JP4027932B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4027932B2
JP4027932B2 JP2004363161A JP2004363161A JP4027932B2 JP 4027932 B2 JP4027932 B2 JP 4027932B2 JP 2004363161 A JP2004363161 A JP 2004363161A JP 2004363161 A JP2004363161 A JP 2004363161A JP 4027932 B2 JP4027932 B2 JP 4027932B2
Authority
JP
Japan
Prior art keywords
oil
pipe
suction pipe
main suction
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004363161A
Other languages
Japanese (ja)
Other versions
JP2006170516A (en
Inventor
俊二 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2004363161A priority Critical patent/JP4027932B2/en
Priority to KR1020050031833A priority patent/KR100612090B1/en
Publication of JP2006170516A publication Critical patent/JP2006170516A/en
Application granted granted Critical
Publication of JP4027932B2 publication Critical patent/JP4027932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0016Ejectors for creating an oil recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、複数の圧縮機を備える空気調和機に関する。   The present invention relates to an air conditioner including a plurality of compressors.

空気調和機では、圧縮機から吐出されるガス冷媒中に混入するオイル(潤滑油)を回収するために、圧縮機の吐出配管にオイルセパレータが設けられている。さらに、空気調和機には、オイルセパレータで分離しきれずに、ガス冷媒と共に循環するオイルをアキュムレータに回収するように構成されているものがある。ここで、空気調和機が圧縮機を複数搭載している場合には、アキュムレータ内にU字状の流入管を圧縮機の数だけ設け、これら流入管のそれぞれの底部にオイルを吸入する油戻し孔を設ける。そして、各流入管に、圧縮機の吐出側に接続される吸入管を接続させる(例えば、特許文献1参照)。このように構成することで、圧縮機から吐出されたオイルがアキュムレータを介して各圧縮機に戻される。
特開平3−134447号公報
In the air conditioner, an oil separator is provided in the discharge pipe of the compressor in order to collect oil (lubricating oil) mixed in the gas refrigerant discharged from the compressor. Furthermore, some air conditioners are configured to collect oil that circulates with a gas refrigerant in an accumulator without being separated by an oil separator. Here, when the air conditioner is equipped with a plurality of compressors, U-shaped inflow pipes are provided in the accumulator by the number of compressors, and oil return for sucking oil into the bottoms of the inflow pipes is provided. Make a hole. Then, a suction pipe connected to the discharge side of the compressor is connected to each inflow pipe (for example, see Patent Document 1). By comprising in this way, the oil discharged from the compressor is returned to each compressor via an accumulator.
Japanese Patent Laid-Open No. 3-134447

しかしながら、この種の空気調和機では、吸入管の管路径と、冷媒循環量、油戻し孔の径、アキュムレータの液量によって各圧縮機へのオイルの戻り量が変化するので、運転状態が変動すると、各圧縮機に適正量のオイルを戻すことが困難になり、各圧縮機のオイルレベルが偏り易かった。
この発明は、このような事情に鑑みてなされたものであり、その目的とするところは、配管中にオイルが液膜状態で流動することにっよって、複数の圧縮機に吸入されるオイルの戻り量に偏りが生じることを防止することである。
However, in this type of air conditioner, the amount of oil returned to each compressor varies depending on the pipe diameter of the suction pipe, the amount of refrigerant circulation, the diameter of the oil return hole, and the amount of liquid in the accumulator. Then, it became difficult to return an appropriate amount of oil to each compressor, and the oil level of each compressor was easily biased.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide the oil that is sucked into a plurality of compressors by flowing the oil in a liquid film state in the pipe. This is to prevent the return amount from being biased.

上記の課題を解決する本発明の請求項1に係る発明は、並列に配設された複数の圧縮機と、前記圧縮機の吐出側に接続された吐出配管と、前記吐出配管に吐出される冷媒が供給される室外機の熱交換器、及び室内機の熱交換器と、これら前記熱交換器を通流した冷媒が流入する主吸入配管と、前記主吸入配管から分岐して前記圧縮機のそれぞれに接続される分岐吸入配管と、前記主吸入配管中に液状のオイルを貯溜可能に突設されたオイル貯溜部と、前記吐出配管中から分流させた流体を駆動流として前記オイル貯溜部に溜まったオイルを吸引して前記主吸入配管に噴き出す2流体ノズルとを有することを特徴とする空気調和機とした。
この空気調和機では、冷媒と共に回路を循環するオイルが液化して、配管の壁面に液膜を形成した場合に、この液膜がオイル貯溜部に一時的に貯溜されると共に、2流体ノズルの駆動流によって吸引され、ミスト状態となって主吸入配管に噴き出され、各分岐吸入配管に適切に分配され、各圧縮機に吸入される。
The invention according to claim 1 of the present invention that solves the above-mentioned problems is a plurality of compressors arranged in parallel, a discharge pipe connected to the discharge side of the compressor, and discharged to the discharge pipe Heat exchanger of outdoor unit to which refrigerant is supplied, heat exchanger of indoor unit, main suction pipe into which refrigerant flowing through the heat exchanger flows, branch from the main suction pipe and the compressor A branch intake pipe connected to each of the oil supply section, an oil storage section projecting so as to store liquid oil in the main suction pipe, and the oil storage section using a fluid diverted from the discharge pipe as a driving flow The air conditioner is characterized by having a two-fluid nozzle that sucks the oil accumulated in the nozzle and blows it out to the main suction pipe.
In this air conditioner, when the oil circulating in the circuit together with the refrigerant is liquefied to form a liquid film on the wall surface of the pipe, the liquid film is temporarily stored in the oil reservoir and the two-fluid nozzle It is sucked by the driving flow, becomes a mist state, is jetted to the main suction pipe, is appropriately distributed to each branch suction pipe, and is sucked into each compressor.

請求項2に係る発明は、請求項1に記載の空気調和機において、前記2流体ノズルは、前記オイル貯溜部と、前記分岐吸入配管の分岐点との間に設けられていることを特徴とする。
この空気調和機では、オイル貯溜部から2流体ノズルで吸引され、噴き出されたオイルが速やかに吸入分岐管に分配されて各圧縮機に吸入される。
The invention according to claim 2 is the air conditioner according to claim 1, wherein the two-fluid nozzle is provided between the oil reservoir and a branch point of the branch suction pipe. To do.
In this air conditioner, the oil sucked from the oil reservoir by the two-fluid nozzle and spouted is quickly distributed to the suction branch pipe and sucked into each compressor.

請求項3に係る発明は、請求項2に記載の空気調和機において、前記2流体ノズルは、前記分岐吸入配管の分岐点の直前に設けられていることを特徴とする。
この空気調和機では、オイル貯溜部から吸引され、噴き出されたオイルが、冷媒と混合された後に、直ぐに分岐点を通って各分岐吸入配管に分配される。これによって、主吸入配管の管壁などにオイルの液膜が付着することなく、分岐点を通って各分岐吸入配管に分配され、それぞれの圧縮機に吸入される。
The invention according to claim 3 is the air conditioner according to claim 2, wherein the two-fluid nozzle is provided immediately before a branch point of the branch intake pipe.
In this air conditioner, the oil sucked and ejected from the oil reservoir is mixed with the refrigerant and then immediately distributed through the branch points to the respective branch intake pipes. As a result, an oil liquid film does not adhere to the pipe wall of the main suction pipe, and the oil is distributed to the branch suction pipes through the branch points and sucked into the respective compressors.

請求項4に係る発明は、請求項1から請求項3のいずれか一項に記載の空気調和機において、前記吐出配管中にオイルセパレータを有し、前記オイルセパレータでガス冷媒から分離させたオイルを通流させるオイル戻し管を前記2流体ノズルに接続し、前記オイル戻し管を流れるオイルを駆動流とすることを特徴とする。
この空気調和機では、オイルセパレータでガス冷媒から分離させたオイルを圧縮機に回収するときに、この高圧のオイルを駆動流としてオイル貯溜部の液状オイルを吸引させる。
The invention according to claim 4 is the air conditioner according to any one of claims 1 to 3, wherein an oil separator is provided in the discharge pipe, and the oil is separated from the gas refrigerant by the oil separator. An oil return pipe through which the oil flows is connected to the two-fluid nozzle, and oil flowing through the oil return pipe is used as a driving flow.
In this air conditioner, when the oil separated from the gas refrigerant by the oil separator is recovered by the compressor, the liquid oil in the oil reservoir is sucked by using the high-pressure oil as a driving flow.

請求項5に係る発明は、請求項1から請求項4のいずれか一項に記載の空気調和機において、前記分岐吸入配管側の前記主吸入配管の一部を、前記オイル貯溜部内に突出させたことを特徴とする。
この空気調和機では、分岐吸入配管側で主吸入配管と、オイル貯溜部とが2重構造になっており、配管の内壁に沿って流動する液状のオイルが主吸入配管とオイル貯溜部との間に溜まり易くなる。
According to a fifth aspect of the present invention, in the air conditioner according to any one of the first to fourth aspects, a part of the main suction pipe on the branch suction pipe side is protruded into the oil reservoir. It is characterized by that.
In this air conditioner, the main suction pipe and the oil reservoir are doubled on the branch suction pipe side, and liquid oil flowing along the inner wall of the pipe is separated between the main suction pipe and the oil reservoir. It becomes easy to collect in between.

本発明によれば、オイル貯溜部に液状のオイルを一時的に滞溜させ、このオイルを圧縮機から吐出される流体を駆動流として吸引し、2流体ノズルから主吸入配管に噴き出すようにしたので、液状のオイルをミスト状態にすることが可能になる。したがって、ガス冷媒中に混合し易くなり、各圧縮機に吸入されるオイルを適正に分配することができる。また、配管設計の自由度が向上し、容量の異なる圧縮機を搭載している場合でも容量に応じたオイルの戻り量を確保できる。ここにおいて、駆動流としてオイルセパレータで分離させたオイルを使用すると、簡単な構成でオイルを効率良く回収することが可能になる。2流体ノズルを分岐吸入配管の分岐部の直前に設けると、主吸入配管の形状に起因するオイルの偏流を防止することができる。さらに、オイル貯溜部と、主吸入配管とを2重構造にすると、オイルを滞溜させやすくなる。   According to the present invention, liquid oil is temporarily accumulated in the oil reservoir, the fluid discharged from the compressor is sucked as a driving flow, and is ejected from the two-fluid nozzle to the main suction pipe. Therefore, it becomes possible to make liquid oil into a mist state. Therefore, it becomes easy to mix in the gas refrigerant, and the oil sucked into each compressor can be properly distributed. In addition, the degree of freedom in piping design is improved, and even when compressors with different capacities are installed, it is possible to ensure the amount of oil returned according to the capacity. Here, when the oil separated by the oil separator is used as the driving flow, the oil can be efficiently recovered with a simple configuration. If the two-fluid nozzle is provided immediately before the branch portion of the branch suction pipe, it is possible to prevent oil drift due to the shape of the main suction pipe. Furthermore, if the oil reservoir and the main suction pipe have a double structure, the oil is easily retained.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1にシステム構成を示すように、空気調和機1は、室外機2に配管3,4で室内機5が接続された構成になっている。室外機2は、第1圧縮機10と、第1圧縮機10よりも容量が大きい第2圧縮機11とを備えており、これら圧縮機10,11は、均油管12で連結されている。なお、均油管12は、本実施の形態に必須の構成要素ではない。各圧縮機10,11の吐出側には、吐出配管13が接続されており、吐出配管13は、オイルセパレータ14を介して四方弁15の第1のポート15Aに接続されている。この吐出配管13と、オイルセパレータ14とで吐出経路が形成されている。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the air conditioner 1 has a configuration in which an indoor unit 5 is connected to an outdoor unit 2 through pipes 3 and 4. The outdoor unit 2 includes a first compressor 10 and a second compressor 11 having a larger capacity than the first compressor 10, and the compressors 10 and 11 are connected by an oil equalizing pipe 12. The oil equalizing pipe 12 is not an essential component for the present embodiment. A discharge pipe 13 is connected to the discharge side of each compressor 10, 11, and the discharge pipe 13 is connected to a first port 15 </ b> A of the four-way valve 15 via an oil separator 14. A discharge path is formed by the discharge pipe 13 and the oil separator 14.

四方弁15の第1のポート15Aは、第2のポート15B、又は第3のポート15Cの一方が接続可能で、これに対応して第4のポート15Dは、第3のポート15C、又は第2のポート15Bに接続されるようになっている。第2のポート15Bは、配管16を介して室外熱交換器17に接続されており、室外熱交換器17は、配管3によって室内機5の室内熱交換器18に接続されている。この配管3中には、室外熱交換器17側に膨張弁19が設けられ、室内熱交換器18側に膨張弁20が設けられている。さらに、室内熱交換器18は、配管4を介して第3のポート15Cに接続されている。第4のポート15Dは、主吸入配管21に接続されている。主吸入配管21は、主吸入配管分岐部22にて第1圧縮機10の吸入側に接続される第1分岐吸入配管23と、第2圧縮機11の吸入側に接続される第2分岐吸入配管24とに分岐している。   One of the second port 15B and the third port 15C can be connected to the first port 15A of the four-way valve 15, and the fourth port 15D is correspondingly connected to the third port 15C or the second port 15C. 2 port 15B. The second port 15 </ b> B is connected to the outdoor heat exchanger 17 through the pipe 16, and the outdoor heat exchanger 17 is connected to the indoor heat exchanger 18 of the indoor unit 5 through the pipe 3. In this pipe 3, an expansion valve 19 is provided on the outdoor heat exchanger 17 side, and an expansion valve 20 is provided on the indoor heat exchanger 18 side. Further, the indoor heat exchanger 18 is connected to the third port 15C via the pipe 4. The fourth port 15 </ b> D is connected to the main suction pipe 21. The main suction pipe 21 includes a first branch suction pipe 23 connected to the suction side of the first compressor 10 at the main suction pipe branching portion 22 and a second branch suction connected to the suction side of the second compressor 11. Branches to the pipe 24.

ここで、主吸入配管21の主吸入配管分岐部22の直前には、オイル戻し管25が接続されている。オイル戻し管25は、オイルセパレータ14で高圧のガス冷媒から分離させられたオイルを通流させるもので、2流体ノズル30を介して主吸入配管21の主吸入配管分岐部22の直前に接続されている。さらに、主吸入配管21には、オイル戻し管25よりも四方弁15側に、オイル貯溜部であるオイル貯溜タンク40が設けられている。図2に示すように、オイル貯溜タンク40は、主吸入配管21に接続されており、主吸入配管21の四方弁15(図1参照)側からテーパ状に拡径された後に、円筒状に延び、再び主吸入配管21の主吸入配管分岐22側に向かってテーパ状に縮径する外形を有し、主吸入配管分岐部22側では、主吸入配管21の一部がオイル貯溜タンク40内に突出しており、この部分ではオイル貯溜タンク40と主吸入配管21とが同心円状に2重管構造になっている。さらに、オイル貯溜タンク40の円筒部分40Aで、主吸入配管21と二重管構造になっている部分で、かつ重力方向下側には、径方向と外側に延びる配管41が接続されており、この配管41は、2流体ノズル30の側部に接続されている。   Here, an oil return pipe 25 is connected immediately before the main suction pipe branching portion 22 of the main suction pipe 21. The oil return pipe 25 allows oil separated from the high-pressure gas refrigerant by the oil separator 14 to flow therethrough, and is connected via the two-fluid nozzle 30 immediately before the main suction pipe branching portion 22 of the main suction pipe 21. ing. Further, the main suction pipe 21 is provided with an oil storage tank 40 that is an oil storage part on the four-way valve 15 side of the oil return pipe 25. As shown in FIG. 2, the oil storage tank 40 is connected to the main suction pipe 21, and after being expanded in a tapered shape from the four-way valve 15 (see FIG. 1) side of the main suction pipe 21, the oil storage tank 40 has a cylindrical shape. The main suction pipe 21 has an outer shape that extends again and tapers toward the main suction pipe branch 22 side. On the main suction pipe branch portion 22 side, a part of the main suction pipe 21 is in the oil storage tank 40. In this portion, the oil storage tank 40 and the main suction pipe 21 have a double pipe structure concentrically. Furthermore, in the cylindrical portion 40A of the oil storage tank 40, a pipe 41 extending in the radial direction and the outside is connected to the main suction pipe 21 and a portion having a double pipe structure, and on the lower side in the gravity direction. This pipe 41 is connected to the side of the two-fluid nozzle 30.

2流体ノズル30は、オイル戻し管25の径と同径の入力ポート31を有し、入力ポート31の先端部には、縮径する絞り部32が設けられている。絞り部32は、テーパ状に縮径した後に、その形状を保ちつつ、混合室33に連通している。混合室33は、主吸入配管21に開口する噴出部34が設けられており、噴出部34には、主吸入配管21に向かって拡径するテーパが設けられている。さらに、2流体ノズル30の側部には、配管41が接続される側孔36が設けられており、側孔36は、絞り部32を囲むように設けられた環状通路37に連通させられている。環状通路37は、絞り部32の開口部の外周を囲むような連通孔38を介して混合室33に連通し、この連通孔38の流路面積は、環状通路37の流路面積よりも小さくなっている。   The two-fluid nozzle 30 has an input port 31 having the same diameter as that of the oil return pipe 25, and a throttle portion 32 that reduces the diameter is provided at the tip of the input port 31. The throttle part 32 communicates with the mixing chamber 33 while maintaining its shape after being reduced in taper. The mixing chamber 33 is provided with a jet portion 34 that opens to the main suction pipe 21, and the jet portion 34 is provided with a taper that increases in diameter toward the main suction pipe 21. Further, a side hole 36 to which a pipe 41 is connected is provided at a side portion of the two-fluid nozzle 30, and the side hole 36 is communicated with an annular passage 37 provided so as to surround the throttle portion 32. Yes. The annular passage 37 communicates with the mixing chamber 33 via a communication hole 38 that surrounds the outer periphery of the opening of the throttle portion 32, and the flow passage area of the communication hole 38 is smaller than the flow passage area of the annular passage 37. It has become.

なお、このようなオイル戻し管25、主吸入配管21との接続位置の例としては、主吸入配管分岐部22において冷媒が実際に分流する分岐点からオイル戻し管25までの距離が、50mm以上、200mm以下の範囲内であり、主吸入配管分岐部22からオイル戻し管25の接続点までの間で、主吸入配管21が湾曲しない範囲内であることが望ましい。   As an example of the connection position between the oil return pipe 25 and the main suction pipe 21 as described above, the distance from the branch point where the refrigerant actually branches in the main suction pipe branching section 22 to the oil return pipe 25 is 50 mm or more. The main suction pipe 21 is preferably in a range where the main suction pipe 21 is not bent between the main suction pipe branching portion 22 and the connection point of the oil return pipe 25.

この実施の形態の作用について説明する。
まず、冷房運転時には、四方弁15の第1のポート15Aと第2のポート15Bとを接続させる。第1、第2圧縮機10,11から吐出される高圧のガス冷媒は、吐出配管13を通り、オイルセパレータ14でオイルが分離された後に、四方弁15を通って室外熱交換器17に供給される。室外熱交換器17では熱交換によって高圧の液冷媒が形成され、この液冷媒は膨張弁19,20で減圧された後に室内機5の室内熱交換器18に供給される。そして、室内熱交換器18で熱交換によって蒸発して低圧のガス冷媒となり、このとき吸収する熱で室内を冷房する。ガス冷媒は、配管4から四方弁15の第3、第4のポート15C,15Dを通って主吸入配管21に導かれ、主吸入配管分岐部22から各分岐吸入配管23,24を通って第1、第2圧縮機10,11に吸入される。
The operation of this embodiment will be described.
First, during the cooling operation, the first port 15A and the second port 15B of the four-way valve 15 are connected. The high-pressure gas refrigerant discharged from the first and second compressors 10 and 11 is supplied to the outdoor heat exchanger 17 through the four-way valve 15 after the oil is separated by the oil separator 14 through the discharge pipe 13. Is done. In the outdoor heat exchanger 17, a high-pressure liquid refrigerant is formed by heat exchange, and the liquid refrigerant is decompressed by the expansion valves 19 and 20 and then supplied to the indoor heat exchanger 18 of the indoor unit 5. And it evaporates by heat exchange with the indoor heat exchanger 18 to become a low-pressure gas refrigerant, and cools the room with the heat absorbed at this time. The gas refrigerant is guided from the pipe 4 to the main suction pipe 21 through the third and fourth ports 15C and 15D of the four-way valve 15, and from the main suction pipe branch portion 22 through the branch suction pipes 23 and 24. 1. It is sucked into the second compressors 10 and 11.

暖房運転時には、四方弁15の第1のポート15Aと第3のポート15Cとを接続させる。第1、第2圧縮機10,11から吐出される高圧のガス冷媒は、四方弁15から配管4を通って室内熱交換器18に供給され、熱交換によって凝縮して高圧の液冷媒になると共に、このとき放出される熱で室内が暖房される。液冷媒は、膨張弁19,20で減圧させられた後に、室外熱交換器17において気化させられ、第2,第4のポート15B,15D、主吸入配管21、各分岐吸入配管23,24を通って第1、第2圧縮機10,11に回収される。   During the heating operation, the first port 15A and the third port 15C of the four-way valve 15 are connected. The high-pressure gas refrigerant discharged from the first and second compressors 10 and 11 is supplied from the four-way valve 15 through the pipe 4 to the indoor heat exchanger 18 and condensed by heat exchange to become a high-pressure liquid refrigerant. At the same time, the room is heated by the heat released at this time. The liquid refrigerant is depressurized by the expansion valves 19 and 20 and then vaporized in the outdoor heat exchanger 17, and the second and fourth ports 15B and 15D, the main suction pipe 21, and the branch suction pipes 23 and 24 are connected to each other. It passes through and is collected by the first and second compressors 10 and 11.

ここで、いずれの運転モードを実施した場合であっても、オイルセパレータ14で第1、第2圧縮機10,11から吐出されたオイルが回収されるが、一部のオイルは分離しきれずにガス冷媒と共に、熱交換器17,18を通流し、四方弁15の第4のポート15Dから主吸入配管21に流入する。この間に、オイルの一部が液化すると、主吸入配管21の管壁に沿って流動し、オイル貯溜タンク40に入る。主吸入配管分岐部22側は、オイル貯溜タンク40が主吸入配管21の外側を囲むように2重管構造になっており、不連続になっているので、液状のオイルはオイル貯溜タンク40から主吸入配管分岐部22に直接流入することができず、オイル貯溜タンク40の円筒部分40Aにオイル液膜として滞溜する。   Here, in any of the operation modes, the oil discharged from the first and second compressors 10 and 11 is recovered by the oil separator 14, but some of the oil cannot be separated. Together with the gas refrigerant, the heat exchangers 17 and 18 are passed through and flow into the main suction pipe 21 from the fourth port 15D of the four-way valve 15. During this time, when a part of the oil is liquefied, it flows along the pipe wall of the main suction pipe 21 and enters the oil storage tank 40. The main suction pipe branching portion 22 side has a double pipe structure so that the oil storage tank 40 surrounds the outside of the main suction pipe 21 and is discontinuous. It cannot flow directly into the main intake pipe branching section 22 and stagnates in the cylindrical portion 40A of the oil storage tank 40 as an oil liquid film.

一方、オイルセパレータ14で分離されたオイル及び少量の高圧のガス冷媒(以下、単にオイルとする)は、オイル戻し管25を通って、主吸入配管21に導かれる。オイル戻し管25を流動するオイルは、2流体ノズル30の入力ポート31から細径の絞り部32に導かれ、絞り部32を通流する際に高速の流体となった後に、混合室33を通り、噴出部34から主吸入配管21に噴き出される。このときにオイルは、ミスト化(微細化)して主吸入配管21中に放出され、低圧のガス冷媒と混合し、直ぐに主吸入配管分岐部22から各分岐吸入配管23,24に分流し、そのまま第1、第2圧縮機10,11に吸入される。この際に、2流体ノズル30内では、オイルが絞り部32から混合室33を通って高速で噴き出されるときに、絞り部32を囲む連通孔38が減圧され、環状通路37に連通する配管41からオイル貯溜タンク40のオイル液膜が吸引され、環状通路37から混合室33に吸い出され、混合室33においてオイル戻し管25のオイルと混合され、噴出部34からミスト状態となって主吸入配管21に噴き出される。このようにして噴き出されたオイルは、ガス冷媒に略均等に混合されるので、各分岐吸入配管23,24に流れる流量に応じて、第1、第2圧縮機10,11に回収されるオイルの量も変化する。すなわち、容量比に応じて、第1圧縮機10よりも第2圧縮機11の方に多くのガス冷媒、及びオイルが吸入される。   On the other hand, the oil separated by the oil separator 14 and a small amount of high-pressure gas refrigerant (hereinafter simply referred to as oil) are guided to the main suction pipe 21 through the oil return pipe 25. The oil flowing through the oil return pipe 25 is guided from the input port 31 of the two-fluid nozzle 30 to the narrow-diameter restricting portion 32 and becomes a high-speed fluid when flowing through the restricting portion 32, and then the mixing chamber 33 passes through the mixing chamber 33. And is ejected from the ejection portion 34 to the main suction pipe 21. At this time, the oil is misted (miniaturized) and released into the main suction pipe 21, mixed with the low-pressure gas refrigerant, and immediately diverted from the main suction pipe branch portion 22 to the branch suction pipes 23 and 24, The air is sucked into the first and second compressors 10 and 11 as they are. At this time, in the two-fluid nozzle 30, when oil is ejected from the throttle portion 32 through the mixing chamber 33 at a high speed, the communication hole 38 surrounding the throttle portion 32 is decompressed, and the pipe communicates with the annular passage 37. The oil liquid film in the oil storage tank 40 is sucked from 41, sucked out from the annular passage 37 to the mixing chamber 33, mixed with the oil in the oil return pipe 25 in the mixing chamber 33, and becomes a mist state from the ejection portion 34. It is ejected to the suction pipe 21. The oil ejected in this way is mixed almost uniformly with the gas refrigerant, and is thus collected by the first and second compressors 10 and 11 according to the flow rates flowing through the branch intake pipes 23 and 24. The amount of oil also changes. That is, more gas refrigerant and oil are sucked into the second compressor 11 than the first compressor 10 in accordance with the capacity ratio.

この実施の形態では、主吸入配管21にオイル貯溜タンク40を設け、冷媒から分離しきれなかったオイルが液化した場合に、オイル貯溜タンク40に一端滞溜させるようにし、このオイル液膜をオイルセパレータ14で回収した戻りオイルを駆動流として2流体ノズル30に吸引し、オイルセパレータ14からの戻りオイルと共にミスト化して主吸入配管21に噴き出すようにしたので、各吸入分岐管23,24にオイルを分配することが可能になり、従来のように、液状のオイルが主吸入配管分岐部22を通過して吸入分岐管23,24に流入した場合に生じるオイルの戻り量の偏りが防止される。ここで、2流体ノズル30は、その噴出部34がオイル戻し管25の径よりも小さくなっているので、細かいミストを形成することが可能であり、オイルをガス冷媒に混合させて第1、第2圧縮機10,11に吸入し易くすることができる。このため、オイルの分配が適正に行えるようになり、第1、第2圧縮機10,11の容量が異なる場合であっても、容量比に応じて適正なオイルの戻り量を確保することができる。   In this embodiment, an oil storage tank 40 is provided in the main suction pipe 21, and when the oil that could not be separated from the refrigerant is liquefied, the oil storage tank 40 is once retained and this oil liquid film is used as the oil storage film. The return oil collected by the separator 14 is sucked into the two-fluid nozzle 30 as a driving flow, and is misted together with the return oil from the oil separator 14 and sprayed to the main suction pipe 21. As in the prior art, unevenness in the return amount of oil that occurs when liquid oil passes through the main intake pipe branching portion 22 and flows into the intake branch pipes 23 and 24 is prevented. . Here, since the ejection part 34 of the two-fluid nozzle 30 is smaller than the diameter of the oil return pipe 25, it is possible to form a fine mist. It is possible to facilitate the suction into the second compressors 10 and 11. For this reason, it becomes possible to properly distribute oil, and even when the capacities of the first and second compressors 10 and 11 are different, it is possible to ensure an appropriate oil return amount according to the capacity ratio. it can.

また、主吸入配管分岐部22側の主吸入配管21をオイル貯溜タンク40内に突出させて、この部分を2重管構造としたので、主吸入配管21の管壁を伝って流動する液状オイルが主吸入配管分岐部22に直接に流入することを防止できる。さらに、オイル貯溜タンク40と、主吸入配管21とが重複する部分に、2流体ノズル30と接続する配管41を設けたので、滞溜する液状オイルを速やかに吸引することができ、液状のオイルがオイル貯溜タンク40を越えて主吸入配管分岐部22に流入することが防止される。この配管41は、重力方向の下側に接続されているので、オイル貯溜タンク40に溜まったオイル液膜を効率良く吸引することができる。   Further, since the main suction pipe 21 on the main suction pipe branching portion 22 side protrudes into the oil storage tank 40 and this portion has a double pipe structure, the liquid oil that flows along the pipe wall of the main suction pipe 21 Can be prevented from flowing directly into the main intake pipe branching section 22. Further, since the pipe 41 connected to the two-fluid nozzle 30 is provided at a portion where the oil storage tank 40 and the main suction pipe 21 overlap, the stagnant liquid oil can be sucked quickly, and the liquid oil Is prevented from flowing over the oil storage tank 40 into the main intake pipe branching section 22. Since the pipe 41 is connected to the lower side in the gravity direction, the oil liquid film accumulated in the oil reservoir tank 40 can be efficiently sucked.

ここで、オイル戻し管25の代わりに、吐出配管13から分岐する分岐配管を主吸入配管21の主吸入配管分岐部22の直前に、2流体ノズル30を介して接続し、この2流体ノズル30にオイル貯溜タンク40からの配管41を接続しても良い。この場合には、吐出配管13を通流する高圧のガス冷媒の一部が2流体ノズル30から主吸入配管21に噴き出され、この高圧のガス冷媒を駆動流としてオイル貯溜タンク40のオイル液膜から液状オイルが吸引され、ガス冷媒と共に噴き出される。分岐配管は、オイルセパレータ14よりも四方弁15側に設けることが望ましく、その流路抵抗は、吐出配管13の流路抵抗に比べて十分に大きくする。   Here, instead of the oil return pipe 25, a branch pipe branched from the discharge pipe 13 is connected via a two-fluid nozzle 30 just before the main suction pipe branching portion 22 of the main suction pipe 21. Alternatively, a pipe 41 from the oil storage tank 40 may be connected. In this case, a part of the high-pressure gas refrigerant flowing through the discharge pipe 13 is ejected from the two-fluid nozzle 30 to the main suction pipe 21, and the oil liquid in the oil storage tank 40 is driven using this high-pressure gas refrigerant as a driving flow. Liquid oil is sucked from the membrane and ejected with the gas refrigerant. The branch pipe is desirably provided on the four-way valve 15 side of the oil separator 14, and the flow path resistance is sufficiently larger than the flow path resistance of the discharge pipe 13.

なお、本発明は、前記の実施の形態に限定されずに広く応用することができる。
例えば、2つの圧縮機10,11は、同じ容量でも良いし、少なくとも一方の圧縮機10,11が容量可変型であっても良い。
オイル戻し管25は、2流体ノズル30の噴出部34が主吸入配管分岐部22に向かうように斜めに主吸入配管21に接続されても良い。さらに、ノズル30が主吸入配管21中に突出するように接続することもできる。
Note that the present invention can be widely applied without being limited to the above-described embodiment.
For example, the two compressors 10 and 11 may have the same capacity, or at least one of the compressors 10 and 11 may be a variable capacity type.
The oil return pipe 25 may be obliquely connected to the main suction pipe 21 so that the ejection part 34 of the two-fluid nozzle 30 faces the main suction pipe branching part 22. Further, the nozzle 30 can be connected so as to protrude into the main suction pipe 21.

本発明の実施の形態に係る空気調和装置のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the air conditioning apparatus which concerns on embodiment of this invention. 主吸入配管と、オイル貯溜タンクと、オイル戻し管との接続の一例を示す図である。It is a figure which shows an example of the connection with a main suction piping, an oil storage tank, and an oil return pipe. オイル戻し管のノズルの構成と、オイル貯溜タンクとの接続構造を示す断面図である。It is sectional drawing which shows the structure of the nozzle of an oil return pipe, and the connection structure with an oil storage tank.

符号の説明Explanation of symbols

1 空気調和機
2 室外機
5 室内機
10 第1圧縮機
11 第2圧縮機
13 吐出配管
14 オイルセパレータ
17,18 熱交換器
21 主吸入配管
22 主吸入配管分岐部(分岐部)
23,24 分岐吸入配管
25 オイル戻し管
30 2流体ノズル
40 オイル貯溜タンク(オイル貯溜部)
41 配管

DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 5 Indoor unit 10 1st compressor 11 2nd compressor 13 Discharge piping 14 Oil separator 17, 18 Heat exchanger 21 Main suction piping 22 Main suction piping branch part (branch part)
23, 24 Branch suction pipe 25 Oil return pipe 30 Two-fluid nozzle 40 Oil reservoir tank (oil reservoir)
41 Piping

Claims (5)

並列に配設された複数の圧縮機と、前記圧縮機の吐出側に接続された吐出配管と、前記吐出配管に吐出される冷媒が供給される室外機の熱交換器、及び室内機の熱交換器と、これら前記熱交換器を通流した冷媒が流入する主吸入配管と、前記主吸入配管から分岐して前記圧縮機のそれぞれに接続される分岐吸入配管と、前記主吸入配管中に液状のオイルを貯溜可能に突設されたオイル貯溜部と、前記吐出配管中から分流させた流体を駆動流として前記オイル貯溜部に溜まったオイルを吸引して前記主吸入配管に噴き出す2流体ノズルとを有することを特徴とする空気調和機。   A plurality of compressors arranged in parallel; a discharge pipe connected to a discharge side of the compressor; a heat exchanger of an outdoor unit to which a refrigerant discharged to the discharge pipe is supplied; and heat of the indoor unit An exchanger, a main suction pipe into which the refrigerant flowing through the heat exchanger flows, a branch suction pipe branched from the main suction pipe and connected to each of the compressors, and the main suction pipe An oil reservoir projecting so as to be able to store liquid oil, and a two-fluid nozzle that sucks the oil accumulated in the oil reservoir using the fluid divided from the discharge pipe as a driving flow and ejects the oil to the main suction pipe And an air conditioner. 前記2流体ノズルは、前記オイル貯溜部と、前記分岐吸入配管の分岐点との間に設けられていることを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein the two-fluid nozzle is provided between the oil reservoir and a branch point of the branch suction pipe. 前記2流体ノズルは、前記分岐吸入配管の分岐点の直前に設けられていることを特徴とする請求項2に記載の空気調和機。   The air conditioner according to claim 2, wherein the two-fluid nozzle is provided immediately before a branch point of the branch suction pipe. 前記吐出配管中にオイルセパレータを有し、前記オイルセパレータでガス冷媒から分離させたオイルを通流させるオイル戻し管を前記2流体ノズルに接続し、前記オイル戻し管を流れるオイルを駆動流とすることを特徴とする請求項1から請求項3のいずれか一項に記載の空気調和機。   An oil separator is provided in the discharge pipe, an oil return pipe through which oil separated from the gas refrigerant by the oil separator is passed is connected to the two-fluid nozzle, and oil flowing through the oil return pipe is used as a driving flow. The air conditioner as described in any one of Claims 1-3 characterized by the above-mentioned. 前記分岐吸入配管側の前記主吸入配管の一部を、前記オイル貯溜部内に突出させたことを特徴とする請求項1から請求項4のいずれか一項に記載の空気調和機。

The air conditioner according to any one of claims 1 to 4, wherein a part of the main suction pipe on the branch suction pipe side is protruded into the oil reservoir.

JP2004363161A 2004-12-15 2004-12-15 Air conditioner Expired - Fee Related JP4027932B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004363161A JP4027932B2 (en) 2004-12-15 2004-12-15 Air conditioner
KR1020050031833A KR100612090B1 (en) 2004-12-15 2005-04-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363161A JP4027932B2 (en) 2004-12-15 2004-12-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006170516A JP2006170516A (en) 2006-06-29
JP4027932B2 true JP4027932B2 (en) 2007-12-26

Family

ID=36671464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363161A Expired - Fee Related JP4027932B2 (en) 2004-12-15 2004-12-15 Air conditioner

Country Status (2)

Country Link
JP (1) JP4027932B2 (en)
KR (1) KR100612090B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101613A (en) * 2008-09-26 2010-05-06 Daikin Ind Ltd Refrigerating apparatus
CN105333641B (en) * 2014-07-02 2017-10-03 约克广州空调冷冻设备有限公司 Air-source air conditioning and water heating system
CN104534713B (en) * 2014-12-31 2017-04-19 华南理工大学 Dual-compressor rapid cooling low temperature refrigeration system and method
CN109682104A (en) * 2019-02-12 2019-04-26 珠海格力电器股份有限公司 Coolant circulating system and air conditioner
CN110793798B (en) * 2019-11-20 2021-07-30 上海交通大学 Refrigeration system oil stagnation characteristic comprehensive test device and test method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229125B2 (en) * 1994-03-18 2001-11-12 三菱重工業株式会社 Refrigeration air conditioner
JP4204678B2 (en) 1998-11-16 2009-01-07 東芝キヤリア株式会社 Air conditioner
JP2003240367A (en) 2002-02-14 2003-08-27 Hitachi Ltd Refrigerating air-conditioner
JP2004301461A (en) 2003-04-01 2004-10-28 Hitachi Ltd Air conditioner
KR100947600B1 (en) * 2003-06-17 2010-03-15 엘지전자 주식회사 A compressor oil retrieving apparatus of air-conditioner

Also Published As

Publication number Publication date
JP2006170516A (en) 2006-06-29
KR20060067793A (en) 2006-06-20
KR100612090B1 (en) 2006-08-14

Similar Documents

Publication Publication Date Title
JP4779928B2 (en) Ejector refrigeration cycle
US7647789B2 (en) Evaporator unit and ejector type refrigeration cycle
US6467303B2 (en) Hot discharge gas desuperheater
CN101622504B (en) Unit for ejector type refrigeration cycle and refrigeration device using the same
CN107850359B (en) Evaporator and turbo refrigeration device provided with same
JP2002327967A (en) Ejector cycle
JP2007046806A (en) Ejector type cycle
JP2007192502A (en) Heat exchanger
CN105452675A (en) Ejector
JP2008196762A (en) Flow divider, heat exchanger unit and refrigerating device
US11112157B2 (en) Suction conduit flow control for lubricant management
JP2010236706A (en) Air conditioner
KR100612090B1 (en) Air conditioner
CN107003047B (en) Distributor and refrigeration cycle device
EP3086070A1 (en) Subcooler and air conditioner including the same
JP5262916B2 (en) Heat exchanger
KR100589655B1 (en) Air conditioner
JP2010117092A (en) Refrigerating cycle device
JP2007163084A (en) Supercooling device and air conditioning system with supercooling device
CN205641700U (en) Heat transfer device suitable for pressure refrigerant
KR20070051635A (en) Compressor distributing apparatus and refrigerator
WO2018088127A1 (en) Accumulator
JP6878550B2 (en) Refrigerator
JP4328894B2 (en) Refrigeration equipment
JP5017925B2 (en) Ejector, evaporator unit and ejector refrigeration cycle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees