which shows the outdoor unit which concerns on 1st Embodiment of this invention. 前記室外機における熱交換器及び噴霧ノズルの配置状態を示す斜視図である。It is a perspective view which shows the arrangement | positioning state of the heat exchanger and spray nozzle in the said outdoor unit. 前記噴霧ノズルの断面図である。It is sectional drawing of the said spray nozzle. 本発明の第2実施形態に係る室外機における噴霧ノズルの断面図である。It is sectional drawing of the spray nozzle in the outdoor unit which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る室外機における噴霧ノズルの断面図である。It is sectional drawing of the spray nozzle in the outdoor unit which concerns on 3rd Embodiment of this invention. (A)は、第3実施形態における噴霧ノズルのエア案内管を示す斜視図であり、(B)は、エア案内管の変形例1を示す斜視図であり、(C)は、エア案内管の変形例2を示す斜視図である。(A) is a perspective view which shows the air guide tube of the spray nozzle in 3rd Embodiment, (B) is a perspective view which shows the modification 1 of an air guide tube, (C) is an air guide tube It is a perspective view which shows the modification 2 of. 本発明のその他の実施形態に係る室外機を示す概略図である。It is the schematic which shows the outdoor unit which concerns on other embodiment of this invention. 前記室外機における熱交換器及び噴霧ノズルの配置状態を示す斜視図である。It is a perspective view which shows the arrangement | positioning state of the heat exchanger and spray nozzle in the said outdoor unit. 前記熱交換器に対する噴霧ノズルの配置例を説明するための概略図である。It is the schematic for demonstrating the example of arrangement | positioning of the spray nozzle with respect to the said heat exchanger. 本発明のその他の実施形態に係る室外機を示す概略図である。It is the schematic which shows the outdoor unit which concerns on other embodiment of this invention. 前記室外機において熱交換器に向かう空気の流れの風速分布と、噴霧ノズルから熱交換器の各部位までの距離との関係を説明するための図である。It is a figure for demonstrating the relationship between the wind speed distribution of the flow of the air which goes to a heat exchanger in the said outdoor unit, and the distance from each spray nozzle to each site | part of a heat exchanger. (A)は、帯電機構の変形例1を説明するための概略図であり、(B)は、噴霧ノズル及び誘導電極を説明するための拡大斜視図である。(A) is the schematic for demonstrating the modification 1 of a charging mechanism, (B) is an expansion perspective view for demonstrating a spray nozzle and an induction electrode. 帯電機構の変形例2を説明するための概略図である。It is the schematic for demonstrating the modification 2 of a charging mechanism.
 <第1実施形態>
 以下、本発明の第1実施形態に係る室外機について図面を参照して説明する。
<First Embodiment>
Hereinafter, an outdoor unit according to a first embodiment of the present invention will be described with reference to the drawings.
 第1実施形態に係る室外機11は、空気調和装置に用いられる。この空気調和装置は、図1に示す室外機11と、図略の室内機と、これらを接続する図略の冷媒配管とを備えている。図1に示すように、室外機11は、ケース12、熱交換器13、送風機14、圧縮機15、噴霧装置20、外気温度センサ18、制御部16などを備えている。熱交換器13、送風機14、圧縮機15及び制御部16はケース12内に配置されている。送風機14、圧縮機15及び噴霧装置20は、制御部16により制御される。圧縮機15及び熱交換器13は、空気調和装置の冷媒回路に設けられている。 The outdoor unit 11 according to the first embodiment is used in an air conditioner. This air conditioner includes an outdoor unit 11 shown in FIG. 1, an unillustrated indoor unit, and an unillustrated refrigerant pipe connecting them. As shown in FIG. 1, the outdoor unit 11 includes a case 12, a heat exchanger 13, a blower 14, a compressor 15, a spray device 20, an outside air temperature sensor 18, a control unit 16, and the like. The heat exchanger 13, the blower 14, the compressor 15, and the control unit 16 are disposed in the case 12. The blower 14, the compressor 15, and the spray device 20 are controlled by the control unit 16. The compressor 15 and the heat exchanger 13 are provided in the refrigerant circuit of the air conditioner.
 熱交換器13としては、例えばクロスフィンコイル式の熱交換器が挙げられるが、これに限定されない。クロスフィンコイル式の熱交換器は、伝熱管と、伝熱管が貫通する多数のプレートフィンとを備えている。伝熱管の内部を冷媒が流れ、プレートフィン同士の間を外気が流れる。これにより、冷媒と外気とが熱交換する。 Examples of the heat exchanger 13 include, but are not limited to, a cross fin coil type heat exchanger. The cross fin coil heat exchanger includes a heat transfer tube and a number of plate fins through which the heat transfer tube passes. The refrigerant flows inside the heat transfer tube, and the outside air flows between the plate fins. As a result, the refrigerant and the outside air exchange heat.
 図2に示すように、熱交換器13は、ケース12の底板から上方に延びており平面視で略U字形状を有している。即ち、熱交換器13は、室外機11の設置面(水平面)に対して立設されている。ケース12の4つの側板のうち、熱交換器13に対向する3つの側板には、外気をケース12内に吸い込むための図略の吸込口が設けられている。また、ケース12の天板にはケース12内の空気を外部に吹き出すための吹出口17が設けられている。 As shown in FIG. 2, the heat exchanger 13 extends upward from the bottom plate of the case 12 and has a substantially U shape in plan view. That is, the heat exchanger 13 is erected with respect to the installation surface (horizontal plane) of the outdoor unit 11. Of the four side plates of the case 12, three side plates facing the heat exchanger 13 are provided with suction ports (not shown) for sucking outside air into the case 12. Further, the top plate of the case 12 is provided with an air outlet 17 for blowing the air in the case 12 to the outside.
 送風機(ファン)14としては、遠心送風機、軸流送風機、斜流送風機などを用いることができる。送風機14は、羽根車14aと、この羽根車14aを回転させる図略のモータとを備えている。送風機14は、室外機11において熱交換器13よりも水平方向内側で且つ熱交換器13よりも上側に配置されている。具体的には、送風機14は、図1に示すようにケース12内の上部に設けられており、図2に示す吹出口17の直下に配置されている。そして、送風機14は、室外機11(ケース12)の内部に流入して熱交換器13と熱交換した後の空気を上方に向けて、室外機11(ケース12)から外部に排出する。即ち、送風機14は、熱交換器13よりも空気の流れ方向の下流側に位置している。 As the blower (fan) 14, a centrifugal blower, an axial blower, a mixed flow blower, or the like can be used. The blower 14 includes an impeller 14a and a motor (not shown) that rotates the impeller 14a. The blower 14 is disposed in the outdoor unit 11 on the inner side in the horizontal direction than the heat exchanger 13 and on the upper side of the heat exchanger 13. Specifically, the air blower 14 is provided in the upper part in the case 12 as shown in FIG. 1, and is arrange | positioned directly under the blower outlet 17 shown in FIG. And the air blower 14 discharges | emits the air after flowing in the inside of the outdoor unit 11 (case 12) and heat-exchanging with the heat exchanger 13 from the outdoor unit 11 (case 12) outside. That is, the blower 14 is located downstream of the heat exchanger 13 in the air flow direction.
 空気調和装置の運転時には、圧縮機15に動力が与えられることにより冷媒が室外機11と前記室内機との間で冷媒回路内を循環するとともに、送風機14の前記モータに動力が与えられることにより羽根車14aが回転し、前記吸込口からケース12の内部に外気が吸い込まれる。ケース12内に吸い込まれた外気は、上記のように、熱交換器13において冷媒と熱交換した後、吹出口17を通じてケース12の外部に吹き出される。具体的には、例えば冷房運転時には、ケース12内に吸い込まれた外気は、凝縮器として機能する熱交換器13における前記伝熱管を介して、この伝熱管内を流れる高温高圧の冷媒と熱交換する。すなわち、外気は、熱交換器13の伝熱管及び冷媒を冷却する。これにより、前記伝熱管を流れる冷媒は、冷却されて凝縮する。 During operation of the air conditioner, power is applied to the compressor 15 so that the refrigerant circulates in the refrigerant circuit between the outdoor unit 11 and the indoor unit, and power is applied to the motor of the blower 14. The impeller 14a rotates and outside air is sucked into the case 12 from the suction port. As described above, the outside air sucked into the case 12 exchanges heat with the refrigerant in the heat exchanger 13 and then blows out to the outside of the case 12 through the air outlet 17. Specifically, for example, during cooling operation, the outside air sucked into the case 12 exchanges heat with a high-temperature and high-pressure refrigerant flowing in the heat transfer tube via the heat transfer tube in the heat exchanger 13 functioning as a condenser. To do. That is, the outside air cools the heat transfer tubes and the refrigerant of the heat exchanger 13. Thereby, the refrigerant | coolant which flows through the said heat exchanger tube is cooled and condensed.
 次に、噴霧装置20について説明する。噴霧装置20は、冷房運転時において熱交換器13に向かう外気を冷却することができる。すなわち、噴霧装置20は、熱交換器13に向かう外気の温度を低下させる。これにより、熱交換器13の伝熱管及び冷媒を冷却する効果を高めることができる。このように噴霧装置20は、熱交換器13及び冷媒を補助的に冷却して空気調和装置の冷房能力を高めることができる。 Next, the spray device 20 will be described. The spraying device 20 can cool the outside air toward the heat exchanger 13 during the cooling operation. That is, the spray device 20 reduces the temperature of the outside air toward the heat exchanger 13. Thereby, the effect which cools the heat exchanger tube and the refrigerant | coolant of the heat exchanger 13 can be heightened. Thus, the spraying device 20 can enhance the cooling capacity of the air conditioner by cooling the heat exchanger 13 and the refrigerant in an auxiliary manner.
 図1~図3に示すように、噴霧装置20は、複数の噴霧ノズル21と、水供給機構60と、エア供給機構70と、帯電部としての帯電機構80とを備えている。 1 to 3, the spray device 20 includes a plurality of spray nozzles 21, a water supply mechanism 60, an air supply mechanism 70, and a charging mechanism 80 as a charging unit.
 複数の噴霧ノズル21は、ケース12の側板又はケース12に別途設けられた図略の支持部材によって支持されている。各噴霧ノズル21は、送風機14の羽根車14aが回転することにより形成される気流の方向において、熱交換器13よりも上流側に位置している。本実施形態では、各噴霧ノズル21は、室外機11において、熱交換器13よりも外側で且つ上側に配置され、液滴(本実施形態では水滴)が下方に向かって噴霧される姿勢で配置されている。即ち、各噴霧ノズル21は、その軸方向が熱交換器13に向かう略水平方向の外気(空気)の流れと略直交する方向に向けられた状態となるように配置されている。各噴霧ノズル21から噴霧された水滴は、放射状に拡散しつつ下方に向かい、前記空気の流れによって熱交換器13に向かって移動する。水滴の全部又はその大半は、熱交換器13に到達する前に気化する。 The plurality of spray nozzles 21 are supported by a side plate of the case 12 or a support member (not shown) separately provided on the case 12. Each spray nozzle 21 is located upstream of the heat exchanger 13 in the direction of the airflow formed when the impeller 14a of the blower 14 rotates. In the present embodiment, each spray nozzle 21 is disposed outside and above the heat exchanger 13 in the outdoor unit 11 and is disposed in such a posture that droplets (water droplets in the present embodiment) are sprayed downward. Has been. That is, each spray nozzle 21 is arranged so that its axial direction is directed in a direction substantially orthogonal to the flow of outside air (air) in the substantially horizontal direction toward the heat exchanger 13. The water droplets sprayed from each spray nozzle 21 travel downward while diffusing radially, and move toward the heat exchanger 13 by the air flow. All or most of the water droplets are vaporized before reaching the heat exchanger 13.
 尚、各噴霧ノズル21が水滴を下方に向けて噴霧するため、気化し難い大きな水滴が噴霧された場合であっても、この水滴は、噴霧された勢いと当該水滴に加わる重力とによって前記外気の流れを横切って下方(室外機11の設置面等)に落下する。これにより、この大きな水滴が熱交換器13に付着して熱交換器13が濡れることが防がれる。 In addition, since each spray nozzle 21 sprays water droplets downward, even when a large water droplet that is difficult to vaporize is sprayed, the water droplet is caused by the external air depending on the sprayed momentum and the gravity applied to the water droplet. It crosses down and falls downward (such as the installation surface of the outdoor unit 11). This prevents the large water droplets from adhering to the heat exchanger 13 and getting wet.
 図2に示すように、複数の噴霧ノズル21は、噴霧装置20による冷却効果が熱交換器13のほぼ全体にわたって及ぼされるように、熱交換器13に対向する3つの側板12a、12b、12cにおいて、互いに水平方向に間隔を空けて配置されている。詳しくは、各噴霧ノズル21から噴霧される水滴が拡散する範囲、即ち、熱交換器13に向かう外気が各噴霧ノズル21によって冷却される範囲に基づいて、複数の噴霧ノズル21は、互いに水平方向に例えば数十センチ程度の間隔を空けて配置される。 As shown in FIG. 2, the plurality of spray nozzles 21 are provided on the three side plates 12 a, 12 b, and 12 c facing the heat exchanger 13 so that the cooling effect by the spray device 20 is exerted over almost the entire heat exchanger 13. , Are spaced apart from each other in the horizontal direction. Specifically, based on the range in which water droplets sprayed from each spray nozzle 21 diffuse, that is, the range in which the outside air toward the heat exchanger 13 is cooled by each spray nozzle 21, the plurality of spray nozzles 21 are arranged in the horizontal direction. For example, with an interval of about several tens of centimeters.
 本実施形態では、各噴霧ノズル21から水滴が拡散する範囲(水平方向の範囲)が例えば、50cm程度であり、側板12aの幅が例えば100cm程度であり、側板12b、12cの幅が30cm程度である場合を例示している。そして、側板12aには2つの噴霧ノズル21が水平方向に間隔を空けて配置され、側板12b及び側板12cには、1つの噴霧ノズル21がそれぞれ配置されている。また、各噴霧ノズル21の高さ位置は、同じである。 In this embodiment, the range (horizontal range) in which water droplets diffuse from each spray nozzle 21 is, for example, about 50 cm, the width of the side plate 12a is, for example, about 100 cm, and the width of the side plates 12b, 12c is about 30 cm. A case is illustrated. Then, two spray nozzles 21 are arranged on the side plate 12a with a space in the horizontal direction, and one spray nozzle 21 is arranged on each of the side plate 12b and the side plate 12c. Moreover, the height position of each spray nozzle 21 is the same.
 水供給機構60は、液送配管61と、液送ポンプ62とを含む。液送配管61は、例えば水道などの図略の水供給源と各噴霧ノズル21とを接続している。液送配管61は、水の流れの上流側に位置する導電性配管61a(本実施形態では金属配管61a)と、下流側に位置する絶縁性配管61b(本実施形態では樹脂配管61b)とを含む。液送ポンプ62は、液送配管61を通じて水を各噴霧ノズル21に送液する。 The water supply mechanism 60 includes a liquid feed pipe 61 and a liquid feed pump 62. The liquid feed pipe 61 connects a water supply source (not shown) such as water supply and each spray nozzle 21. The liquid feed pipe 61 includes a conductive pipe 61a (a metal pipe 61a in the present embodiment) located on the upstream side of the flow of water and an insulating pipe 61b (a resin pipe 61b in the present embodiment) located on the downstream side. Including. The liquid feed pump 62 sends water to each spray nozzle 21 through the liquid feed pipe 61.
 エア供給機構70は、例えばコンプレッサーなどの気送ポンプ72と、気送配管71とを含む。気送配管71は、気送ポンプ72と各噴霧ノズル21とを接続している。 The air supply mechanism 70 includes an air feed pump 72 such as a compressor and an air feed pipe 71, for example. The air feed pipe 71 connects the air feed pump 72 and each spray nozzle 21.
 帯電機構80は、帯電用電源(高圧電源)81と、配線82,83と、出力調整部84とを含む。配線82は、帯電用電源81のプラスの電極と各噴霧ノズル21の先端部とを接続している。配線83は、帯電用電源81のマイナスの電極と液送配管61の導電性配管61aとを接続している。これにより、噴霧ノズル21から噴霧される水(各水滴)は、プラスに帯電する。また、帯電用電源81のプラスの電極は、噴霧ノズル21が接地電位となるように接地されている。樹脂配管61bは、電気絶縁性を有する合成樹脂材料からなり、配線83と液送配管61との接続部位よりも下流側に位置している。出力調整部84は、帯電用電源81の出力を調整する。 The charging mechanism 80 includes a charging power source (high voltage power source) 81, wirings 82 and 83, and an output adjustment unit 84. The wiring 82 connects the positive electrode of the charging power supply 81 and the tip of each spray nozzle 21. The wiring 83 connects the negative electrode of the charging power supply 81 and the conductive pipe 61 a of the liquid feeding pipe 61. Thereby, the water (each water droplet) sprayed from the spray nozzle 21 is charged positively. The positive electrode of the charging power supply 81 is grounded so that the spray nozzle 21 is at the ground potential. The resin pipe 61 b is made of a synthetic resin material having electrical insulation, and is located on the downstream side of the connection portion between the wiring 83 and the liquid feed pipe 61. The output adjustment unit 84 adjusts the output of the charging power supply 81.
 図1では、一つの噴霧ノズル21に対して水供給機構60、エア供給機構70及び帯電機構80が接続されている状態を示しており、他の噴霧ノズル21の図示を省略しているが、水供給機構60、エア供給機構70及び帯電機構80は、他の噴霧ノズル21に対しても図1に示す接続状態と同様に接続される。具体的には、例えば、水供給機構60の液送配管61は、途中で分岐して複数の噴霧ノズル21に接続され、エア供給機構70の気送配管71は、途中で分岐して複数の噴霧ノズル21に接続される。また、複数の噴霧ノズル21は、帯電機構80の帯電用電源81に対して、例えば互いに並列に接続される。 FIG. 1 shows a state in which the water supply mechanism 60, the air supply mechanism 70, and the charging mechanism 80 are connected to one spray nozzle 21, and illustration of the other spray nozzles 21 is omitted. The water supply mechanism 60, the air supply mechanism 70, and the charging mechanism 80 are connected to the other spray nozzles 21 in the same manner as the connection state shown in FIG. Specifically, for example, the liquid supply pipe 61 of the water supply mechanism 60 is branched in the middle and connected to the plurality of spray nozzles 21, and the air supply pipe 71 of the air supply mechanism 70 is branched in the middle of the plurality of spray nozzles 21. Connected to the spray nozzle 21. The plurality of spray nozzles 21 are connected to the charging power supply 81 of the charging mechanism 80 in parallel, for example.
 外気温度センサ18は、外気温度を検知することができる。例えば、制御部16は、外気温度センサ18によって外気温度が所定の温度以上に達したことを検知すると、冷房運転の負荷が予め定められた所定のレベルを超えたと判断して、液送ポンプ62及び気送ポンプ72を制御して複数の噴霧ノズル21から水の噴霧を開始する。例えば、制御部16は、所定時間の間、各噴霧ノズル21から連続的に又は間欠的に水が噴霧されるように液送ポンプ62及び気送ポンプ72を制御する。また、制御部16は、各噴霧ノズル21から噴霧される水滴を帯電させるために、帯電機構80の出力調整部84を制御して帯電用電源81により各噴霧ノズル21に電圧を印加する。 The outside temperature sensor 18 can detect the outside temperature. For example, when the outside air temperature sensor 18 detects that the outside air temperature has reached a predetermined temperature or more, the control unit 16 determines that the cooling operation load has exceeded a predetermined level, and the liquid feed pump 62. And the spraying of water is started from the some spray nozzle 21 by controlling the air feed pump 72. For example, the control unit 16 controls the liquid feed pump 62 and the air feed pump 72 so that water is sprayed from each spray nozzle 21 continuously or intermittently for a predetermined time. Further, the control unit 16 controls the output adjusting unit 84 of the charging mechanism 80 to apply a voltage to each spray nozzle 21 by the charging power supply 81 in order to charge the water droplet sprayed from each spray nozzle 21.
 次に、複数の噴霧ノズル21の構造について詳細に説明する。本実施形態では、複数の噴霧ノズル21は、互いに同様の構造を有している。図3は、複数の噴霧ノズル21のうちの一つを示す断面図である。図3に示すように、噴霧ノズル21は、胴部10と、胴部10よりも下流側(水の流れ方向の下流側)に位置するオリフィス部50とを有している。 Next, the structure of the plurality of spray nozzles 21 will be described in detail. In the present embodiment, the plurality of spray nozzles 21 have the same structure. FIG. 3 is a cross-sectional view showing one of the plurality of spray nozzles 21. As shown in FIG. 3, the spray nozzle 21 has a body portion 10 and an orifice portion 50 located downstream of the body portion 10 (downstream side in the water flow direction).
 胴部10は、図略の水供給源から供給される水をオリフィス部50に案内する機能と、胴部10に供給された水に微細な気泡を混入させる機能とを有している。本実施形態の胴部10は、垂直方向(上下方向)に延び、その下側にオリフィス部50が配置されている。即ち、本実施形態の胴部10は、図略の水供給源から供給される水を下方に向けて案内する。オリフィス部50は、胴部10において気泡が混入されるとともにオリフィス部50まで案内された水を受け入れて、水と混合した気泡を安定的に噴霧ノズル21の外部に送るとともに、オリフィス前後に圧力差を設けることによってオリフィスから出た気泡を膨張させ、水滴を微細化して噴霧する機能を有している。 The barrel portion 10 has a function of guiding water supplied from an unillustrated water supply source to the orifice portion 50 and a function of mixing fine bubbles in the water supplied to the barrel portion 10. The trunk portion 10 of the present embodiment extends in the vertical direction (up and down direction), and the orifice portion 50 is disposed on the lower side thereof. That is, the trunk | drum 10 of this embodiment guides the water supplied from the unillustrated water supply source toward the downward direction. The orifice unit 50 receives water mixed with bubbles in the body unit 10 and guided to the orifice unit 50, stably sends the bubbles mixed with water to the outside of the spray nozzle 21, and has a pressure difference before and after the orifice. It has a function of expanding the air bubbles coming out of the orifices to make the water droplets fine and spraying.
 胴部10は、径方向よりも軸方向の方が長い円柱状の外形を有している。即ち、胴部10は、垂直方向に延びる円柱状の外形を有している。胴部10は、管形状に形成された管壁を有するエア案内管(外側円筒部)31と、管形状に形成された管壁を有するとともにエア案内管31の内側に配置された水案内管(内側円筒部)41とを有している。すなわち、エア案内管31の内部に水案内管41が挿入されている。 The barrel 10 has a cylindrical outer shape that is longer in the axial direction than in the radial direction. That is, the trunk portion 10 has a cylindrical outer shape extending in the vertical direction. The body portion 10 includes an air guide tube (outer cylindrical portion) 31 having a tube wall formed in a tube shape, and a water guide tube having a tube wall formed in a tube shape and disposed inside the air guide tube 31. (Inner cylindrical part) 41. That is, the water guide pipe 41 is inserted into the air guide pipe 31.
 水案内管41には、管壁を厚み方向に貫通する複数のエア導入孔43aが設けられている。エア案内管31の管壁には、エア流路F1に空気を供給するためのエア供給部32が設けられている。エア供給部32は、エア流路F1に連通する空気の供給孔32aが内部に形成された円筒形状を有している。このエア供給部32には、図1に示す気送配管71が接続される。 The water guide tube 41 is provided with a plurality of air introduction holes 43a that penetrate the tube wall in the thickness direction. An air supply portion 32 for supplying air to the air flow path F <b> 1 is provided on the tube wall of the air guide tube 31. The air supply part 32 has a cylindrical shape in which an air supply hole 32a communicating with the air flow path F1 is formed. 1 is connected to the air supply unit 32.
 エア案内管31の軸方向と水案内管41の軸方向とは一致している。また、これらの軸は、ほぼ同一直線状に位置している。即ち、エア案内管31及び水案内管41は、それぞれ垂直方向に延びる管形状を有し、互いの中心軸が一致若しくは略一致するように配置されている。水案内管41は、内径D1、外径D2の円筒形状を有している。エア案内管31は、内径D3、外径D4、長さL1の円筒形状を有している。エア案内管31の内径D3は、水案内管41の外径D2よりも大きい。エア案内管31の内周面と水案内管41の外周面とは径方向に互いに離隔している。 The axial direction of the air guide tube 31 and the axial direction of the water guide tube 41 are the same. Further, these axes are located on substantially the same straight line. That is, the air guide pipe 31 and the water guide pipe 41 have pipe shapes that extend in the vertical direction, and are arranged so that their center axes coincide or substantially coincide. The water guide tube 41 has a cylindrical shape with an inner diameter D1 and an outer diameter D2. The air guide tube 31 has a cylindrical shape having an inner diameter D3, an outer diameter D4, and a length L1. The inner diameter D3 of the air guide tube 31 is larger than the outer diameter D2 of the water guide tube 41. The inner peripheral surface of the air guide tube 31 and the outer peripheral surface of the water guide tube 41 are separated from each other in the radial direction.
 エア案内管31の一端(下流側の端:本実施形態においては下端)と水案内管41の一端(下流側の端:本実施形態においては下端)とは、軸方向においてほぼ同じ位置にあり、水案内管41の他端(上流側の端:本実施形態においては上端)は、エア案内管31の他端(上流側の端:本実施形態においては上端)よりも上流側に位置している。すなわち、水案内管41の他端側の部位は、エア案内管31の他端から上流側に突出している。エア流路F1の一端(本実施形態においては下端)は、オリフィス部50によって塞がれており、エア流路F1の他端(本実施形態においては上端)は、閉塞部材33によって塞がれている。 One end (downstream end: lower end in the present embodiment) of the air guide pipe 31 and one end (downstream end: lower end in the present embodiment) of the water guide pipe 41 are at substantially the same position in the axial direction. The other end (upstream end: upper end in the present embodiment) of the water guide pipe 41 is positioned upstream of the other end (upstream end: upper end in the present embodiment) of the air guide pipe 31. ing. That is, the portion on the other end side of the water guide tube 41 protrudes upstream from the other end of the air guide tube 31. One end (the lower end in the present embodiment) of the air flow path F1 is blocked by the orifice 50, and the other end (the upper end in the present embodiment) of the air flow path F1 is blocked by the closing member 33. ing.
 胴部10は、エア案内部30と、水案内部40と、気泡形成部43とを有している。本実施形態において、水案内部40は、水案内管41の管壁における内周面により区画される水流路F2である。また、エア案内部30は、水案内管41の外周面とエア案内管31の管壁における内周面とにより区画されるエア流路F1である。気泡形成部43は、複数のエア導入孔43aを有する。複数のエア導入孔43aは、水案内管(内側円筒部)41の周方向及び軸方向に互いに間隔をあけて配置されている。各エア導入孔43aの孔径は、エア供給部32における供給孔32aの孔径よりも小さい。気泡形成部43は、水案内管41のうち、最上流に位置するエア導入孔43aから最下流に位置するエア導入孔43aまでの筒状の部位である。本実施形態では、水案内部40が、水、及びエア案内部30から気泡形成部43の各エア導入孔43aを通じて水案内部40内に供給される空気を、胴部10の下側に配置されているオリフィス部50に向けて(即ち、気泡を含む水を垂直下方に向けて)案内する。これにより、水案内部40内の気泡を含む水の流れにおける水と空気(気泡)との偏流が抑えられるため、噴霧部51から十分に微細化された水滴が安定して噴霧される安定条件(すなわち、噴霧ノズル21に供給される水及び空気の流量等を変更しても十分に微細化された水滴が安定して噴霧される範囲)が広くなる。 The trunk portion 10 includes an air guide portion 30, a water guide portion 40, and a bubble forming portion 43. In the present embodiment, the water guide portion 40 is a water flow path F <b> 2 defined by the inner peripheral surface of the tube wall of the water guide tube 41. The air guide 30 is an air flow path F <b> 1 that is partitioned by the outer peripheral surface of the water guide tube 41 and the inner peripheral surface of the tube wall of the air guide tube 31. The bubble forming part 43 has a plurality of air introduction holes 43a. The plurality of air introduction holes 43 a are arranged at intervals in the circumferential direction and the axial direction of the water guide tube (inner cylindrical portion) 41. The diameter of each air introduction hole 43 a is smaller than the diameter of the supply hole 32 a in the air supply unit 32. The bubble forming part 43 is a cylindrical part of the water guide pipe 41 from the air introduction hole 43a located at the most upstream to the air introduction hole 43a located at the most downstream. In the present embodiment, the water guide unit 40 arranges water and air supplied from the air guide unit 30 through the air introduction holes 43 a of the bubble forming unit 43 into the water guide unit 40 on the lower side of the body unit 10. It guides toward the orifice portion 50 that is formed (that is, water containing bubbles is directed vertically downward). Thereby, since the uneven flow of water and air (bubbles) in the flow of water containing bubbles in the water guide unit 40 is suppressed, stable conditions in which sufficiently fine water droplets are stably sprayed from the spray unit 51. That is, the range in which sufficiently fine water droplets are stably sprayed even if the flow rate of water and air supplied to the spray nozzle 21 is changed is widened.
 オリフィス部50は、その前後で圧力差を生じさせて気泡の膨張により水滴を微細化して噴霧するための噴霧部51と、エア流路F1の一端を塞ぐ閉塞部52とを有している。本実施形態の噴霧部51は、微細化された水滴を下方に向けて噴霧する。 The orifice part 50 has a spray part 51 for generating a pressure difference before and after that to atomize and spray water droplets by expansion of bubbles, and a closing part 52 for closing one end of the air flow path F1. The spray unit 51 of the present embodiment sprays the fine water droplets downward.
 閉塞部52は、半径方向外側の環状の領域であり、噴霧部51は、閉塞部52よりも半径方向内側の領域である。閉塞部52は、エア案内管31の一端と水案内管41の一端とに当接してエア流路F1の一端を塞ぐ内面(上流側の表面)52aを有している。 The closed part 52 is an annular area on the radially outer side, and the spray part 51 is an area on the radially inner side with respect to the closed part 52. The blocking portion 52 has an inner surface (upstream surface) 52a that contacts one end of the air guide tube 31 and one end of the water guide tube 41 and closes one end of the air flow path F1.
 噴霧部51は、水流路F2と噴霧ノズル21の外部とを連通する連通孔を有している。連通孔は、下流側に向かうにつれて内径が小さくなるテーパー面を有するテーパー孔51aと、テーパー孔51aの下流側に位置して水が噴霧される噴霧孔51bとを含む。噴霧孔51bと熱交換器13との距離、及び噴霧孔51bの孔径は、噴霧孔51bから噴霧された水滴の全部又は大半が熱交換器13に向かって移動する間に蒸発(気化)するように設定される。噴霧孔51bの孔径は、後述するエア導入孔43aの孔径よりも小さい。 The spray part 51 has a communication hole that allows the water flow path F2 and the outside of the spray nozzle 21 to communicate with each other. The communication hole includes a tapered hole 51a having a tapered surface whose inner diameter decreases toward the downstream side, and a spray hole 51b that is located on the downstream side of the tapered hole 51a and sprays water. The distance between the spray hole 51b and the heat exchanger 13 and the hole diameter of the spray hole 51b are such that all or most of the water droplets sprayed from the spray hole 51b evaporate (vaporize) while moving toward the heat exchanger 13. Set to The diameter of the spray hole 51b is smaller than the diameter of the air introduction hole 43a described later.
 テーパー孔51aにおける上流側端部の内径は、水案内管41の一端の内径D1と同程度であるか若干小さくなるように設計されている。水案内管41の一端とテーパー孔51aの上流側端部とは、段差なく接続されているのが好ましい。テーパー孔51aの軸方向の長さは、噴霧孔51bの軸方向の長さL4よりも大きい。テーパー面に沿ってテーパー孔51aを下流側に流れる水は、次第に流速が高められて噴霧孔51bに到達する。噴霧孔51bに到達した水は、多数の微細な気泡を含んでおり、これらの気泡とともに噴霧ノズル21の外部に噴霧される。多数の気泡を含む水が噴霧孔51bから噴霧されるとき又は噴霧孔51bから噴霧された後、気泡が膨張し、はじけて水滴が微細化される。 The inner diameter of the upstream end of the tapered hole 51a is designed to be about the same as or slightly smaller than the inner diameter D1 of one end of the water guide pipe 41. One end of the water guide pipe 41 and the upstream end of the tapered hole 51a are preferably connected without any step. The axial length of the taper hole 51a is larger than the axial length L4 of the spray hole 51b. The water flowing downstream through the tapered hole 51a along the tapered surface is gradually increased in flow rate and reaches the spray hole 51b. The water that has reached the spray hole 51b contains a large number of fine bubbles, and is sprayed to the outside of the spray nozzle 21 together with these bubbles. When water containing a large number of bubbles is sprayed from the spray holes 51b or after being sprayed from the spray holes 51b, the bubbles expand and are repelled to make water droplets fine.
 本実施形態の噴霧ノズル21は、空気の供給孔32aが設けられた供給領域A1と、複数のエア導入孔43aが設けられた気泡形成領域A2と、気泡形成領域A2において形成された多数の気泡を含む水を噴霧部51まで案内する案内領域A3とを含む。本実施形態の案内領域A3は、前記多数の気泡を含む水を下方(詳しくは、胴部10下側に設けられた噴霧部51)に向けて案内する。案内領域A3は、水に混入した多数の気泡を水中においてある程度分散させるための分散領域(ミキシング領域)としても機能する。この案内領域A3は、気泡形成領域A2と噴霧部51との間に位置している。気泡形成領域A2は、供給領域A1よりも下流側に位置している。すなわち、軸方向において、供給領域A1、気泡形成領域A2、案内領域A3及び噴霧部51の順に下流側に向かって並んでいる。 The spray nozzle 21 of the present embodiment includes a supply region A1 provided with an air supply hole 32a, a bubble formation region A2 provided with a plurality of air introduction holes 43a, and a large number of bubbles formed in the bubble formation region A2. And a guide region A3 that guides water containing the water to the spray unit 51. In the present embodiment, the guide area A3 guides the water containing a large number of bubbles downward (specifically, the spray part 51 provided on the lower side of the body part 10). The guide area A3 also functions as a dispersion area (mixing area) for dispersing a large number of bubbles mixed in water to some extent in water. The guide area A3 is located between the bubble forming area A2 and the spraying part 51. The bubble formation area A2 is located downstream of the supply area A1. That is, in the axial direction, the supply region A1, the bubble formation region A2, the guide region A3, and the spray unit 51 are arranged in the order downstream.
 本実施形態では、水案内管41の軸方向において、気泡形成領域A2の長さL2は、水案内管41の内径D1よりも大きい。これにより、空気は、軸方向における広範囲の部位において、水案内管41を流れる水の中に混入される。このため、多数の気泡をより分散させた状態で効率よく水の中に混入させることができる。また、水案内管41の軸方向において、案内領域A3の長さL3は、水案内管41の内径D1よりも大きい。これにより、気泡形成領域A2において水に混入した多数の気泡を、案内領域A3において水中に効果的に分散させることができる。 In this embodiment, in the axial direction of the water guide tube 41, the length L2 of the bubble formation region A2 is larger than the inner diameter D1 of the water guide tube 41. Thereby, air is mixed in the water flowing through the water guide pipe 41 in a wide area in the axial direction. For this reason, it can be efficiently mixed in water in a state where a large number of bubbles are more dispersed. In the axial direction of the water guide tube 41, the length L3 of the guide region A3 is larger than the inner diameter D1 of the water guide tube 41. Thereby, a large number of bubbles mixed in water in the bubble formation region A2 can be effectively dispersed in water in the guide region A3.
 水供給源としては、例えば上水道などの水道が例示できる。この場合、水案内管41の上流側端部には、液送配管61が接続される。液送配管61は、図略の給水栓に接続される。液送ポンプ62及び気送ポンプ72が駆動すると、噴霧ノズル21から水が噴霧される。なお、液送ポンプ62を省略して水道の水圧を利用して噴霧ノズル21から水を噴霧することもできる。この場合には、液送ポンプ62を設けるのに必要なコスト及び液送ポンプ62を駆動するランニングコストを削減できる。また、水供給源としては、水が貯留されたタンクなどであってもよい。この場合には、液送配管61は、タンクに設けられた給水口に接続される。 Examples of water supply sources include water supplies such as waterworks. In this case, a liquid feed pipe 61 is connected to the upstream end of the water guide pipe 41. The liquid feeding pipe 61 is connected to a water tap (not shown). When the liquid feed pump 62 and the air feed pump 72 are driven, water is sprayed from the spray nozzle 21. In addition, the liquid feed pump 62 may be omitted, and water may be sprayed from the spray nozzle 21 using the water pressure of the tap water. In this case, the cost necessary for providing the liquid feed pump 62 and the running cost for driving the liquid feed pump 62 can be reduced. The water supply source may be a tank in which water is stored. In this case, the liquid feed pipe 61 is connected to a water supply port provided in the tank.
 水滴の平均粒径は、例えば25μm以下(蒸発所要時間は約0.3秒以下)であるのが好ましい。水滴の平均粒径は、噴霧孔51bの孔径、エア導入孔43aの孔径、水流路F2にかかる圧力、エア流路F1にかかる圧力などを調節することにより調整できる。 The average particle diameter of the water droplets is preferably, for example, 25 μm or less (required evaporation time is about 0.3 seconds or less). The average particle diameter of the water droplets can be adjusted by adjusting the hole diameter of the spray hole 51b, the hole diameter of the air introduction hole 43a, the pressure applied to the water flow path F2, the pressure applied to the air flow path F1, and the like.
 水の供給量と空気の供給量の割合は、例えば重量比(空気の重量/水の重量)で0.1以下であるのが好ましい。重量比がこの範囲に調節されることにより、空気を供給するのに必要な動力を小さく抑えることができる。なお、噴霧ノズルの噴霧孔において空気と水を同時に噴射する従来の二流体ノズルでは、空気の圧力で水に剪断力を加えて水滴を微細化しているので、高速の空気を噴射させる必要があり、重量比(空気の重量/水の重量)が0.4以上となる。このため、従来の二流体ノズルでは、空気を供給するのに必要な動力が大きくなる。 The ratio between the water supply amount and the air supply amount is preferably 0.1 or less in weight ratio (weight of air / weight of water), for example. By adjusting the weight ratio within this range, the power required to supply air can be kept small. In addition, in the conventional two-fluid nozzle that simultaneously injects air and water in the spray hole of the spray nozzle, shearing force is applied to the water by the pressure of the air to make the water droplets fine, so it is necessary to inject high-speed air The weight ratio (weight of air / weight of water) is 0.4 or more. For this reason, in the conventional two-fluid nozzle, the power required for supplying air becomes large.
 <第2実施形態>
 図4は、本発明の第2実施形態に係る室外機11における噴霧ノズル21を示す断面図である。第2実施形態に係る室外機11は、噴霧ノズル21の構造が第1実施形態に係る室外機11と異なっている。第1実施形態と同様の構成については図3と同じ符号を付してその説明を省略する。
<Second Embodiment>
FIG. 4 is a cross-sectional view showing the spray nozzle 21 in the outdoor unit 11 according to the second embodiment of the present invention. The outdoor unit 11 according to the second embodiment is different from the outdoor unit 11 according to the first embodiment in the structure of the spray nozzle 21. The same components as those in the first embodiment are denoted by the same reference numerals as those in FIG.
 図4に示すように、第2実施形態における噴霧ノズル21は、第1実施形態と同様に、空気の供給孔32aが設けられた供給領域A1と、気泡形成領域A2と、気泡形成領域A2において形成された多数の気泡を含む水を噴霧部51まで案内する案内領域A3とを含む。 As shown in FIG. 4, the spray nozzle 21 in the second embodiment is similar to the first embodiment in the supply area A1, the bubble formation area A2, and the bubble formation area A2 provided with the air supply holes 32a. And a guide region A3 that guides the water including a large number of formed bubbles to the spray unit 51.
 図4に示すように、水案内管41には、気泡形成部43が設けられている。気泡形成部43は、多孔質材料からなる多孔質部42を含む。多孔質部42は、例えば発泡金属により形成されている。多孔質部42は、多数のエア導入孔43aを有している。気泡形成部43は、水案内管41のうち、多孔質部42の最上流端から最下流端までの領域をいう。 As shown in FIG. 4, the water guide tube 41 is provided with a bubble forming portion 43. The bubble forming part 43 includes a porous part 42 made of a porous material. The porous portion 42 is made of, for example, a foam metal. The porous part 42 has a large number of air introduction holes 43a. The bubble forming portion 43 refers to a region of the water guide tube 41 from the most upstream end to the most downstream end of the porous portion 42.
 本実施形態における多孔質部42は、水案内管41の他の部位とほぼ同径の円筒形状を有しているが、これに限定されない。例えば、水案内管41には、周方向及び/又は水案内管41の延びる方向に点在するように互いに独立して配置された複数の多孔質部42が設けられていてもよい。 The porous portion 42 in the present embodiment has a cylindrical shape that has substantially the same diameter as other portions of the water guide tube 41, but is not limited thereto. For example, the water guide tube 41 may be provided with a plurality of porous portions 42 that are arranged independently of each other so as to be scattered in the circumferential direction and / or the direction in which the water guide tube 41 extends.
 多孔質部42は、気孔同士がつながった多数の連続気孔(多数のエア導入孔43a)を有している。したがって、エア流路F1を流れる空気は、多数のエア導入孔43aを通じて水流路F2に流入する。第2実施形態では、このような多孔質部42が設けられているので、第1実施形態に比べて、気泡形成領域A2における気孔率(空隙率)を高めることができる。 The porous part 42 has a large number of continuous pores (a large number of air introduction holes 43a) in which the pores are connected to each other. Therefore, the air flowing through the air flow path F1 flows into the water flow path F2 through the numerous air introduction holes 43a. In the second embodiment, since such a porous portion 42 is provided, the porosity (void ratio) in the bubble formation region A2 can be increased as compared with the first embodiment.
 <第3実施形態>
 図5は、本発明の第3実施形態に係る室外機11における噴霧ノズル21を示す断面図である。第3実施形態にかかる室外機11は、噴霧ノズル21の構造が第1実施形態にかかる室外機11と異なっている。
<Third Embodiment>
FIG. 5 is a cross-sectional view showing the spray nozzle 21 in the outdoor unit 11 according to the third embodiment of the present invention. The outdoor unit 11 according to the third embodiment is different from the outdoor unit 11 according to the first embodiment in the structure of the spray nozzle 21.
 図5に示すように、第3実施形態における噴霧ノズル21は、エア案内部30と、水案内部40と、気泡形成部43と、噴霧部51とを備えている。水案内部40は、円筒形状の水案内管44を含む。エア案内部30は、水案内管44の側部(管壁)に接続された円筒形状のエア案内管34を含む。エア案内管34の先端部は、水案内管44の内側に入り込んでいる。噴霧部51は、水案内管44の先端部(下流側端部)に設けられている。 As shown in FIG. 5, the spray nozzle 21 in the third embodiment includes an air guide part 30, a water guide part 40, a bubble forming part 43, and a spray part 51. The water guide 40 includes a cylindrical water guide tube 44. The air guide portion 30 includes a cylindrical air guide tube 34 connected to a side portion (tube wall) of the water guide tube 44. The tip of the air guide tube 34 enters the inside of the water guide tube 44. The spray unit 51 is provided at the tip (downstream end) of the water guide tube 44.
 噴霧ノズル21は、エア流路F1と水流路F2とを有している。水流路F2は、水案内管44の内周面によって区画された空間である。エア流路F1は、エア案内管34の内周面によって区画された空間である。エア案内管34の外径は、水案内管44の外径よりも小さい。 The spray nozzle 21 has an air flow path F1 and a water flow path F2. The water flow path F <b> 2 is a space defined by the inner peripheral surface of the water guide tube 44. The air flow path F <b> 1 is a space defined by the inner peripheral surface of the air guide tube 34. The outer diameter of the air guide tube 34 is smaller than the outer diameter of the water guide tube 44.
 噴霧部51は、水流路F2と噴霧ノズル21の外部とを連通する連通孔を有している。連通孔は、下流側に向かうにつれて内径が小さくなるテーパー面を有するテーパー孔51aと、テーパー孔51aの下流側に位置して水が外部に噴霧される噴霧孔51bとを含む。 The spray part 51 has a communication hole that allows the water flow path F2 and the outside of the spray nozzle 21 to communicate with each other. The communication hole includes a tapered hole 51a having a tapered surface whose inner diameter becomes smaller toward the downstream side, and a spray hole 51b that is located downstream of the tapered hole 51a and sprays water to the outside.
 エア案内管34の上流側端部には、図1に示す気送配管71が接続され、水案内管44の上流側端部には、図1に示す液送配管61が接続される。エア供給源から供給される空気は、エア案内管34を流れ、複数のエア導入孔43aを通じて水案内管44を流れる水の中に導入される。 1 is connected to the upstream end of the air guide pipe 34, and the liquid supply pipe 61 shown in FIG. 1 is connected to the upstream end of the water guide pipe 44. The air supplied from the air supply source flows through the air guide tube 34 and is introduced into the water flowing through the water guide tube 44 through the plurality of air introduction holes 43a.
 図6(A)は、第3実施形態における噴霧ノズル21のエア案内管34を示す斜視図である。図6(A)に示すように、このエア案内管34は、軸方向において外径及び内径がほぼ均一な円筒形状を有している。 FIG. 6A is a perspective view showing the air guide tube 34 of the spray nozzle 21 in the third embodiment. As shown in FIG. 6A, the air guide tube 34 has a cylindrical shape in which the outer diameter and the inner diameter are substantially uniform in the axial direction.
 気泡形成部43は、エア案内管34の先端部に位置している。気泡形成部43は、エア案内管34の先端部の開口を覆うように配置された円形の板状体であり、この板状体のほぼ全域にわたって点在するように複数のエア導入孔43aが形成されている。この気泡形成部43は、水案内管44の水流路F2内に配置される。 The bubble forming portion 43 is located at the tip of the air guide tube 34. The bubble forming part 43 is a circular plate-like body arranged so as to cover the opening at the tip of the air guide tube 34, and a plurality of air introduction holes 43a are scattered over almost the entire area of the plate-like body. Is formed. The bubble forming portion 43 is disposed in the water flow path F <b> 2 of the water guide tube 44.
 この噴霧ノズル21では、水流路F2において水の流れる方向に対して交わる方向(本実施形態では水の流れる方向に対して直交する方向)に、気泡形成部43の複数のエア導入孔43aから空気が吹き出される。このような配置にすることにより、複数のエア導入孔43aから吹き出される空気が水流の剪断力によって微細化されやすくなる。したがって、水流路F2において水の流れる方向に対して平行な方向に複数のエア導入孔43aから空気が下流側に吹き出される場合に比べて、気泡をより微細化することができる。 In the spray nozzle 21, air flows from the plurality of air introduction holes 43 a of the bubble forming portion 43 in a direction intersecting with the direction of water flow (in this embodiment, a direction orthogonal to the direction of water flow) in the water flow path F 2. Is blown out. With such an arrangement, the air blown out from the plurality of air introduction holes 43a is easily miniaturized by the shearing force of the water flow. Therefore, compared with the case where air is blown downstream from the plurality of air introduction holes 43a in the direction parallel to the direction of water flow in the water flow path F2, the bubbles can be made finer.
