JP2007163084A - Supercooling device and air conditioning system with supercooling device - Google Patents

Supercooling device and air conditioning system with supercooling device Download PDF

Info

Publication number
JP2007163084A
JP2007163084A JP2005362894A JP2005362894A JP2007163084A JP 2007163084 A JP2007163084 A JP 2007163084A JP 2005362894 A JP2005362894 A JP 2005362894A JP 2005362894 A JP2005362894 A JP 2005362894A JP 2007163084 A JP2007163084 A JP 2007163084A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
temperature
low
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005362894A
Other languages
Japanese (ja)
Other versions
JP4468887B2 (en
Inventor
Michiyoshi Kusaka
道美 日下
Nobuhiro Nakagawa
信博 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2005362894A priority Critical patent/JP4468887B2/en
Publication of JP2007163084A publication Critical patent/JP2007163084A/en
Application granted granted Critical
Publication of JP4468887B2 publication Critical patent/JP4468887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently operate a supercooling device for supercooling refrigerant. <P>SOLUTION: The supercooling device 21 is mounted on an outdoor unit 2 of the air conditioning system 1. This device comprises an ejector 22 using gas refrigerant separated by a gas-liquid separator 18 connected to an outdoor heat exchanger 14 as a driving flow; and a supercooler 23 for distributing low-temperature, low-pressure refrigerant that forms a sucking flow of the ejector 22 into an inner tube 31, and a pressure reducing device 24 for forming the low-temperature, low-pressure refrigerant to be distributed to the inner tube 31. Liquid refrigerant is distributed in an outer tube 34 of the supercooler 23, and this liquid refrigerant is supercooled by heat exchange with the refrigerant in the inner tube 31 and supplied to an indoor unit 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温の冷媒を過冷却する過冷却装置、過冷却装置を備えた空気調和装置に関する。   The present invention relates to a supercooling device that supercools a high-temperature refrigerant and an air conditioner including the supercooling device.

圧縮機から吐出される冷媒を熱交換しつつ循環させて冷房運転させる装置には、例えば空気調和装置があげられる。従来の空気調和装置には、減圧装置としてエジェクタを用いたものがある(例えば、特許文献1参照)。エジェクタの駆動流には、凝縮器からの冷媒が用いられ、吸引流には蒸発器から流出する冷媒が用いられる。エジェクタから流出する冷媒は、気液分離器に導かれる。気液分離器は、エジェクタから流入した冷媒を飽和ガス冷媒と飽和液冷媒とに分離し、飽和ガス冷媒を圧縮機に供給し、飽和液冷媒を蒸発器に供給する。冷房運転時に冷媒をエジェクタで減圧膨張させ、その際の膨張エネルギを圧力エネルギに変換することで、圧縮機の吸入圧を上昇させることができる。   An example of an apparatus that circulates the refrigerant discharged from the compressor while performing heat exchange and performs a cooling operation is an air conditioner. Some conventional air conditioners use an ejector as a pressure reducing device (see, for example, Patent Document 1). A refrigerant from the condenser is used for the drive flow of the ejector, and a refrigerant flowing out of the evaporator is used for the suction flow. The refrigerant flowing out from the ejector is guided to the gas-liquid separator. The gas-liquid separator separates the refrigerant flowing from the ejector into a saturated gas refrigerant and a saturated liquid refrigerant, supplies the saturated gas refrigerant to the compressor, and supplies the saturated liquid refrigerant to the evaporator. During the cooling operation, the refrigerant is decompressed and expanded by the ejector, and the expansion energy at that time is converted into pressure energy, whereby the suction pressure of the compressor can be increased.

また、空気調和装置には、二重管構造の過冷却装置を有するものがある(例えば、特許文献2参照)。過冷却装置は、内管に冷房運転時に室外熱交換器から流出する液冷媒が通る配管が接続され、外管に圧縮機の吸入配管が接続されている。外管を通る低温低圧の冷媒と内管を通る高温高圧の液冷媒とが熱交換を行う。液冷媒を過冷却してから凝縮器に供給することが可能になる。
特開2003−262413号公報 特開2003−279170号公報
Some air conditioners have a double-tube supercooling device (see, for example, Patent Document 2). In the supercooling device, a pipe through which the liquid refrigerant flowing out from the outdoor heat exchanger during cooling operation passes is connected to the inner pipe, and a suction pipe of the compressor is connected to the outer pipe. The low-temperature and low-pressure refrigerant passing through the outer pipe exchanges heat with the high-temperature and high-pressure liquid refrigerant passing through the inner pipe. The liquid refrigerant can be supplied to the condenser after being supercooled.
JP 2003-262413 A JP 2003-279170 A

しかしながら、エジェクタを備える構成では、凝縮器から流出する気液の2相冷媒が駆動流として使用されることになるが、駆動流に2相冷媒を用いると単相流の場合に比べてエネルギ回収率が低下する。特に、CO冷媒を使用する場合には、2相冷媒であってもエネルギを回収し易いが、R410AなどのHFC冷媒を使用した場合にはエネルギの回収率が低下する。また、気液分離器の飽和液冷媒が蒸発器に流入する構成であるが、飽和液冷媒は過冷却がとれないので、2相冷媒になり易い。マルチシステムのように、蒸発器を複数並列に接続する構成では、気液分離器からの飽和液冷媒を通す配管が長くなるので、蒸発器に至るまでの間に一部の液冷媒が蒸発するなどし易かった。このため、十分な能力が得られる蒸発器と、能力が不足する蒸発器とが生じ易くなっていた。 However, in the configuration including the ejector, the gas-liquid two-phase refrigerant flowing out of the condenser is used as the driving flow. However, when the two-phase refrigerant is used for the driving flow, energy recovery is achieved compared to the case of the single-phase flow. The rate drops. In particular, when a CO 2 refrigerant is used, energy is easily recovered even with a two-phase refrigerant, but when an HFC refrigerant such as R410A is used, the energy recovery rate is reduced. In addition, although the saturated liquid refrigerant of the gas-liquid separator flows into the evaporator, the saturated liquid refrigerant cannot easily be overcooled, and thus easily becomes a two-phase refrigerant. In a configuration in which a plurality of evaporators are connected in parallel as in the multi-system, a pipe for passing the saturated liquid refrigerant from the gas-liquid separator becomes long, so that part of the liquid refrigerant evaporates before reaching the evaporator. It was easy. For this reason, it has become easy to produce an evaporator with sufficient capacity and an evaporator with insufficient capacity.

過冷却装置を備える構成では、過冷却装置を通って圧縮機に吸入される冷媒の温度が高くなり過ぎることがあった。このように過熱状態になったガス冷媒をそのまま圧縮機に吸入させると、圧縮機の能力が低下してしまう。
この発明は、このような事情に鑑みてなされたものであり、その主な目的は、冷媒を過冷却する過冷却装置における熱交換を効率良く行えるようにすることである。
In the configuration including the supercooling device, the temperature of the refrigerant sucked into the compressor through the supercooling device may become too high. If the gas refrigerant that has been overheated in this way is directly sucked into the compressor, the capacity of the compressor will be reduced.
The present invention has been made in view of such circumstances, and its main object is to efficiently perform heat exchange in a supercooling device that supercools a refrigerant.

上記の課題を解決する本発明は、圧縮機で圧縮した冷媒を循環させる際に高温高圧の液冷媒を過冷却する過冷却装置において、室内機をバイパスする高圧の冷媒を駆動流とし、前記圧縮機に吸入させる冷媒を流出させるエジェクタと、前記エジェクタの吸引流を冷却熱源とし、冷房運転時に室内機に流入させる高温高圧の液冷媒を熱交換により過冷却する過冷却器と、冷却熱源として前記圧縮機に吸入させるガス冷媒よりも低温低圧の冷媒を形成する減圧装置と、を有することを特徴とする過冷却装置とした。   The present invention that solves the above-described problems is a supercooling device that supercools a high-temperature and high-pressure liquid refrigerant when circulating the refrigerant compressed by the compressor, and uses the high-pressure refrigerant bypassing the indoor unit as a driving flow, and the compression An ejector that causes the refrigerant to be sucked into the machine to flow out, a supercooler that uses the suction flow of the ejector as a cooling heat source, supercools the high-temperature and high-pressure liquid refrigerant that flows into the indoor unit during cooling operation by heat exchange, and the cooling heat source And a decompression device that forms a refrigerant having a lower temperature and lower pressure than the gas refrigerant to be sucked into the compressor.

この過冷却装置では、エジェクタの吸引流にこの低温低圧の冷媒は、減圧装置で圧縮機の吸入圧力よりも低圧(低温)の冷媒を使用する。この低温低圧の冷媒は、過冷却器における低温熱源として用いられて、高温高圧の液冷媒を過冷却する。低温低圧の冷媒は、低温熱源として熱交換に用いられた後に、エジェクタに吸入されて加圧されてから圧縮機に吸入される。   In this supercooling device, the low-temperature and low-pressure refrigerant used in the suction flow of the ejector is lower-pressure (low-temperature) refrigerant than the suction pressure of the compressor in the decompression device. This low-temperature and low-pressure refrigerant is used as a low-temperature heat source in the supercooler to supercool the high-temperature and high-pressure liquid refrigerant. The low-temperature and low-pressure refrigerant is used for heat exchange as a low-temperature heat source, and then sucked into the ejector and pressurized, and then sucked into the compressor.

本発明によれば、エジェクタの吸引流として使用する低温低圧の冷媒を過冷却器で熱交換する低温熱源として使用するようにしたので、過冷却器に使用する低温熱源の温度を従来よりも下げた状態で使用することが可能になる。高温熱源と低温熱源との温度差を大きくすることが可能になり、過冷却器における熱交換効率が向上し、液冷媒を確実に過冷却することができる。また、低温熱源として従来よりも低い温度の冷媒を使用するので、熱交換後の冷媒の温度が高くなり過ぎることがなくなり、圧縮機の能力低下を防止できる。   According to the present invention, since the low-temperature and low-pressure refrigerant used as the suction flow of the ejector is used as a low-temperature heat source for exchanging heat with the subcooler, the temperature of the low-temperature heat source used for the subcooler is lowered than before. It becomes possible to use in the state. The temperature difference between the high-temperature heat source and the low-temperature heat source can be increased, the heat exchange efficiency in the supercooler is improved, and the liquid refrigerant can be reliably supercooled. Further, since a refrigerant having a lower temperature than that of the conventional one is used as a low-temperature heat source, the temperature of the refrigerant after heat exchange does not become too high, and a reduction in the capacity of the compressor can be prevented.

発明を実施するための第1の実施の形態について図面を参照しながら詳細に説明する。
図1に過冷却器を搭載した装置の一例として空気調和装置の構成を示す。空気調和装置1は、1台の室外機2に複数の室内機3が並列に接続されたマルチシステムになっている。
A first embodiment for carrying out the invention will be described in detail with reference to the drawings.
FIG. 1 shows the configuration of an air conditioner as an example of a device equipped with a supercooler. The air conditioner 1 is a multi-system in which a plurality of indoor units 3 are connected in parallel to one outdoor unit 2.