 図6(B)は、エア案内管34の変形例1を示す斜視図である。この変形例1では、エア案内管34の上流側の部位は、軸方向において外径及び内径がほぼ均一な円筒形状を有しており、エア案内管34の下流側(先端側)の部位は、下流側に向かうにつれて外径及び内径が大きくなる拡径形状を有している。エア案内管34の先端部には、複数のエア導入孔43aを有する気泡形成部43が設けられている。 FIG. 6B is a perspective view showing Modification 1 of the air guide tube 34. In the first modification, the upstream side portion of the air guide tube 34 has a cylindrical shape with substantially uniform outer diameter and inner diameter in the axial direction, and the downstream side (tip side) portion of the air guide tube 34 is The outer diameter and the inner diameter increase toward the downstream side. A bubble forming portion 43 having a plurality of air introduction holes 43 a is provided at the tip of the air guide tube 34.
 図6(B)に示す変形例1では、図6(A)に示す形態に比べて、板状体の気泡形成部43の面積を大きくすることができる。したがって、図6(A)と図6(B)において、エア導入孔43aの個数が同じである場合には、変形例1では、図6(A)に示す形態に比べてエア導入孔43a同士の間隔を大きくすることができるので、気泡同士の再凝集を抑制することができる。 In the first modification shown in FIG. 6 (B), the area of the bubble forming portion 43 of the plate-like body can be increased as compared with the form shown in FIG. 6 (A). Accordingly, in FIGS. 6A and 6B, when the number of the air introduction holes 43a is the same, in the first modification, the air introduction holes 43a are different from each other in the form shown in FIG. 6A. Since the interval between the bubbles can be increased, reaggregation of bubbles can be suppressed.
 図6(C)は、エア案内管34の変形例2を示す斜視図である。この変形例2では、エア案内管34は、軸方向において外径及び内径がほぼ均一な円筒形状を有している。エア案内管34の先端部には、気泡形成部43が設けられている。この気泡形成部43は、多孔質材料からなる多孔質体(多孔質部)である。多孔質部は、多数のエア導入孔43aを有する。多孔質体は、例えば発泡金属により形成されている。多孔質体は、気孔同士がつながった多数の連続気孔(多数のエア導入孔43a)を有している。変形例2では、このような多孔質部が設けられているので、図6(A)、図6(B)に示す形態に比べて、気泡形成部43における気孔率(空隙率)を高めることができる。 FIG. 6C is a perspective view showing a second modification of the air guide tube 34. In the second modification, the air guide tube 34 has a cylindrical shape whose outer diameter and inner diameter are substantially uniform in the axial direction. A bubble forming portion 43 is provided at the tip of the air guide tube 34. The bubble forming portion 43 is a porous body (porous portion) made of a porous material. The porous part has a large number of air introduction holes 43a. The porous body is made of foam metal, for example. The porous body has a large number of continuous pores (a large number of air introduction holes 43a) in which the pores are connected to each other. In Modification 2, since such a porous portion is provided, the porosity (porosity) in the bubble forming portion 43 is increased as compared with the embodiment shown in FIGS. 6 (A) and 6 (B). Can do.
 以上説明したように、各実施形態では、噴霧ノズル21は、空気が流れるエア案内部30と、水が流れる水案内部40と、エア案内部30の空気を水案内部40の水の中に流入させて水の中に多数の気泡を形成する気泡形成部43と、水案内部40よりも水の流れ方向の下流側に位置し、水案内部40における多数の気泡を含む水を外部に噴霧する噴霧部51と、を備えている。このため、熱交換器の腐食を抑制しつつ、空気調和装置全体としての動力を低減することができる。 As described above, in each embodiment, the spray nozzle 21 includes the air guide unit 30 through which air flows, the water guide unit 40 through which water flows, and the air of the air guide unit 30 in the water of the water guide unit 40. A bubble forming part 43 that forms a large number of bubbles in water by flowing in, and is located downstream of the water guide part 40 in the water flow direction, and water containing a large number of bubbles in the water guide part 40 A spraying part 51 for spraying. For this reason, the motive power as the whole air conditioning apparatus can be reduced, suppressing the corrosion of a heat exchanger.
 第1実施形態及び第2実施形態では、1つ又は複数のエア導入孔43aが設けられた水案内管41の外周を囲むようにエア案内管31を配置するという二重管構造が採用されている。したがって、水案内部40、エア案内部30及び気泡形成部43を備えた噴霧ノズル21を安価に製作することができる。 In the first embodiment and the second embodiment, a double pipe structure in which the air guide pipe 31 is arranged so as to surround the outer periphery of the water guide pipe 41 provided with one or a plurality of air introduction holes 43a is adopted. Yes. Therefore, the spray nozzle 21 provided with the water guide part 40, the air guide part 30, and the bubble formation part 43 can be manufactured at low cost.
 第1実施形態及び第2実施形態では、複数のエア導入孔43aが水案内管41の周方向及び水案内管41の延びる方向に互いに間隔をあけて設けられているので、エア導入孔43aが1つである場合に比べて、周方向及び水案内管41の延びる方向に互いに間隔があけられた複数の部位から空気を水案内管41の水の中に流入させることができる。したがって、水案内管41を流れる水の中に気泡を効率よく分散させることができる。また、エア導入孔43aが1つである場合に比べて水の中に空気を流入させる抵抗が小さくなり、空気を水の中に流入させるのに必要な圧力を低く設定することができる。これにより、動力をさらに低減することができる。 In 1st Embodiment and 2nd Embodiment, since the several air introduction hole 43a is provided in the circumferential direction of the water guide pipe 41, and the direction where the water guide pipe 41 extends mutually spaced apart, the air introduction hole 43a is provided. Compared with the case where the number is one, air can flow into the water of the water guide pipe 41 from a plurality of portions spaced from each other in the circumferential direction and the direction in which the water guide pipe 41 extends. Therefore, bubbles can be efficiently dispersed in the water flowing through the water guide tube 41. In addition, compared with the case where there is one air introduction hole 43a, the resistance to allow air to flow into water is reduced, and the pressure required to allow air to flow into water can be set low. Thereby, motive power can further be reduced.
 第2実施形態では、気泡形成部43が、複数のエア導入孔43aを有する多孔質部42を含むので、気泡形成部43における気孔率を大きくすることができる。これにより、気泡形成部43を通じて空気が水案内管41の水の中に導入される際の抵抗をさらに小さくすることができる。これにより、空気を水に流入させるために必要な圧力をさらに小さくすることができる。 In the second embodiment, since the bubble forming part 43 includes the porous part 42 having the plurality of air introduction holes 43a, the porosity of the bubble forming part 43 can be increased. Thereby, the resistance when air is introduced into the water of the water guide pipe 41 through the bubble forming part 43 can be further reduced. Thereby, the pressure required to allow air to flow into water can be further reduced.
 第2実施形態では、多孔質部42を発泡金属によって形成することにより、複数のエア導入孔(43a)の孔径のばらつきを小さくすることができる。これにより、気泡形成部43において形成される気泡の径をある程度揃えることができるので、噴霧部51において噴霧される水滴の径のばらつきも低減できる。 In the second embodiment, it is possible to reduce the variation in the hole diameters of the plurality of air introduction holes (43a) by forming the porous portion 42 from a foam metal. Thereby, since the diameter of the bubble formed in the bubble formation part 43 can be equalized to some extent, the dispersion | variation in the diameter of the water droplet sprayed in the spray part 51 can also be reduced.
 第3実施形態では、水案内管44と、水案内管44に接続され、水案内管44側の端部に1つ又は複数のエア導入孔43aが設けられたエア案内管34と、を備え、水案内部40は、水案内管44の内周面により区画される水流路F2を含み、エア案内部30は、エア案内管34の内周面により区画されるエア流路F1を含み、気泡形成部43は、1つ又は複数のエア導入孔43aを含む。第3実施形態では、このような簡単な構造で噴霧ノズル21を形成できる。 The third embodiment includes a water guide pipe 44 and an air guide pipe 34 connected to the water guide pipe 44 and provided with one or a plurality of air introduction holes 43a at an end portion on the water guide pipe 44 side. The water guide section 40 includes a water flow path F2 defined by the inner peripheral surface of the water guide pipe 44, and the air guide section 30 includes an air flow path F1 defined by the inner peripheral surface of the air guide pipe 34, The bubble forming part 43 includes one or a plurality of air introduction holes 43a. In the third embodiment, the spray nozzle 21 can be formed with such a simple structure.
 各実施形態では、噴霧ノズル21から噴霧される水を帯電させる帯電機構80をさらに備えている。噴霧部51から噴霧される各水滴は、帯電した状態で空気中を移動する。したがって、水滴同士が静電反発力によって反発するので、水滴同士の再凝集が抑制される。これにより、再凝集により水滴の径が大きくなるのを抑制できる。また、水滴同士が静電反発力によって反発するので、水滴を広い範囲に拡散させることができる。 In each embodiment, a charging mechanism 80 for charging water sprayed from the spray nozzle 21 is further provided. Each water droplet sprayed from the spraying part 51 moves in the air in a charged state. Accordingly, the water droplets repel each other due to the electrostatic repulsive force, so that reaggregation of the water droplets is suppressed. Thereby, it can suppress that the diameter of a water droplet becomes large by re-aggregation. Moreover, since water droplets repel each other by an electrostatic repulsive force, a water droplet can be diffused in a wide range.
 各実施形態では、水案内部40が、気泡を含む水を垂直方向に案内する。これにより、水案内部40内の気泡を含む水の流れにおける水と空気(気泡)との偏流が抑えられるため、噴霧部51から十分に微細化された水滴が安定して噴霧される安定条件(すなわち、噴霧ノズル21に供給される水及び空気の流量等を変更しても十分に微細化された水滴が安定して噴霧される範囲)が広くなる。即ち、気泡を含む水を垂直方向に案内する場合には、気泡を含む水を他の方向(例えば水平方向)に案内したときのように、水案内部40内の気泡を含む水の流れにおいて上部側に空気(気泡)が集まって空気と水とが偏って流れる(偏流する)ことを防ぐことができる。これにより、噴霧ノズル21に供給される水及び空気の流量等の供給条件を変化させても広い範囲で前記偏流に起因する噴霧状態の乱れ(水滴が十分に微細化されない場合や、水滴の大きさにむらが生じる等)を抑えることができ、この結果、噴霧部51から十分に微細化された水滴を安定して噴霧することができる。 In each embodiment, the water guide unit 40 guides water containing bubbles in the vertical direction. Thereby, since the uneven flow of water and air (bubbles) in the flow of water containing bubbles in the water guide unit 40 is suppressed, stable conditions in which sufficiently fine water droplets are stably sprayed from the spray unit 51. That is, the range in which sufficiently fine water droplets are stably sprayed even if the flow rate of water and air supplied to the spray nozzle 21 is changed is widened. That is, in the case where water containing bubbles is guided in the vertical direction, in the flow of water containing bubbles in the water guide section 40, as in the case where water containing bubbles is guided in another direction (for example, the horizontal direction). It is possible to prevent air (bubbles) from gathering on the upper side and causing the air and water to flow unevenly (unevenly flow). Thereby, even if the supply conditions such as the flow rate of water and air supplied to the spray nozzle 21 are changed, the spray state is disturbed due to the drift in a wide range (when the water droplets are not sufficiently refined or the size of the water droplets). As a result, sufficiently fine water droplets can be stably sprayed from the spraying part 51.
 また、各実施形態では、水案内部40が、気泡を含む水を下方に向けて案内し、これを噴霧部51が下方に向けて噴霧する。このため、他の方向(例えば、上方や水平方向)に水案内部40が気泡を含む水を案内して噴霧部51がこの水を同方向に噴霧する場合に比べ、安定条件(噴霧部51から十分に微細化された水滴が安定して噴霧されるような水や空気等の供給条件)が最も広くなる。 Moreover, in each embodiment, the water guide part 40 guides the water containing air bubbles downward, and the spray part 51 sprays this downward. For this reason, compared with the case where the water guide part 40 guides the water containing air bubbles in another direction (for example, upward or horizontal direction) and the spray part 51 sprays this water in the same direction, the stable condition (spray part 51). From the above, the supply conditions such as water and air in which sufficiently fine water droplets are stably sprayed become the widest.
 しかも、蒸発し難い大きな水滴が噴霧部51から噴霧された場合でも、この大きな水滴は、下方に向けて噴霧されているため、噴霧された勢いと当該水滴に加わる重力によって、熱交換器13に向かう略水平方向の空気の流れを横切って下方に(例えば、室外機11の設置面等)に落下する。このため、この大きな水滴によって熱交換器13が濡れることが防がれる。 In addition, even when a large water droplet that is difficult to evaporate is sprayed from the spraying part 51, the large water droplet is sprayed downward, so that it is applied to the heat exchanger 13 by the sprayed momentum and the gravity applied to the water droplet. It falls downward (for example, the installation surface of the outdoor unit 11 or the like) across the air flow in the substantially horizontal direction. For this reason, the heat exchanger 13 is prevented from getting wet by the large water droplets.
 <他の実施形態>
 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。
<Other embodiments>
As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, A various change, improvement, etc. are possible in the range which does not deviate from the meaning.
 前記各実施形態では、図2に示すように、各噴霧ノズル21が、熱交換器13に対向する3つの側板12a,12b,12cにおいて、水滴を下方に向けて噴霧する姿勢で且つ同じ高さ位置となるよう互いに水平方向に間隔を空けて配置されている場合を例に挙げて説明したが、これに限定されない。噴霧装置20による冷却効果が熱交換器13のほぼ全体にわたってほぼ均等に及ぼされればよいため、例えば、図7に示す室外機11Aのように、各噴霧ノズル21が熱交換器13に向かって水滴を噴霧する(換言すると、熱交換器13に向かう外気の流れに沿って水滴を噴霧する)姿勢となるように配置されてもよい。具体例を挙げると次の通りである。 In each of the above-described embodiments, as shown in FIG. 2, each spray nozzle 21 sprays water droplets downward on the three side plates 12a, 12b, 12c facing the heat exchanger 13 and has the same height. Although the case where they are arranged at intervals in the horizontal direction so as to be positioned has been described as an example, the present invention is not limited to this. Since the cooling effect by the spray device 20 only needs to be exerted almost uniformly over almost the entire heat exchanger 13, for example, each spray nozzle 21 has water droplets toward the heat exchanger 13 as in the outdoor unit 11A shown in FIG. (In other words, water droplets are sprayed along the flow of outside air toward the heat exchanger 13). Specific examples are as follows.
 各噴霧ノズル21は、水滴が熱交換器13に向かって噴霧される姿勢で配置される。即ち、各噴霧ノズル21は、その軸方向が空気の流れ(気流)方向に沿う方向に向けられた状態で配置される。各噴霧ノズル21から噴霧された水滴は、放射状に拡散しながら前記気流の方向に沿って熱交換器13に向かって移動する。水滴の全部又はその大半は、熱交換器13に到達する前に気化する。 Each spray nozzle 21 is arranged in a posture in which water droplets are sprayed toward the heat exchanger 13. That is, each spray nozzle 21 is arranged in a state where its axial direction is directed in a direction along the air flow (air flow) direction. Water droplets sprayed from each spray nozzle 21 move toward the heat exchanger 13 along the direction of the air flow while diffusing radially. All or most of the water droplets are vaporized before reaching the heat exchanger 13.
 各噴霧ノズル21が上記のように水平又は若干の傾斜した方向に水滴を噴霧する姿勢で室外機11Aに設けられる場合、複数の噴霧ノズル21は、図8に示すように、熱交換器13に対向する3つの側板12a,12b,12cに、互いに間隔をあけて配置されるのが好ましい。より具体的には、各噴霧ノズル21から噴霧される水滴が拡散する範囲、すなわち各噴霧ノズル21により熱交換器13に向かう空気が冷却される範囲に基づいて、複数の噴霧ノズル21は、互いに上下方向及び水平方向に例えば数十センチ程度の間隔をあけて点在するように配置される。この配置例では、各噴霧ノズル21から水滴が拡散する範囲が例えば直径50cm程度であり、側板12aの幅が例えば100cm程度であり、側板12b,12cの幅が30cm程度であり、各側板の高さが80cm程度である場合を例示している。そして、側板12aには4つの噴霧ノズル21が上下方向及び水平方向に配列され、側板12b及び側板12cには、2つの噴霧ノズル21が上下方向にそれぞれ配列されている。 When each spray nozzle 21 is provided in the outdoor unit 11A in a posture in which water droplets are sprayed in the horizontal or slightly inclined direction as described above, the plurality of spray nozzles 21 are connected to the heat exchanger 13 as shown in FIG. It is preferable that the three side plates 12a, 12b, and 12c facing each other are arranged with a space therebetween. More specifically, based on the range in which the water droplets sprayed from each spray nozzle 21 diffuse, that is, the range in which the air toward the heat exchanger 13 is cooled by each spray nozzle 21, the plurality of spray nozzles 21 are mutually connected. For example, they are arranged so as to be scattered at intervals of about several tens of centimeters in the vertical direction and the horizontal direction. In this arrangement example, the range in which water droplets diffuse from each spray nozzle 21 is, for example, about 50 cm in diameter, the width of the side plate 12a is, for example, about 100 cm, the width of the side plates 12b, 12c is about 30 cm, and the height of each side plate The case where thickness is about 80 cm is illustrated. The four spray nozzles 21 are arranged in the vertical direction and the horizontal direction on the side plate 12a, and the two spray nozzles 21 are arranged in the vertical direction on the side plate 12b and the side plate 12c, respectively.
 以上のように各噴霧ノズル21が配置されることにより、噴霧装置20による冷却効果が熱交換器13のほぼ全体にわたってほぼ均等に及ぼされる。 By arranging the spray nozzles 21 as described above, the cooling effect of the spray device 20 is exerted almost uniformly over almost the entire heat exchanger 13.
 また、噴霧ノズル21が熱交換器13に向かって(即ち、熱交換器13に向かう外気の流れに沿って)水滴を噴霧する姿勢で配置される場合、複数の噴霧ノズル21は、例えば、熱交換器13の一部の領域において他の領域よりも高い冷却効果が得られるように、偏って配置されていてもよい。具体例を挙げると次の通りである。 Further, when the spray nozzle 21 is arranged in a posture to spray water droplets toward the heat exchanger 13 (that is, along the flow of outside air toward the heat exchanger 13), the plurality of spray nozzles 21 are, for example, heat In some regions of the exchanger 13, the regions may be arranged in a biased manner so that a higher cooling effect can be obtained than in other regions. Specific examples are as follows.
 図9は、熱交換器13に対する噴霧ノズル21の他の配置例を説明するための概略図である。図9では、噴霧ノズル21の図示は省略している。図9に示す熱交換器13は、3つの伝熱管P1,P2,P3を有している。3つの伝熱管P1,P2,P3は、互いに独立した冷媒経路を有している。各伝熱管は、熱交換器13の幅方向の両端部において折り返されて蛇行する冷媒経路を有している。各伝熱管の一端(図9では右端)には冷媒の入口が設けられており、他端(図9では左端)には冷媒の出口が設けられている。 FIG. 9 is a schematic diagram for explaining another arrangement example of the spray nozzle 21 with respect to the heat exchanger 13. In FIG. 9, the spray nozzle 21 is not shown. The heat exchanger 13 shown in FIG. 9 has three heat transfer tubes P1, P2, and P3. The three heat transfer tubes P1, P2, P3 have mutually independent refrigerant paths. Each heat transfer tube has a refrigerant path that is folded and meanders at both ends in the width direction of the heat exchanger 13. A refrigerant inlet is provided at one end (right end in FIG. 9) of each heat transfer tube, and a refrigerant outlet is provided at the other end (left end in FIG. 9).
 熱交換器13において冷媒を所定の過冷却度を有する過冷却液にするためには、伝熱管P1,P2,P3の冷媒出口近傍の過冷却領域(下流側端部領域)SB1,SB2,SB3が重点的に冷却されるのが好ましい。図9に示す配置例では、複数の噴霧ノズル21は、熱交換器13における過冷却領域SB1,SB2,SB3に対向する位置に重点的に設けられている。 In order to change the refrigerant into a supercooled liquid having a predetermined degree of supercooling in the heat exchanger 13, supercooling regions (downstream end regions) SB1, SB2, SB3 in the vicinity of the refrigerant outlet of the heat transfer tubes P1, P2, P3. Is preferably cooled preferentially. In the arrangement example shown in FIG. 9, the plurality of spray nozzles 21 are provided mainly at positions facing the supercooling regions SB1, SB2, and SB3 in the heat exchanger 13.
 噴霧ノズル21を一部の領域に重点的に設ける具体例としては、次のような形態が挙げられる。例えば、複数の噴霧ノズル21が熱交換器13における過冷却領域SB1,SB2,SB3に対向する位置にのみ設けられている形態や、他の領域に対向する位置よりも過冷却領域SB1,SB2,SB3に対向する位置に、噴霧ノズル21が密集して設けられている形態などが挙げられる。 As a specific example in which the spray nozzle 21 is intensively provided in a part of the region, the following forms may be mentioned. For example, a configuration in which the plurality of spray nozzles 21 are provided only at positions facing the supercooling areas SB1, SB2, and SB3 in the heat exchanger 13, or the supercooling areas SB1, SB2, and the positions facing the other areas. A form in which the spray nozzles 21 are densely provided at a position facing the SB 3 is exemplified.
 また、例えば、各噴霧ノズル21が、図10に示すように、水滴を上方に向けて噴霧する姿勢となるように配置されてもよい。 Further, for example, each spray nozzle 21 may be arranged so as to spray water droplets upward as shown in FIG.
 この場合、各噴霧ノズル21は、室外機11Bにおいて熱交換器13より外側で且つ下側に配置される。このとき、各噴霧ノズル21において、水案内部40は気泡を含む水を上方に向けて案内し、噴霧部51は水案内部40によって案内された多数の気泡を含む水を上方に向けて噴霧する。これら複数の噴霧ノズル21は、熱交換器13に対向する3つの側板12a,12b,12cにおいて、水滴を上方に向けて噴霧する姿勢で且つ同じ高さ位置(熱交換器13よりも下側の位置)となるように互いに水平方向に間隔を空けて配置される。 In this case, each spray nozzle 21 is disposed outside and below the heat exchanger 13 in the outdoor unit 11B. At this time, in each spray nozzle 21, the water guide unit 40 guides water containing bubbles upward, and the spray unit 51 sprays water containing many bubbles guided by the water guide unit 40 upward. To do. The plurality of spray nozzles 21 are arranged to spray water droplets upward on the three side plates 12a, 12b, 12c facing the heat exchanger 13 and at the same height position (lower than the heat exchanger 13). Position), and are spaced apart from each other in the horizontal direction.
 このように水案内部40が気泡を含む水を上方に向けて案内し、これを噴霧部51が上方に向けて噴霧することによっても、水案内部40内の気泡を含む水の流れにおける空気と水との偏流が抑えられ、噴霧部51から十分に微細化された水滴が安定して噴霧される。 The water in the water flow including the bubbles in the water guide 40 is also obtained when the water guide 40 guides the water containing the bubbles upward and the spraying unit 51 sprays the water upward. And the water droplets sufficiently refined from the spraying part 51 are stably sprayed.
 しかも、上側ほど流れが速い風速分布(熱交換器13と送風機14との位置関係に起因する風速分布)を有する熱交換器13に向かう外気の流れに対し、下側から噴霧ノズル21が上方に向けて水滴を噴霧するため、熱交換器13の高さ方向の各部位に向かう水滴が当該熱交換器13の部位に到達する前に気化するのに十分な滞空時間がそれぞれ確保される。詳しくは、以下の通りである。 In addition, the spray nozzle 21 is directed upward from the lower side with respect to the flow of outside air toward the heat exchanger 13 having a wind speed distribution (wind speed distribution resulting from the positional relationship between the heat exchanger 13 and the blower 14) that flows faster toward the upper side. Since the water droplets are sprayed toward the heat exchanger 13, sufficient dwell times are secured for vaporization of the water droplets directed to the respective portions in the height direction of the heat exchanger 13 before reaching the portions of the heat exchanger 13. Details are as follows.
 熱交換器13が設置面(水平面)に対して立設されると共に、送風機14がケース2内において熱交換器13よりも水平方向内側で且つ上側に配置されている室外機11B(図10参照)では、熱交換器13に向かう空気の流れが均一ではなく、図11に示すように、上側ほど流れが速い風速分布が形成される。これは、ケース2の側板12a、12b、12cに設けられた図略の吸込口において、送風機14に近い位置(上側)ほど吸い込まれる空気の流れが速くなるからである。尚、図11において、熱交換器13に向かう水平方向の矢印は、送風機14が室外機11B(ケース2)の内部の空気を外部に排出する(図11における上向きの矢印参照)ことによって形成される外気(空気)の流れであって熱交換器13に向かう外気の流れを示すものである。この空気の流れを示す各矢印の長さは、その高さ位置における風速の大きさを示している。 The outdoor unit 11B (see FIG. 10) in which the heat exchanger 13 is erected with respect to the installation surface (horizontal plane) and the blower 14 is disposed in the case 2 on the inner side in the horizontal direction and on the upper side of the heat exchanger 13. ), The air flow toward the heat exchanger 13 is not uniform, and as shown in FIG. This is because the flow of air sucked in the suction port (not shown) provided in the side plates 12a, 12b, and 12c of the case 2 becomes faster toward the position closer to the blower 14 (upper side). In addition, in FIG. 11, the horizontal arrow toward the heat exchanger 13 is formed when the air blower 14 discharges the air inside the outdoor unit 11B (case 2) to the outside (see the upward arrow in FIG. 11). This shows the flow of outside air (air) that flows toward the heat exchanger 13. The length of each arrow indicating the air flow indicates the magnitude of the wind speed at the height position.
 この状態において噴霧ノズル21が、熱交換器13よりも下側から上方に向けて水滴を噴霧する構成の場合、熱交換器13の下側に配置された噴霧ノズル21から熱交換器13上部までの距離が大きくなる。このため、噴霧ノズル21から噴霧されて熱交換器13上部に向かう水滴(図11の矢印α参照)は、当該液滴の気化に必要な滞空時間が十分に確保される。したがって、熱交換器13上部に向かう外気の流れが速いにもかかわらず、熱交換器13上部に到達する前に気化させることができる。一方、熱交換器13の下側に配置された噴霧ノズル21から熱交換器13下部までの距離は近くなるが、当該部位に向かう空気の流れが遅いため、噴霧ノズル21から噴霧されて熱交換器13下部に向かう水滴(図11の矢印β参照)が気化するのに必要な滞空時間を十分に確保することができる。これにより、熱交換器13下部に到達する前に水滴を気化させることができる。このように、室外機11Bでは、熱交換器13と送風機14との位置関係に起因して、熱交換器13に向かう空気の流れにおいて上側ほど流れが速い風速分布が形成される。そして、熱交換器13の下部から上方に向かって水滴が噴霧される構成では、風速の大きな高さ位置の熱交換器13の部位に向かう水滴ほど噴霧ノズル21から熱交換器13の当該部位までの距離が大きくなり、風速の小さな高さ位置の熱交換器13の部位に向かう水滴ほど噴霧ノズル21から熱交換器13の当該部位までの距離が小さくなるため、各水滴において気化に必要な滞空時間がそれぞれ十分に確保される。これにより、噴霧ノズル21から噴霧された各水滴は、熱交換器13に到達する前にそれぞれ気化し、その結果、熱交換器13が噴霧ノズル21から噴霧された水滴によって濡れるのが防がれる。 In this state, when the spray nozzle 21 is configured to spray water droplets from below to above the heat exchanger 13, from the spray nozzle 21 disposed below the heat exchanger 13 to the top of the heat exchanger 13. The distance becomes larger. For this reason, the water drop (refer to arrow (alpha) of FIG. 11) sprayed from the spray nozzle 21 and heading to the upper part of the heat exchanger 13 has enough space time required for vaporization of the said droplet. Therefore, although the flow of the outside air toward the upper part of the heat exchanger 13 is fast, it can be vaporized before reaching the upper part of the heat exchanger 13. On the other hand, although the distance from the spray nozzle 21 arranged on the lower side of the heat exchanger 13 to the lower part of the heat exchanger 13 is close, the flow of air toward the part is slow, so the heat is exchanged by being sprayed from the spray nozzle 21. It is possible to secure a sufficient dwell time required for vaporization of water droplets (see arrow β in FIG. 11) toward the lower portion of the vessel 13. Thereby, water droplets can be vaporized before reaching the lower part of the heat exchanger 13. In this manner, in the outdoor unit 11B, due to the positional relationship between the heat exchanger 13 and the blower 14, a wind speed distribution is formed such that the flow is faster toward the upper side in the air flow toward the heat exchanger 13. And in the structure by which a water droplet is sprayed upwards from the lower part of the heat exchanger 13, the water droplet which goes to the site | part of the heat exchanger 13 of the height position where a wind speed is large is from the spray nozzle 21 to the said site | part of the heat exchanger 13. The distance from the spray nozzle 21 to the relevant part of the heat exchanger 13 becomes smaller as the water droplets travel toward the part of the heat exchanger 13 at the height position where the wind speed is small. Sufficient time is secured. Thereby, each water droplet sprayed from the spray nozzle 21 is vaporized before reaching the heat exchanger 13, and as a result, the heat exchanger 13 is prevented from getting wet by the water droplet sprayed from the spray nozzle 21. .
 各実施形態では、噴霧ノズル21において、水案内部40全体が垂直方向に水を案内する形状であるが、この形状に限定されない。即ち、水案内部40において少なくとも案内領域A3に相当する部位が水を垂直方向(上記各実施形態では下方)に案内する構成であればよい。例えば、各実施形態の水案内部40において、少なくとも気泡形成部43より下流側の部位(より具体的には、少なくとも、最も下流側のエア導入孔43aよりも下流側の水案内管41の部位)が、気泡を含む水を噴霧部51に向けて垂直方向に案内する構成であればよい。かかる構成によれば、水案内部40内の気泡を含む水の流れにおける空気と水との偏流が抑えられ、噴霧部51から十分に微細化された水滴が安定して噴霧されるといった効果が得られる。 In each embodiment, in the spray nozzle 21, the entire water guide portion 40 has a shape that guides water in the vertical direction, but is not limited to this shape. In other words, at least a portion corresponding to the guide region A3 in the water guide unit 40 may be configured to guide water in the vertical direction (downward in each of the above embodiments). For example, in the water guide part 40 of each embodiment, at least a part downstream of the bubble forming part 43 (more specifically, at least a part of the water guide pipe 41 downstream of the most downstream air introduction hole 43a). ) May be configured to guide water containing bubbles in the vertical direction toward the spray unit 51. According to such a configuration, there is an effect that uneven flow of air and water in the flow of water including bubbles in the water guide unit 40 is suppressed, and sufficiently fine water droplets are stably sprayed from the spray unit 51. can get.
 各実施形態では、図1に示すように水供給機構60から供給される水に電流を流す(水に通電する)ことによって噴霧装置20から噴霧される水を帯電させているが、この方式に限定されない。例えば、図12(A)、図12(B)に示すように静電誘導を用いて、噴霧される水を帯電させてもよく、また、図13に示すように空気中での放電により、噴霧される水を帯電させてもよい。具体的には、次の通りである。 In each embodiment, as shown in FIG. 1, the water sprayed from the spraying device 20 is charged by passing an electric current through the water supplied from the water supply mechanism 60 (energizing the water). It is not limited. For example, the water to be sprayed may be charged using electrostatic induction as shown in FIGS. 12 (A) and 12 (B), or by discharge in air as shown in FIG. The sprayed water may be charged. Specifically, it is as follows.
 まず、静電誘導を用いる方式を、図12(A)及び図12(B)を参照しつつ説明する。図12(A)は、帯電機構80の変形例1を説明するための概略図であり、図12(B)は、噴霧ノズル21及び誘導電極85を説明するための拡大斜視図である。 First, a method using electrostatic induction will be described with reference to FIGS. 12 (A) and 12 (B). FIG. 12A is a schematic diagram for explaining a first modification of the charging mechanism 80, and FIG. 12B is an enlarged perspective view for explaining the spray nozzle 21 and the induction electrode 85.
 噴霧装置20における水供給機構60の液送配管61には、前記実施形態のような絶縁性配管61bを設けなくてもよい。すなわち、液送配管61全体が導電性部材によって形成される。なお、液送配管61において、少なくとも、帯電用電源81の電極が接続される部位から噴霧ノズル21までが導電性部材により形成されていればよく、例えば、前記の電極が接続される部位の上流側の部位が絶縁性部材によって形成されていてもよい。 The insulating pipe 61b as in the above embodiment may not be provided in the liquid feeding pipe 61 of the water supply mechanism 60 in the spray device 20. That is, the entire liquid feeding pipe 61 is formed by the conductive member. In the liquid feeding pipe 61, at least the portion from the portion where the electrode of the charging power supply 81 is connected to the spray nozzle 21 may be formed by a conductive member. For example, upstream of the portion where the electrode is connected. The side portion may be formed of an insulating member.
 帯電機構80は、帯電用電源81と、誘導電極85とを備えている。帯電用電源81は、一方の電極が噴霧ノズル21に接続され、他方の電極が誘導電極85に接続される。これにより、帯電用電源81は、噴霧ノズル21と誘導電極85との間に電圧を印加できる。本実施形態では、プラスの電極が噴霧ノズル21に接続され、マイナスの電極が誘導電極85に接続される。これにより、噴霧ノズル21から噴霧される水(各水滴)は、プラスに帯電する。また、帯電用電源81のプラスの電極は、噴霧ノズル21が接地電位となるように接地されている。 The charging mechanism 80 includes a charging power supply 81 and an induction electrode 85. The charging power supply 81 has one electrode connected to the spray nozzle 21 and the other electrode connected to the induction electrode 85. Thereby, the charging power source 81 can apply a voltage between the spray nozzle 21 and the induction electrode 85. In the present embodiment, a positive electrode is connected to the spray nozzle 21 and a negative electrode is connected to the induction electrode 85. Thereby, the water (each water droplet) sprayed from the spray nozzle 21 is charged positively. The positive electrode of the charging power supply 81 is grounded so that the spray nozzle 21 is at the ground potential.
 誘導電極85は、噴霧ノズル21と所定の間隔をおいて配置され、噴霧ノズル21との間に所定の電圧が印加されることによって噴霧ノズル21を通過する水に静電誘導を生じさせる。具体的に、誘導電極85は、噴霧ノズル21の外径よりも大きな内径を有する環状の電極である(図12(B)参照)。この誘導電極85は、噴霧ノズル21の軸(中心軸)と誘導電極85の中心軸とが一致し、且つ、噴霧ノズル21の軸方向において噴霧ノズル21の先端位置またはそこから僅かに基端側の位置に配置される。誘導電極85は、噴霧ノズル21の軸方向において、噴霧ノズル21の前方(熱交換器側)に配置されてもよいが、噴霧ノズル21によって噴霧された霧状の水に接して汚れ等が生じるため、上記の噴霧ノズル21の先端位置または僅かに基端側の位置に配置されることが好ましい。 The induction electrode 85 is arranged at a predetermined interval from the spray nozzle 21, and causes electrostatic induction in water passing through the spray nozzle 21 when a predetermined voltage is applied between the spray nozzle 21. Specifically, the induction electrode 85 is an annular electrode having an inner diameter larger than the outer diameter of the spray nozzle 21 (see FIG. 12B). This induction electrode 85 has the axis (center axis) of the spray nozzle 21 and the center axis of the induction electrode 85 coincident with each other, and the tip position of the spray nozzle 21 in the axial direction of the spray nozzle 21 or a slightly proximal side thereof. It is arranged at the position. The induction electrode 85 may be disposed in front of the spray nozzle 21 (on the heat exchanger side) in the axial direction of the spray nozzle 21, but dirt or the like is generated in contact with the mist-like water sprayed by the spray nozzle 21. For this reason, it is preferable that the spray nozzle 21 is disposed at the distal end position or a slightly proximal end position.
 この帯電機構80では、帯電用電源81が噴霧ノズル21と誘導電極85との間に所定の電圧(例えば、5000V~10000V)を印加することによって噴霧ノズル21を通過する水に静電誘導が生じ、この状態の水が噴霧ノズル21から噴霧されることによって各水滴が帯電した状態となる。 In the charging mechanism 80, electrostatic induction is generated in water passing through the spray nozzle 21 when the charging power source 81 applies a predetermined voltage (for example, 5000 V to 10000 V) between the spray nozzle 21 and the induction electrode 85. The water in this state is sprayed from the spray nozzle 21 so that each water droplet is charged.
 次に、放電によって噴霧される水を帯電させる方式を図13を参照しつつ説明する。図13は、帯電機構80の変形例2を説明するための概略図である。 Next, a method for charging water sprayed by electric discharge will be described with reference to FIG. FIG. 13 is a schematic diagram for explaining a second modification of the charging mechanism 80.
 静電誘導方式の流路部同様、当該方式の噴霧装置20における水供給機構60の液送配管61は、前記実施形態のような絶縁性配管を設けなくてもよい。 As with the electrostatic induction type flow path section, the liquid supply pipe 61 of the water supply mechanism 60 in the spray apparatus 20 of the type may not be provided with the insulating pipe as in the above embodiment.
 帯電機構80は、帯電用電源81と、一対の放電電極(第1の放電電極86及び第2の放電電極87)とを備えている。 The charging mechanism 80 includes a charging power supply 81 and a pair of discharge electrodes (a first discharge electrode 86 and a second discharge electrode 87).
 帯電用電源81は、プラスの電極が第1の放電電極86に接続され、マイナスの電極が第2の放電電極87に接続される。また、マイナスの電極は、第2の放電電極87が接地電位となるように接地されている。これにより、帯電用電源81は、第1の放電電極86と第2の放電電極87との間(一対の放電電極間)に電圧を印加できる。 The charging power supply 81 has a positive electrode connected to the first discharge electrode 86 and a negative electrode connected to the second discharge electrode 87. The negative electrode is grounded so that the second discharge electrode 87 is at the ground potential. Thereby, the charging power supply 81 can apply a voltage between the first discharge electrode 86 and the second discharge electrode 87 (between a pair of discharge electrodes).
 一対の放電電極86、87は、噴霧ノズル21から噴霧された霧状の水が通過する領域を挟むように配置される。 The pair of discharge electrodes 86 and 87 are arranged so as to sandwich an area through which mist-like water sprayed from the spray nozzle 21 passes.
 この帯電機構80では、帯電用電源81が一対の放電電極86,87間に所定の電圧(例えば、5000V~10000V)を印加することによって放電電極86,87間に放電(例えば、コロナ放電等)が生じ、この放電によって当該放電電極86,87間を通過する各水滴が帯電した状態となる。この場合、各水滴は、プラスに帯電する。 In the charging mechanism 80, the charging power source 81 applies a predetermined voltage (for example, 5000 V to 10000 V) between the pair of discharge electrodes 86 and 87, thereby discharging (for example, corona discharge) between the discharge electrodes 86 and 87. As a result of this discharge, each water droplet passing between the discharge electrodes 86 and 87 is charged. In this case, each water droplet is positively charged.
 また、各実施形態の帯電機構(水に通電する方式の帯電機構)80では、図1に示すように絶縁性配管61bを挟んで噴霧ノズル21と金属配管61aとの間に電圧を印加することにより絶縁性配管61bを流れる水に通電する。これにより、噴霧される水が帯電されるが、通電する位置はこの位置に限定されない。例えば、水供給機構60がタンク等の水供給源を有する場合、この水供給源に溜められた水に通電することにより帯電させ、この帯電した水を噴霧ノズルに供給するように構成されてもよい。この場合、水に通電することにより帯電させる方式であるが、水供給機構の水案内管に絶縁性配管を設けなくてもよい。 Further, in the charging mechanism 80 of each embodiment (charging mechanism for energizing water), as shown in FIG. 1, a voltage is applied between the spray nozzle 21 and the metal pipe 61a with the insulating pipe 61b interposed therebetween. Thus, the water flowing through the insulating pipe 61b is energized. Thereby, the sprayed water is charged, but the position to be energized is not limited to this position. For example, when the water supply mechanism 60 has a water supply source such as a tank, the water supply mechanism 60 may be charged by energizing the water stored in the water supply source and supply the charged water to the spray nozzle. Good. In this case, charging is performed by energizing water, but it is not necessary to provide an insulating pipe in the water guide pipe of the water supply mechanism.
 各実施形態では、噴霧装置20が帯電部としての帯電機構80を備えている場合を例に挙げて説明したが、帯電部は、本発明において必須の構成ではなく省略することもできる。帯電部を省略する場合には、樹脂配管61bを用いる必要はなく、液送配管61全体を金属配管61aによって形成することができる。 In each embodiment, the case where the spray device 20 includes the charging mechanism 80 as a charging unit has been described as an example. However, the charging unit is not an essential configuration in the present invention and may be omitted. When the charging unit is omitted, it is not necessary to use the resin pipe 61b, and the entire liquid feed pipe 61 can be formed by the metal pipe 61a.
 第1実施形態及び第2実施形態では、気泡形成領域A2と噴霧部51との間に案内領域A3を設けた場合を例に挙げて説明したが、案内領域A3を省略することもできる。この場合、水案内管41には、テーパー孔51aの近傍の位置にエア導入孔43aが形成される。ただし、図3に示すように案内領域A3が設けられている形態では、案内領域A3が設けられていない場合に比べて、水に混入した多数の気泡が水中において分散しやすくなる。したがって、噴霧部51からより均一な水滴を噴霧することができる。 In the first embodiment and the second embodiment, the case where the guide area A3 is provided between the bubble forming area A2 and the spray unit 51 has been described as an example, but the guide area A3 may be omitted. In this case, an air introduction hole 43a is formed in the water guide pipe 41 at a position in the vicinity of the tapered hole 51a. However, in the form in which the guide area A3 is provided as shown in FIG. 3, a large number of bubbles mixed in water are more easily dispersed in water than in the case where the guide area A3 is not provided. Therefore, more uniform water droplets can be sprayed from the spray unit 51.
 各実施形態では、送風機14が熱交換器13よりも空気の流れ方向の下流側に位置している場合を例示したが、これに限定されない。例えば、空気の流れ方向において、送風機14、噴霧ノズル21及び熱交換器13がこの順に下流側に向かって並ぶように配置されていてもよい。 In each embodiment, the case where the blower 14 is located downstream of the heat exchanger 13 in the air flow direction is illustrated, but the present invention is not limited to this. For example, in the air flow direction, the blower 14, the spray nozzle 21, and the heat exchanger 13 may be arranged in this order in the downstream direction.
 第2実施形態及び第3実施形態では、多孔質部42が発泡金属により形成されている場合を例に挙げて説明したが、これに限定されない。多孔質部42は、必ずしも金属により形成されている必要はなく、例えば合成樹脂により形成されていてもよい。 In the second and third embodiments, the case where the porous portion 42 is formed of a foam metal has been described as an example, but the present invention is not limited to this. The porous portion 42 is not necessarily formed of a metal, and may be formed of, for example, a synthetic resin.
 第3実施形態では、エア案内管(第2案内管)34を水案内管(第1案内管)44の側部に接続する場合を例示したが、これに限定されない。例えば、エア案内管34は、水案内管44の長手方向の端部(上流側の端部)に接続されていてもよい。この場合、水案内管44の延びる方向とエア案内管34の延びる方向とがほぼ同じ方向を向く。 In the third embodiment, the case where the air guide pipe (second guide pipe) 34 is connected to the side of the water guide pipe (first guide pipe) 44 is illustrated, but the present invention is not limited to this. For example, the air guide tube 34 may be connected to the end portion (upstream end portion) of the water guide tube 44 in the longitudinal direction. In this case, the direction in which the water guide tube 44 extends and the direction in which the air guide tube 34 extend are substantially in the same direction.
 ここで、前記実施形態について概説する。 Here, the embodiment will be outlined.
 (1) 前記各実施形態では、熱交換器の腐食を抑制しつつ、空気調和装置全体としての動力を低減することができる。具体的には次の通りである。 (1) In the above embodiments, the power of the entire air conditioner can be reduced while suppressing corrosion of the heat exchanger. Specifically, it is as follows.
 すなわち、前記実施形態では、水案内部(40)において多数の気泡を含む水が形成され、この多数の気泡を含む水が噴霧部(51)から噴霧される。このとき又は噴霧部(51)から噴霧された後、気泡がはじけて液滴が微細化される。このように微細化された液滴は、熱交換器(13)に到達する前に気化(蒸発)しやすくなるので、熱交換器(13)に液滴が付着するのが抑制される。これにより、熱交換器(13)の腐食が抑制される。 That is, in the said embodiment, the water containing many bubbles is formed in the water guide part (40), and the water containing these many bubbles is sprayed from the spray part (51). At this time or after being sprayed from the spraying part (51), bubbles are repelled and droplets are made finer. Since the droplets thus made finer are easily vaporized (evaporated) before reaching the heat exchanger (13), the droplets are prevented from adhering to the heat exchanger (13). Thereby, corrosion of a heat exchanger (13) is suppressed.
 また、熱交換器(13)に到達する前に液滴が気化すると、その潜熱(気化熱)によって熱交換器(13)に向かう空気が冷却される。したがって、水が噴霧されていない場合に比べて、熱交換器(13)を通過する空気の温度が低くなるので、空気調和装置の冷房運転時において圧縮機、送風機などを駆動させるのに必要な動力を低減することができる。しかも、本構成では、従来の二流体ノズルのように噴霧ノズルの噴射孔において空気を高速で水に噴射するための大きな動力は必要とされない。すなわち、本構成では、水案内部(40)を流れる水の中に多数の気泡を形成する動力が必要とされるだけであるので、従来に比べて少ない空気量でよく、従来に比べて空気を送るのに必要な動力を低減することができる。これにより、空気調和装置全体としての動力を効果的に低減することができる。 Also, if the droplets are vaporized before reaching the heat exchanger (13), the air toward the heat exchanger (13) is cooled by the latent heat (heat of vaporization). Therefore, since the temperature of the air passing through the heat exchanger (13) is lower than when water is not sprayed, it is necessary to drive the compressor, blower, etc. during the cooling operation of the air conditioner. Power can be reduced. Moreover, in this configuration, unlike the conventional two-fluid nozzle, large power for injecting air into water at high speed is not required in the spray hole of the spray nozzle. That is, in this configuration, only the power for forming a large number of bubbles in the water flowing through the water guide portion (40) is required. The power required to send the power can be reduced. Thereby, the motive power as the whole air conditioning apparatus can be reduced effectively.
 (2) 前記室外機において、前記水案内部(40)は、管形状に形成された管壁を有し、前記管壁を厚み方向に貫通する1つ又は複数のエア導入孔(43a)を有しており、前記エア案内部(30)は、前記水案内部(40)の外周を囲む管形状を有している形態が例示できる。 (2) In the outdoor unit, the water guide part (40) has a tube wall formed in a tube shape, and has one or more air introduction holes (43a) penetrating the tube wall in the thickness direction. The air guide (30) has a tubular shape surrounding the outer periphery of the water guide (40).
 この構成のように、1つ又は複数のエア導入孔(43a)が設けられた水案内部(40)の外周を囲むようにエア案内部(30)を配置するという二重管構造を採用することによって噴霧ノズル(21)を安価に製作することができる。 As in this configuration, a double tube structure in which the air guide part (30) is arranged so as to surround the outer periphery of the water guide part (40) provided with one or a plurality of air introduction holes (43a) is adopted. Thus, the spray nozzle (21) can be manufactured at low cost.
 (3) 前記室外機において、前記水案内部(40)は、前記複数のエア導入孔(43a)を有しており、前記複数のエア導入孔(43a)は、前記水案内部(40)の周方向及び前記水案内部(40)の延びる方向に互いに間隔をあけて設けられているのが好ましい。 (3) In the outdoor unit, the water guide part (40) has the plurality of air introduction holes (43a), and the plurality of air introduction holes (43a) are formed in the water guide part (40). It is preferable that it is provided at intervals in the circumferential direction and the direction in which the water guide portion (40) extends.
 この構成では、複数のエア導入孔(43a)が水案内部(40)の周方向及び水案内部(40)の延びる方向に互いに間隔をあけて設けられているので、1つのエア導入孔(43a)が形成されている場合に比べて、周方向及び水案内部(40)の延びる方向に互いに間隔があけられた複数の部位から空気を水案内部(40)の水の中に流入させることができる。したがって、水案内部(40)を流れる水の中に気泡を効率よく分散させることができる。また、1つのエア導入孔(43a)が形成されている場合に比べて、水の中に空気を流入させる抵抗が小さくなり、空気を水の中に流入させるのに必要な圧力を低く設定することができる。これにより、動力をさらに低減することができる。 In this configuration, the plurality of air introduction holes (43a) are provided at intervals in the circumferential direction of the water guide portion (40) and the direction in which the water guide portion (40) extends. Compared with the case where 43a) is formed, air is made to flow into the water of the water guide part (40) from a plurality of parts spaced apart from each other in the circumferential direction and the direction in which the water guide part (40) extends. be able to. Accordingly, it is possible to efficiently disperse the bubbles in the water flowing through the water guide portion (40). In addition, compared with the case where one air introduction hole (43a) is formed, the resistance to allow air to flow into water is reduced, and the pressure required to allow air to flow into water is set low. be able to. Thereby, motive power can further be reduced.
 (4) 前記室外機において、前記水案内部(40)は、管形状を有し、少なくとも一部に多孔質部(42)を有しており、前記エア案内部(30)は、前記水案内部(40)の外周を囲む管形状を有していてもよい。 (4) In the outdoor unit, the water guide part (40) has a tubular shape, and has a porous part (42) at least partially, and the air guide part (30) You may have the pipe shape surrounding the outer periphery of a guide part (40).
 この構成では、水案内部(40)が多孔質部(42)を有しているので、気泡の径が揃いやすくなり、噴霧部(51)において噴霧される液滴の径のばらつきを低減できる。 In this configuration, since the water guide part (40) has the porous part (42), the diameters of the bubbles are easily uniformed, and variations in the diameters of the droplets sprayed in the spray part (51) can be reduced. .
 (5) 前記室外機において、前記多孔質部(42)は、発泡金属により形成されている形態が例示できる。 (5) In the outdoor unit, the porous portion (42) can be exemplified by a form formed of a foam metal.
 この構成では、多孔質部(42)が発泡金属により形成されている。多孔質部(42)は、気孔率が大きいので、多孔質部(42)を通じて空気が水案内管(41)の水の中に導入される際の抵抗を小さくすることができる。これにより、空気を水に流入させるために必要な圧力を小さくすることができる。 In this configuration, the porous portion (42) is formed of a foam metal. Since the porous portion (42) has a high porosity, it is possible to reduce resistance when air is introduced into the water of the water guide tube (41) through the porous portion (42). Thereby, the pressure required to allow air to flow into water can be reduced.
 (6) 前記室外機において、前記水案内部(40)は、管形状を有しており、前記エア案内部(30)は、管形状を有し、その先端部が前記水案内部(40)に接続されている形態であってもよい。 (6) In the outdoor unit, the water guide portion (40) has a tube shape, the air guide portion (30) has a tube shape, and a tip end portion of the water guide portion (40). ) May be connected.
 この構成では、エア案内部(30)を水案内部(40)に接続するという簡単な構造で噴霧ノズル21を形成できる。 In this configuration, the spray nozzle 21 can be formed with a simple structure in which the air guide (30) is connected to the water guide (40).
 (7) 前記室外機において、前記エア案内部(30)は、その先端部に多孔質部(42)を有しているのが好ましい。 (7) In the outdoor unit, the air guide part (30) preferably has a porous part (42) at its tip.
 この構成では、エア案内部(30)が多孔質部(42)を有しているので、気泡の径が揃いやすくなり、噴霧部(51)において噴霧される液滴の径のばらつきを低減できる。 In this configuration, since the air guide part (30) has the porous part (42), the diameters of the bubbles are easily made uniform, and variation in the diameters of the droplets sprayed in the spray part (51) can be reduced. .
 (8) 前記室外機において、前記噴霧ノズル(21)から噴霧される水を帯電させる帯電部(80)をさらに備えているのが好ましい。 (8) It is preferable that the outdoor unit further includes a charging unit (80) for charging water sprayed from the spray nozzle (21).
 この構成では、噴霧部(51)から噴霧される各液滴が帯電した状態で空気中を移動する。したがって、液滴同士が静電反発力によって反発するので、液滴同士の再凝集が抑制される。これにより、再凝集により液滴の径が大きくなるのを抑制できる。また、液滴同士が静電反発力によって反発するので、液滴を広い範囲に拡散させることができる。 In this configuration, each droplet sprayed from the spray section (51) moves in the air in a charged state. Therefore, since the droplets repel each other due to the electrostatic repulsive force, reaggregation of the droplets is suppressed. Thereby, it can suppress that the diameter of a droplet becomes large by re-aggregation. Further, since the droplets repel each other by the electrostatic repulsion force, the droplets can be diffused over a wide range.
 (9) 前記空気調和装置の室外機(11)において、前記水案内部(40)は、気泡を含む水を垂直方向に案内する形態が好ましい。 (9) In the outdoor unit (11) of the air conditioner, it is preferable that the water guide section (40) guides water containing bubbles in the vertical direction.
 このように水案内部(40)が気泡を含む水を垂直方向に案内する形態では、水案内部(40)内の気泡を含む水の流れにおける水と空気(気泡)との偏流が抑えられる。このため、噴霧部(51)から十分に微細化された液滴が安定して噴霧される安定条件が広くなる。言い換えると、噴霧ノズル(21)に供給される水及び空気の流量等を変更しても十分に微細化された液滴が安定して噴霧される範囲が広くなる。即ち、気泡を含む水を垂直方向に案内する形態では、気泡を含む水を他の方向(例えば、水平方向)に案内したときのように、水案内部(40)内の気泡を含む水の流れにおいて上部側に空気(気泡)が集まって空気と水とが偏って流れる(偏流する)ことが防がれる。これにより、噴霧ノズル(21)に供給される水及び空気の流量等の供給条件を変化させても広い範囲で前記偏流に起因する噴霧状態の乱れ(液滴が十分に微細化されない場合や、液滴の大きさにむらが生じる等)が抑えられ、噴霧部(51)から十分に微細化された液滴が安定して噴霧される。 Thus, in the form in which the water guide part (40) guides the water containing bubbles in the vertical direction, the uneven flow of water and air (bubbles) in the flow of water containing the bubbles in the water guide part (40) can be suppressed. . For this reason, the stable conditions for spraying sufficiently fine droplets from the spraying part (51) stably become wide. In other words, even if the flow rate of water and air supplied to the spray nozzle (21) is changed, the range in which sufficiently fine droplets are stably sprayed becomes wide. That is, in the embodiment in which the water containing bubbles is guided in the vertical direction, the water containing bubbles in the water guide section (40) is used as in the case where the water containing bubbles is guided in another direction (for example, the horizontal direction). In the flow, air (bubbles) gathers on the upper side, and air and water are prevented from flowing unevenly (unevenly flowing). Thereby, even when the supply conditions such as the flow rate of water and air supplied to the spray nozzle (21) are changed, the spray state is disturbed due to the drift in a wide range (if the droplets are not sufficiently refined, The unevenness of the size of the droplets is suppressed), and the sufficiently fine droplets are stably sprayed from the spraying part (51).
 (10)このように水案内部(40)が気泡を含む水を垂直方向に案内する場合において、前記噴霧ノズル(21)は、前記室外機(11)において前記熱交換器(13)よりも外側に配置され、前記水案内部(40)は、気泡を含む水を下方に向けて案内し、前記噴霧部(51)は、前記水案内部(40)の下側に配置され且つ前記水案内部(40)によって案内された前記多数の気泡を含む水を下方に向けて噴霧する形態がより好ましい。 (10) When the water guide part (40) guides the water containing bubbles in the vertical direction as described above, the spray nozzle (21) is more than the heat exchanger (13) in the outdoor unit (11). The water guide part (40) is arranged outside and guides the water containing bubbles downward, and the spray part (51) is arranged below the water guide part (40) and the water. The form which sprays the water containing the said many bubbles guided by the guide part (40) toward the downward direction is more preferable.
 このように水案内部(40)が気泡を含む水を下方に向けて案内し、これを噴霧部(51)が下方に向けて噴霧することによって、他の方向(例えば、上方や水平方向)に水案内部(40)が気泡を含む水を案内して噴霧部(51)がこの水を同方向に噴霧する場合に比べ、安定条件が最も広くなる。すなわち、噴霧部(51)から十分に微細化された液滴が安定して噴霧されるような水や空気等の供給条件が最も広くなる。 In this way, the water guide part (40) guides the water containing bubbles downward, and the spray part (51) sprays the water downward, so that the other direction (for example, upward or horizontal direction). Compared with the case where the water guide part (40) guides the water containing bubbles and the spray part (51) sprays the water in the same direction, the stability condition becomes the widest. That is, the supply conditions such as water and air are such that the sufficiently fine droplets are stably sprayed from the spray section (51).
 しかも、大きな液滴が噴霧部(51)から噴霧された場合でも、この液滴は、下方に向けて噴霧されているため、噴霧された勢いと当該液滴に加わる重力によって、熱交換器(13)に向かう略水平方向の空気の流れを横切って落下する。その結果、大きな液滴が噴霧されたとしても、液滴が熱交換器(13)に付着して当該熱交換器(13)を濡らすことを防止することができる。 Moreover, even when a large droplet is sprayed from the spray section (51), this droplet is sprayed downward, so that the heat exchanger ( It falls across the flow of air in the substantially horizontal direction toward 13). As a result, even if a large droplet is sprayed, the droplet can be prevented from adhering to the heat exchanger (13) and wetting the heat exchanger (13).
 (11)水案内部(40)が気泡を含み水を垂直方向に案内する場合、室外機(11)が前記熱交換器(13)に向かう空気の流れを形成する送風機(14)を備え、前記送風機(14)は、前記室外機(11)において前記熱交換器(13)より内側で且つ上側に配置され、前記室外機(11)の内部に流入して前記熱交換器(13)と熱交換した後の空気を上方に向けて当該室外機(11)の外部に排出し、前記噴霧ノズル(21)は、前記室外機(11)において前記熱交換器(13)よりも外側に配置され、前記水案内部(40)は、気泡を含む水を上方に向けて案内し、前記噴霧部(51)は、前記水案内部(40)の上側に配置され、前記水案内部(40)によって案内された前記多数の気泡を含む水を上方に向けて噴霧する形態であってもよい。 (11) When the water guide part (40) contains bubbles and guides the water in the vertical direction, the outdoor unit (11) includes a blower (14) that forms a flow of air toward the heat exchanger (13), The blower (14) is disposed inside and above the heat exchanger (13) in the outdoor unit (11), flows into the outdoor unit (11), and the heat exchanger (13). The air after heat exchange is directed upward and discharged to the outside of the outdoor unit (11), and the spray nozzle (21) is arranged outside the heat exchanger (13) in the outdoor unit (11). The water guide part (40) guides water containing bubbles upward, and the spray part (51) is disposed above the water guide part (40), and the water guide part (40) In the form of spraying upward the water containing the numerous bubbles guided by There may be.
 このように水案内部(40)が気泡を含む水を上方に向けて案内し、これを噴霧部(51)が上方に向けて噴霧することによっても、案内部(40)内の気泡を含む水の流れにおける空気と水との偏流が抑えられ、噴霧部(51)から十分に微細化された液滴が安定して噴霧される。 Thus, the water guide part (40) also guides the water containing bubbles upward, and the spray part (51) sprays upwards, so that the bubbles in the guide part (40) are included. The uneven flow of air and water in the water flow is suppressed, and sufficiently fine droplets are stably sprayed from the spray section (51).
 しかも、上側ほど流れが速い風速分布(熱交換器(13)と送風機(14)との位置関係に起因する風速分布:図11参照)を有する前記熱交換器(13)に向かう空気の流れに対し、噴霧ノズル(21)が上方に向けて液滴を噴霧するので、熱交換器(13)の高さ方向の各部位に向かう液滴が当該熱交換器(13)の部位に到達する前に気化するのに十分な滞空時間がそれぞれ確保され、これにより、熱交換器(13)が前記液滴によって濡れることが防がれる。詳しくは、以下の通りである。 In addition, the flow of air toward the heat exchanger (13) having a wind speed distribution (wind speed distribution due to the positional relationship between the heat exchanger (13) and the blower (14): see FIG. 11) that is faster toward the upper side. On the other hand, since the spray nozzle (21) sprays the liquid droplets upward, the liquid droplets directed to the respective parts in the height direction of the heat exchanger (13) reach the part of the heat exchanger (13). Sufficient hovering time to vaporize each is ensured, thereby preventing the heat exchanger (13) from getting wet by the droplets. Details are as follows.
 熱交換器(13)の下方側に配置された噴霧ノズル(21)から熱交換器(13)上部までの距離が大きくなる。このため、噴霧ノズル(21)から噴霧されて熱交換器(13)上部に向かう液滴は、当該液滴の気化に必要な滞空時間が十分に確保される。したがって、熱交換器(13)上部に向かう空気の流れが速いにもかかわらず、熱交換器(13)上部に到達する前に気化する。一方、熱交換器(13)の下方側に配置された噴霧ノズル(21)から熱交換器(13)下部までの距離は近くなるが、当該部位に向かう空気の流れが遅いため、噴霧ノズル(21)から噴霧されて熱交換器(13)下部に向かう液滴は、当該液滴が気化するのに必要な滞空時間を十分に確保することができる。これにより、熱交換器(13)下部に到達する前に水滴を気化させることができる。このように、当該室外機(11)では、熱交換器(13)と送風機(14)との位置関係に起因して、熱交換器(13)に向かう空気の流れにおいて上側ほど流れが速い風速分布が形成される。そして、上方に向かって液滴が噴霧ノズル(21)から噴霧される構成では、風速の大きな高さ位置の熱交換器(13)の部位に向かう液滴ほど噴霧ノズル(21)から熱交換器(13)の当該部位までの距離が大きくなり、風速の小さな高さ位置の熱交換器(13)の部位に向かう液滴ほど噴霧ノズル(21)から熱交換器(13)の当該部位までの距離が小さくなるため、各液滴において気化に必要な滞空時間が十分に確保される。これにより、噴霧ノズル(21)から噴霧された各液滴は、熱交換器(13)に到達する前に気化し、その結果、熱交換器(13)が噴霧ノズル(21)から噴霧された液滴によって濡れるのが防がれる。 The distance from the spray nozzle (21) arranged on the lower side of the heat exchanger (13) to the upper part of the heat exchanger (13) increases. For this reason, as for the droplet sprayed from the spray nozzle (21) and heading to the upper part of the heat exchanger (13), the dwell time required for the vaporization of the droplet is sufficiently secured. Therefore, although the air flow toward the upper part of the heat exchanger (13) is fast, it vaporizes before reaching the upper part of the heat exchanger (13). On the other hand, although the distance from the spray nozzle (21) arranged on the lower side of the heat exchanger (13) to the lower part of the heat exchanger (13) is close, the flow of air toward the part is slow, so the spray nozzle ( The droplets sprayed from 21) and directed to the lower part of the heat exchanger (13) can sufficiently secure the dwell time necessary for the droplets to vaporize. Thereby, water droplets can be vaporized before reaching the lower part of the heat exchanger (13). Thus, in the said outdoor unit (11), due to the positional relationship between the heat exchanger (13) and the blower (14), the wind speed that flows faster toward the upper side in the air flow toward the heat exchanger (13). A distribution is formed. In the configuration in which the droplets are sprayed upward from the spray nozzle (21), the droplets directed toward the portion of the heat exchanger (13) at a height position where the wind speed is higher are closer to the heat exchanger from the spray nozzle (21). The distance from the spray nozzle (21) to the relevant part of the heat exchanger (13) increases as the distance to the relevant part of (13) increases and the liquid droplets toward the part of the heat exchanger (13) at the height position where the wind speed is low Since the distance becomes small, a sufficient dwell time for vaporization is ensured in each droplet. Thereby, each droplet sprayed from the spray nozzle (21) is vaporized before reaching the heat exchanger (13), and as a result, the heat exchanger (13) is sprayed from the spray nozzle (21). It is prevented from getting wet by droplets.
 以上説明したように、前記各実施形態によれば、熱交換器の腐食を抑制しつつ、空気調和装置全体としての動力を低減することができる。 As described above, according to each of the above embodiments, the power of the entire air conditioner can be reduced while suppressing corrosion of the heat exchanger.
11、11A、11B 室外機
13 熱交換器
20 噴霧装置
21 噴霧ノズル
30 エア案内部
31 エア案内管
34 エア案内管(第2案内管)
40 水案内部
41 水案内管
42 多孔質体
44 水案内管(第1案内管)
50 オリフィス部
51 噴霧部
80 帯電部
11, 11A, 11B Outdoor unit 13 Heat exchanger 20 Spray device 21 Spray nozzle 30 Air guide portion 31 Air guide tube 34 Air guide tube (second guide tube)
40 water guide part 41 water guide pipe 42 porous body 44 water guide pipe (first guide pipe)
50 Orifice part 51 Spraying part 80 Charging part

Claims (11)

  1.  熱交換器と、
     前記熱交換器に向かう空気に水を噴霧する噴霧ノズルと、を備え、
     前記噴霧ノズルは、
     空気が流れるエア案内部と、
     水が流れるとともに、前記エア案内部を流れた空気を水の中に流入させて多数の気泡を含む水を形成する水案内部と、
     前記水案内部よりも水の流れ方向の下流側に位置し、前記水案内部において形成された多数の気泡を含む水を外部に噴霧する噴霧部と、を備えている空気調和装置の室外機。
    A heat exchanger,
    A spray nozzle for spraying water on the air toward the heat exchanger,
    The spray nozzle is
    An air guide through which air flows;
    As the water flows, a water guide part that forms water containing a large number of bubbles by flowing the air that has flowed through the air guide part into the water;
    An outdoor unit of an air conditioner, comprising: a spray unit that is located downstream of the water guide unit in the water flow direction and sprays water containing a large number of bubbles formed in the water guide unit to the outside. .
  2.  請求項1に記載の空気調和装置の室外機において、
     前記水案内部は、管形状に形成された管壁を有し、前記管壁を厚み方向に貫通する1つ又は複数のエア導入孔を有しており、
     前記エア案内部は、前記水案内部の外周を囲む管形状を有している空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 1,
    The water guide portion has a tube wall formed in a tube shape, and has one or a plurality of air introduction holes penetrating the tube wall in the thickness direction,
    The air guide unit is an outdoor unit of an air conditioner having a tube shape surrounding an outer periphery of the water guide unit.
  3.  請求項2に記載の空気調和装置の室外機において、
     前記水案内部は、前記複数のエア導入孔を有しており、
     前記複数のエア導入孔は、前記水案内部の周方向及び前記水案内部の延びる方向に互いに間隔をあけて設けられている空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 2,
    The water guide portion has the plurality of air introduction holes,
    The plurality of air introduction holes are outdoor units of an air conditioner provided at intervals in a circumferential direction of the water guide portion and a direction in which the water guide portion extends.
  4.  請求項1に記載の空気調和装置の室外機において、
     前記水案内部は、管形状を有し、少なくとも一部に多孔質部を有しており、
     前記エア案内部は、前記水案内部の外周を囲む管形状を有している空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 1,
    The water guide part has a tubular shape, and has a porous part at least in part,
    The air guide unit is an outdoor unit of an air conditioner having a tube shape surrounding an outer periphery of the water guide unit.
  5.  請求項4に記載の空気調和装置の室外機において、
     前記多孔質部は、発泡金属により形成されている空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 4,
    The porous part is an outdoor unit of an air conditioner formed of foam metal.
  6.  請求項1に記載の空気調和装置の室外機において、
     前記水案内部は、管形状を有しており、
     前記エア案内部は、管形状を有し、その先端部が前記水案内部に接続されている空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 1,
    The water guide portion has a tube shape,
    The air guide unit is an outdoor unit of an air conditioner having a tubular shape, and a tip portion of the air guide unit is connected to the water guide unit.
  7.  請求項6に記載の空気調和装置の室外機において、
     前記エア案内部は、その先端部に多孔質部を有している空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 6,
    The air guide part is an outdoor unit of an air conditioner having a porous part at a tip part thereof.
  8.  請求項1~7のいずれか1項に記載の空気調和装置の室外機において、
     前記噴霧ノズルから噴霧される水を帯電させる帯電部をさらに備えている空気調和装置の室外機。
    The outdoor unit for an air conditioner according to any one of claims 1 to 7,
    An outdoor unit for an air conditioner, further comprising a charging unit that charges water sprayed from the spray nozzle.
  9.  請求項1乃至8のいずれか1項に記載の空気調和装置の室外機において、
     前記水案内部は、気泡を含む水を垂直方向に案内する空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus of any one of Claims 1 thru | or 8,
    The water guide unit is an outdoor unit of an air conditioner that guides water containing bubbles in a vertical direction.
  10.  請求項9に記載の空気調和装置の室外機において、
     前記噴霧ノズルは、前記室外機において前記熱交換器よりも外側に配置され、
     前記水案内部は、気泡を含む水を下方に向けて案内し、
     前記噴霧部は、前記水案内部の下側に配置され且つ前記水案内部によって案内された前記多数の気泡を含む水を下方に向けて噴霧する空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 9,
    The spray nozzle is disposed outside the heat exchanger in the outdoor unit,
    The water guide unit guides water containing bubbles downward,
    The spray unit is an outdoor unit of an air conditioner that is disposed below the water guide unit and sprays water including the plurality of bubbles guided by the water guide unit downward.
  11.  請求項9に記載の空気調和装置の室外機において、
     前記熱交換器に向かう空気の流れを形成する送風機を備え、
     前記送風機は、前記室外機において前記熱交換器より内側で且つ上側に配置され、前記室外機の内部に流入して前記熱交換器と熱交換した後の空気を上方に向けて当該室外機の外部に排出し、
     前記噴霧ノズルは、前記室外機において前記熱交換器よりも外側に配置され、
     前記水案内部は、気泡を含む水を上方に向けて案内し、
     前記噴霧部は、前記水案内部の上側に配置され、前記水案内部によって案内された前記多数の気泡を含む水を上方に向けて噴霧する空気調和装置の室外機。
    In the outdoor unit of the air conditioning apparatus according to claim 9,
    A blower that forms a flow of air toward the heat exchanger;
    The blower is disposed inside and on the upper side of the heat exchanger in the outdoor unit, and the air after flowing into the outdoor unit and exchanging heat with the heat exchanger is directed upwards of the outdoor unit. To the outside,
    The spray nozzle is disposed outside the heat exchanger in the outdoor unit,
    The water guide unit guides water containing bubbles upward,
    The spray unit is an outdoor unit of an air conditioner that is disposed on the upper side of the water guide unit and sprays water including the plurality of bubbles guided by the water guide unit upward.
PCT/JP2012/006183 2011-09-30 2012-09-27 Outdoor unit for air conditioning device WO2013046689A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12835730.8A EP2767767B1 (en) 2011-09-30 2012-09-27 Outdoor unit for air conditioning device
ES12835730T ES2747474T3 (en) 2011-09-30 2012-09-27 Outdoor unit for air conditioning device
CN201280048026.2A CN103857964B (en) 2011-09-30 2012-09-27 The off-premises station of air-conditioning device
US14/348,361 US20140263765A1 (en) 2011-09-30 2012-09-27 Outdoor unit for air conditioning device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011217974 2011-09-30
JP2011-217974 2011-09-30
JP2012-197301 2012-09-07
JP2012197301A JP5310917B2 (en) 2011-09-30 2012-09-07 Air conditioner outdoor unit

Publications (1)

Publication Number Publication Date
WO2013046689A1 true WO2013046689A1 (en) 2013-04-04

Family

ID=47994765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006183 WO2013046689A1 (en) 2011-09-30 2012-09-27 Outdoor unit for air conditioning device

Country Status (6)

Country Link
US (1) US20140263765A1 (en)
EP (1) EP2767767B1 (en)
JP (1) JP5310917B2 (en)
CN (1) CN103857964B (en)
ES (1) ES2747474T3 (en)
WO (1) WO2013046689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150096917A (en) * 2014-02-17 2015-08-26 삼성전자주식회사 Apparatus and method for handling request of application layer using multiple interface in electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104315695A (en) * 2014-11-12 2015-01-28 长春工程学院 Spray evaporation foam metal heat transfer enhancement device for air conditioning condenser
JP6094646B2 (en) * 2015-08-21 2017-03-15 ダイキン工業株式会社 Refrigeration unit heat source unit
CN106989614B (en) * 2017-05-08 2022-11-11 湖南大学 Heat source tower device based on electrostatic spraying
US11340019B2 (en) * 2018-10-24 2022-05-24 Purdue Research Foundation Evaporative cooling systems and methods of using
US11287165B2 (en) * 2020-05-20 2022-03-29 Hill Phoenix, Inc. Refrigeration system with adiabatic electrostatic cooling device
US20220390188A1 (en) * 2021-06-08 2022-12-08 Uniflair S.P.A. Multi-stage water distribution system for cross-flow evaporative heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229371A (en) * 1995-02-27 1996-09-10 Yoji Kato Microbubble generator
JP2002301345A (en) * 2001-02-05 2002-10-15 Teruji Sasaki Bubble water manufacturing apparatus
JP2005214578A (en) * 2004-02-02 2005-08-11 Mitsubishi Electric Corp Heat exchanger and outdoor unit of air conditioner comprising the same
JP2007271200A (en) * 2006-03-31 2007-10-18 Chiba Univ Air conditioner
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath
JP2008128500A (en) 2006-11-16 2008-06-05 Hitachi Plant Technologies Ltd Condenser using fine mist and its control method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627880C2 (en) * 1976-06-22 1982-11-11 Jogindar Mohan Dr.-Ing. 7505 Ettlingen Chawla Process for atomizing liquids or for breaking gases into small bubbles
US4341347A (en) * 1980-05-05 1982-07-27 S. C. Johnson & Son, Inc. Electrostatic spraying of liquids
GB8710685D0 (en) * 1987-05-06 1987-06-10 Turbotak Inc Cluster nozzles
US6293121B1 (en) * 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
JPH11142022A (en) * 1997-11-12 1999-05-28 Ok Kizai Kk Auxiliary cooler of air-cooled condenser for air conditioning apparatus
FR2835750A1 (en) * 2002-02-11 2003-08-15 Herve Duplessy PROCESS FOR REFRESHING THE AMBIENT AIR BY PERMANENT HORIZONTAL ATOMIZATION OF WATER, ASSISTED BY A CENTRIFUGAL PULSE AIR VENTILATION TO COVER A PROGRAMMABLE SECTOR ZONE ENSURED BY DRIVING A STEP MOTOR
US6658872B1 (en) * 2002-05-16 2003-12-09 Dennis James Air conditioner mist applicator
US20030221440A1 (en) * 2002-06-03 2003-12-04 Limehouse George M. Kit for prolonging life of an air conditioning system
US20070193296A1 (en) * 2004-01-27 2007-08-23 Mckenna Larry D Pre-cooling system for an air conditioning condenser
JP4205112B2 (en) * 2006-03-01 2009-01-07 株式会社 多自然テクノワークス Swivel type micro bubble generator
US8545457B2 (en) * 2007-11-08 2013-10-01 Terumo Kabushiki Kaisha Sprayer
KR101119211B1 (en) * 2009-09-21 2012-03-21 최장수 Apparatus Generating Minute Particles And Micro/Nano Bubbles And System Using The Same
NL2004012C2 (en) * 2009-12-23 2011-06-27 Dispensing Technologies Bv DEVICE FOR MIXING MEDIA AND METHOD FOR MANUFACTURING THEM.
CN101813342A (en) * 2010-03-09 2010-08-25 海信科龙电器股份有限公司 Power-saving spraying device for air conditioner and operating method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229371A (en) * 1995-02-27 1996-09-10 Yoji Kato Microbubble generator
JP2002301345A (en) * 2001-02-05 2002-10-15 Teruji Sasaki Bubble water manufacturing apparatus
JP2005214578A (en) * 2004-02-02 2005-08-11 Mitsubishi Electric Corp Heat exchanger and outdoor unit of air conditioner comprising the same
JP2007271200A (en) * 2006-03-31 2007-10-18 Chiba Univ Air conditioner
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath
JP2008128500A (en) 2006-11-16 2008-06-05 Hitachi Plant Technologies Ltd Condenser using fine mist and its control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150096917A (en) * 2014-02-17 2015-08-26 삼성전자주식회사 Apparatus and method for handling request of application layer using multiple interface in electronic device
KR102143620B1 (en) 2014-02-17 2020-08-11 삼성전자주식회사 Apparatus and method for handling request of application layer using multiple interface in electronic device

Also Published As

Publication number Publication date
EP2767767A1 (en) 2014-08-20
CN103857964B (en) 2016-10-05
US20140263765A1 (en) 2014-09-18
EP2767767B1 (en) 2019-07-03
JP2013083431A (en) 2013-05-09
EP2767767A4 (en) 2015-07-01
CN103857964A (en) 2014-06-11
JP5310917B2 (en) 2013-10-09
ES2747474T3 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
JP5310917B2 (en) Air conditioner outdoor unit
CN100566849C (en) Electrostatic atomization device
US8157508B2 (en) Blower apparatus
RU2722080C2 (en) Multi-level distribution system for an evaporator
JP2011510250A (en) Heat exchanger
JP2009503431A (en) Convector for cooling pipe circulating fluid
CN103353254B (en) Spray nozzle, water distribution plate comprising same and cooling tower
JP5880019B2 (en) Air conditioner outdoor unit
JP2014122728A (en) Outdoor unit of air conditioner
US9765982B2 (en) Refreshing device
JP2005214578A (en) Heat exchanger and outdoor unit of air conditioner comprising the same
CN101331028A (en) Air conditioning system with electrostatic atomizing function
KR101327119B1 (en) Cooling tower
JP2013076538A (en) Outdoor unit of air conditioner
JP2014126334A (en) Outdoor equipment of air conditioner
JP5998476B2 (en) Air conditioner
JP2015127595A (en) Outdoor equipment of air conditioner
JP2017040459A (en) Heat source unit of refrigeration device
JP2015127596A (en) Outdoor equipment of air conditioner
JP6094646B2 (en) Refrigeration unit heat source unit
CN220871102U (en) Nozzle for air conveying device and air conveying device
CN110822698A (en) Heat exchange assembly, condenser and air conditioner
JP2013096673A (en) Outdoor unit for air conditioner
JP7085198B2 (en) Intake cooling device and intake cooling method
JP2014126325A (en) Outdoor equipment of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348361

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012835730

Country of ref document: EP