室外機2は、冷媒を圧縮する圧縮機10を有し、圧縮機10の吐出口に接続された吐出配管11は、四方弁12の第1のポート12Aに接続されている。四方弁12は、第1のポート12Aと第2ポート12Bが接続されたときに第3のポート12Cと第4のポート12Dが接続され、第1のポート12Aと第3のポート12Cが接続されときに第2のポート12Bと第4のポート12Dが接続されるように構成されている。第2のポート12Bは、配管13を介して室外熱交換器14の一方の流入出口に接続されている。室外熱交換器14の他方の流入出口には配管15が接続されており、配管15はその経路中に膨張弁16と、膨張弁16をバイパスする逆止弁17とが並列に設けられた後に気液分離器18に接続されている。気液分離器18は、飽和ガス冷媒を流出させるガス配管19と、飽和液冷媒が流入出する液配管20とが接続されている。これら配管19,20は、過冷却装置21に接続されている。   The outdoor unit 2 includes a compressor 10 that compresses a refrigerant, and a discharge pipe 11 connected to a discharge port of the compressor 10 is connected to a first port 12A of a four-way valve 12. In the four-way valve 12, when the first port 12A and the second port 12B are connected, the third port 12C and the fourth port 12D are connected, and the first port 12A and the third port 12C are connected. The second port 12B and the fourth port 12D are sometimes connected. The second port 12B is connected to one inflow / outlet of the outdoor heat exchanger 14 via the pipe 13. A pipe 15 is connected to the other inlet / outlet of the outdoor heat exchanger 14, and the pipe 15 has an expansion valve 16 and a check valve 17 that bypasses the expansion valve 16 provided in parallel in the path. The gas-liquid separator 18 is connected. The gas-liquid separator 18 is connected to a gas pipe 19 through which the saturated gas refrigerant flows out and a liquid pipe 20 through which the saturated liquid refrigerant flows in / out. These pipes 19 and 20 are connected to a supercooling device 21.

過冷却装置21は、飽和ガス冷媒を駆動流として取り込むエジェクタ22と、エジェクタ22の吸引流を供給するようにエジェクタ22に配管接続された過冷却器23と、過冷却器23に供給する冷媒を減圧する減圧装置24とを含んで構成されている。エジェクタ22は、駆動流を絞りつつ噴き出させるノズル部22Aと、ノズル部22Aからガス冷媒を噴き出すことで過冷却器23から冷媒を吸引して混合する混合部22Bと、混合部22Bから徐々に径が拡がるディフューザ部22Cとを有し、混合部22B及びディフューザ部22Cで冷媒が昇圧されるように構成されている。ディフューザ部22Cには、吸入配管26が接続されており、吸入配管26は、四方弁12の第4のポート12Dに接続された吸入配管27が合流した後にアキュムレータ28に接続されている。アキュムレータ28からは飽和ガス冷媒が吸入配管29を通って圧縮機10に吸入されるようになっている。   The supercooling device 21 includes an ejector 22 that takes in a saturated gas refrigerant as a driving flow, a supercooler 23 that is connected to the ejector 22 so as to supply a suction flow of the ejector 22, and a refrigerant that is supplied to the subcooler 23. And a decompression device 24 for decompressing. The ejector 22 is gradually ejected from the nozzle unit 22A that ejects while reducing the driving flow, the mixing unit 22B that sucks and mixes the refrigerant from the supercooler 23 by ejecting the gas refrigerant from the nozzle unit 22A, and the mixing unit 22B. And a diffuser portion 22C having an increased diameter, and the refrigerant is boosted by the mixing portion 22B and the diffuser portion 22C. A suction pipe 26 is connected to the diffuser portion 22C, and the suction pipe 26 is connected to the accumulator 28 after the suction pipe 27 connected to the fourth port 12D of the four-way valve 12 joins. From the accumulator 28, saturated gas refrigerant is sucked into the compressor 10 through the suction pipe 29.

ここで、四方弁12から延びる吸入配管27は、その途中から配管30が分岐している。配管30は、途中にキャピラリチューブなどの減圧装置24が設けられた後に過冷却器23の内管31の第一の端部31Aに接続されている。過冷却器23は、二重管構造を有し、内管31の第二の端部31Bから延びる配管32は、エジェクタ22の混合部22Bに形成された吸引口33に接続されている。外管34の第二の端部34Bには、気液分離器18から延びる液配管20が接続されている。外管34の第一の端部34Aには、液配管35が接続されている。液配管35は、室外機2の外に延びた後に複数に分岐し、各室内機3にそれぞれに引き込まれている。   Here, the suction pipe 27 extending from the four-way valve 12 is branched from the pipe 30 in the middle thereof. The pipe 30 is connected to the first end portion 31 </ b> A of the inner pipe 31 of the subcooler 23 after a decompression device 24 such as a capillary tube is provided in the middle. The subcooler 23 has a double pipe structure, and a pipe 32 extending from the second end 31B of the inner pipe 31 is connected to a suction port 33 formed in the mixing part 22B of the ejector 22. A liquid pipe 20 extending from the gas-liquid separator 18 is connected to the second end 34 </ b> B of the outer tube 34. A liquid pipe 35 is connected to the first end 34 </ b> A of the outer pipe 34. The liquid pipe 35 is branched into a plurality of parts after extending outside the outdoor unit 2, and is drawn into each indoor unit 3.

室内機3は、液配管35が膨張弁40を通った後に室内熱交換器41の一方の流入出口に接続されている。室内熱交換器41の他方の流入出口には、ガス配管42が接続されている。ガス配管42は、各室内機3から引き出されて合流した後に、室外機2の四方弁12の第3のポート12Cに接続されている。なお、ガス配管42と液配管35とは、室外機2の内部と外部とで切り離しできるように開閉弁43,44が管路中に設けられている。   The indoor unit 3 is connected to one inflow / outlet of the indoor heat exchanger 41 after the liquid pipe 35 passes through the expansion valve 40. A gas pipe 42 is connected to the other inlet / outlet of the indoor heat exchanger 41. The gas pipe 42 is connected to the third port 12 </ b> C of the four-way valve 12 of the outdoor unit 2 after being drawn out from the indoor units 3 and joined. The gas pipe 42 and the liquid pipe 35 are provided with open / close valves 43 and 44 in the pipe line so that the gas pipe 42 and the liquid pipe 35 can be separated from each other inside and outside the outdoor unit 2.

次に、この実施の形態の作用について説明する。
空気調和装置1で冷房運転するときには、四方弁12の第1のポート12Aと第2のポート12Bとを接続し、第3のポート12Cと第4のポート12Dとを接続する。圧縮機10から吐出される高温高圧のガス冷媒は、吐出配管11から四方弁12を通って室外熱交換器14に流入する。室外熱交換器14は、凝縮器として機能し、室外熱交換器14内を通る冷媒は外気と熱交換する。熱交換後の冷媒は、室外熱交換器14から流出して気液分離器18に流入する。気液分離器18からは、飽和状態にある高温高圧のガス冷媒がガス配管19から過冷却装置21に供給される。さらに、飽和状態にある高温の液冷媒が液配管20から過冷却装置21に供給される。
Next, the operation of this embodiment will be described.
When the air conditioner 1 performs a cooling operation, the first port 12A and the second port 12B of the four-way valve 12 are connected, and the third port 12C and the fourth port 12D are connected. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows from the discharge pipe 11 through the four-way valve 12 into the outdoor heat exchanger 14. The outdoor heat exchanger 14 functions as a condenser, and the refrigerant passing through the outdoor heat exchanger 14 exchanges heat with the outside air. The refrigerant after heat exchange flows out of the outdoor heat exchanger 14 and flows into the gas-liquid separator 18. From the gas-liquid separator 18, a saturated high-temperature and high-pressure gas refrigerant is supplied from the gas pipe 19 to the supercooling device 21. Further, a high-temperature liquid refrigerant in a saturated state is supplied from the liquid pipe 20 to the supercooling device 21.

気液分離器18からガス配管19に流出する高温高圧のガス冷媒は、エジェクタ22のノズル部22Aに流入し、単相の駆動流として噴き出される。一方、気液分離器18から液配管20に流出する高温高圧の液冷媒は、過冷却器23の外管34に第二の端部34Bから流入し、第一の端部34Aから流出する。このとき、内管31を通る低温低圧のガス冷媒と熱交換を行って過冷却される。過冷却された液冷媒は、液配管35を通って室内機3に導かれる。室内機3では、室内熱交換器41が蒸発器として機能し、液冷媒が熱交換によって蒸発し、気化熱を空気から奪うことで空気を冷却する。冷却された空気によって室内が冷房される。熱交換によって形成されるガス冷媒は、ガス配管42から室外機2に戻される。四方弁12を通って吸入配管27に流入し、ガス冷媒の一部がアキュムレータ28に導かれ、残りのガス冷媒は、配管30を通って過冷却装置21の過冷却器23に供給される。   The high-temperature and high-pressure gas refrigerant flowing out from the gas-liquid separator 18 to the gas pipe 19 flows into the nozzle portion 22A of the ejector 22 and is ejected as a single-phase driving flow. On the other hand, the high-temperature and high-pressure liquid refrigerant flowing out from the gas-liquid separator 18 into the liquid pipe 20 flows into the outer tube 34 of the supercooler 23 from the second end 34B and out of the first end 34A. At this time, heat is exchanged with a low-temperature and low-pressure gas refrigerant passing through the inner pipe 31 to perform supercooling. The supercooled liquid refrigerant is guided to the indoor unit 3 through the liquid pipe 35. In the indoor unit 3, the indoor heat exchanger 41 functions as an evaporator, the liquid refrigerant evaporates by heat exchange, and cools the air by taking the heat of vaporization from the air. The room is cooled by the cooled air. The gas refrigerant formed by heat exchange is returned from the gas pipe 42 to the outdoor unit 2. The refrigerant flows into the suction pipe 27 through the four-way valve 12, a part of the gas refrigerant is guided to the accumulator 28, and the remaining gas refrigerant is supplied to the supercooler 23 of the supercooling device 21 through the pipe 30.

配管30を通って供給されるガス冷媒は、過冷却器23に供給される前に減圧装置24を通過することで、室外機2における蒸発時のガス圧や、圧縮機10の吸入圧力よりも低圧かつ低温のガス冷媒となる。この低温低圧のガス冷媒は、過冷却器23に低温熱源として内管31の第一の端部31Aから流入する。過冷却器23では、前記したように外管34を流れる高温高圧の液冷媒と熱交換を行って加熱される。低温低圧のガス冷媒は、元々温度が低いので、熱交換後のガス冷媒の温度が高くなり過ぎることはない。そして、このガス冷媒は、過冷却器23を第二の端部31Bから流出したら、エジェクタ22に吸引される。   The gas refrigerant supplied through the pipe 30 passes through the decompression device 24 before being supplied to the subcooler 23, so that the gas pressure at the time of evaporation in the outdoor unit 2 and the suction pressure of the compressor 10 are exceeded. It becomes a low-pressure and low-temperature gas refrigerant. This low-temperature and low-pressure gas refrigerant flows into the subcooler 23 from the first end 31A of the inner pipe 31 as a low-temperature heat source. The supercooler 23 is heated by exchanging heat with the high-temperature and high-pressure liquid refrigerant flowing through the outer tube 34 as described above. Since the temperature of the low-temperature and low-pressure gas refrigerant is originally low, the temperature of the gas refrigerant after heat exchange does not become too high. The gas refrigerant is sucked into the ejector 22 when it flows out of the subcooler 23 from the second end 31B.

エジェクタ22内では、ガス配管19から供給されるガス冷媒の単相からなる駆動流が形成する吸引力によって吸引される。低温低圧のガス冷媒は、駆動流と混合部22Bにおいて混合され、加圧された後にアキュムレータ28に流入する。アキュムレータ28からは冷媒が吸入配管29を通して圧縮機10に吸入される。圧縮機10に吸入されたガス冷媒は、再度圧縮されて吐出される。   In the ejector 22, it is attracted | sucked by the attraction | suction force which the drive flow which consists of a single phase of the gas refrigerant supplied from the gas piping 19 forms. The low-temperature and low-pressure gas refrigerant is mixed with the driving flow in the mixing unit 22B, and after being pressurized, flows into the accumulator 28. From the accumulator 28, the refrigerant is sucked into the compressor 10 through the suction pipe 29. The gas refrigerant sucked into the compressor 10 is compressed again and discharged.

この実施の形態によれば、エジェクタ22に吸引して加圧する低温低圧冷媒が過冷却器23の低温熱源となるように構成したので、低温熱源として従来よりも低温低圧のガス冷媒を使用することが可能になる。このため、高温高圧の液冷媒との温度差を大きくできるので、過冷却器23における熱交換効率を向上させることが可能になる。したがって、室内機3に供給する液冷媒の過冷却度を大きくすることができ、室内機3間の能力のばらつきを防止できる。ここで、過冷却器23で使用する低温低圧のガス冷媒は、従来よりも温度が低いので高温高圧の液冷媒と熱交換させても温度が高くなり過ぎることはない。したがって、このようなガス冷媒を圧縮機10に吸入させても圧縮機10の信頼性を損ねることはない。   According to this embodiment, since the low-temperature and low-pressure refrigerant sucked and pressurized by the ejector 22 is configured as the low-temperature heat source of the supercooler 23, a low-temperature and low-pressure gas refrigerant is used as the low-temperature heat source. Is possible. For this reason, since a temperature difference with a high-temperature / high pressure liquid refrigerant can be enlarged, the heat exchange efficiency in the supercooler 23 can be improved. Therefore, the degree of supercooling of the liquid refrigerant supplied to the indoor unit 3 can be increased, and the variation in capacity between the indoor units 3 can be prevented. Here, since the temperature of the low-temperature and low-pressure gas refrigerant used in the supercooler 23 is lower than that of the conventional one, the temperature does not become too high even if heat exchange is performed with the high-temperature and high-pressure liquid refrigerant. Therefore, even if such a gas refrigerant is sucked into the compressor 10, the reliability of the compressor 10 is not impaired.

室外熱交換器14を通って形成される二相冷媒を気液分離器18に導き、気液分離器18で飽和ガス冷媒と、飽和液冷媒とに分離し、飽和ガス冷媒はエジェクタ22の駆動流として使用しつつ室内機3をバイパスして圧縮機10に回収するようにしたので、冷房に実質的に寄与しないガス成分が室内機3に流れなくなる。したがって、室内機3において液冷媒を効率良く蒸発させることが可能になる。空気調和装置1の冷房運転が高効率化され、これに伴って空気調和装置1の小型化が図れる。
エジェクタ22の駆動流には、単相からなる高圧の飽和ガス冷媒を使用するので、従来のように二相冷媒を駆動流として使用する構成に比べて、エネルギ回収効率を向上できる。このため、空気調和装置1を小型化することができる。
The two-phase refrigerant formed through the outdoor heat exchanger 14 is guided to the gas-liquid separator 18 and separated into the saturated gas refrigerant and the saturated liquid refrigerant by the gas-liquid separator 18, and the saturated gas refrigerant is used to drive the ejector 22. Since the indoor unit 3 is bypassed and collected in the compressor 10 while being used as a flow, gas components that do not substantially contribute to cooling do not flow to the indoor unit 3. Therefore, the liquid refrigerant can be efficiently evaporated in the indoor unit 3. The cooling operation of the air conditioner 1 is highly efficient, and the air conditioner 1 can be downsized accordingly.
Since a high-pressure saturated gas refrigerant composed of a single phase is used for the drive flow of the ejector 22, energy recovery efficiency can be improved as compared with a conventional configuration using a two-phase refrigerant as a drive flow. For this reason, the air conditioning apparatus 1 can be reduced in size.

なお、空気調和装置1は、四方弁12を切り替えることで周知の空気調和装置と同様に暖房運転することができる。   In addition, the air conditioning apparatus 1 can perform heating operation similarly to a known air conditioning apparatus by switching the four-way valve 12.

本発明の第2の実施の形態について図面を参照して詳細に説明する。なお、第1の実施の形態と同じ構成要素には同一の符号を付してある。また、重複する説明は、省略する。
図2に示すように、空気調和装置51は、室外機52の構成のみが第1の実施の形態と異なる。室外機52は、圧縮機10、四方弁12、室外熱交換器14が配管接続されており、室外熱交換器14の他方の流入出口に接続される配管15が、膨張弁16、逆止弁17を経た後に過冷却装置53に接続されている。
A second embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same component as 1st Embodiment. In addition, redundant description is omitted.
As shown in FIG. 2, the air conditioner 51 is different from the first embodiment only in the configuration of the outdoor unit 52. The outdoor unit 52 is connected to the compressor 10, the four-way valve 12, and the outdoor heat exchanger 14, and the pipe 15 connected to the other inlet / outlet of the outdoor heat exchanger 14 includes an expansion valve 16 and a check valve. 17 is connected to the supercooling device 53.

過冷却装置53は、エジェクタ22と、過冷却器23と、減圧装置24とを含んで構成されている。エジェクタ22のノズル部22Aには、室外熱交換器14から延びる配管15から分岐した配管60が接続されている。なお、配管60中に設けられている開閉弁61は、必ずしも設ける必要はない。エジェクタ22のディフューザ部22Cから延びる吸入配管62は、吸入配管27と合流した後に気液分離器であるアキュムレータ28に接続されている。アキュムレータ54は、吸入配管29によって飽和状態のガス成分が圧縮機10に吸入されるようになっている。飽和液冷媒は、配管63から流出するようになっている。配管63は、途中にキャピラリチューブなどの減圧装置24が設けられており、飽和液冷媒から低温低圧の二相冷媒を形成するようになっている。さらに、配管63は、過冷却器23の内管31の第一の端部31Aに接続されている。内管31の第二の端部31Bは、配管32によってエジェクタ22の吸引口33に接続されている。過冷却器23の外管34には、第一の端部34Aに液配管35が接続されており、第二の端部34Bには室外熱交換器14から延びる配管15から分岐した配管64が接続されている。   The supercooling device 53 includes the ejector 22, the supercooler 23, and the decompression device 24. A pipe 60 branched from a pipe 15 extending from the outdoor heat exchanger 14 is connected to the nozzle portion 22A of the ejector 22. The on-off valve 61 provided in the pipe 60 is not necessarily provided. The suction pipe 62 extending from the diffuser portion 22C of the ejector 22 is connected to the accumulator 28 that is a gas-liquid separator after joining the suction pipe 27. The accumulator 54 is configured such that a saturated gas component is sucked into the compressor 10 through the suction pipe 29. The saturated liquid refrigerant flows out from the pipe 63. The pipe 63 is provided with a decompression device 24 such as a capillary tube in the middle, and forms a low-temperature and low-pressure two-phase refrigerant from a saturated liquid refrigerant. Further, the pipe 63 is connected to the first end 31 </ b> A of the inner pipe 31 of the subcooler 23. The second end portion 31 </ b> B of the inner pipe 31 is connected to the suction port 33 of the ejector 22 by a pipe 32. A liquid pipe 35 is connected to the first end 34A of the outer pipe 34 of the subcooler 23, and a pipe 64 branched from the pipe 15 extending from the outdoor heat exchanger 14 is connected to the second end 34B. It is connected.

この実施の形態の作用を説明する。
冷房運転時に圧縮機10から吐出された高圧のガス冷媒は、室外熱交換器14で凝縮され、高温高圧の液冷媒になる。高温高圧の液冷媒は、配管60からエジェクタ22のノズル部22Aに供給されて駆動流となる。一方、過冷却器23の外管34に導かれた高温高圧の液冷媒は、内管31を流れる低温低圧の二相冷媒と熱交換して過冷却され、液配管35から各室内機3に導かれる。なお、過冷却器23の内管31を流れる低温低圧の二相冷媒は、アキュムレータ54から流出する飽和液冷媒を減圧装置24で減圧させることで得ている。二相冷媒の圧力は、室内機3で液冷媒が蒸発したときのガス圧力や、圧縮機10の吸入圧力よりも低い。過冷却器23の内管31において熱交換によって形成される低温低圧の冷媒(主に飽和ガス冷媒)は、エジェクタ22の吸引流となって、高温高圧のガス冷媒と合流して加圧された後に再びアキュムレータ54に戻される。アキュムレータ54からは、飽和したガス冷媒のみが圧縮機10に吸入される。なお、外気温が低いときなど、室内機3に供給される液冷媒が充分に過冷却された状態にある場合には、開閉弁61を閉じても良い。
The operation of this embodiment will be described.
The high-pressure gas refrigerant discharged from the compressor 10 during the cooling operation is condensed in the outdoor heat exchanger 14 and becomes a high-temperature and high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant is supplied from the pipe 60 to the nozzle portion 22A of the ejector 22 and becomes a driving flow. On the other hand, the high-temperature and high-pressure liquid refrigerant led to the outer pipe 34 of the supercooler 23 is supercooled by exchanging heat with the low-temperature and low-pressure two-phase refrigerant flowing through the inner pipe 31, and is transferred from the liquid pipe 35 to each indoor unit 3. Led. Note that the low-temperature and low-pressure two-phase refrigerant flowing through the inner pipe 31 of the supercooler 23 is obtained by decompressing the saturated liquid refrigerant flowing out of the accumulator 54 by the decompression device 24. The pressure of the two-phase refrigerant is lower than the gas pressure when the liquid refrigerant evaporates in the indoor unit 3 and the suction pressure of the compressor 10. The low-temperature and low-pressure refrigerant (mainly saturated gas refrigerant) formed by heat exchange in the inner pipe 31 of the subcooler 23 becomes the suction flow of the ejector 22 and is joined and pressurized with the high-temperature and high-pressure gas refrigerant. Later, it is returned to the accumulator 54 again. From the accumulator 54, only the saturated gas refrigerant is sucked into the compressor 10. Note that the open / close valve 61 may be closed when the liquid refrigerant supplied to the indoor unit 3 is sufficiently subcooled, such as when the outside air temperature is low.

この実施の形態によれば、エジェクタ22の吸引する冷温低圧の冷媒を過冷却器23の低温熱源として使用することで、室内機3において蒸発したガス冷媒の温度よりも更に低い温度の冷媒を使用することが可能になる。したがって、過冷却器23における熱交換の効率が向上し、室内機3に供給する液冷媒を確実に過冷却することができる。特に、低温低圧の二相冷媒を利用して液冷媒を過冷却するので、二相冷媒の潜熱を利用することができ、液冷媒を確実に過冷却できるようになる。
過冷却器23において熱交換した後の低温低圧の冷媒が、エジェクタ22において駆動流となる液冷媒に混合されるように構成したので、アキュムレータ54には二相冷媒が流入する。アキュムレータ54から圧縮機10が吸入するガス冷媒は、二相冷媒から得られる飽和ガスになる。過冷却器23を通過した低温の冷媒を含むので、従来よりも低温の飽和ガス冷媒が圧縮機10に吸入されるので、ガス冷媒の過熱による圧縮機10の性能低下を防止することができる。
According to this embodiment, by using the low-temperature and low-pressure refrigerant sucked by the ejector 22 as the low-temperature heat source of the supercooler 23, the refrigerant having a temperature lower than the temperature of the gas refrigerant evaporated in the indoor unit 3 is used. It becomes possible to do. Therefore, the efficiency of heat exchange in the subcooler 23 is improved, and the liquid refrigerant supplied to the indoor unit 3 can be reliably supercooled. In particular, since the liquid refrigerant is supercooled using a low-temperature and low-pressure two-phase refrigerant, the latent heat of the two-phase refrigerant can be used, and the liquid refrigerant can be reliably subcooled.
Since the low-temperature and low-pressure refrigerant after heat exchange in the subcooler 23 is configured to be mixed with the liquid refrigerant that becomes the driving flow in the ejector 22, the two-phase refrigerant flows into the accumulator 54. The gas refrigerant sucked by the compressor 10 from the accumulator 54 becomes a saturated gas obtained from the two-phase refrigerant. Since the low-temperature refrigerant that has passed through the supercooler 23 is included, saturated gas refrigerant having a temperature lower than that of the conventional refrigerant is sucked into the compressor 10, so that it is possible to prevent deterioration in the performance of the compressor 10 due to overheating of the gas refrigerant.

なお、本発明は、前記した各実施の形態に限定されずに広く応用することができる。
例えば、第2の実施の形態で、減圧装置24を膨張弁にし、過冷却器23の内管31の第二の端部31B側の温度に基づいて膨張弁の開度制御を行うように構成すると、過冷却器23の熱交換によって内管31に飽和ガスが確実に形成することが可能になる。
この過冷却装置21,53を備える装置としては、空気調和装置1,51に限定されない。圧縮機10で冷媒を循環させて冷却する装置であれば良く、冷凍機などでも良い。
過冷却装置21,53は、気液分離器18や、アキュムレータ54を含んだ構成であっても良い。
The present invention can be widely applied without being limited to the above-described embodiments.
For example, in the second embodiment, the decompression device 24 is used as an expansion valve, and the opening degree of the expansion valve is controlled based on the temperature on the second end portion 31B side of the inner pipe 31 of the subcooler 23. Then, saturated gas can be reliably formed in the inner pipe 31 by heat exchange of the subcooler 23.
The device including the supercooling devices 21 and 53 is not limited to the air conditioning devices 1 and 51. Any device that circulates and cools the refrigerant in the compressor 10 may be used.
The supercooling devices 21 and 53 may include a gas-liquid separator 18 and an accumulator 54.

本発明の実施の形態に係る過冷却装置を備える空気調和装置の概略構成を示す図である。It is a figure showing a schematic structure of an air harmony device provided with a supercooling device concerning an embodiment of the invention. 他の形態に係る過冷却装置を備える空気調和装置の概略構成を示す図である。It is a figure which shows schematic structure of an air conditioning apparatus provided with the supercooling apparatus which concerns on another form.

符号の説明Explanation of symbols

1,51 空気調和装置
2 室外機
3 室内機
10 圧縮機
18 気液分離器
21,53 過冷却装置
22 エジェクタ
23 過冷却器
24 減圧装置
54 アキュムレータ(気液分離器)
63 配管

DESCRIPTION OF SYMBOLS 1,51 Air conditioning apparatus 2 Outdoor unit 3 Indoor unit 10 Compressor 18 Gas-liquid separator 21, 53 Supercooling device 22 Ejector 23 Supercooler 24 Decompression device 54 Accumulator (gas-liquid separator)
63 Piping

Claims (4)

圧縮機で圧縮した冷媒を循環させる際に高温高圧の液冷媒を過冷却する過冷却装置において、
室内機をバイパスする高圧の冷媒を駆動流とし、前記圧縮機に吸入させる冷媒を流出させるエジェクタと、
前記エジェクタの吸引流を低温熱源とし、冷房運転時に室内機に流入させる高温高圧の液冷媒を熱交換により過冷却する過冷却器と、
冷却熱源として前記圧縮機に吸入させるガス冷媒よりも低温低圧の冷媒を形成する減圧装置と、
を有することを特徴とする過冷却装置。
In the supercooling device that supercools the high-temperature and high-pressure liquid refrigerant when circulating the refrigerant compressed by the compressor,
An ejector configured to drive a high-pressure refrigerant bypassing the indoor unit as a driving flow, and to discharge the refrigerant sucked into the compressor;
A supercooler that uses the suction flow of the ejector as a low-temperature heat source and supercools the high-temperature and high-pressure liquid refrigerant that flows into the indoor unit during cooling operation by heat exchange;
A decompression device that forms a refrigerant having a lower temperature and lower pressure than a gas refrigerant to be sucked into the compressor as a cooling heat source;
A supercooling device comprising:
前記エジェクタの駆動流として、気液分離器で分離した飽和ガス冷媒を用い、過冷却する液冷媒として前記気液分離器で分離した飽和液冷媒を用いるように構成したことを特徴とする請求項1に記載の過冷却装置。   The saturated liquid refrigerant separated by the gas-liquid separator is used as the liquid refrigerant to be supercooled, and the saturated liquid refrigerant separated by the gas-liquid separator is used as the driving flow of the ejector. 2. The supercooling device according to 1. 前記圧縮機に吸引される低温のガス冷媒が流入する気液分離器を有し、前記気液分離器から飽和液冷媒を流出する流出口に接続された配管中に前記減圧装置を設けたことを特徴とする請求項1に記載の過冷却装置。   The gas-liquid separator into which the low-temperature gas refrigerant sucked into the compressor flows in, and the pressure reducing device is provided in a pipe connected to an outlet through which the saturated liquid refrigerant flows out from the gas-liquid separator. The supercooling device according to claim 1. 請求項1から請求項3のいずれか一項に記載の過冷却装置を室外機に備え、冷房運転時に過冷却した液冷媒を室内機に供給するように構成したことを特徴とする空気調和装置。
An air conditioner comprising the supercooling device according to any one of claims 1 to 3 in an outdoor unit, and configured to supply a supercooled liquid refrigerant to the indoor unit during cooling operation. .
JP2005362894A 2005-12-16 2005-12-16 Supercooling device and air conditioner equipped with supercooling device Expired - Fee Related JP4468887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362894A JP4468887B2 (en) 2005-12-16 2005-12-16 Supercooling device and air conditioner equipped with supercooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362894A JP4468887B2 (en) 2005-12-16 2005-12-16 Supercooling device and air conditioner equipped with supercooling device

Publications (2)

Publication Number Publication Date
JP2007163084A true JP2007163084A (en) 2007-06-28
JP4468887B2 JP4468887B2 (en) 2010-05-26

Family

ID=38246176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362894A Expired - Fee Related JP4468887B2 (en) 2005-12-16 2005-12-16 Supercooling device and air conditioner equipped with supercooling device

Country Status (1)

Country Link
JP (1) JP4468887B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080350A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Refrigeration cycle device, equipment, and refrigeration cycle method
CN104121719A (en) * 2013-04-25 2014-10-29 珠海格力电器股份有限公司 Heat pump or refrigerating system
JP2015158329A (en) * 2014-02-25 2015-09-03 株式会社富士通ゼネラル Refrigeration cycle device
CN106152582A (en) * 2016-07-11 2016-11-23 格力电器(芜湖)有限公司 A kind of air conditioning system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080350A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Refrigeration cycle device, equipment, and refrigeration cycle method
GB2511666A (en) * 2011-11-30 2014-09-10 Mitsubishi Electric Corp Refrigeration cycle device, equipment, and refrigeration cycle method
JPWO2013080350A1 (en) * 2011-11-30 2015-04-27 三菱電機株式会社 Refrigeration cycle apparatus, equipment, and refrigeration cycle method
GB2511666B (en) * 2011-11-30 2016-06-29 Mitsubishi Electric Corp Refrigeration cycle device with function of returning lubricating oil to compressor, equipment, and refrigeration cycle method
US9464832B2 (en) 2011-11-30 2016-10-11 Mitsubishi Electric Corporation Refrigeration cycle device, equipment, and refrigeration cycle method
CN104121719A (en) * 2013-04-25 2014-10-29 珠海格力电器股份有限公司 Heat pump or refrigerating system
CN104121719B (en) * 2013-04-25 2016-08-10 珠海格力电器股份有限公司 Refrigeration system
JP2015158329A (en) * 2014-02-25 2015-09-03 株式会社富士通ゼネラル Refrigeration cycle device
CN106152582A (en) * 2016-07-11 2016-11-23 格力电器(芜湖)有限公司 A kind of air conditioning system

Also Published As

Publication number Publication date
JP4468887B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP5239824B2 (en) Refrigeration equipment
JP5003440B2 (en) Refrigeration equipment
JP5332604B2 (en) Cooling and heating simultaneous operation type air conditioner
JP5003439B2 (en) Refrigeration equipment
JP5018724B2 (en) Ejector refrigeration cycle
WO2010038762A1 (en) Refrigeration cycle device
JP2007046806A (en) Ejector type cycle
EP1645818A2 (en) Air-conditioner with a dual-refrigerant circuit
JPWO2006003925A1 (en) Refrigeration apparatus and air conditioner
JP5049889B2 (en) Refrigeration equipment
JP2007240025A (en) Refrigerating device
JP2009264605A (en) Refrigerating device
JP2007078318A (en) Refrigeration cycle device
WO2013140990A1 (en) Refrigeration cycle and refrigeration showcase
WO2020071299A1 (en) Refrigeration cycle device
JP2011214753A (en) Refrigerating device
JP5277854B2 (en) Air conditioner
JP4971877B2 (en) Refrigeration cycle
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP2008267653A (en) Refrigerating device
WO2013140992A1 (en) Refrigeration cycle and refrigeration showcase
JP2010133584A (en) Refrigerating cycle device and air conditioner mounted with the same
JP5895662B2 (en) Refrigeration equipment
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2007178025A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090721

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees