WO2017033243A1 - Liquid crystal display device and method for driving liquid crystal display device - Google Patents

Liquid crystal display device and method for driving liquid crystal display device Download PDF

Info

Publication number
WO2017033243A1
WO2017033243A1 PCT/JP2015/073627 JP2015073627W WO2017033243A1 WO 2017033243 A1 WO2017033243 A1 WO 2017033243A1 JP 2015073627 W JP2015073627 W JP 2015073627W WO 2017033243 A1 WO2017033243 A1 WO 2017033243A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
pixel
discharge
signal
Prior art date
Application number
PCT/JP2015/073627
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 入江
雅江 北山
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2015/073627 priority Critical patent/WO2017033243A1/en
Publication of WO2017033243A1 publication Critical patent/WO2017033243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device that improves the viewing angle dependency of gamma characteristics and a driving method of the liquid crystal display device.
  • the liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption, and is widely used for thin televisions, personal computer monitors, digital signage, and the like.
  • a commonly used TN (Twisted Nematic) mode liquid crystal display device has excellent productivity, but has a problem in viewing angle characteristics related to screen display. For example, when the display screen is viewed obliquely with respect to the normal line, the contrast ratio is remarkably lowered in the TN mode liquid crystal display device, and the luminance difference between gradations becomes remarkably unclear. In addition, a so-called gradation inversion phenomenon may be observed in which a portion that appears bright (or dark) when viewed from the front is viewed dark (or bright) when viewed from an oblique direction with respect to the normal.
  • Some liquid crystal display devices that improve the above-described viewing angle characteristics display in display modes such as an IPS (In-Plan Switching) mode and an MVA (Multi-domain Vertical Alignment) mode.
  • IPS In-Plan Switching
  • MVA Multi-domain Vertical Alignment
  • the gamma characteristics representing the gradation dependence of display luminance depend on the angle of the line of sight with respect to the normal of the display screen (hereinafter referred to as viewing angle dependence of the gamma characteristics).
  • This problem is that the gradation display state differs depending on the viewing direction with respect to the display screen, and the gamma characteristics differ between the case where the viewing direction is along the normal line of the display screen and the case where the viewing direction is oblique to the normal line. Is to be observed.
  • Non-Patent Document 1 discloses a liquid crystal display device that improves the viewing angle dependence of gamma characteristics (referred to as viewing angle dependence in some literatures).
  • each pixel includes a first subpixel and a second subpixel, and a discharge capacitance (Cdown) is provided in the second subpixel.
  • the subpixel electrodes of the first and second subpixels are alternately different for each pixel in the vertical direction of the display screen via TFT1 and TFT2 to which a scanning signal (gate signal) is applied from the scanning signal line to the control electrode.
  • a scanning signal gate signal
  • the discharge capacity Connected to the data signal line (source signal line), two lines are scanned simultaneously.
  • the discharge capacity the discharge capacity electrode facing the counter electrode is connected to the sub-pixel electrode of the second sub-pixel via the TFT 3.
  • a discharge signal line for applying a discharge signal to the control electrode of the TFT 3 is connected to the scanning signal line behind two lines.
  • a discharge signal delayed by one horizontal scanning period (1H) from the scanning signal for each pixel is applied to the control electrode of the TFT 3 for each pixel.
  • the effective voltage applied to the liquid crystal layer by each of the first and second sub-pixels can be obtained.
  • each pixel is observed in a state in which different gamma characteristics are harmonized for each sub-pixel, so that the viewing angle dependency of the gamma characteristics is improved.
  • the liquid crystal display device described in Patent Document 1 includes first and second sub-pixels each having a sub-pixel electrode connected to the first and second storage capacitors.
  • a third capacitor (corresponding to the discharge capacitor) is connected to the subpixel electrodes of the two subpixels via a third switching element (corresponding to the TFT 3).
  • the subpixel electrodes of the first and second subpixels are connected to a data signal line via first and second switching elements (corresponding to the TFTs 1 and 2).
  • a first gate signal (corresponding to the scanning signal) is applied to the control electrodes of the first and second switching elements from a first gate line (corresponding to the scanning signal line).
  • a second gate signal (corresponding to the discharge signal) is applied from the second gate line (corresponding to the discharge signal line) to the control electrode of the third switching element.
  • the liquid crystal display device described in Patent Document 1 is characterized in that a part of the first gate signal overlaps the first line and the second line (similarly the third line and the fourth line), It is preferable to make the second gate signal of the first line substantially the same as the first gate signal of the third line. This means that part of the signal overlaps with the first gate signal on the second line and the second gate signal on the first line. For this reason, in the drawing described in Patent Document 1, in all the drawings scanned one line at every 1H, a part of the signal is generated by the first gate signal of the second line and the second gate signal of the first line. Or all overlap. In the case where two lines are scanned simultaneously, a part or all of the signals are overlapped by the first gate signal of the third and fourth lines and the second gate signal of the first and second lines.
  • the voltage of the subpixel electrode of the first subpixel is particularly limited to one due to the influence of other parasitic capacitance existing between each subpixel electrode and the discharge signal line (or the second gate line).
  • a phenomenon may be observed in which the discharge signal (or the second gate signal) of the previous line slightly increases and decreases when the discharge signal (or the second gate signal) rises and falls.
  • the delay time of the rise of the second gate signal with respect to the fall of the first gate signal is within 1H for any line scanned by the first gate signal. Therefore, there is a case where a signal overlap occurs between the discharge signal of one line and the scanning signal of the second line following the one line, thereby causing a counter voltage shift. Specifically, when one line is scanned every 1H, a counter voltage shift occurs in the first subpixel of any line, and when two lines are scanned simultaneously, the first subpixel of the first line is scanned. A counter voltage shift occurs in the pixel.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to make the counter voltage optimum for the counter electrode opposed to the sub-pixel electrode included in the pixel deviate from the preset counter voltage. It is an object of the present invention to provide a liquid crystal display device and a driving method of the liquid crystal display device that can prevent the above-described problem.
  • pixels having at least first and second sub-pixels defined including a sub-pixel electrode and a counter-electrode pair facing each other through a liquid crystal layer are arranged in a matrix.
  • the leading edge of the discharge signal is characterized by delayed more than a predetermined time than the trailing edge of the scanning signal line after one.
  • the first and second sub-pixels are disposed in a direction that is in tolerance with the discharge signal line, and the discharge signal line is adjacent to the first adjacent pixel in the direction. And the second sub-pixel.
  • the liquid crystal display device is characterized in that the polarity of the data signal applied to the first and second sub-pixels is inverted every frame period.
  • each of the first and second subpixels includes an electrode pair of an auxiliary capacitance electrode connected to the subpixel electrode and an auxiliary capacitance counter electrode connected to the predetermined potential. It is demarcated.
  • the liquid crystal display device further includes a discharge signal line driving circuit for applying the discharge signal to the discharge signal line.
  • the liquid crystal display device is characterized in that the pixel is defined including an electrode pair having electrodes connected to the sub-pixel electrode of the first sub-pixel and the discharge capacitance electrode, respectively.
  • the liquid crystal display device further includes two data signal lines for each column of the matrix for applying data signals alternately different for each row of the matrix to one end of the first and second switching elements. Two matching rows are scanned at the same time.
  • pixels having at least first and second subpixels which are defined by including a subpixel electrode and a counter electrode pair facing each other through a liquid crystal layer are arranged in a matrix.
  • a discharge capacitor electrode included in the second subpixel, a pair of discharge capacitor counter electrodes connected to a predetermined potential, and a subpixel of the second subpixel A third switching element connected between the electrode and the discharge capacitance electrode, and a discharge signal for turning on the third switching element applied to the control electrode of the third switching element for each row of the matrix
  • the pixels arranged in a matrix have at least first and second subpixels defined including a subpixel electrode and an electrode pair of the counter electrode facing each other through the liquid crystal layer.
  • the control electrodes of the first and second switching elements for applying data signals to the subpixel electrodes included in the first and second subpixels are scanned from the scanning signal lines for each row of the matrix (that is, for each line). Apply a signal.
  • a discharge capacitor electrode is connected to the subpixel electrode of the second subpixel through a third switching element, and a discharge capacitor counter electrode connected to a predetermined potential is opposed to the discharge capacitor electrode.
  • the discharge signal applied to the control electrode of the third switching element from the discharge signal line for each line is delayed by a predetermined time or more from the trailing edge of the scanning signal of the next line.
  • a discharge signal is applied to the control electrode of the third switching element of the previous line after a predetermined time or more from the time when the data signal is no longer applied to the subpixel electrodes of the first and second subpixels of each line. Therefore, the influence of the voltage applied to the liquid crystal layer by at least the first and second sub-pixels included in the pixels of each line cancels the rise and fall of the discharge signal of the previous line.
  • the arrangement direction of the first and second sub-pixels is a direction that is in tolerance with the discharge signal line, and the discharge signal line is arranged between the adjacent first and second sub-pixels in the adjacent pixel.
  • the scanning signal line is arranged at a position overlapping each pixel, signal leakage between the discharge signal line and the scanning signal line is suppressed.
  • the voltage of the subpixel electrode of the second subpixel effectively changes when the third switching element is turned on. As a result, the difference in brightness between the two sub-pixels increases.
  • the electrode pair defining each of the first and second subpixels of the pixel includes the electrode pair of the auxiliary capacitance electrode and the auxiliary capacitance counter electrode, and the auxiliary capacitance electrode serves as the subpixel electrode.
  • the auxiliary capacitor counter electrode is electrically connected, and is connected to a predetermined potential as a connection destination of the discharge capacitor counter electrode.
  • the auxiliary capacitance formed by the auxiliary capacitance electrode and the auxiliary capacitance counter electrode is connected in parallel to the liquid crystal capacitance formed by the subpixel electrode and the counter electrode of each of the first and second subpixels.
  • the voltage applied to the liquid crystal layer by the second subpixel is stably held for at least one frame period.
  • the discharge signal drive circuit applies a discharge signal to the discharge signal line.
  • the delay time of the leading edge of the discharge signal and the signal width of the discharge signal with respect to the trailing edge of the scanning signal of the next line are appropriately adjusted by the discharge signal driving circuit.
  • the third switching element when the third switching element is turned on, a part of the electric charge accumulated in the second subpixel is connected to the subpixel electrode and the discharge capacitor electrode of the first subpixel. It moves to the first sub-pixel through the electrode pair it has. As a result, the voltages of the subpixel electrodes of the first and second subpixels change with opposite polarities.
  • data signals that are alternately different from line to line from two data signal lines arranged for each column of the matrix are transmitted to the first and second subpixels via the first and second switching elements, respectively.
  • Two lines are scanned within one horizontal scanning period in order to simultaneously turn on the scanning signals of two adjacent lines that are applied to the subpixel electrodes.
  • a discharge signal is applied to the third switching element of the previous line after a predetermined time or more from the time when the data signal is no longer applied to the subpixel electrodes of the first and second subpixels of each line. Therefore, the influence of the voltage applied to the liquid crystal layer by at least the first and second sub-pixels included in the pixels of each line cancels the rise and fall of the discharge signal of the previous line. Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode opposed to the sub-pixel electrode included in the pixel from deviating from the preset counter voltage.
  • FIG. 4 is an explanatory diagram schematically showing a configuration for defining pixels in the liquid crystal display device according to Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of a liquid crystal panel typically. It is explanatory drawing which shows the parasitic capacitance accompanying a pixel.
  • FIG. 5 is a timing chart showing a time change of a signal applied to each signal line and a voltage of a subpixel electrode.
  • FIG. 6 is a timing chart showing temporal changes in signals applied to signal lines and subpixel electrode voltages in the liquid crystal display device according to the first embodiment.
  • FIG. 6 is a timing chart showing temporal changes in signals applied to signal lines and subpixel electrode voltages in the liquid crystal display device according to the first embodiment.
  • 6 is a block diagram illustrating a configuration example of a liquid crystal display device according to a first modification of the first embodiment.
  • FIG. 6 is an explanatory diagram schematically showing a configuration in which pixels are defined in a liquid crystal panel according to a first modification of the first embodiment.
  • FIG. 6 is an explanatory diagram schematically showing a configuration for defining pixels in a liquid crystal panel according to a second modification of the first embodiment.
  • FIG. It is a block diagram which shows the structural example of the liquid crystal display device which concerns on Embodiment 2 of this invention. It is explanatory drawing which shows the connection relation of a pixel and a source signal line.
  • FIG. 10 is a timing chart showing temporal changes in signals applied to signal lines and sub-pixel electrode voltages in the liquid crystal display device according to the second embodiment.
  • FIG. 10 is a timing chart showing temporal changes in signals applied to signal lines and sub-pixel electrode voltages in the liquid crystal display device according to the second embodiment. It is a graph which shows the relationship between the delay time of a discharge signal, and the optimal counter voltage. It is explanatory drawing for demonstrating the presence or absence of the horizontal stripe which generate
  • FIG. 1 is a block diagram illustrating a configuration example of a liquid crystal display device according to Embodiment 1 of the present invention
  • FIG. 2 schematically illustrates a configuration in which pixels P are defined in the liquid crystal display device according to Embodiment 1. It is explanatory drawing shown.
  • a pixel P having at least two subpixels defined including an electrode pair to be described later includes a vertical direction (hereinafter also referred to as a row direction) and a horizontal direction (hereinafter referred to as a column direction) of the display screen.
  • a liquid crystal panel 100a arranged in a matrix.
  • the pixel P has at least a sub-pixel SP1 (corresponding to the first sub-pixel) and a sub-pixel SP2 (corresponding to the second sub-pixel) that are bisected in the vertical direction of the display screen of the liquid crystal panel 100a.
  • the sub-pixel SP1 is defined including an electrode pair of the sub-pixel electrode 11a and the counter electrode 21 facing each other through the liquid crystal layer 3, and an electrode pair of the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a.
  • the sub-pixel electrode 11a is connected to a drain electrode of a TFT (Thin Transistor: corresponding to the first switching element) 15a.
  • TFT Thin Transistor
  • the storage capacitor counter electrode 22a is connected to the potential of the counter electrode 21 (corresponding to a predetermined potential).
  • a liquid crystal capacitor Clc1 is formed by the sub-pixel electrode 11a and the counter electrode 21.
  • the auxiliary capacitance Ccs1 is formed by the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a.
  • the subpixel SP2 includes an electrode pair of the subpixel electrode 11b and the counter electrode 21, which are opposed to each other with the liquid crystal layer 3 interposed therebetween, an electrode pair of the auxiliary capacitor electrode 12b and the auxiliary capacitor counter electrode 22b, and a discharge capacitor electrode 13 and a discharge capacitor counter electrode. And 23 electrode pairs.
  • a drain electrode of a TFT (corresponding to the second switching element) 15b is connected to the subpixel electrode 11b.
  • the subpixel electrode 11b and the auxiliary capacitance electrode 12b are electrically connected.
  • the discharge capacity electrode 13 is connected to the sub-pixel electrode 11b through a TFT (corresponding to the third switching element) 14.
  • the auxiliary capacity counter electrode 22 b and the discharge capacity counter electrode 23 are connected to the potential of the counter electrode 21.
  • the counter electrode 21 is common to the subpixels SP1 and SP2, but is not limited thereto.
  • a liquid crystal capacitor Clc2 is formed by the sub-pixel electrode 11b and the counter electrode 21.
  • the auxiliary capacitance Ccs2 is formed by the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b.
  • the discharge capacity Cdc is formed by the discharge capacity electrode 13 and the discharge capacity counter electrode 23. Note that the size ratio of the subpixel electrode 11a and the subpixel electrode 11b is not limited to 1: 1, and the number of subpixels is not limited to two.
  • the source electrodes of the TFTs 15a and 15b are connected to the source signal line SL.
  • Gate electrodes (corresponding to control electrodes) of the TFTs 15a and 15b are connected to a scanning signal line Gm that is linearly arranged so as to cross the central portion of the pixel P in the horizontal direction.
  • a gate electrode of the TFT 14 is connected to a discharge signal line Gs linearly arranged so as to cross a horizontal direction between pixels P in the next row (hereinafter also referred to as a line) adjacent in the vertical direction (row direction). It is connected.
  • the scanning signal line Gm and the discharge signal line Gs are arranged side by side in the row direction of the matrix. Since the scanning signal line Gm and the discharge signal line Gs in each row are appropriately separated, signal leakage between the scanning signal line Gm and the discharge signal line Gs is suppressed.
  • the liquid crystal display device also applies scanning signals to the scanning signal lines Gm, Gm,... Gm, and discharge signals to the discharging signal lines Gs, Gs,.
  • a gate driver GDa for applying a source signal a source driver SDa for applying a source signal to the source signal lines SL, SL,... SL, and a display control circuit for controlling display by the liquid crystal panel 100a using the gate driver GDa and the source driver SDa 4a.
  • the display control circuit 4 a receives an image signal input circuit 40 that receives an image signal including image data representing an image, and the gate driver GDa and the source driver SDa based on the clock signal and the synchronization signal separated by the image signal input circuit 40. It has a scanning signal control circuit 42a, a discharge signal control circuit 43a, and a source signal control circuit 41a to be controlled.
  • the discharge signal control circuit 43a and the gate driver GDa correspond to a discharge signal drive circuit.
  • Each of the scanning signal control circuit 42a, the discharge signal control circuit 43a, and the source signal control circuit 41a generates control signals such as a start signal, a clock signal, and an enable signal necessary for the periodic operation of the gate driver GDa and the source driver SDa. To do.
  • the source signal control circuit 41a also outputs the digital image data separated by the image signal input circuit 40 to the source driver SDa.
  • the gate driver GDa sequentially applies a scanning signal for each horizontal scanning period to the scanning signal lines Gm, Gm,... Gm within one frame period of the image data, and discharge signal lines Gs, Gs,.
  • a discharge signal is sequentially applied to Gs every horizontal scanning period.
  • the source driver SDa accumulates digital image data (serial data) supplied from the source signal control circuit 41a for one horizontal scanning period (1H) and generates an analog source signal (parallel signal) representing an image for one line.
  • the generated source signal is applied in parallel to the source signal lines SL, SL,.
  • the source signal for one line here is updated every horizontal scanning period.
  • the scanning signal applied to one of the scanning signal lines Gm, Gm,... Gm is applied to the gate electrodes of the TFTs 15a and 15b included in the pixels P, P,. Applied.
  • Discharge signals are applied from the discharge signal lines Gs, Gs,... Gs to the gate electrodes of the TFTs 14 included in the pixels P, P,.
  • the leading edge (rising edge) of the discharge signal of the previous line is delayed by a predetermined time or more with respect to the trailing edge (falling edge) of the scanning signal of each line.
  • the delay time and the signal width of the discharge signal are adjusted in advance by the discharge signal control circuit 43a.
  • the source signal applied to the source signal lines SL, SL,... SL has a gate electrode connected to the one scanning signal line Gm in one horizontal scanning period in which the scanning signal is applied to one scanning signal line Gm. It is applied to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b, respectively, and also to the auxiliary capacitance electrodes 12a and 12b.
  • source signals are written into the liquid crystal capacitors Clc1 and Clc2 and the auxiliary capacitors Ccs1 and Ccs2 formed in the sub-pixels SP1 and SP2, respectively. In this way, one line of source signal is simultaneously written to one line of pixels P, P,... P in one horizontal scanning period.
  • the source signals written in the subpixels SP1 and SP2 are held for one frame period as long as there is no change in their combined capacitance.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the liquid crystal panel 100a.
  • the liquid crystal panel 100 a is configured by interposing a liquid crystal layer 3 between a first glass substrate (array substrate) 1 and a second glass substrate 2.
  • a sealing material 33 for sealing the liquid crystal sealed in the liquid crystal layer 3 is disposed between the opposing surfaces of the first glass substrate 1 and the second glass substrate 2. It is provided along.
  • subpixel electrodes 11a and 11b On one surface of the first glass substrate 1, subpixel electrodes 11a and 11b, auxiliary capacitance electrodes 12a and 12b, auxiliary capacitance counter electrodes 22a and 22b, discharge capacitance electrode 13 and discharge, each made of a transparent electrode, are formed.
  • An alignment film 31 is formed on the layer including the capacitor counter electrode 23, the TFT 14, and the TFTs 15a and 15b.
  • a polarizing plate 19 is attached to the other surface of the first glass substrate 1.
  • a flexible substrate 18 on which a gate driver GDa is surface-mounted is attached to one edge of one surface of the first glass substrate 1.
  • a counter electrode 21 made of a transparent electrode and an alignment film 32 are laminated on one surface of the second glass substrate 2.
  • a color filter CF is formed between the second glass substrate 2 and the counter electrode 21.
  • a polarizing plate 29 is attached to the other surface of the second glass substrate 2. The polarization direction (polarization plane) of light passing through the polarizing plate 19 and the polarizing plate 29 is different by 90 degrees.
  • the backlight (not shown) is provided on the other surface side of the first glass substrate 1 (the side on which the polarizing plate 19 is attached).
  • the polarization direction of the light transmitted through the pixel P does not change.
  • the light irradiated from the backlight and transmitted through the polarizing plate 19 is absorbed by the polarizing plate 29.
  • the polarization direction of the light transmitted through the pixel P changes according to the magnitude of the voltage.
  • the polarization direction of the light irradiated from the backlight and transmitted through the polarizing plate 19 is changed according to the magnitude of the voltage and is transmitted through the polarizing plate 29.
  • FIG. 4 is an explanatory diagram illustrating the parasitic capacitance associated with the pixel P.
  • the pixel P of the k-th line (k is an integer of 0 or more: the same applies hereinafter)
  • the scanning signal line Gm of the k-th line and the discharge signal line Gs of the k-th line are respectively represented by Pk, It represents with Gmk and Gsk. Since every pixel Pk has a parasitic capacitance, it will be described without distinguishing each pixel Pk.
  • the TFTs 15a and 15b whose drain electrodes are connected to the subpixel electrodes 11a and 11b of the subpixels SP1 and SP2, respectively, have a parasitic capacitance between the drain and the gate. Further, stray capacitances exist between the scanning signal line Gmk connected to the gate electrodes of the TFTs 15a and 15b and the sub-pixel electrodes 11a and 11b, respectively. Since the parasitic capacitance between the drain and the gate and the stray capacitance act as a parallel capacitance, these capacitances are collectively referred to as a parasitic capacitance Cgd.
  • the TFT 14 in which the drain electrode (or source electrode) is connected to the subpixel electrode 11b of the subpixel SP2 has a parasitic capacitance between the drain and the gate (or between the source and the gate). Further, a stray capacitance exists between the discharge signal line Gsk connected to the gate electrode of the TFT 14 and the sub-pixel electrode 11b. Since the parasitic capacitance between the drain and gate (or between the source and gate) and the stray capacitance act as a parallel capacitance, these capacitances are collectively referred to as a parasitic capacitance Cgp.
  • FIG. 5 is a timing diagram showing temporal changes in the signal applied to each signal line and the voltage of the sub-pixel electrode 11a.
  • the horizontal axis is the same time axis
  • the vertical axis indicates the discharge signal line Gs0 for the 0th line, the scanning signal line Gm1 for the first line, The signal levels of the first discharge signal line Gs1, the second scan signal line Gm2, and the second discharge signal line Gs2, and the subpixel electrodes of the subpixel SP1 of the pixel P1 and the subpixel SP1 of the pixel P2, respectively. 11a voltage level.
  • the signal level is represented by a positive pulse indicating the ON state, and the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom.
  • the period between the broken lines is 1H.
  • the polarity of the data signal written to the pixel Pk is inverted every frame and every line.
  • the scanning signal from the scanning signal line Gmk is generated so as to have a signal width of about 1H with a delay of 1H for each line.
  • the scanning signal from the scanning signal line Gm1 (or Gm2) is turned on at time t1 (or t2), the TFTs 15a and 15b of the pixel P1 (or P2) are turned on (conducting state), and the signal from the source signal line SL is turned on.
  • a data signal is applied to the sub-pixel electrodes 11a and 11b and the auxiliary capacitance electrodes 12a and 12b (see FIG. 2) of the pixel P1 (or P2).
  • the voltages of the sub-pixel electrodes 11a and 11b become the same level as the voltage of the source signal line SL from time t1 to time t2 (or from time t2 to time t3).
  • This voltage is a voltage applied to the liquid crystal capacitors Clc1 and Clc2.
  • the voltage level of the subpixel electrode 11b is not shown.
  • the voltage waveform of the subpixel electrode 11a of the pixel P1 is similar to that obtained by inverting the polarity with respect to Vcom after one frame and shifting the voltage waveform of the subpixel electrode 11a of the pixel P2 shown in FIG.
  • the TFTs 15a and 15b of the pixel P1 (or P2) are turned off (non-conducting state).
  • the voltage level of the subpixel electrodes 11a and 11b slightly decreases due to the so-called pull-in phenomenon (feedthrough) due to the parasitic capacitance Cgd.
  • the liquid crystal capacitance Clc1 is affected after being influenced by the pull-in phenomenon.
  • the average voltage applied to Clc2 is adjusted to Vcom.
  • the counter voltage adjusted in this way is referred to as an optimal counter voltage.
  • the discharge signal from the discharge signal line Gs1 (or Gs2) for turning on the TFT 14 of the pixel P1 (or P2) does not overlap the scan signal from the scan signal line Gm1 (or Gm2). Therefore, in FIG. 5, it rises at time t21 (or t31) and falls at time t4 (or t5).
  • the discharge capacitor Cdc shown in FIG. 2 is connected in parallel to the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2.
  • the charge accumulated in the discharge capacitor Cdc is accumulated one frame before, and the polarity is opposite to that of the charges accumulated in the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2. For this reason, positive charge (or negative charge) moves from the time t21 to time t4 (or from time t31 to time t5) and from the auxiliary capacity Ccs2 to the discharge capacity Cdc, and is applied to the liquid crystal capacity Clc2. The absolute value of the applied voltage decreases.
  • the absolute value of the voltage applied to the liquid crystal capacitor Clc2 is smaller than the absolute value of the voltage applied to the liquid crystal capacitor Clc1, There is an effect that the viewing angle dependency of the gamma characteristic is improved.
  • the discharge signal from the discharge signal line Gs0 rises at time t11, which is 1H earlier than the time t21 when the discharge signal from the discharge signal line Gs1 rises, and falls at time t3.
  • the subpixel electrode 11a is connected to the source signal line SL by the TFT 15a and is low. It is in an impedance state.
  • the voltage of the sub-pixel electrode 11a of the pixel P1 (or P2) is affected by being pushed up or pushed down from the discharge signal line Gs0 (or Gs1) via the parasitic capacitance Csp.
  • the voltage of the subpixel electrode 11a of the pixel P1 (or P2) is the liquid crystal capacitance Clc1 and the auxiliary capacitance.
  • the voltage is held by Ccs1, and the voltage is likely to fluctuate due to the movement of charges between the outside.
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is hardly affected by rising at the leading edge of the discharge signal, whereas at time t3 (or t4).
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is pushed down due to the falling edge at the trailing edge of the discharge signal.
  • the optimum counter voltage for the subpixel electrode 11a of the subpixel SP1 is the actual counter voltage Vcom.
  • a phenomenon in which the voltage is shifted in a lower direction (counter voltage shift) occurs.
  • a counter voltage shift occurs, a DC voltage is applied to the liquid crystal capacitance Clc1, so that so-called image sticking or flicker occurs.
  • the subpixel electrode 11b of the subpixel SP2 of the pixel P1 (or P2) is discharged via the parasitic capacitance Cgp existing between the discharge signal line Gs1 (or Gs2). Since the influences of the push-up and push-down are almost equal from the signal line Gs1 (or Gs2), these influences are offset and no problem occurs.
  • 6A and 6B are timing charts showing temporal changes in the signal applied to each signal line and the voltage of the sub-pixel electrode 11a in the liquid crystal display device according to the first embodiment.
  • the horizontal axis is the same time axis
  • the vertical axis is the discharge signal line Gs0 of the 0th line and the scanning signal of the 1st line from the top of the figure.
  • the signal level is represented by a positive pulse indicating the ON state
  • the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom.
  • the period between the broken lines is 1H.
  • the signal width of the scanning signal and the discharge signal is less than 1H
  • the signal width of the scanning signal and the discharge signal is longer than 1H and less than 2H.
  • the scanning signal from the scanning signal line Gmk is generated with a delay of 1H for each line, and the leading edge (rising edge in FIGS. 6A and 6B) of the discharging signal from the discharging signal line Gsk-1 is the scanning signal.
  • 6A and 6B are common to the point delayed by a time (corresponding to a predetermined time) Td beyond the trailing edge of the scanning signal from the line Gmk (falling in FIGS. 6A and 6B). The same applies to the case where the signal width of the scanning signal and the discharge signal is longer than 2H.
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1).
  • the voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • FIG. 6B After the scanning signal from the scanning signal line Gm1 (or Gm2) rises from time t0 to t1 (or from time t1 to t2) and the TFTs 15a and 15b are turned on, When falling at time t2 (or t3), the voltage level of the sub-pixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough). Thereafter, the discharge signal from the discharge signal line Gs0 (or Gs1) rises after a delay of Td or more, and the discharge signal falls at time t4 (or t5).
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1).
  • the voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • the pixels P arranged in a matrix are defined including the electrode pairs of the counter electrodes 21 and the sub-pixel electrodes 11 a and 11 b that are opposed to each other with the liquid crystal layer 3 interposed therebetween.
  • a TFT 15a for applying a data signal to the subpixel electrodes 11a and 11b included in the first subpixel SP1 and the second subpixel SP2, respectively.
  • a scanning signal is applied to the gate electrode of 15b from the scanning signal line Gm for each row (that is, for each line) of the matrix.
  • a discharge capacitor electrode 13 is connected to the subpixel electrode 11b of the second subpixel SP2 via a TFT 14, and a discharge capacitor counter electrode 23 connected to the potential of the counter electrode 21 is opposed to the discharge capacitor electrode 13. Yes.
  • the discharge signal applied to the gate electrode of the TFT 14 from the discharge signal line Gs for each line of the matrix has a leading edge (rising edge) delayed by Td or more than the trailing edge (falling edge) of the scanning signal of the next line.
  • the gate electrode of the TFT 14 of the previous line is delayed by Td or more from the time when the data signal is not applied to the subpixel electrodes 11a and 11b of the first subpixel SP1 and the second subpixel SP2 of each line. Since the discharge signal is applied to the liquid crystal layer 3 by at least the first subpixel SP1 and the second subpixel SP2 included in the pixels P of each line, the rise of the discharge signal of the previous line and The effect of falling is offset. Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode 21 facing the sub-pixel electrodes 11a and 11b defining the pixel P from deviating from the preset counter voltage.
  • the arrangement direction of the first subpixel SP1 and the second subpixel SP2 is the direction in which the first subpixel SP1 and the second subpixel SP2 are tolerated, that is, the row direction, and the adjacent pixels P
  • the discharge signal line Gs is disposed between the adjacent subpixels SP1 and SP2 in P
  • the scanning signal line is disposed between the first subpixel SP1 and the second subpixel SP2 in the pixel P. . Therefore, it is possible to suppress signal leakage between the discharge signal line Gs and the scanning signal line Gm, and the manufacturing yield of the liquid crystal panel 100a is improved.
  • the configuration described above increases the parasitic capacitance Csp between the discharge signal line Gs and the first subpixel SP1, but in such a case, the effect of preventing the counter voltage deviation is exhibited.
  • the polarity of the data signal applied to each pixel P is inverted every frame, so that the voltage of the subpixel electrode 11b of the second subpixel SP2 is effective when the TFT 14 is turned on. It is possible to change so that the contrast between the two sub-pixels increases.
  • the electrode pair defining each of the first subpixel SP1 and the second subpixel SP2 included in the pixel P includes the electrode pair of the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a, and An electrode pair of the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b is included, and the auxiliary capacitance electrodes 12a and 12b are electrically connected to the subpixel electrodes 11a and 11b, respectively, and the auxiliary capacitance counter electrodes 22a and 22b. Each is connected to the potential of the counter electrode 21 to which the discharge capacity counter electrode 23 is connected.
  • the liquid crystal capacitors Clc1 and Clc2 formed by the subpixel electrodes 11a and 11b and the counter electrode 21 of the first subpixel SP1 and the second subpixel SP2 are formed by the auxiliary capacitor electrode 12a and the auxiliary capacitor counter electrode 22a. Since the auxiliary capacitance Ccs1 and the auxiliary capacitance Ccs2 formed by the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b are connected in parallel, they are applied to the liquid crystal layer 3 by the first subpixel SP1 and the second subpixel SP2. It is possible to stably hold the voltage to be applied for at least one frame period. As described above, with the configuration in which the optimum counter voltage can be set stably, it is possible to highlight the effect of preventing the counter voltage deviation.
  • the discharge signal control circuit 43a applies a discharge signal to the discharge signal line Gs using the gate driver GDa. Therefore, the delay time of the leading edge (rising) of the discharge signal and the signal width of the discharging signal with respect to the trailing edge (falling) of the scanning signal of the next line can be appropriately adjusted by the discharge signal driving circuit. It becomes.
  • the first embodiment is a mode in which the auxiliary capacity counter electrodes 22a and 22b and the discharge capacity counter electrode 23 are connected to the potential of the counter electrode 21, whereas the first modification of the first embodiment is the auxiliary capacity counter electrode 22a. , 22b and the discharge capacitor counter electrode 23 are connected to a predetermined potential different from the potential of the counter electrode 21.
  • FIG. 7 is a block diagram illustrating a configuration example of a liquid crystal display device according to the first modification of the first embodiment
  • FIG. 8 illustrates a configuration in which the pixels P are defined by the liquid crystal panel according to the first modification of the first embodiment. It is explanatory drawing which shows this typically.
  • the liquid crystal display device according to the first modification includes a liquid crystal panel 100b, a gate driver GDa, a source driver SDa, a display control circuit 4b that controls display by the liquid crystal panel 100b using the gate driver GDa and the source driver SDa, A storage capacitor voltage main line CSL for relaying a voltage applied from the display control circuit 4b to the liquid crystal panel 100b is provided.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted, and the components different from those in the first embodiment will be described.
  • the liquid crystal panel 100b further includes auxiliary capacitance voltage lines CS1 and CS2 arranged so as to linearly cross both vertical ends of the pixel P in the horizontal direction as compared with the liquid crystal panel 100a of the first embodiment.
  • Each of the auxiliary capacitance voltage lines CS1 and CS2 is connected to the auxiliary capacitance voltage trunk line CSL outside the liquid crystal panel 100b, and is connected to the auxiliary capacitance counter electrodes 22a and 22b inside the liquid crystal panel 100b (FIG. 8). reference).
  • the auxiliary capacitance voltage line CS ⁇ b> 2 is further connected to the discharge capacitance counter electrode 23.
  • the auxiliary capacitance voltage line CS2 is connected to the auxiliary capacitance voltage main line CSL outside the liquid crystal panel 100b.
  • the auxiliary capacitance voltage main line CSL may be arranged in the liquid crystal panel 100b.
  • the display control circuit 4b Compared to the display control circuit 4a in the first embodiment, the display control circuit 4b generates an auxiliary capacitance voltage generation circuit 44 that generates a predetermined voltage to be applied to the auxiliary capacitance voltage lines CS1 and CS2 via the auxiliary capacitance voltage main line CSL. It has further.
  • the voltages applied to the auxiliary capacitance voltage lines CS1 and CS2 may be the same or different.
  • FIG. 9 is an explanatory diagram schematically illustrating a configuration in which the pixels P are defined in the liquid crystal panel according to the second modification of the first embodiment.
  • Cdc2 is connected.
  • the difference between the liquid crystal panel in the second modification and the liquid crystal panel 100a in the first embodiment is only the presence or absence of the discharge capacity Cdc2.
  • symbol is attached
  • a change in voltage applied to the subpixel electrodes 11a and 11b when the TFT 14 is turned on will be described.
  • the absolute value of the voltage applied to the liquid crystal capacitor Clc2 is It has been explained that the absolute value of the voltage applied to the liquid crystal capacitor Clc1 does not change while it decreases. Further, the voltage of the discharge capacitor electrode 13 immediately before the TFT 14 was turned on was the voltage of the sub-pixel electrode 11b one frame before.
  • the voltage of the discharge capacitor electrode 13 immediately before the TFT 14 is turned on is different from the voltage of the sub-pixel electrode 11b one frame before, and the TFT 14 There is a difference that the absolute value of the voltage applied to the liquid crystal capacitance Clc1 also changes when turned on.
  • the capacitances of the liquid crystal capacitors Clc1, Clc2, auxiliary capacitors Ccs1, Ccs2, discharge capacity Cdc, and second discharge capacity Cdc2 are CLC, CCS, CDC, and CDC2.
  • the voltages of the sub-pixel electrodes 11a and 11b of the pixel P1 at the time t1 before the TFTs 15a and 15b are turned on by the scanning signal from the scanning signal line Gm1 and the data signal is applied.
  • V1 and V2 the voltage of the sub-pixel electrodes 11a and 11b of the pixel P1 at time t2 when the data signal is applied is set to V3.
  • the polarity of the voltage V3 is opposite to the polarity of the voltages V1 and V2.
  • the voltage of the discharge capacitor electrode 13 at time t1 is maintained at V2 which is the same as the voltage of the subpixel electrode 11b since the TFT 14 was turned on / off one frame before.
  • Vdc V2 + (V3-V1) ⁇ CDC2 / (CDC + CDC2) (1)
  • the polarity of the first term V2 is opposite to that of the second term (V3-V1).
  • the polarity of Vdc is opposite to the polarity of V3. (That is, the same polarity as V2) is preferable.
  • the size of CDC2 / (CDC + CDC2) is appropriately reduced so as to have such a polarity relationship.
  • the voltage Vdc is a voltage of a series circuit in which the second discharge capacitor Cdc2 is connected in series to a circuit in which the liquid crystal capacitor Clc1 and the auxiliary capacitor Ccs1 are connected in parallel, and a parallel circuit in which the discharge capacitor Cdc is connected in parallel.
  • V4 V3 + ⁇ V ⁇ CDC2 / (CLC + CCS + CDC2) (2)
  • the voltage of the sub-pixel electrode 11b after the positive charge (or negative charge) has moved from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the parallel circuit surely decreases (or increases), so that the TFT 14 is turned on.
  • the voltage change generated in the sub-pixel electrodes 11a and 11b has the opposite polarity.
  • the absolute value of the voltage applied to the liquid crystal capacitor Clc2 becomes smaller than the absolute value of the voltage applied to the liquid crystal capacitor Clc1, and the effect of improving the viewing angle dependency of the gamma characteristic is obtained.
  • the timing indicating the time change of the signal applied to each signal line and the voltage of the subpixel electrode 11a in Modification 2 is the same as that shown in FIGS. 6A and 6B of the first embodiment.
  • the difference in the configuration of the present modification 2 from the configuration of the first embodiment can be applied to the above-described modification 1 and other embodiments described later.
  • the TFT 14 when the TFT 14 is turned on, a part of the electric charge accumulated in the second subpixel SP2 is changed to the subpixel electrode 11a and the discharge capacitor electrode 13 of the first subpixel SP1, respectively. It moves to the first sub-pixel SP1 through the second discharge capacitor Cdc2 formed by the electrode pair having the electrodes connected to. Accordingly, it is possible to change the voltages of the subpixel electrode 11a of the first subpixel SP1 and the subpixel electrode 11b of the second subpixel SP2 with opposite polarities. Thus, even when the voltage of the subpixel electrodes 11a and 11b changes with the reverse polarity when the discharge signal is turned on, the effect of preventing the counter voltage deviation is not impaired.
  • Embodiment 2 In the first embodiment, the same data signal is applied to the sub-pixel electrodes 11a and 11b via the TFTs 15a and 15b from the source signal line SL arranged for each column of the matrix. In the second embodiment, different data signals are alternately applied to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b from the two source signal lines SL1 and SL2 arranged for each column of the matrix. It is a form.
  • FIG. 10 is a block diagram showing a configuration example of the liquid crystal display device according to Embodiment 2 of the present invention.
  • the liquid crystal display device according to the second embodiment includes a liquid crystal panel 100c, a gate driver GDb, a source driver SDb, and a display control circuit 4c that controls display by the liquid crystal panel 100c using the gate driver GDb and the source driver SDb.
  • a display control circuit 4c that controls display by the liquid crystal panel 100c using the gate driver GDb and the source driver SDb.
  • the source signal line arranged in the vertical direction on one side of the pixel P is SL1, and is arranged in the vertical direction on the other side of the pixel P.
  • the source signal line SL2 is further provided.
  • the source signal control circuit 41b controls the two source signal lines SL1 and SL2 for each column of the matrix using the source driver SDb.
  • the scanning signal control circuit 42b and the discharge signal control circuit 43b simultaneously control the two adjacent scanning signal lines Gm and Gm and the discharge signal lines Gs and Gs using the gate driver GDb. The point is different.
  • FIG. 11 is an explanatory diagram showing a connection relationship between the pixel P and the source signal line SL1 or SL2. Since the parasitic capacitance associated with the pixel P is the same as that shown in FIG. 4 of the first embodiment, the description thereof is omitted.
  • the source electrodes of the TFTs 15a and 15b of the pixels P1, 3, 5,... Are connected to the source signal line SL1.
  • the source electrodes of the TFTs 15a and 15b of the pixels P2, 4, 6,... are connected to the source signal line SL2. That is, different data signals are alternately applied from the source signal lines SL1 and SL2 to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b.
  • this configuration by simultaneously turning on the scanning signals from the scanning signal lines Gm1 and Gm2, it is possible to simultaneously scan two lines including the pixels P1 and P2 within 1H (horizontal scanning period).
  • the discharge signals from the discharge signal lines Gs1 and Gs2 are simultaneously turned on, but these discharge signals are prevented from overlapping with the scan signals from the scan signal lines Gm1 and Gm2. What is necessary is the same as in the first embodiment.
  • the subpixel electrodes 11b of the subpixels SP2 of the pixels P1 and P2 are connected to the discharge signal lines Gs1 and Gs2 via the parasitic capacitance Cgp existing between the subpixel electrodes 11b and Gs2. Since the influence of the push-up and push-down is substantially equal from Gs2, there is basically no counter voltage shift for the second subpixel SP2 of the pixels P1 and P2.
  • a counter voltage shift may occur in the configurations of the inventions described in Non-Patent Document 1 and Patent Document 1.
  • the discharge signal affected by the first subpixel SP1 is affected by the first and second lines while the scanning signal is the same. Because of the difference, the counter voltage shift is likely to occur significantly in the first subpixel SP1 in the first line. As a result, white horizontal stripes are visually recognized every two lines on the display screen.
  • FIGS. 12A and 12B are timing charts showing time changes of signals applied to the signal lines and voltages of the subpixel electrodes 11a in the liquid crystal display device according to Embodiment 2.
  • FIG. in the seven timing charts shown in FIGS. 12A and 12B the horizontal axis is the same time axis, and the vertical axis is the discharge signal line Gs0 of the 0th line and the scanning signal of the 1st line from the top of the figure.
  • the signal level is represented by a positive pulse indicating the ON state, and the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom.
  • the period between the broken lines is 1H.
  • the signal width of the scanning signal and the discharge signal is less than 1H
  • the signal width of the scanning signal and the discharge signal is longer than 1H and less than 2H.
  • the scanning signal line Gmk (k is an integer of 0 or more) is turned on simultaneously for two lines, the scanning signal and the discharge signal are turned on with a delay of 1H every two lines, and the discharge signal line Gsk ⁇
  • the leading edge of the discharge signal from 1 is delayed by Td or more than the trailing edge of the scanning signal from the scanning signal line Gmk (falling edge in FIGS. 12A and 12B).
  • 12A and 12B are common. The same applies to the case where the signal width of the scanning signal and the discharge signal is longer than 2H.
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1).
  • the voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • FIG. 12B When the scanning signals from the scanning signal lines Gm1 and Gm2 rise from time t0 to t1 and turn on the TFTs 15a and 15b and then fall at time t2, the pull-in phenomenon (feed) The voltage level of the sub-pixel electrode 11a slightly decreases due to the influence of “through”. Thereafter, the discharge signal from the discharge signal line Gs0 (or Gs1) rises after a delay of Td or more, and the discharge signal falls at time t4 (or t5).
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1).
  • the voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • FIG. 13 is a graph showing the relationship between the delay time of the discharge signal and the optimum counter voltage
  • FIG. 14 is an explanatory diagram for explaining the presence or absence of a horizontal stripe caused by the counter voltage deviation.
  • the horizontal axis in FIG. 13 represents the delay time ( ⁇ s) of the leading edge of the discharge signal one line before the trailing edge of the scanning signal
  • the vertical axis represents the optimum counter voltage (V).
  • the liquid crystal display device used for the actual measurement was measured for the case of full HD, frame rate of 120 Hz, and displayed gradation of 64/255.
  • a solid line represents the optimum counter voltage for the subpixel SP1 of the pixel P1
  • a broken line represents the optimum counter voltage for the subpixel SP1 of the pixel P2 shown for comparison. Note that when the value of Td is negative, it indicates that the rise of the discharge signal of the pixel P0 precedes the fall of the scan signal of the pixel P1.
  • the discharge signal for the pixel P0 rises with a delay of Td or more from the fall of the scanning signal for the pixel P1, and the discharge signal for the pixel P1 with a delay of 1H + Td or more after the fall of the scanning signal for the pixel P2. stand up.
  • the sub-pixel electrode 11a of the sub-pixel SP1 of the pixel P2 basically does not cause a counter voltage shift, and the optimum counter voltage is constant at about 6.4 V (see the broken line in FIG. 13).
  • the optimum counter voltage is Varies with 5.05V, 5.12V, 5.60V, 6.17V, and 6.42V. That is, it can be said that the counter voltage deviation still occurs when Td is 0 ⁇ s, and that the counter voltage deviation is eliminated if Td is secured to 1.5 ⁇ s or more. Note that if the value of Td that can prevent the counter voltage deviation differs depending on the position on the display screen, the maximum Td may be adopted.
  • the upper part of the figure represents the display screen of the liquid crystal panel 100c when the counter voltage deviation occurs
  • the lower part represents the display screen of the liquid crystal panel 100c when the counter voltage deviation does not occur. Since the luminance change of the pixel P with respect to the gradation change is non-linear, it is known that the luminance of the pixel P tends to shift to a brighter side than the ideal luminance when a counter voltage shift occurs. ing. For this reason, when a uniform halftone screen is displayed, a white horizontal stripe is visually recognized every two lines on the display screen (see the upper diagram). On the other hand, when the counter voltage deviation does not occur, white horizontal stripes are not visually recognized on the display screen (see the lower diagram).
  • data signals that are alternately different for each line from the two source signal lines SL1 and SL2 arranged for each column of the matrix are supplied to the first sub-line via the TFTs 15a and 15b, respectively.
  • the scanning signals of two adjacent lines are simultaneously turned on. Therefore, while it becomes possible to scan two lines within one horizontal scanning period, a counter voltage shift is likely to occur in the sub-pixel SP1 of the pixel P of the first line among the two lines scanned simultaneously. However, it is possible to prevent the counter voltage deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

Provided are a liquid crystal display device and a method for driving a liquid crystal display device with which it is possible to prevent an optimal counter voltage of a counter electrode that opposes a subpixel electrode included in a pixel from deviating from a preset counter voltage. Each of pixels P arranged in a matrix includes at least first and second subpixels each defined by including an electrode pair consisting of a subpixel electrode and a counter electrode opposing one another via a liquid crystal layer. A scan signal is applied from a scan signal line Gm for each row in the matrix to a gate electrode of a TFT for applying a data signal from a source signal line SL to the subpixel electrode included in each of the first and second subpixels. A discharge capacity electrode is connected to the subpixel electrode of the second subpixel via another TFT. The leading edge of a discharge signal applied from a discharge signal line Gs for each row in the matrix to a gate electrode of said other TFT is delayed by a predetermined time or longer from the trailing edge of a scan signal for a subsequent row.

Description

液晶表示装置及び液晶表示装置の駆動方法Liquid crystal display device and driving method of liquid crystal display device
 本発明は、液晶表示装置に関し、特にガンマ特性の視野角依存性を改善する液晶表示装置及び液晶表示装置の駆動方法に関する。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device that improves the viewing angle dependency of gamma characteristics and a driving method of the liquid crystal display device.
 液晶表示装置は、高精細、薄型、軽量、及び低消費電力等の優れた特長を有する平面表示装置であり、薄型テレビ、パソコンモニタ、デジタルサイネージ等に幅広く利用される。 The liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption, and is widely used for thin televisions, personal computer monitors, digital signage, and the like.
 従来、一般的に用いられていたTN(Twisted Nematic )モードの液晶表示装置は、生産性に優れている一方で、画面表示に係る視野角特性に問題があった。例えば表示画面を法線に対して斜め方向から見た場合に、TNモードの液晶表示装置ではコントラスト比が著しく低下すると共に、階調間の輝度差が著しく不明瞭になる。また、表示画面を正面から見ると明るく(又は暗く)見える部分が、法線に対して斜め方向から見ると暗く(又は明るく)見える、いわゆる階調反転現象が観察される場合がある。 Conventionally, a commonly used TN (Twisted Nematic) mode liquid crystal display device has excellent productivity, but has a problem in viewing angle characteristics related to screen display. For example, when the display screen is viewed obliquely with respect to the normal line, the contrast ratio is remarkably lowered in the TN mode liquid crystal display device, and the luminance difference between gradations becomes remarkably unclear. In addition, a so-called gradation inversion phenomenon may be observed in which a portion that appears bright (or dark) when viewed from the front is viewed dark (or bright) when viewed from an oblique direction with respect to the normal.
 上述の視野角特性の問題を改善する液晶表示装置として、IPS(In-Plan Switching )モード、MVA(Multi domain Vertical Alignment )モード等の表示モードで表示するものがある。これらの液晶表示装置における表示モードを実現する技術は、視野角特性を改善する技術として広く利用されている。 Some liquid crystal display devices that improve the above-described viewing angle characteristics display in display modes such as an IPS (In-Plan Switching) mode and an MVA (Multi-domain Vertical Alignment) mode. A technique for realizing a display mode in these liquid crystal display devices is widely used as a technique for improving viewing angle characteristics.
 さて、視野角特性の問題の一つに、表示輝度の階調依存性を表すガンマ特性が表示画面の法線に対する視線の角度に依存する(以下、ガンマ特性の視角依存性という)問題がある。この問題は、表示画面に対する観察方向によって階調表示状態が異なるものであり、観察方向が表示画面の法線に沿う方向の場合と法線に対して斜め方向の場合とで、ガンマ特性が異なって観察されるというものである。 As one of the problems of viewing angle characteristics, there is a problem that the gamma characteristics representing the gradation dependence of display luminance depend on the angle of the line of sight with respect to the normal of the display screen (hereinafter referred to as viewing angle dependence of the gamma characteristics). . This problem is that the gradation display state differs depending on the viewing direction with respect to the display screen, and the gamma characteristics differ between the case where the viewing direction is along the normal line of the display screen and the case where the viewing direction is oblique to the normal line. Is to be observed.
 これに対し、非特許文献1には、ガンマ特性の視角依存性(文献によっては視野角依存性と称される)を改善する液晶表示装置が開示されている。非特許文献1に記載の液晶表示装置は、各画素の夫々が第1及び第2副画素を含んで構成されており、第2副画素に放電容量(Cdown)が設けられている。第1及び第2副画素夫々の副画素電極は、制御電極に走査信号線から走査信号(ゲート信号)が印加されるTFT1及びTFT2を介して、表示画面の垂直方向の画素毎に交互に異なるデータ信号線(ソース信号線)に接続されており、2ラインが同時に走査される。放電容量は、対向電極に対向する放電容量電極がTFT3を介して第2副画素の副画素電極に接続されている。そして、TFT3の制御電極に放電信号を印加するための放電信号線が、2ライン後方の走査信号線に接続されている。 On the other hand, Non-Patent Document 1 discloses a liquid crystal display device that improves the viewing angle dependence of gamma characteristics (referred to as viewing angle dependence in some literatures). In the liquid crystal display device described in Non-Patent Document 1, each pixel includes a first subpixel and a second subpixel, and a discharge capacitance (Cdown) is provided in the second subpixel. The subpixel electrodes of the first and second subpixels are alternately different for each pixel in the vertical direction of the display screen via TFT1 and TFT2 to which a scanning signal (gate signal) is applied from the scanning signal line to the control electrode. Connected to the data signal line (source signal line), two lines are scanned simultaneously. As for the discharge capacity, the discharge capacity electrode facing the counter electrode is connected to the sub-pixel electrode of the second sub-pixel via the TFT 3. A discharge signal line for applying a discharge signal to the control electrode of the TFT 3 is connected to the scanning signal line behind two lines.
 非特許文献1に記載の液晶表示装置では、各画素について、夫々の画素に対する走査信号より1水平走査期間(1H)だけ遅れた放電信号がTFT3の制御電極に印加される。このように第2副画素の副画素電極及び放電容量電極間を走査信号より1Hだけ遅れた信号に応じて接続することにより、第1及び第2副画素夫々が液晶層に印加する実効電圧を変えることができる。この場合、副画素毎に異なるガンマ特性が調和した状態で各画素が観察されることとなるため、ガンマ特性の視角依存性が改善される。 In the liquid crystal display device described in Non-Patent Document 1, a discharge signal delayed by one horizontal scanning period (1H) from the scanning signal for each pixel is applied to the control electrode of the TFT 3 for each pixel. In this way, by connecting the sub-pixel electrode and the discharge capacitance electrode of the second sub-pixel according to the signal delayed by 1H from the scanning signal, the effective voltage applied to the liquid crystal layer by each of the first and second sub-pixels can be obtained. Can be changed. In this case, each pixel is observed in a state in which different gamma characteristics are harmonized for each sub-pixel, so that the viewing angle dependency of the gamma characteristics is improved.
 また、特許文献1に記載の液晶表示装置は、各画素の夫々が第1及び第2蓄積容量に接続された副画素電極を有する第1及び第2副画素を含んで構成されており、第2副画素の副画素電極に第3スイッチング素子(上記TFT3に相当)を介して第3の容量(上記放電容量に相当)が接続されている。第1及び第2副画素夫々の副画素電極は、第1及び第2スイッチング素子(上記TFT1及び2に相当)を介してデータ信号線に接続されている。第1及び第2スイッチング素子の制御電極には、第1ゲートライン(上記走査信号線に相当)から第1ゲート信号(上記走査信号に相当)が印加される。第3スイッチング素子の制御電極には、第2ゲートライン(上記放電信号線に相当)から第2ゲート信号(上記放電信号に相当)が印加される。第1ゲート信号より遅れて第2ゲート信号が印加された第3スイッチング素子がオンすることにより、第2副画素の副画素電極が第3の容量に接続されて、第2副画素が液晶層に印加する実効電圧が変化する。 In addition, the liquid crystal display device described in Patent Document 1 includes first and second sub-pixels each having a sub-pixel electrode connected to the first and second storage capacitors. A third capacitor (corresponding to the discharge capacitor) is connected to the subpixel electrodes of the two subpixels via a third switching element (corresponding to the TFT 3). The subpixel electrodes of the first and second subpixels are connected to a data signal line via first and second switching elements (corresponding to the TFTs 1 and 2). A first gate signal (corresponding to the scanning signal) is applied to the control electrodes of the first and second switching elements from a first gate line (corresponding to the scanning signal line). A second gate signal (corresponding to the discharge signal) is applied from the second gate line (corresponding to the discharge signal line) to the control electrode of the third switching element. By turning on the third switching element to which the second gate signal is applied after the first gate signal, the sub-pixel electrode of the second sub-pixel is connected to the third capacitor, and the second sub-pixel is connected to the liquid crystal layer. The effective voltage applied to is changed.
 特許文献1に記載の液晶表示装置では、1ライン目と2ライン目(同様に3ライン目と4ライン目)とで第1ゲート信号の一部が重なることが特徴とされており、更に、1ライン目の第2ゲート信号を3ライン目の第1ゲート信号と概ね同じものにすることが好ましいとされている。これは、2ライン目の第1ゲート信号と1ライン目の第2ゲート信号とで信号の一部が重なることを意味する。このため、特許文献1に記載された図面では、1H毎に1ラインずつ走査される全ての図において、2ライン目の第1ゲート信号と1ライン目の第2ゲート信号とで信号の一部又は全部が重なっている。2つのラインが同時に走査される場合について言えば、3,4ライン目の第1ゲート信号と1,2ライン目の第2ゲート信号とで信号の一部又は全部が重なっている。 The liquid crystal display device described in Patent Document 1 is characterized in that a part of the first gate signal overlaps the first line and the second line (similarly the third line and the fourth line), It is preferable to make the second gate signal of the first line substantially the same as the first gate signal of the third line. This means that part of the signal overlaps with the first gate signal on the second line and the second gate signal on the first line. For this reason, in the drawing described in Patent Document 1, in all the drawings scanned one line at every 1H, a part of the signal is generated by the first gate signal of the second line and the second gate signal of the first line. Or all overlap. In the case where two lines are scanned simultaneously, a part or all of the signals are overlapped by the first gate signal of the third and fourth lines and the second gate signal of the first and second lines.
 ところで、TFTではゲート-ドレイン間の寄生容量の影響により、ゲートに対する駆動電圧の立ち下がり時にフィードスルー電圧(所謂引き込み電圧)が発生して、ドレインの電圧(即ち副画素電極)が低下することが知られている。この現象に加えて、各副画素電極と放電信号線(又は第2ゲートライン)との間に存在する他の寄生容量の影響により、特に第1副画素の副画素電極の電圧が、1つ前のラインの放電信号(又は第2ゲート信号)の立ち上がり時及び立ち下がり時に若干上昇及び低下する現象が観測されることがある。例えば走査信号(又は第1ゲート信号)と1つ前のラインの放電信号(又は第2ゲート信号)とで信号の重なりが無い場合、上記立ち上がり時及び立ち下がり時の影響が各副画素電極で適当に相殺されるため、上記現象は観測され難い。 By the way, in the TFT, due to the influence of the parasitic capacitance between the gate and the drain, a feedthrough voltage (so-called pull-in voltage) is generated when the drive voltage to the gate falls, and the drain voltage (that is, the sub-pixel electrode) is lowered. Are known. In addition to this phenomenon, the voltage of the subpixel electrode of the first subpixel is particularly limited to one due to the influence of other parasitic capacitance existing between each subpixel electrode and the discharge signal line (or the second gate line). A phenomenon may be observed in which the discharge signal (or the second gate signal) of the previous line slightly increases and decreases when the discharge signal (or the second gate signal) rises and falls. For example, when there is no signal overlap between the scanning signal (or the first gate signal) and the discharge signal (or the second gate signal) of the previous line, the influence at the time of rising and falling is affected by each subpixel electrode. The above phenomenon is difficult to observe because it is offset appropriately.
米国特許第8854561号明細書US Pat. No. 8,854,561
 しかしながら、非特許文献1に記載された液晶表示装置では、同時に走査される2ラインにおいて、1ライン目の第1副画素が、1ライン目の走査信号と同じタイミングでオンする1つ前のラインの放電信号の影響を受け、2ライン目の第1副画素が、2ライン目の走査信号の立ち下がりと略同一タイミングで立ち上がる1ライン目の放電信号の影響を受ける。このため、何れの第1副画素にあっても、放電信号の立ち上がり時及び立ち下がり時に夫々発生する副画素電極の電圧の上昇及び低下の影響が十分に相殺されない虞があり、副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれる(以下、対向電圧ずれという)という問題があった。 However, in the liquid crystal display device described in Non-Patent Document 1, in the two lines that are scanned simultaneously, the first line in which the first subpixel of the first line is turned on at the same timing as the scanning signal of the first line The first subpixel of the second line is affected by the discharge signal of the first line that rises at substantially the same timing as the fall of the scanning signal of the second line. For this reason, in any of the first sub-pixels, there is a possibility that the influence of the rise and fall of the voltage of the sub-pixel electrode generated at the rise and fall of the discharge signal may not be sufficiently offset, There has been a problem that the counter voltage optimum for the counter electrodes facing each other deviates from a preset counter voltage (hereinafter referred to as counter voltage shift).
 また、特許文献1に記載された液晶表示装置では、第1ゲート信号により走査されるどのラインについても、第1ゲート信号の立ち下がりに対する第2ゲート信号の立ち上がりの遅れ時間が1H以内であることが想定されているため、一のラインの放電信号と一のラインに続く第2のラインの走査信号とで信号の重なりが生じて対向電圧ずれが発生する場合がある。具体的に、1H毎に1ラインずつ走査される場合では、どのラインの第1副画素にも対向電圧ずれが発生し、2つのラインが同時に走査される場合では、1ライン目の第1副画素に対向電圧ずれが発生する。 In addition, in the liquid crystal display device described in Patent Document 1, the delay time of the rise of the second gate signal with respect to the fall of the first gate signal is within 1H for any line scanned by the first gate signal. Therefore, there is a case where a signal overlap occurs between the discharge signal of one line and the scanning signal of the second line following the one line, thereby causing a counter voltage shift. Specifically, when one line is scanned every 1H, a counter voltage shift occurs in the first subpixel of any line, and when two lines are scanned simultaneously, the first subpixel of the first line is scanned. A counter voltage shift occurs in the pixel.
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、画素に含まれる副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能な液晶表示装置及び液晶表示装置の駆動方法を提供することにある。 The present invention has been made in view of such circumstances, and the object of the present invention is to make the counter voltage optimum for the counter electrode opposed to the sub-pixel electrode included in the pixel deviate from the preset counter voltage. It is an object of the present invention to provide a liquid crystal display device and a driving method of the liquid crystal display device that can prevent the above-described problem.
 本発明に係る液晶表示装置は、液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有する画素がマトリックス状に配列されており、前記第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子と、該第1及び第2スイッチング素子の制御電極に走査信号をマトリックスの行毎に印加するための走査信号線と、前記第2副画素に含まれる放電容量電極及び所定電位に接続された放電容量対向電極の電極対と、前記第2副画素の副画素電極及び前記放電容量電極間に接続された第3スイッチング素子と、該第3スイッチング素子の制御電極に前記第3スイッチング素子をオンさせる放電信号をマトリックスの行毎に印加するための放電信号線とを備える液晶表示装置において、前記放電信号の前縁は、1つ後の行の走査信号の後縁よりも所定時間以上遅れていることを特徴とする。 In the liquid crystal display device according to the present invention, pixels having at least first and second sub-pixels defined including a sub-pixel electrode and a counter-electrode pair facing each other through a liquid crystal layer are arranged in a matrix. , First and second switching elements for applying a data signal to subpixel electrodes included in the first and second subpixels, and a scanning signal on a control electrode of the first and second switching elements. A scanning signal line to be applied to each row; a discharge capacity electrode included in the second subpixel; a pair of discharge capacity counter electrodes connected to a predetermined potential; a subpixel electrode of the second subpixel; A third switching element connected between the discharge capacitance electrodes, and a discharge signal for turning on the third switching element to the control electrode of the third switching element for applying to each row of the matrix In the liquid crystal display device and a telegraph Route, the leading edge of the discharge signal is characterized by delayed more than a predetermined time than the trailing edge of the scanning signal line after one.
 本発明に係る液晶表示装置は、前記第1及び第2副画素は、前記放電信号線と公差する方向に配置されており、前記放電信号線は、前記方向に隣り合う画素における隣り合う第1及び第2副画素の間に配置されていることを特徴とする。 In the liquid crystal display device according to the present invention, the first and second sub-pixels are disposed in a direction that is in tolerance with the discharge signal line, and the discharge signal line is adjacent to the first adjacent pixel in the direction. And the second sub-pixel.
 本発明に係る液晶表示装置は、前記第1及び第2副画素に印加されるデータ信号の極性は、1フレーム期間毎に反転することを特徴とする。 The liquid crystal display device according to the present invention is characterized in that the polarity of the data signal applied to the first and second sub-pixels is inverted every frame period.
 本発明に係る液晶表示装置は、前記第1及び第2副画素の夫々は、前記副画素電極に接続された補助容量電極及び前記所定電位に接続された補助容量対向電極の電極対を含んで画定されていることを特徴とする。 In the liquid crystal display device according to the present invention, each of the first and second subpixels includes an electrode pair of an auxiliary capacitance electrode connected to the subpixel electrode and an auxiliary capacitance counter electrode connected to the predetermined potential. It is demarcated.
 本発明に係る液晶表示装置は、前記放電信号線に前記放電信号を印加する放電信号線駆動回路を更に備えることを特徴とする。 The liquid crystal display device according to the present invention further includes a discharge signal line driving circuit for applying the discharge signal to the discharge signal line.
 本発明に係る液晶表示装置は、前記画素は、前記第1副画素の副画素電極及び前記放電容量電極夫々に接続された電極を有する電極対を含んで画定されていることを特徴とする。 The liquid crystal display device according to the present invention is characterized in that the pixel is defined including an electrode pair having electrodes connected to the sub-pixel electrode of the first sub-pixel and the discharge capacitance electrode, respectively.
 本発明に係る液晶表示装置は、マトリックスの行毎に交互に異なるデータ信号を前記第1及び第2スイッチング素子の一端に印加するための2つのデータ信号線をマトリックスの列毎に更に備え、隣り合う2つの行を同時に走査するようにしてあることを特徴とする。 The liquid crystal display device according to the present invention further includes two data signal lines for each column of the matrix for applying data signals alternately different for each row of the matrix to one end of the first and second switching elements. Two matching rows are scanned at the same time.
 本発明に係る液晶表示装置の駆動方法は、液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有する画素がマトリックス状に配列されており、前記第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子と、該第1及び第2スイッチング素子の制御電極に走査信号をマトリックスの行毎に印加するための走査信号線と、前記第2副画素に含まれる放電容量電極及び所定電位に接続された放電容量対向電極の電極対と、前記第2副画素の副画素電極及び前記放電容量電極間に接続された第3スイッチング素子と、該第3スイッチング素子の制御電極に前記第3スイッチング素子をオンさせる放電信号をマトリックスの行毎に印加するための放電信号線とを備える液晶表示装置を駆動する方法において、前記放電信号の前縁を、1つ後の行の走査信号の後縁よりも所定時間以上遅らせることを特徴とする。 According to the driving method of the liquid crystal display device according to the present invention, pixels having at least first and second subpixels which are defined by including a subpixel electrode and a counter electrode pair facing each other through a liquid crystal layer are arranged in a matrix. A first switching element for applying a data signal to a subpixel electrode included in each of the first and second subpixels, and a scanning signal for a control electrode of the first and second switching elements. For each row of the matrix, a discharge capacitor electrode included in the second subpixel, a pair of discharge capacitor counter electrodes connected to a predetermined potential, and a subpixel of the second subpixel A third switching element connected between the electrode and the discharge capacitance electrode, and a discharge signal for turning on the third switching element applied to the control electrode of the third switching element for each row of the matrix A method of driving a liquid crystal display device and a order of discharge signal line, and wherein the delaying the leading edge of the discharge signal, a predetermined time or more than the trailing edge of the scanning signal line after one.
 本発明にあっては、マトリックス状に配列された画素が、液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有しており、第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子の制御電極にマトリックスの行毎(即ちライン毎)の走査信号線から走査信号を印加する。第2副画素の副画素電極には第3スイッチング素子を介して放電容量電極が接続されており、放電容量電極には所定電位に接続された放電容量対向電極が対向している。ライン毎の放電信号線から第3スイッチング素子の制御電極に印加する放電信号は、その前縁が1つ後のラインの走査信号の後縁よりも所定時間以上遅れている。
 これにより、各ラインの第1及び第2副画素の副画素電極にデータ信号が印加されなくなった時点から所定時間以上遅れて、1つ前のラインの第3スイッチング素子の制御電極に放電信号が印加されるため、各ラインの画素が少なくとも有する第1及び第2副画素により液晶層に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
In the present invention, the pixels arranged in a matrix have at least first and second subpixels defined including a subpixel electrode and an electrode pair of the counter electrode facing each other through the liquid crystal layer. In addition, the control electrodes of the first and second switching elements for applying data signals to the subpixel electrodes included in the first and second subpixels are scanned from the scanning signal lines for each row of the matrix (that is, for each line). Apply a signal. A discharge capacitor electrode is connected to the subpixel electrode of the second subpixel through a third switching element, and a discharge capacitor counter electrode connected to a predetermined potential is opposed to the discharge capacitor electrode. The discharge signal applied to the control electrode of the third switching element from the discharge signal line for each line is delayed by a predetermined time or more from the trailing edge of the scanning signal of the next line.
As a result, a discharge signal is applied to the control electrode of the third switching element of the previous line after a predetermined time or more from the time when the data signal is no longer applied to the subpixel electrodes of the first and second subpixels of each line. Therefore, the influence of the voltage applied to the liquid crystal layer by at least the first and second sub-pixels included in the pixels of each line cancels the rise and fall of the discharge signal of the previous line.
 本発明にあっては、第1及び第2副画素の配置方向が、放電信号線と公差する方向であり、隣り合う画素における隣り合う第1及び第2副画素の間に放電信号線が配置されている。
 これにより、各画素と重なる位置に走査信号線を配置した場合は、放電信号線及び走査信号線の間における信号の漏洩が抑制される。
In the present invention, the arrangement direction of the first and second sub-pixels is a direction that is in tolerance with the discharge signal line, and the discharge signal line is arranged between the adjacent first and second sub-pixels in the adjacent pixel. Has been.
Thereby, when the scanning signal line is arranged at a position overlapping each pixel, signal leakage between the discharge signal line and the scanning signal line is suppressed.
 本発明にあっては、各画素に印加されるデータ信号の極性が1フレーム毎に反転するため、第3スイッチング素子がオンしたときに第2副画素の副画素電極の電圧が効果的に変化して2つの副画素間の明暗差が大きくなる。 In the present invention, since the polarity of the data signal applied to each pixel is inverted every frame, the voltage of the subpixel electrode of the second subpixel effectively changes when the third switching element is turned on. As a result, the difference in brightness between the two sub-pixels increases.
 本発明にあっては、画素が有する第1及び第2副画素夫々を画定する電極対に、補助容量電極及び補助容量対向電極の電極対が含まれており、補助容量電極は副画素電極に電気的に接続されており、補助容量対向電極は放電容量対向電極の接続先である所定電位に接続されている。
 これにより、第1及び第2副画素夫々の副画素電極及び対向電極により形成される液晶容量に、補助容量電極及び補助容量対向電極により形成される補助容量が並列に接続されるため、第1及び第2副画素により液晶層に印加される電圧が少なくとも1フレーム期間だけ安定に保持される。
In the present invention, the electrode pair defining each of the first and second subpixels of the pixel includes the electrode pair of the auxiliary capacitance electrode and the auxiliary capacitance counter electrode, and the auxiliary capacitance electrode serves as the subpixel electrode. The auxiliary capacitor counter electrode is electrically connected, and is connected to a predetermined potential as a connection destination of the discharge capacitor counter electrode.
As a result, the auxiliary capacitance formed by the auxiliary capacitance electrode and the auxiliary capacitance counter electrode is connected in parallel to the liquid crystal capacitance formed by the subpixel electrode and the counter electrode of each of the first and second subpixels. The voltage applied to the liquid crystal layer by the second subpixel is stably held for at least one frame period.
 本発明にあっては、放電信号駆動回路が、放電信号線に放電信号を印加する。
 これにより、1つ後のラインの走査信号の後縁に対する放電信号の前縁の遅れ時間及び放電信号の信号幅が、放電信号駆動回路にて適当に調整される。
In the present invention, the discharge signal drive circuit applies a discharge signal to the discharge signal line.
As a result, the delay time of the leading edge of the discharge signal and the signal width of the discharge signal with respect to the trailing edge of the scanning signal of the next line are appropriately adjusted by the discharge signal driving circuit.
 本発明にあっては、第3スイッチング素子がオンしたときに、第2副画素に蓄積された電荷の一部が、第1副画素の副画素電極及び放電容量電極夫々に接続された電極を有する電極対を介して第1副画素に移動する。
 これにより、第1及び第2副画素夫々の副画素電極の電圧が互いに逆極性で変化する。
In the present invention, when the third switching element is turned on, a part of the electric charge accumulated in the second subpixel is connected to the subpixel electrode and the discharge capacitor electrode of the first subpixel. It moves to the first sub-pixel through the electrode pair it has.
As a result, the voltages of the subpixel electrodes of the first and second subpixels change with opposite polarities.
 本発明にあっては、マトリックスの列毎に配された2つのデータ信号線からライン毎に交互に異なるデータ信号が、第1及び第2スイッチング素子夫々を介して第1及び第2副画素の副画素電極に印加されており、隣り合う2つのラインの走査信号を同時的にオンするため、1水平走査期間内に2ラインが走査される。 In the present invention, data signals that are alternately different from line to line from two data signal lines arranged for each column of the matrix are transmitted to the first and second subpixels via the first and second switching elements, respectively. Two lines are scanned within one horizontal scanning period in order to simultaneously turn on the scanning signals of two adjacent lines that are applied to the subpixel electrodes.
 本発明によれば、各ラインの第1及び第2副画素の副画素電極にデータ信号が印加されなくなった時点から所定時間以上遅れて、1つ前のラインの第3スイッチング素子に放電信号が印加されるため、各ラインの画素が少なくとも有する第1及び第2副画素により液晶層に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
 従って、画素に含まれる副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能となる。
According to the present invention, a discharge signal is applied to the third switching element of the previous line after a predetermined time or more from the time when the data signal is no longer applied to the subpixel electrodes of the first and second subpixels of each line. Therefore, the influence of the voltage applied to the liquid crystal layer by at least the first and second sub-pixels included in the pixels of each line cancels the rise and fall of the discharge signal of the previous line.
Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode opposed to the sub-pixel electrode included in the pixel from deviating from the preset counter voltage.
本発明の実施の形態1に係る液晶表示装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the liquid crystal display device which concerns on Embodiment 1 of this invention. 実施の形態1に係る液晶表示装置で画素を画定する構成を模式的に示す説明図である。4 is an explanatory diagram schematically showing a configuration for defining pixels in the liquid crystal display device according to Embodiment 1. FIG. 液晶パネルの構成を模式的に示す断面図である。It is sectional drawing which shows the structure of a liquid crystal panel typically. 画素に付随する寄生容量を示す説明図である。It is explanatory drawing which shows the parasitic capacitance accompanying a pixel. 各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。FIG. 5 is a timing chart showing a time change of a signal applied to each signal line and a voltage of a subpixel electrode. 実施の形態1に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。FIG. 6 is a timing chart showing temporal changes in signals applied to signal lines and subpixel electrode voltages in the liquid crystal display device according to the first embodiment. 実施の形態1に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。FIG. 6 is a timing chart showing temporal changes in signals applied to signal lines and subpixel electrode voltages in the liquid crystal display device according to the first embodiment. 実施の形態1の変形例1に係る液晶表示装置の構成例を示すブロック図である。6 is a block diagram illustrating a configuration example of a liquid crystal display device according to a first modification of the first embodiment. FIG. 実施の形態1の変形例1に係る液晶パネルで画素を画定する構成を模式的に示す説明図である。6 is an explanatory diagram schematically showing a configuration in which pixels are defined in a liquid crystal panel according to a first modification of the first embodiment. FIG. 実施の形態1の変形例2に係る液晶パネルで画素を画定する構成を模式的に示す説明図である。6 is an explanatory diagram schematically showing a configuration for defining pixels in a liquid crystal panel according to a second modification of the first embodiment. FIG. 本発明の実施の形態2に係る液晶表示装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the liquid crystal display device which concerns on Embodiment 2 of this invention. 画素とソース信号線との接続関係を示す説明図である。It is explanatory drawing which shows the connection relation of a pixel and a source signal line. 実施の形態2に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。FIG. 10 is a timing chart showing temporal changes in signals applied to signal lines and sub-pixel electrode voltages in the liquid crystal display device according to the second embodiment. 実施の形態2に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。FIG. 10 is a timing chart showing temporal changes in signals applied to signal lines and sub-pixel electrode voltages in the liquid crystal display device according to the second embodiment. 放電信号の遅れ時間と最適対向電圧との関係を示すグラフである。It is a graph which shows the relationship between the delay time of a discharge signal, and the optimal counter voltage. 対向電圧ずれにより発生する横スジの有無を説明するための説明図である。It is explanatory drawing for demonstrating the presence or absence of the horizontal stripe which generate | occur | produces by a counter voltage shift | offset | difference.
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る液晶表示装置の構成例を示すブロック図であり、図2は、実施の形態1に係る液晶表示装置で画素Pを画定する構成を模式的に示す説明図である。図1に示す液晶表示装置は、後述の電極対を含んで画定される副画素を少なくとも2つ有する画素Pが表示画面の垂直方向(以下、行方向ともいう)及び水平方向(以下、列方向ともいう)にマトリックス状に配列された液晶パネル100aを備える。図1では、行方向に連続する2つの画素P及び該画素Pに係る各信号線を中心に図示してある。以下では、液晶層3を介して対向する電極対以外の電極対が、不図示の絶縁層を介して対向することにより、静電容量(コンデンサ)を形成するものとする。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration example of a liquid crystal display device according to Embodiment 1 of the present invention, and FIG. 2 schematically illustrates a configuration in which pixels P are defined in the liquid crystal display device according to Embodiment 1. It is explanatory drawing shown. In the liquid crystal display device shown in FIG. 1, a pixel P having at least two subpixels defined including an electrode pair to be described later includes a vertical direction (hereinafter also referred to as a row direction) and a horizontal direction (hereinafter referred to as a column direction) of the display screen. A liquid crystal panel 100a arranged in a matrix. In FIG. 1, two pixels P that are continuous in the row direction and the signal lines related to the pixels P are illustrated. Hereinafter, it is assumed that an electrode pair other than the electrode pair opposed via the liquid crystal layer 3 is opposed via an insulating layer (not shown) to form a capacitance (capacitor).
 図2において、画素Pは、液晶パネル100aの表示画面の垂直方向に二分された副画素SP1(第1副画素に相当)及び副画素SP2(第2副画素に相当)を少なくとも有する。副画素SP1は、液晶層3を介して対向する副画素電極11a及び対向電極21の電極対と、補助容量電極12a及び補助容量対向電極22aの電極対とを含んで画定される。副画素電極11aには、TFT(Thin Film Transistor :第1スイッチング素子に対応)15aのドレイン電極が接続されている。副画素電極11a及び補助容量電極12aは電気的に接続されている。補助容量対向電極22aは対向電極21の電位(所定電位に相当)に接続されている。副画素電極11a及び対向電極21により、液晶容量Clc1が形成される。そして、補助容量電極12a及び補助容量対向電極22aにより、補助容量Ccs1が形成される。 In FIG. 2, the pixel P has at least a sub-pixel SP1 (corresponding to the first sub-pixel) and a sub-pixel SP2 (corresponding to the second sub-pixel) that are bisected in the vertical direction of the display screen of the liquid crystal panel 100a. The sub-pixel SP1 is defined including an electrode pair of the sub-pixel electrode 11a and the counter electrode 21 facing each other through the liquid crystal layer 3, and an electrode pair of the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a. The sub-pixel electrode 11a is connected to a drain electrode of a TFT (Thin Transistor: corresponding to the first switching element) 15a. The subpixel electrode 11a and the auxiliary capacitance electrode 12a are electrically connected. The storage capacitor counter electrode 22a is connected to the potential of the counter electrode 21 (corresponding to a predetermined potential). A liquid crystal capacitor Clc1 is formed by the sub-pixel electrode 11a and the counter electrode 21. The auxiliary capacitance Ccs1 is formed by the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a.
 副画素SP2は、液晶層3を介して対向する副画素電極11b及び対向電極21の電極対と、補助容量電極12b及び補助容量対向電極22bの電極対と、放電容量電極13及び放電容量対向電極23の電極対とを含んで画定される。副画素電極11bには、TFT(第2スイッチング素子に対応)15bのドレイン電極が接続されている。副画素電極11b及び補助容量電極12bは電気的に接続されている。放電容量電極13はTFT(第3スイッチング素子に対応)14を介して副画素電極11bに接続されている。補助容量対向電極22b及び放電容量対向電極23は対向電極21の電位に接続されている。対向電極21は、副画素SP1及びSP2について共通であるが、これに限定されるものではない。副画素電極11b及び対向電極21により、液晶容量Clc2が形成される。補助容量電極12b及び補助容量対向電極22bにより、補助容量Ccs2が形成される。また、放電容量電極13及び放電容量対向電極23により、放電容量Cdcが形成される。
 なお、副画素電極11a及び副画素電極11bの大きさの比は、1対1に限定されず、副画素の数は2つに限定されない。
The subpixel SP2 includes an electrode pair of the subpixel electrode 11b and the counter electrode 21, which are opposed to each other with the liquid crystal layer 3 interposed therebetween, an electrode pair of the auxiliary capacitor electrode 12b and the auxiliary capacitor counter electrode 22b, and a discharge capacitor electrode 13 and a discharge capacitor counter electrode. And 23 electrode pairs. A drain electrode of a TFT (corresponding to the second switching element) 15b is connected to the subpixel electrode 11b. The subpixel electrode 11b and the auxiliary capacitance electrode 12b are electrically connected. The discharge capacity electrode 13 is connected to the sub-pixel electrode 11b through a TFT (corresponding to the third switching element) 14. The auxiliary capacity counter electrode 22 b and the discharge capacity counter electrode 23 are connected to the potential of the counter electrode 21. The counter electrode 21 is common to the subpixels SP1 and SP2, but is not limited thereto. A liquid crystal capacitor Clc2 is formed by the sub-pixel electrode 11b and the counter electrode 21. The auxiliary capacitance Ccs2 is formed by the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b. Further, the discharge capacity Cdc is formed by the discharge capacity electrode 13 and the discharge capacity counter electrode 23.
Note that the size ratio of the subpixel electrode 11a and the subpixel electrode 11b is not limited to 1: 1, and the number of subpixels is not limited to two.
 画素Pの水平方向の一側方には、TFT15a及び15b夫々を介して副画素電極11a及び11bにソース信号(データ信号に相当)を印加するためのソース信号線(データ信号線に相当)SLが垂直方向に直線的に配されている。ソース信号線SLには、TFT15a及び15bのソース電極が接続されている。TFT15a及び15bのゲート電極(制御電極に相当)は、画素Pの中央部を水平方向に横切るように直線的に配された走査信号線Gmに接続されている。TFT14のゲート電極は、垂直方向(行方向)に隣り合う次の行(以下、行をラインともいう)画素Pとの間を水平方向に横切るように直線的に配された放電信号線Gsに接続されている。走査信号線Gm及び放電信号線Gsは、マトリックスの行方向に行毎に並設されている。各行の走査信号線Gm及び放電信号線Gsが適当に離隔しているため、走査信号線Gm及び放電信号線Gsの間における信号の漏洩が抑制される。 On one side in the horizontal direction of the pixel P, a source signal line (corresponding to a data signal line) SL for applying a source signal (corresponding to a data signal) to the sub-pixel electrodes 11a and 11b via the TFTs 15a and 15b, respectively. Are arranged linearly in the vertical direction. The source electrodes of the TFTs 15a and 15b are connected to the source signal line SL. Gate electrodes (corresponding to control electrodes) of the TFTs 15a and 15b are connected to a scanning signal line Gm that is linearly arranged so as to cross the central portion of the pixel P in the horizontal direction. A gate electrode of the TFT 14 is connected to a discharge signal line Gs linearly arranged so as to cross a horizontal direction between pixels P in the next row (hereinafter also referred to as a line) adjacent in the vertical direction (row direction). It is connected. The scanning signal line Gm and the discharge signal line Gs are arranged side by side in the row direction of the matrix. Since the scanning signal line Gm and the discharge signal line Gs in each row are appropriately separated, signal leakage between the scanning signal line Gm and the discharge signal line Gs is suppressed.
 図1に移って、実施の形態1に係る液晶表示装置は、また、走査信号線Gm,Gm,・・Gmに走査信号を印加すると共に、放電信号線Gs,Gs,・・Gsに放電信号を印加するゲートドライバGDaと、ソース信号線SL,SL,・・SLにソース信号を印加するソースドライバSDaと、ゲートドライバGDa及びソースドライバSDaを用いて液晶パネル100aによる表示を制御する表示制御回路4aとを備える。 1, the liquid crystal display device according to the first embodiment also applies scanning signals to the scanning signal lines Gm, Gm,... Gm, and discharge signals to the discharging signal lines Gs, Gs,. A gate driver GDa for applying a source signal, a source driver SDa for applying a source signal to the source signal lines SL, SL,... SL, and a display control circuit for controlling display by the liquid crystal panel 100a using the gate driver GDa and the source driver SDa 4a.
 表示制御回路4aは、画像を表す画像データを含む画像信号を受け付ける画像信号入力回路40と、画像信号入力回路40によって分離されたクロック信号及び同期信号に基づいてゲートドライバGDa及びソースドライバSDa夫々を制御する走査信号制御回路42a,放電信号制御回路43a及びソース信号制御回路41aとを有する。放電信号制御回路43a及びゲートドライバGDaが放電信号駆動回路に相当する。 The display control circuit 4 a receives an image signal input circuit 40 that receives an image signal including image data representing an image, and the gate driver GDa and the source driver SDa based on the clock signal and the synchronization signal separated by the image signal input circuit 40. It has a scanning signal control circuit 42a, a discharge signal control circuit 43a, and a source signal control circuit 41a to be controlled. The discharge signal control circuit 43a and the gate driver GDa correspond to a discharge signal drive circuit.
 走査信号制御回路42a,放電信号制御回路43a及びソース信号制御回路41a夫々は、ゲートドライバGDa及びソースドライバSDaの周期的な動作に必要となるスタート信号、クロック信号、イネーブル信号等の制御信号を生成する。ソース信号制御回路41aは、また、画像信号入力回路40によって分離されたデジタルの画像データをソースドライバSDaへ出力する。 Each of the scanning signal control circuit 42a, the discharge signal control circuit 43a, and the source signal control circuit 41a generates control signals such as a start signal, a clock signal, and an enable signal necessary for the periodic operation of the gate driver GDa and the source driver SDa. To do. The source signal control circuit 41a also outputs the digital image data separated by the image signal input circuit 40 to the source driver SDa.
 ゲートドライバGDaは、画像データの1フレーム期間内に、走査信号線Gm,Gm,・・Gmに対して、1水平走査期間毎に順次走査信号を印加すると共に、放電信号線Gs,Gs,・・Gsに対して、1水平走査期間毎に順次放電信号を印加する。ソースドライバSDaは、ソース信号制御回路41aから与えられたデジタルの画像データ(直列データ)を1水平走査期間(1H)だけ蓄積して1ライン分の画像を表すアナログのソース信号(並列信号)を生成し、生成したソース信号を列毎のソース信号線SL,SL,・・SLに並列的に印加する。ここでの1ライン分のソース信号は、1水平走査期間毎に更新される。 The gate driver GDa sequentially applies a scanning signal for each horizontal scanning period to the scanning signal lines Gm, Gm,... Gm within one frame period of the image data, and discharge signal lines Gs, Gs,. A discharge signal is sequentially applied to Gs every horizontal scanning period. The source driver SDa accumulates digital image data (serial data) supplied from the source signal control circuit 41a for one horizontal scanning period (1H) and generates an analog source signal (parallel signal) representing an image for one line. The generated source signal is applied in parallel to the source signal lines SL, SL,. The source signal for one line here is updated every horizontal scanning period.
 走査信号線Gm,Gm,・・Gmの1つに印加された走査信号は、列方向に配列された1ライン分の画素P,P,・・P夫々に含まれるTFT15a,15bのゲート電極に印加される。上記1ライン分の画素P,P,・・P夫々に含まれるTFT14のゲート電極には、放電信号線Gs,Gs,・・Gsから放電信号が印加される。各ラインの走査信号の後縁(立ち下がり)に対して、1つ前のラインの放電信号の前縁(立ち上がり)が所定時間以上遅れている。この遅れ時間及び放電信号の信号幅が、放電信号制御回路43aにて予め調整される。 The scanning signal applied to one of the scanning signal lines Gm, Gm,... Gm is applied to the gate electrodes of the TFTs 15a and 15b included in the pixels P, P,. Applied. Discharge signals are applied from the discharge signal lines Gs, Gs,... Gs to the gate electrodes of the TFTs 14 included in the pixels P, P,. The leading edge (rising edge) of the discharge signal of the previous line is delayed by a predetermined time or more with respect to the trailing edge (falling edge) of the scanning signal of each line. The delay time and the signal width of the discharge signal are adjusted in advance by the discharge signal control circuit 43a.
 ソース信号線SL,SL,・・SLに印加されたソース信号は、一の走査信号線Gmに走査信号が印加される1水平走査期間に、上記一の走査信号線Gmにゲート電極が接続されたTFT15a及び15b夫々を介して副画素電極11a及び11bに印加されると共に、補助容量電極12a及び12bにも印加される。これにより、副画素SP1及びSP2夫々に形成された液晶容量Clc1及びClc2と、補助容量Ccs1及びCcs2とにソース信号が書き込まれる。このようにして1水平走査期間に1ライン分のソース信号が1ライン分の画素P,P,・・Pに同時的に書き込まれる。副画素SP1及びSP2に書き込まれたソース信号は、夫々の合成容量に変化がない限り1フレーム期間だけ保持される。 The source signal applied to the source signal lines SL, SL,... SL has a gate electrode connected to the one scanning signal line Gm in one horizontal scanning period in which the scanning signal is applied to one scanning signal line Gm. It is applied to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b, respectively, and also to the auxiliary capacitance electrodes 12a and 12b. As a result, source signals are written into the liquid crystal capacitors Clc1 and Clc2 and the auxiliary capacitors Ccs1 and Ccs2 formed in the sub-pixels SP1 and SP2, respectively. In this way, one line of source signal is simultaneously written to one line of pixels P, P,... P in one horizontal scanning period. The source signals written in the subpixels SP1 and SP2 are held for one frame period as long as there is no change in their combined capacitance.
 次に、液晶パネル100a及びこれと置き換え得る他の液晶パネルの光学的な構成について説明する。
 図3は、液晶パネル100aの構成を模式的に示す断面図である。液晶パネル100aは、第1ガラス基板(アレイ基板)1及び第2ガラス基板2の間に、液晶層3を介装させて構成されている。第1ガラス基板1及び第2ガラス基板2の対向する一の表面同士の間には、液晶層3に封入される液晶を封止するためのシール材33が、第2ガラス基板2の周縁部に沿って設けられている。
Next, the optical configuration of the liquid crystal panel 100a and other liquid crystal panels that can be replaced with the liquid crystal panel 100a will be described.
FIG. 3 is a cross-sectional view schematically showing the configuration of the liquid crystal panel 100a. The liquid crystal panel 100 a is configured by interposing a liquid crystal layer 3 between a first glass substrate (array substrate) 1 and a second glass substrate 2. A sealing material 33 for sealing the liquid crystal sealed in the liquid crystal layer 3 is disposed between the opposing surfaces of the first glass substrate 1 and the second glass substrate 2. It is provided along.
 第1ガラス基板1の一の表面上には、夫々が透明電極からなる副画素電極11a及び11bと、補助容量電極12a及び12bと、補助容量対向電極22a及び22bと、放電容量電極13及び放電容量対向電極23と、TFT14と、TFT15a及び15bとが含まれる層の上に配向膜31が形成されている。第1ガラス基板1の他の表面には、偏光板19が貼り付けられている。第1ガラス基板1の一の表面の一の縁部には、ゲートドライバGDaが表面実装されたフレキシブル基板18が取り付けられている。 On one surface of the first glass substrate 1, subpixel electrodes 11a and 11b, auxiliary capacitance electrodes 12a and 12b, auxiliary capacitance counter electrodes 22a and 22b, discharge capacitance electrode 13 and discharge, each made of a transparent electrode, are formed. An alignment film 31 is formed on the layer including the capacitor counter electrode 23, the TFT 14, and the TFTs 15a and 15b. A polarizing plate 19 is attached to the other surface of the first glass substrate 1. A flexible substrate 18 on which a gate driver GDa is surface-mounted is attached to one edge of one surface of the first glass substrate 1.
 第2ガラス基板2の一の表面上には、透明電極からなる対向電極21と、配向膜32とが積層されて形成されている。特に液晶パネル100aでは、第2ガラス基板2と対向電極21との間にカラーフィルタCFが形成されている。第2ガラス基板2の他の表面には、偏光板29が貼り付けられている。偏光板19と偏光板29とでは、夫々を通過する光の偏光方向(偏光面)が90度異なるようにしてある。バックライト(不図示)は、第1ガラス基板1の他の表面側(偏光板19が貼り付けられている側)に設けられている。 A counter electrode 21 made of a transparent electrode and an alignment film 32 are laminated on one surface of the second glass substrate 2. In particular, in the liquid crystal panel 100a, a color filter CF is formed between the second glass substrate 2 and the counter electrode 21. A polarizing plate 29 is attached to the other surface of the second glass substrate 2. The polarization direction (polarization plane) of light passing through the polarizing plate 19 and the polarizing plate 29 is different by 90 degrees. The backlight (not shown) is provided on the other surface side of the first glass substrate 1 (the side on which the polarizing plate 19 is attached).
 上述の構成において、例えばノーマリブラック方式の場合、画素Pの副画素電極11a及び11b夫々と対向電極21との間に電圧が印加されない場合、画素Pを透過する光の偏光方向が変化しないため、バックライトから照射されて偏光板19を透過した光は、偏光板29に吸収される。これに対し、画素Pの副画素電極11a及び11b夫々と対向電極21との間に電圧が印加された場合、画素Pを透過する光の偏光方向が電圧の大きさに応じて変化するため、バックライトから照射されて偏光板19を透過した光の偏光方向が電圧の大きさに応じて変化して偏光板29を透過するようになる。これにより、画素Pが表示する画像の明るさが変化する。 In the above-described configuration, for example, in the case of the normally black method, when no voltage is applied between the sub-pixel electrodes 11a and 11b of the pixel P and the counter electrode 21, the polarization direction of the light transmitted through the pixel P does not change. The light irradiated from the backlight and transmitted through the polarizing plate 19 is absorbed by the polarizing plate 29. In contrast, when a voltage is applied between each of the sub-pixel electrodes 11a and 11b of the pixel P and the counter electrode 21, the polarization direction of the light transmitted through the pixel P changes according to the magnitude of the voltage. The polarization direction of the light irradiated from the backlight and transmitted through the polarizing plate 19 is changed according to the magnitude of the voltage and is transmitted through the polarizing plate 29. Thereby, the brightness of the image displayed by the pixel P changes.
 次に、図2では明示的に示さなかった寄生容量について説明する。
 図4は、画素Pに付随する寄生容量を示す説明図である。図4では、後の説明のために、kライン目(kは0以上の整数:以下同様)の画素P、kライン目の走査信号線Gm及びkライン目の放電信号線Gs夫々をPk、Gmk及びGskで表す。どの画素Pkについても寄生容量が同様に付随しているため、ここでは各画素Pkを区別せずに説明する。
Next, parasitic capacitances not explicitly shown in FIG. 2 will be described.
FIG. 4 is an explanatory diagram illustrating the parasitic capacitance associated with the pixel P. In FIG. 4, for the following description, the pixel P of the k-th line (k is an integer of 0 or more: the same applies hereinafter), the scanning signal line Gm of the k-th line, and the discharge signal line Gs of the k-th line are respectively represented by Pk, It represents with Gmk and Gsk. Since every pixel Pk has a parasitic capacitance, it will be described without distinguishing each pixel Pk.
 副画素SP1及びSP2の夫々の副画素電極11a及び11bにドレイン電極が接続されたTFT15a及び15bは、ドレイン-ゲート間に寄生容量が存在している。また、TFT15a及び15bのゲート電極に接続されている走査信号線Gmkと副画素電極11a及び11b夫々との間には浮遊容量が存在している。これらドレイン-ゲート間の寄生容量と浮遊容量とは並列容量として作用するため、これらの容量をまとめて寄生容量Cgdとする。 The TFTs 15a and 15b whose drain electrodes are connected to the subpixel electrodes 11a and 11b of the subpixels SP1 and SP2, respectively, have a parasitic capacitance between the drain and the gate. Further, stray capacitances exist between the scanning signal line Gmk connected to the gate electrodes of the TFTs 15a and 15b and the sub-pixel electrodes 11a and 11b, respectively. Since the parasitic capacitance between the drain and the gate and the stray capacitance act as a parallel capacitance, these capacitances are collectively referred to as a parasitic capacitance Cgd.
 副画素SP2の副画素電極11bにドレイン電極(又はソース電極)が接続されたTFT14は、ドレイン-ゲート間(又はソース-ゲート間)に寄生容量が存在している。また、TFT14のゲート電極に接続されている放電信号線Gskと、副画素電極11bとの間には浮遊容量が存在している。これらドレイン-ゲート間(又はソース-ゲート間)の寄生容量と浮遊容量とは並列容量として作用するため、これらの容量をまとめて寄生容量Cgpとする。一方、副画素SP1の副画素電極11aと放電信号線Gsk-1との間(例えば画素P1の副画素SP1の副画素電極11aと放電信号線Gs0との間)には浮遊容量が存在している。これを寄生容量Cspとする。 The TFT 14 in which the drain electrode (or source electrode) is connected to the subpixel electrode 11b of the subpixel SP2 has a parasitic capacitance between the drain and the gate (or between the source and the gate). Further, a stray capacitance exists between the discharge signal line Gsk connected to the gate electrode of the TFT 14 and the sub-pixel electrode 11b. Since the parasitic capacitance between the drain and gate (or between the source and gate) and the stray capacitance act as a parallel capacitance, these capacitances are collectively referred to as a parasitic capacitance Cgp. On the other hand, there is a stray capacitance between the sub-pixel electrode 11a of the sub-pixel SP1 and the discharge signal line Gsk-1 (for example, between the sub-pixel electrode 11a of the sub-pixel SP1 of the pixel P1 and the discharge signal line Gs0). Yes. This is a parasitic capacitance Csp.
 次に、上述した各寄生容量の影響について、先ず問題がある場合を例に説明する。
 図5は、各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミング図である。図5に示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、0ライン目の放電信号線Gs0、1ライン目の走査信号線Gm1、1ライン目の放電信号線Gs1、2ライン目の走査信号線Gm2及び2ライン目の放電信号線Gs2夫々の信号レベルと、画素P1の副画素SP1及び画素P2の副画素SP1夫々の副画素電極11aの電圧レベルとを表す。信号レベルはオンの状態を正のパルスで表し、電圧レベルは対向電極21の電位、即ち対向電圧Vcomに対する電位差として表す。破線と破線との間の期間は、何れも1Hである。画素Pkに書き込まれるデータ信号の極性は、フレーム毎及びライン毎に反転する。
Next, the case where there is a problem with respect to the influence of each parasitic capacitance described above will be described as an example.
FIG. 5 is a timing diagram showing temporal changes in the signal applied to each signal line and the voltage of the sub-pixel electrode 11a. In each of the seven timing charts shown in FIG. 5, the horizontal axis is the same time axis, and the vertical axis indicates the discharge signal line Gs0 for the 0th line, the scanning signal line Gm1 for the first line, The signal levels of the first discharge signal line Gs1, the second scan signal line Gm2, and the second discharge signal line Gs2, and the subpixel electrodes of the subpixel SP1 of the pixel P1 and the subpixel SP1 of the pixel P2, respectively. 11a voltage level. The signal level is represented by a positive pulse indicating the ON state, and the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom. The period between the broken lines is 1H. The polarity of the data signal written to the pixel Pk is inverted every frame and every line.
 走査信号線Gmkからの走査信号は、1ライン毎に1Hずつ遅れて略1H分の信号幅となるように生成される。時刻t1(又はt2)で走査信号線Gm1(又はGm2)からの走査信号がオンとなった場合、画素P1(又はP2)のTFT15a及び15bがオン(導通状態)となり、ソース信号線SLからのデータ信号が画素P1(又はP2)の副画素電極11a及び11bと補助容量電極12a及び12b(図2参照)とに印加される。これにより、副画素電極11a及び11bの電圧は、時刻t1からt2までの間(又はt2からt3までの間)にソース信号線SLの電圧と同じレベルになる。この電圧が、液晶容量Clc1及びClc2に印加される電圧となる。なお、副画素電極11bの電圧レベルについては図示を省略する。画素P1の副画素電極11aの電圧波形は1フレーム後にVcomに対して極性反転し、図5に示す画素P2の副画素電極11aの電圧波形を1Hだけ左シフトしたものと類似する波形となる。 The scanning signal from the scanning signal line Gmk is generated so as to have a signal width of about 1H with a delay of 1H for each line. When the scanning signal from the scanning signal line Gm1 (or Gm2) is turned on at time t1 (or t2), the TFTs 15a and 15b of the pixel P1 (or P2) are turned on (conducting state), and the signal from the source signal line SL is turned on. A data signal is applied to the sub-pixel electrodes 11a and 11b and the auxiliary capacitance electrodes 12a and 12b (see FIG. 2) of the pixel P1 (or P2). As a result, the voltages of the sub-pixel electrodes 11a and 11b become the same level as the voltage of the source signal line SL from time t1 to time t2 (or from time t2 to time t3). This voltage is a voltage applied to the liquid crystal capacitors Clc1 and Clc2. The voltage level of the subpixel electrode 11b is not shown. The voltage waveform of the subpixel electrode 11a of the pixel P1 is similar to that obtained by inverting the polarity with respect to Vcom after one frame and shifting the voltage waveform of the subpixel electrode 11a of the pixel P2 shown in FIG.
 その後、時刻t2(又はt3)で走査信号線Gm1(又はGm2)からの走査信号がオフとなった場合、画素P1(又はP2)のTFT15a及び15bがオフ(非導通状態)となる。時刻t2(又はt3)では寄生容量Cgdによる所謂引き込み現象(フィードスルー)の影響で、副画素電極11a及び11bの電圧レベルが若干低下する。この場合、副画素電極11a及び11bの電圧レベルは、Vcomに対する極性が正/負何れであるかによって絶対値が小/大に変化するため、引き込み現象の影響を受けた後で、液晶容量Clc1及びClc2に印加される電圧の平均的な電圧がVcomとなるように調整してある。このように調整された対向電圧を最適対向電圧という。 Thereafter, when the scanning signal from the scanning signal line Gm1 (or Gm2) is turned off at time t2 (or t3), the TFTs 15a and 15b of the pixel P1 (or P2) are turned off (non-conducting state). At time t2 (or t3), the voltage level of the subpixel electrodes 11a and 11b slightly decreases due to the so-called pull-in phenomenon (feedthrough) due to the parasitic capacitance Cgd. In this case, since the absolute value of the voltage level of the subpixel electrodes 11a and 11b changes to small / large depending on whether the polarity with respect to Vcom is positive or negative, the liquid crystal capacitance Clc1 is affected after being influenced by the pull-in phenomenon. And the average voltage applied to Clc2 is adjusted to Vcom. The counter voltage adjusted in this way is referred to as an optimal counter voltage.
 さて、画素P1(又はP2)のTFT14をオンさせる放電信号線Gs1(又はGs2)からの放電信号は、走査信号線Gm1(又はGm2)からの走査信号に対して重なりがないようにする必要があるため、図5では時刻t21(又はt31)で立ち上がり、時刻t4(又はt5)で立ち下がるようにしてある。この放電信号によりTFT14がオンした場合、図2に示す放電容量Cdcが液晶容量Clc2及び補助容量Ccs2に並列に接続される。 Now, it is necessary that the discharge signal from the discharge signal line Gs1 (or Gs2) for turning on the TFT 14 of the pixel P1 (or P2) does not overlap the scan signal from the scan signal line Gm1 (or Gm2). Therefore, in FIG. 5, it rises at time t21 (or t31) and falls at time t4 (or t5). When the TFT 14 is turned on by this discharge signal, the discharge capacitor Cdc shown in FIG. 2 is connected in parallel to the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2.
 この場合、放電容量Cdcに蓄積されている電荷は、1フレーム前に蓄積されたものであり、液晶容量Clc2及び補助容量Ccs2に蓄積されている電荷とは極性が逆になっている。このため、時刻t21からt4までの間(又はt31からt5までの間)に液晶容量Clc2及び補助容量Ccs2から放電容量Cdcに正の電荷(又は負の電荷)が移動して液晶容量Clc2に印加される電圧の絶対値が低下する。一方、液晶容量Clc1に印加される電圧はTFT14がオンすることによる影響を受けないから、液晶容量Clc2に印加される電圧の絶対値が液晶容量Clc1に印加される電圧の絶対値より小さくなり、ガンマ特性の視角依存性が改善されるという効果を奏する。 In this case, the charge accumulated in the discharge capacitor Cdc is accumulated one frame before, and the polarity is opposite to that of the charges accumulated in the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2. For this reason, positive charge (or negative charge) moves from the time t21 to time t4 (or from time t31 to time t5) and from the auxiliary capacity Ccs2 to the discharge capacity Cdc, and is applied to the liquid crystal capacity Clc2. The absolute value of the applied voltage decreases. On the other hand, since the voltage applied to the liquid crystal capacitor Clc1 is not affected by the TFT 14 being turned on, the absolute value of the voltage applied to the liquid crystal capacitor Clc2 is smaller than the absolute value of the voltage applied to the liquid crystal capacitor Clc1, There is an effect that the viewing angle dependency of the gamma characteristic is improved.
 ここで、画素P1(又はP2)の副画素SP1の副画素電極11aが、放電信号線Gs0(又はGs1)との間に存在する寄生容量Cspから受ける影響に着目する。放電信号線Gs0からの放電信号は、放電信号線Gs1からの放電信号が立ち上がる時刻t21より1Hだけ早い時刻t11で立ち上がり、時刻t3で立ち下がる。走査信号線Gm1(又はGm2)からの走査信号がオンである時刻t1からt2までの間(又はt2からt3までの間)では、副画素電極11aがTFT15aによりソース信号線SLに接続されて低インピーダンスの状態にある。このため、画素P1(又はP2)の副画素電極11aの電圧が、寄生容量Cspを介して放電信号線Gs0(又はGs1)から突き上げ又は突き下げられるような影響を受けることは無視できる。 Here, attention is paid to the influence that the subpixel electrode 11a of the subpixel SP1 of the pixel P1 (or P2) receives from the parasitic capacitance Csp existing between the subpixel electrode 11a and the discharge signal line Gs0 (or Gs1). The discharge signal from the discharge signal line Gs0 rises at time t11, which is 1H earlier than the time t21 when the discharge signal from the discharge signal line Gs1 rises, and falls at time t3. During the time t1 to t2 (or from t2 to t3) when the scanning signal from the scanning signal line Gm1 (or Gm2) is on, the subpixel electrode 11a is connected to the source signal line SL by the TFT 15a and is low. It is in an impedance state. For this reason, it is negligible that the voltage of the sub-pixel electrode 11a of the pixel P1 (or P2) is affected by being pushed up or pushed down from the discharge signal line Gs0 (or Gs1) via the parasitic capacitance Csp.
 これに対し、走査信号線Gm1(又はGm2)からの走査信号がオフである時刻t2以降(又はt3以降)では、画素P1(又はP2)の副画素電極11aの電圧が液晶容量Clc1及び補助容量Ccs1によって保持されており、外部との間の電荷の移動により電圧が変動し易い。具体的に、時刻t11(又はt21)では、画素P1(又はP2)の副画素電極11aの電圧レベルが放電信号の前縁で立ち上がりの影響を受け難いのに対し、時刻t3(又はt4)では、画素P1(又はP2)の副画素電極11aの電圧レベルが放電信号の後縁で立ち下がりの影響を受けて突き下げられる。 On the other hand, after time t2 (or after t3) when the scanning signal from the scanning signal line Gm1 (or Gm2) is off, the voltage of the subpixel electrode 11a of the pixel P1 (or P2) is the liquid crystal capacitance Clc1 and the auxiliary capacitance. The voltage is held by Ccs1, and the voltage is likely to fluctuate due to the movement of charges between the outside. Specifically, at time t11 (or t21), the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is hardly affected by rising at the leading edge of the discharge signal, whereas at time t3 (or t4). The voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is pushed down due to the falling edge at the trailing edge of the discharge signal.
 上述の突き下げは、副画素電極11aの電圧が正/負何れの極性であっても同じ方向に発生するため、副画素SP1の副画素電極11aについての最適対向電圧が、実際の対向電圧Vcomより電圧が低い方向にずれる現象(対向電圧ずれ)が発生する。対向電圧ずれが発生した場合、液晶容量Clc1に対して直流電圧を印加することとなるため、所謂焼き付きやフリッカが発生することが問題となる。
 なお、図5に示すタイミング図の例では、画素P1(又はP2)の副画素SP2の副画素電極11bが、放電信号線Gs1(又はGs2)との間に存在する寄生容量Cgpを介して放電信号線Gs1(又はGs2)から突き上げ及び突き下げの影響を略等しく受けるため、これらの影響が相殺されて問題は生じない。
The above-described push-down occurs in the same direction regardless of whether the voltage of the subpixel electrode 11a is positive or negative. Therefore, the optimum counter voltage for the subpixel electrode 11a of the subpixel SP1 is the actual counter voltage Vcom. A phenomenon in which the voltage is shifted in a lower direction (counter voltage shift) occurs. When a counter voltage shift occurs, a DC voltage is applied to the liquid crystal capacitance Clc1, so that so-called image sticking or flicker occurs.
In the example of the timing chart shown in FIG. 5, the subpixel electrode 11b of the subpixel SP2 of the pixel P1 (or P2) is discharged via the parasitic capacitance Cgp existing between the discharge signal line Gs1 (or Gs2). Since the influences of the push-up and push-down are almost equal from the signal line Gs1 (or Gs2), these influences are offset and no problem occurs.
 以下では、本願の課題が解決される具体例について説明する。
 図6A及び図6Bは、実施の形態1に係る液晶表示装置で各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミング図である。図6A及び図6Bに示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、0ライン目の放電信号線Gs0、1ライン目の走査信号線Gm1、1ライン目の放電信号線Gs1、2ライン目の走査信号線Gm2及び2ライン目の放電信号線Gs2夫々の信号レベルと、画素P1及び画素P2夫々の副画素SP1の副画素電極11aの電圧レベルとを表す。信号レベルはオンの状態を正のパルスで表し、電圧レベルは対向電極21の電位、即ち対向電圧Vcomに対する電位差として表す。破線と破線との間の期間は、何れも1Hである。
Below, the specific example with which the subject of this application is solved is demonstrated.
6A and 6B are timing charts showing temporal changes in the signal applied to each signal line and the voltage of the sub-pixel electrode 11a in the liquid crystal display device according to the first embodiment. In the seven timing charts shown in FIGS. 6A and 6B, the horizontal axis is the same time axis, and the vertical axis is the discharge signal line Gs0 of the 0th line and the scanning signal of the 1st line from the top of the figure. The line Gm1, the first discharge signal line Gs1, the second scanning signal line Gm2, and the second discharge signal line Gs2, and the subpixel electrode 11a of the subpixel SP1 of the pixel P1 and the pixel P2 respectively. Represents the voltage level. The signal level is represented by a positive pulse indicating the ON state, and the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom. The period between the broken lines is 1H.
 図6Aでは走査信号及び放電信号の信号幅が1Hの長さ未満であるのに対し、図6Bでは走査信号及び放電信号の信号幅が1Hの長さより長く2Hの長さ未満である点に違いがある。走査信号線Gmkからの走査信号が、1ライン毎に1Hずつ遅れて生成される点と、放電信号線Gsk-1からの放電信号の前縁(図6A及び図6Bでは立ち上がり)が、走査信号線Gmkからの走査信号の後縁(図6A及び図6Bでは立ち下がり)よりも時間(所定時間に相当)Td以上遅れている点とは、図6A及び図6Bで共通している。走査信号及び放電信号の信号幅が2Hの長さより長い場合についても同様である。 In FIG. 6A, the signal width of the scanning signal and the discharge signal is less than 1H, whereas in FIG. 6B, the signal width of the scanning signal and the discharge signal is longer than 1H and less than 2H. There is. The scanning signal from the scanning signal line Gmk is generated with a delay of 1H for each line, and the leading edge (rising edge in FIGS. 6A and 6B) of the discharging signal from the discharging signal line Gsk-1 is the scanning signal. 6A and 6B are common to the point delayed by a time (corresponding to a predetermined time) Td beyond the trailing edge of the scanning signal from the line Gmk (falling in FIGS. 6A and 6B). The same applies to the case where the signal width of the scanning signal and the discharge signal is longer than 2H.
 図6Aにおいて、走査信号線Gm1(又はGm2)からの走査信号が、時刻t1からt2までの間(又は時刻t2からt3までの間)で立ち上がってTFT15a及び15bがオンした後に、時刻t2(又はt3)で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t3(又はt4)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。 In FIG. 6A, after the scanning signal from the scanning signal line Gm1 (or Gm2) rises from time t1 to t2 (or from time t2 to t3) and the TFTs 15a and 15b are turned on, the time t2 (or When falling at t3), the voltage level of the sub-pixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough). Thereafter, the discharge signal from the discharge signal line Gs0 (or Gs1) rises after a delay of Td or more, and the discharge signal falls at time t3 (or t4). During this time, the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1). The voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
 図6Bにおいても同様であり、走査信号線Gm1(又はGm2)からの走査信号が、時刻t0からt1までの間(又は時刻t1からt2までの間)で立ち上がってTFT15a及び15bがオンした後に、時刻t2(又はt3)で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t4(又はt5)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。 The same applies to FIG. 6B. After the scanning signal from the scanning signal line Gm1 (or Gm2) rises from time t0 to t1 (or from time t1 to t2) and the TFTs 15a and 15b are turned on, When falling at time t2 (or t3), the voltage level of the sub-pixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough). Thereafter, the discharge signal from the discharge signal line Gs0 (or Gs1) rises after a delay of Td or more, and the discharge signal falls at time t4 (or t5). During this time, the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1). The voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
 以上のように本実施の形態1によれば、マトリックス状に配列された画素Pが、液晶層3を介して対向する副画素電極11a,11b夫々と対向電極21との電極対を含んで画定される第1副画素SP1及び第2副画素SP2を少なくとも有しており、第1副画素SP1及び第2副画素SP2夫々に含まれる副画素電極11a及び11bにデータ信号を印加するためのTFT15a及び15bのゲート電極にマトリックスの行毎(即ちライン毎)の走査信号線Gmから走査信号を印加する。第2副画素SP2の副画素電極11bにはTFT14を介して放電容量電極13が接続されており、放電容量電極13には対向電極21の電位に接続された放電容量対向電極23が対向している。マトリックスのライン毎の放電信号線GsからTFT14のゲート電極に印加する放電信号は、その前縁(立ち上がり)が1つ後のラインの走査信号の後縁(立ち下がり)よりもTd以上遅れている。
 これにより、各ラインの第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bにデータ信号が印加されなくなった時点からTd以上遅れて、1つ前のラインのTFT14のゲート電極に放電信号が印加されるため、各ラインの画素Pが少なくとも有する第1副画素SP1及び第2副画素SP2により液晶層3に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
 従って、画素Pを画定する副画素電極11a及び11bが対向する対向電極21に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能となる。
As described above, according to the first embodiment, the pixels P arranged in a matrix are defined including the electrode pairs of the counter electrodes 21 and the sub-pixel electrodes 11 a and 11 b that are opposed to each other with the liquid crystal layer 3 interposed therebetween. A TFT 15a for applying a data signal to the subpixel electrodes 11a and 11b included in the first subpixel SP1 and the second subpixel SP2, respectively. And a scanning signal is applied to the gate electrode of 15b from the scanning signal line Gm for each row (that is, for each line) of the matrix. A discharge capacitor electrode 13 is connected to the subpixel electrode 11b of the second subpixel SP2 via a TFT 14, and a discharge capacitor counter electrode 23 connected to the potential of the counter electrode 21 is opposed to the discharge capacitor electrode 13. Yes. The discharge signal applied to the gate electrode of the TFT 14 from the discharge signal line Gs for each line of the matrix has a leading edge (rising edge) delayed by Td or more than the trailing edge (falling edge) of the scanning signal of the next line. .
As a result, the gate electrode of the TFT 14 of the previous line is delayed by Td or more from the time when the data signal is not applied to the subpixel electrodes 11a and 11b of the first subpixel SP1 and the second subpixel SP2 of each line. Since the discharge signal is applied to the liquid crystal layer 3 by at least the first subpixel SP1 and the second subpixel SP2 included in the pixels P of each line, the rise of the discharge signal of the previous line and The effect of falling is offset.
Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode 21 facing the sub-pixel electrodes 11a and 11b defining the pixel P from deviating from the preset counter voltage.
 また、実施の形態1によれば、第1副画素SP1及び第2副画素SP2の配置方向が、放電信号線Gsと公差する方向、即ち行方向であって、行方向に隣り合う画素P,Pにおける隣り合う副画素SP1及び副画素SP2の間に放電信号線Gsが配置されており、画素Pにおける第1副画素SP1及び第2副画素SP2の間に走査信号線が配置されているいる。
 従って、放電信号線Gs及び走査信号線Gmの間における信号の漏洩を抑制することが可能となり、ひいては液晶パネル100aの製造歩留まりが向上する。その一方では上記構成により、放電信号線Gs及び第1副画素SP1の間の寄生容量Cspが大きくなるが、このような場合にこそ、対向電圧ずれの防止効果を奏する。
Further, according to the first embodiment, the arrangement direction of the first subpixel SP1 and the second subpixel SP2 is the direction in which the first subpixel SP1 and the second subpixel SP2 are tolerated, that is, the row direction, and the adjacent pixels P, The discharge signal line Gs is disposed between the adjacent subpixels SP1 and SP2 in P, and the scanning signal line is disposed between the first subpixel SP1 and the second subpixel SP2 in the pixel P. .
Therefore, it is possible to suppress signal leakage between the discharge signal line Gs and the scanning signal line Gm, and the manufacturing yield of the liquid crystal panel 100a is improved. On the other hand, the configuration described above increases the parasitic capacitance Csp between the discharge signal line Gs and the first subpixel SP1, but in such a case, the effect of preventing the counter voltage deviation is exhibited.
 更に、実施の形態1によれば、各画素Pに印加されるデータ信号の極性が1フレーム毎に反転するため、TFT14がオンしたときに第2副画素SP2の副画素電極11bの電圧が効果的に変化して2つの副画素間の明暗差が大きくなるようにすることが可能である。 Further, according to the first embodiment, the polarity of the data signal applied to each pixel P is inverted every frame, so that the voltage of the subpixel electrode 11b of the second subpixel SP2 is effective when the TFT 14 is turned on. It is possible to change so that the contrast between the two sub-pixels increases.
 更にまた、実施の形態1によれば、画素Pが有する第1副画素SP1及び第2副画素SP2夫々を画定する電極対に、補助容量電極12aと補助容量対向電極22aとの電極対、及び補助容量電極12bと補助容量対向電極22bとの電極対が含まれており、補助容量電極12a及び12b夫々は副画素電極11a及び11bに電気的に接続されており、補助容量対向電極22a及び22b夫々は放電容量対向電極23の接続先である対向電極21の電位に接続されている。
 従って、第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bと対向電極21とにより形成される液晶容量Clc1及びClc2に、補助容量電極12aと補助容量対向電極22aとにより形成される補助容量Ccs1、及び補助容量電極12bと補助容量対向電極22bとにより形成される補助容量Ccs2が並列に接続されるため、第1副画素SP1及び第2副画素SP2により液晶層3に印加される電圧を少なくとも1フレーム期間だけ安定に保持することが可能となる。このように、最適対向電圧が安定的に設定され得る構成により、対向電圧ずれを防止するという効果を際だたせることが可能となる。
Furthermore, according to the first embodiment, the electrode pair defining each of the first subpixel SP1 and the second subpixel SP2 included in the pixel P includes the electrode pair of the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a, and An electrode pair of the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b is included, and the auxiliary capacitance electrodes 12a and 12b are electrically connected to the subpixel electrodes 11a and 11b, respectively, and the auxiliary capacitance counter electrodes 22a and 22b. Each is connected to the potential of the counter electrode 21 to which the discharge capacity counter electrode 23 is connected.
Accordingly, the liquid crystal capacitors Clc1 and Clc2 formed by the subpixel electrodes 11a and 11b and the counter electrode 21 of the first subpixel SP1 and the second subpixel SP2 are formed by the auxiliary capacitor electrode 12a and the auxiliary capacitor counter electrode 22a. Since the auxiliary capacitance Ccs1 and the auxiliary capacitance Ccs2 formed by the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b are connected in parallel, they are applied to the liquid crystal layer 3 by the first subpixel SP1 and the second subpixel SP2. It is possible to stably hold the voltage to be applied for at least one frame period. As described above, with the configuration in which the optimum counter voltage can be set stably, it is possible to highlight the effect of preventing the counter voltage deviation.
 更にまた、実施の形態1によれば、放電信号制御回路43aが、ゲートドライバGDaを用いて放電信号線Gsに放電信号を印加する。
 従って、1つ後のラインの走査信号の後縁(立ち下がり)に対する放電信号の前縁(立ち上がり)の遅れ時間及び放電信号の信号幅を、放電信号駆動回路にて適当に調整することが可能となる。
Furthermore, according to the first embodiment, the discharge signal control circuit 43a applies a discharge signal to the discharge signal line Gs using the gate driver GDa.
Therefore, the delay time of the leading edge (rising) of the discharge signal and the signal width of the discharging signal with respect to the trailing edge (falling) of the scanning signal of the next line can be appropriately adjusted by the discharge signal driving circuit. It becomes.
(変形例1)
 実施の形態1が、補助容量対向電極22a,22b及び放電容量対向電極23を対向電極21の電位に接続する形態であるのに対し、実施の形態1の変形例1は、補助容量対向電極22a,22b及び放電容量対向電極23を対向電極21の電位とは異なる所定電位に接続する形態である。
(Modification 1)
The first embodiment is a mode in which the auxiliary capacity counter electrodes 22a and 22b and the discharge capacity counter electrode 23 are connected to the potential of the counter electrode 21, whereas the first modification of the first embodiment is the auxiliary capacity counter electrode 22a. , 22b and the discharge capacitor counter electrode 23 are connected to a predetermined potential different from the potential of the counter electrode 21.
 図7は、実施の形態1の変形例1に係る液晶表示装置の構成例を示すブロック図であり、図8は、実施の形態1の変形例1に係る液晶パネルで画素Pを画定する構成を模式的に示す説明図である。本変形例1に係る液晶表示装置は、液晶パネル100bと、ゲートドライバGDaと、ソースドライバSDaと、ゲートドライバGDa及びソースドライバSDaを用いて液晶パネル100bによる表示を制御する表示制御回路4bと、該表示制御回路4bから液晶パネル100bに印加する電圧を中継するための補助容量電圧幹配線CSLとを備える。以下、実施の形態1と同様の構成については同様の符号を付してその説明を省略し、実施の形態1と異なる構成について説明する。 FIG. 7 is a block diagram illustrating a configuration example of a liquid crystal display device according to the first modification of the first embodiment, and FIG. 8 illustrates a configuration in which the pixels P are defined by the liquid crystal panel according to the first modification of the first embodiment. It is explanatory drawing which shows this typically. The liquid crystal display device according to the first modification includes a liquid crystal panel 100b, a gate driver GDa, a source driver SDa, a display control circuit 4b that controls display by the liquid crystal panel 100b using the gate driver GDa and the source driver SDa, A storage capacitor voltage main line CSL for relaying a voltage applied from the display control circuit 4b to the liquid crystal panel 100b is provided. Hereinafter, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted, and the components different from those in the first embodiment will be described.
 液晶パネル100bは、実施の形態1の液晶パネル100aと比較して、画素Pの垂直方向の両端部を水平方向に直線的に横切るように配された補助容量電圧線CS1及びCS2を更に有する。補助容量電圧線CS1及びCS2の夫々は、液晶パネル100bの外部で補助容量電圧幹配線CSLに接続されると共に、液晶パネル100bの内部で補助容量対向電極22a及び22bに接続されている(図8参照)。補助容量電圧線CS2は、更に放電容量対向電極23に接続されている。本実変形例1では、補助容量電圧線CS2が液晶パネル100bの外部で補助容量電圧幹配線CSLに接続されているが、液晶パネル100b内に補助容量電圧幹配線CSLを配置してもよい。 The liquid crystal panel 100b further includes auxiliary capacitance voltage lines CS1 and CS2 arranged so as to linearly cross both vertical ends of the pixel P in the horizontal direction as compared with the liquid crystal panel 100a of the first embodiment. Each of the auxiliary capacitance voltage lines CS1 and CS2 is connected to the auxiliary capacitance voltage trunk line CSL outside the liquid crystal panel 100b, and is connected to the auxiliary capacitance counter electrodes 22a and 22b inside the liquid crystal panel 100b (FIG. 8). reference). The auxiliary capacitance voltage line CS <b> 2 is further connected to the discharge capacitance counter electrode 23. In the present modification 1, the auxiliary capacitance voltage line CS2 is connected to the auxiliary capacitance voltage main line CSL outside the liquid crystal panel 100b. However, the auxiliary capacitance voltage main line CSL may be arranged in the liquid crystal panel 100b.
 表示制御回路4bは、実施の形態1における表示制御回路4aと比較して、補助容量電圧幹配線CSLを介して補助容量電圧線CS1及びCS2に印加する所定電圧を発生させる補助容量電圧発生回路44を更に有する。補助容量電圧線CS1及びCS2に印加される電圧は同じであっても異なっていてもよい。 Compared to the display control circuit 4a in the first embodiment, the display control circuit 4b generates an auxiliary capacitance voltage generation circuit 44 that generates a predetermined voltage to be applied to the auxiliary capacitance voltage lines CS1 and CS2 via the auxiliary capacitance voltage main line CSL. It has further. The voltages applied to the auxiliary capacitance voltage lines CS1 and CS2 may be the same or different.
 液晶パネル100aと液晶パネル100bとでは、補助容量対向電極22a,22b及び放電容量対向電極23夫々の接続先が、対向電極21の電位であるか補助容量電圧線CS1,CS2の電位であるかの違いがある。しかしながら、補助容量Ccs1及びCcs2夫々が液晶容量Clc1及びClc2に並列接続されて電荷を保存する効果と、TFT14がオンしたときに液晶容量Clc2及び補助容量Ccs2から放電容量Cdcに移動する正の電荷(又は負の電荷)の量については違いがないことが明らかである。このことから本変形例1によれば、実施の形態1と全く同様の効果を奏すると言える。
 なお、実施の形態1の構成に対する本変形例1の構成の違いは、後述する変形例2及び他の実施の形態に対して適用することが可能である。
In the liquid crystal panel 100a and the liquid crystal panel 100b, whether the connection destinations of the auxiliary capacitor counter electrodes 22a and 22b and the discharge capacitor counter electrode 23 are the potential of the counter electrode 21 or the potentials of the auxiliary capacitor voltage lines CS1 and CS2. There is a difference. However, the auxiliary capacitors Ccs1 and Ccs2 are connected in parallel to the liquid crystal capacitors Clc1 and Clc2, respectively, to store charges, and the positive charge (moved from the liquid crystal capacitors Clc2 and auxiliary capacitors Ccs2 to the discharge capacitor Cdc when the TFT 14 is turned on) It is clear that there is no difference in the amount of (or negative charge). From this, it can be said that according to the first modification, the same effect as in the first embodiment can be obtained.
Note that the difference in the configuration of the first modification with respect to the configuration of the first embodiment can be applied to a second modification described later and other embodiments.
(変形例2)
 実施の形態1が、TFT14がオンしたときに液晶容量Clc1に印加される実効電圧の絶対値が変化しない形態であるのに対し、実施の形態1の変形例2は、TFT14がオンしたときに液晶容量Clc1に印加される実効電圧の絶対値が変化する形態である。
 図9は、実施の形態1の変形例2に係る液晶パネルで画素Pを画定する構成を模式的に示す説明図である。
(Modification 2)
In the first embodiment, the absolute value of the effective voltage applied to the liquid crystal capacitor Clc1 does not change when the TFT 14 is turned on, whereas in the second modification of the first embodiment, the TFT 14 is turned on. In this mode, the absolute value of the effective voltage applied to the liquid crystal capacitor Clc1 changes.
FIG. 9 is an explanatory diagram schematically illustrating a configuration in which the pixels P are defined in the liquid crystal panel according to the second modification of the first embodiment.
 本変形例2では、実施の形態1における画素Pの構成に対して、放電容量電極13及び補助容量電極12a夫々に接続された電極を有する電極対で形成された第2の放電容量(コンデンサ)Cdc2が接続されている。本変形例2における液晶パネルと実施の形態1における液晶パネル100aとの違いは放電容量Cdc2の有無のみである。その他、実施の形態1に対応する箇所には同様の符号を付してその説明を省略する。
 以下では、TFT14がオンしたときに副画素電極11a及び11bに印加される電圧の変化について説明する。
In the second modification, the second discharge capacity (capacitor) formed by an electrode pair having electrodes connected to the discharge capacity electrode 13 and the auxiliary capacity electrode 12a, respectively, with respect to the configuration of the pixel P in the first embodiment. Cdc2 is connected. The difference between the liquid crystal panel in the second modification and the liquid crystal panel 100a in the first embodiment is only the presence or absence of the discharge capacity Cdc2. In addition, the same code | symbol is attached | subjected to the location corresponding to Embodiment 1, and the description is abbreviate | omitted.
Hereinafter, a change in voltage applied to the subpixel electrodes 11a and 11b when the TFT 14 is turned on will be described.
 実施の形態1では、TFT14がオンしたときに、液晶容量Clc2及び補助容量Ccs2から放電容量Cdcに正の電荷(又は負の電荷)が移動して液晶容量Clc2に印加される電圧の絶対値が低下するのに対して、液晶容量Clc1に印加される電圧の絶対値は変化しないことを説明した。また、TFT14がオンする直前の放電容量電極13の電圧は、1フレーム前の副画素電極11bの電圧であった。一方、本変形例2では、第2の放電容量Cdc2の存在により、TFT14がオンする直前の放電容量電極13の電圧は、1フレーム前の副画素電極11bの電圧とは異なる電圧となり、TFT14がオンしたときに、液晶容量Clc1に印加される電圧の絶対値も変化するという違いが生じる。 In the first embodiment, when the TFT 14 is turned on, a positive charge (or negative charge) moves from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the discharge capacitor Cdc, and the absolute value of the voltage applied to the liquid crystal capacitor Clc2 is It has been explained that the absolute value of the voltage applied to the liquid crystal capacitor Clc1 does not change while it decreases. Further, the voltage of the discharge capacitor electrode 13 immediately before the TFT 14 was turned on was the voltage of the sub-pixel electrode 11b one frame before. On the other hand, in the second modification, due to the presence of the second discharge capacitor Cdc2, the voltage of the discharge capacitor electrode 13 immediately before the TFT 14 is turned on is different from the voltage of the sub-pixel electrode 11b one frame before, and the TFT 14 There is a difference that the absolute value of the voltage applied to the liquid crystal capacitance Clc1 also changes when turned on.
 これを具体的に説明するため、液晶容量Clc1,Clc2、補助容量Ccs1,Ccs2、放電容量Cdc及び第2の放電容量Cdc2夫々の静電容量をCLC、CCS、CDC及びCDC2とする。図6Aに示すタイミング図を参照して、走査信号線Gm1からの走査信号によりTFT15a及び15bがオンしてデータ信号が印加される前の時刻t1における画素P1の副画素電極11a及び11b夫々の電圧をV1及びV2とする。また、データ信号が印加されたときの時刻t2における画素P1の副画素電極11a及び11bの電圧をV3とする。この電圧V3の極性は電圧V1及びV2の極性と逆である。時刻t1における放電容量電極13の電圧は、1フレーム前にTFT14がオン/オフしたときから、副画素電極11bの電圧と同じV2に維持されている。 In order to specifically explain this, the capacitances of the liquid crystal capacitors Clc1, Clc2, auxiliary capacitors Ccs1, Ccs2, discharge capacity Cdc, and second discharge capacity Cdc2 are CLC, CCS, CDC, and CDC2. With reference to the timing chart shown in FIG. 6A, the voltages of the sub-pixel electrodes 11a and 11b of the pixel P1 at the time t1 before the TFTs 15a and 15b are turned on by the scanning signal from the scanning signal line Gm1 and the data signal is applied. Are V1 and V2. Further, the voltage of the sub-pixel electrodes 11a and 11b of the pixel P1 at time t2 when the data signal is applied is set to V3. The polarity of the voltage V3 is opposite to the polarity of the voltages V1 and V2. The voltage of the discharge capacitor electrode 13 at time t1 is maintained at V2 which is the same as the voltage of the subpixel electrode 11b since the TFT 14 was turned on / off one frame before.
 画素P1の副画素電極11aにデータ信号が印加されることにより、副画素電極11aの電圧がV1からV3に上昇(又は低下)する。この電圧の変化分V3-V1が、第2の放電容量Cdc2及び放電容量Cdcの直列回路で分圧されて放電容量電極13の電圧に加算されるから、時刻t2における放電容量電極13の電圧Vdcは、以下の式(1)で表される。 When a data signal is applied to the subpixel electrode 11a of the pixel P1, the voltage of the subpixel electrode 11a increases (or decreases) from V1 to V3. Since this voltage change V3-V1 is divided by the series circuit of the second discharge capacity Cdc2 and the discharge capacity Cdc and added to the voltage of the discharge capacity electrode 13, the voltage Vdc of the discharge capacity electrode 13 at time t2. Is represented by the following formula (1).
Vdc=V2+(V3-V1)×CDC2/(CDC+CDC2)・・・・・・・(1) Vdc = V2 + (V3-V1) × CDC2 / (CDC + CDC2) (1)
 式(1)の右辺では、第1項のV2と第2項の(V3-V1)とで極性が逆である。後にTFT14がオンしたときに、液晶容量Clc2及び補助容量Ccs2から放電容量Cdc側に正の電荷(又は負の電荷)が移動するためには、Vdcの極性が、V3の極性と逆であること(つまりV2の極性と同じであること)が好ましい。このような極性の関係となるように、CDC2/(CDC+CDC2)の大きさを適当に小さくする。なお、電圧Vdcは、液晶容量Clc1及び補助容量Ccs1を並列接続した回路に第2の放電容量Cdc2を直列接続した直列回路と、放電容量Cdcとを並列接続した並列回路の電圧となっている。 On the right side of Equation (1), the polarity of the first term V2 is opposite to that of the second term (V3-V1). When the TFT 14 is turned on later, in order for positive charges (or negative charges) to move from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the discharge capacitor Cdc side, the polarity of Vdc is opposite to the polarity of V3. (That is, the same polarity as V2) is preferable. The size of CDC2 / (CDC + CDC2) is appropriately reduced so as to have such a polarity relationship. The voltage Vdc is a voltage of a series circuit in which the second discharge capacitor Cdc2 is connected in series to a circuit in which the liquid crystal capacitor Clc1 and the auxiliary capacitor Ccs1 are connected in parallel, and a parallel circuit in which the discharge capacitor Cdc is connected in parallel.
 次に時刻t3からt4までの間で放電信号線Gs1からの放電信号によりTFT14がオンした場合、液晶容量Clc2及び補助容量Ccs2から上記並列回路に正の電荷(又は負の電荷)が移動してVdcがΔVだけ上昇(又は低下)したと仮定する。この場合、ΔVが上記直列回路で分圧されて液晶容量Clc1及び補助容量Ccs1の電圧(即ち画素P1の副画素電極11bの電圧)V3に加算されるから、時刻t4における副画素電極11aの電圧V4は、以下の式(2)で表されるように電圧V3から上昇(又は低下)する。 Next, when the TFT 14 is turned on by a discharge signal from the discharge signal line Gs1 between time t3 and t4, positive charges (or negative charges) move from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the parallel circuit. Assume that Vdc has increased (or decreased) by ΔV. In this case, ΔV is divided by the series circuit and added to the voltage V3 of the liquid crystal capacitor Clc1 and the auxiliary capacitor Ccs1 (that is, the voltage of the subpixel electrode 11b of the pixel P1), so the voltage of the subpixel electrode 11a at time t4. V4 increases (or decreases) from the voltage V3 as represented by the following formula (2).
V4=V3+ΔV×CDC2/(CLC+CCS+CDC2)・・・・・・・・・(2) V4 = V3 + ΔV × CDC2 / (CLC + CCS + CDC2) (2)
 一方、液晶容量Clc2及び補助容量Ccs2から上記並列回路に正の電荷(又は負の電荷)が移動した後の副画素電極11bの電圧は確実に低下(又は上昇)するから、TFT14がオンしたことにより副画素電極11a及び11bに生じる電圧変化が違いに逆極性となる。これにより、液晶容量Clc2に印加される電圧の絶対値が液晶容量Clc1に印加される電圧の絶対値より小さくなり、ガンマ特性の視角依存性が改善されるという効果を奏する。 On the other hand, the voltage of the sub-pixel electrode 11b after the positive charge (or negative charge) has moved from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the parallel circuit surely decreases (or increases), so that the TFT 14 is turned on. As a result, the voltage change generated in the sub-pixel electrodes 11a and 11b has the opposite polarity. Thereby, the absolute value of the voltage applied to the liquid crystal capacitor Clc2 becomes smaller than the absolute value of the voltage applied to the liquid crystal capacitor Clc1, and the effect of improving the viewing angle dependency of the gamma characteristic is obtained.
 その他、本変形例2で各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミングは、実施の形態1の図6A及び図6Bに示すものと同様である。
 なお、実施の形態1の構成に対する本変形例2の構成の違いは、前述の変形例1及び後述する他の実施の形態に対して適用することが可能である。
In addition, the timing indicating the time change of the signal applied to each signal line and the voltage of the subpixel electrode 11a in Modification 2 is the same as that shown in FIGS. 6A and 6B of the first embodiment.
The difference in the configuration of the present modification 2 from the configuration of the first embodiment can be applied to the above-described modification 1 and other embodiments described later.
 以上のように本変形例2によれば、TFT14がオンしたときに、第2副画素SP2に蓄積された電荷の一部が、第1副画素SP1の副画素電極11a及び放電容量電極13夫々に接続された電極を有する電極対で形成された第2の放電容量Cdc2を介して第1副画素SP1に移動する。
 従って、第1副画素SP1の副画素電極11a及び第2副画素SP2の副画素電極11bの電圧を互いに逆極性で変化させることが可能となる。このように、放電信号がオンしたときに副画素電極11a及び11bの電圧が逆極性で変化する構成であっても、対向電圧ずれの防止効果が損なわれることがない。
As described above, according to the second modification, when the TFT 14 is turned on, a part of the electric charge accumulated in the second subpixel SP2 is changed to the subpixel electrode 11a and the discharge capacitor electrode 13 of the first subpixel SP1, respectively. It moves to the first sub-pixel SP1 through the second discharge capacitor Cdc2 formed by the electrode pair having the electrodes connected to.
Accordingly, it is possible to change the voltages of the subpixel electrode 11a of the first subpixel SP1 and the subpixel electrode 11b of the second subpixel SP2 with opposite polarities. Thus, even when the voltage of the subpixel electrodes 11a and 11b changes with the reverse polarity when the discharge signal is turned on, the effect of preventing the counter voltage deviation is not impaired.
(実施の形態2)
 実施の形態1が、マトリックスの列毎に配されたソース信号線SLからライン毎に同一のデータ信号がTFT15a及び15b夫々を介して副画素電極11a及び11bに印加される形態であるのに対し、実施の形態2は、マトリックスの列毎に配された2つのソース信号線SL1及びSL2からライン毎に交互に異なるデータ信号がTFT15a及び15b夫々を介して副画素電極11a及び11bに印加される形態である。
(Embodiment 2)
In the first embodiment, the same data signal is applied to the sub-pixel electrodes 11a and 11b via the TFTs 15a and 15b from the source signal line SL arranged for each column of the matrix. In the second embodiment, different data signals are alternately applied to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b from the two source signal lines SL1 and SL2 arranged for each column of the matrix. It is a form.
 図10は、本発明の実施の形態2に係る液晶表示装置の構成例を示すブロック図である。本実施の形態2に係る液晶表示装置は、液晶パネル100cと、ゲートドライバGDbと、ソースドライバSDbと、ゲートドライバGDb及びソースドライバSDbを用いて液晶パネル100cによる表示を制御する表示制御回路4cとを備える。以下、実施の形態1と同様の構成については同様の符号を付してその説明の大部分を省略し、主に実施の形態1と異なる構成について説明する。 FIG. 10 is a block diagram showing a configuration example of the liquid crystal display device according to Embodiment 2 of the present invention. The liquid crystal display device according to the second embodiment includes a liquid crystal panel 100c, a gate driver GDb, a source driver SDb, and a display control circuit 4c that controls display by the liquid crystal panel 100c using the gate driver GDb and the source driver SDb. Is provided. In the following, the same components as those in the first embodiment are denoted by the same reference numerals, and most of the description thereof is omitted, and the components different from those in the first embodiment are mainly described.
 液晶パネル100cは、実施の形態1の液晶パネル100aと比較して、画素Pの一側方に垂直方向に配されたソース信号線がSL1であり、画素Pの他側方に垂直方向に配されたソース信号線SL2を更に有する。 In the liquid crystal panel 100c, as compared with the liquid crystal panel 100a of the first embodiment, the source signal line arranged in the vertical direction on one side of the pixel P is SL1, and is arranged in the vertical direction on the other side of the pixel P. The source signal line SL2 is further provided.
 表示制御回路4cは、実施の形態1における表示制御回路4aと比較して、ソース信号制御回路41bが、ソースドライバSDbを用いてマトリックスの列毎に2本のソース信号線SL1及びSL2を制御するようになっている点と、走査信号制御回路42b及び放電信号制御回路43b夫々が、ゲートドライバGDbを用いて隣り合う2行の走査信号線Gm,Gm及び放電信号線Gs,Gsを同時に制御する点とが異なる。 In the display control circuit 4c, compared to the display control circuit 4a in the first embodiment, the source signal control circuit 41b controls the two source signal lines SL1 and SL2 for each column of the matrix using the source driver SDb. The scanning signal control circuit 42b and the discharge signal control circuit 43b simultaneously control the two adjacent scanning signal lines Gm and Gm and the discharge signal lines Gs and Gs using the gate driver GDb. The point is different.
 図11は、画素Pとソース信号線SL1又はSL2との接続関係を示す説明図である。画素Pに付随する寄生容量は、実施の形態1の図4に示すものと同様であるため、その説明を省略する。画素P1,3,5,・・のTFT15a及び15bのソース電極は、ソース信号線SL1に接続されている。画素P2,4,6,・・のTFT15a及び15bのソース電極は、ソース信号線SL2に接続されている。つまり、ソース信号線SL1及びSL2から、ライン毎に交互に異なるデータ信号がTFT15a及び15bを介して副画素電極11a及び11bに印加される。この構成にて、走査信号線Gm1及びGm2からの走査信号を同時にオンすることにより、1H(水平走査期間)内に画素P1及びP2夫々を含む2ラインを同時に走査することができる。 FIG. 11 is an explanatory diagram showing a connection relationship between the pixel P and the source signal line SL1 or SL2. Since the parasitic capacitance associated with the pixel P is the same as that shown in FIG. 4 of the first embodiment, the description thereof is omitted. The source electrodes of the TFTs 15a and 15b of the pixels P1, 3, 5,... Are connected to the source signal line SL1. The source electrodes of the TFTs 15a and 15b of the pixels P2, 4, 6,... Are connected to the source signal line SL2. That is, different data signals are alternately applied from the source signal lines SL1 and SL2 to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b. With this configuration, by simultaneously turning on the scanning signals from the scanning signal lines Gm1 and Gm2, it is possible to simultaneously scan two lines including the pixels P1 and P2 within 1H (horizontal scanning period).
 本実施の形態2では、放電信号線Gs1及びGs2からの放電信号を同時にオンすることとなるが、これらの放電信号が走査信号線Gm1及びGm2からの走査信号に対して重なりがないようにする必要があるのは、実施の形態1と同様である。この条件が余裕をもってクリアされている限り、画素P1及びP2夫々の副画素SP2の副画素電極11bが、放電信号線Gs1及びGs2との間に存在する寄生容量Cgpを介して放電信号線Gs1及びGs2から突き上げ及び突き下げの影響を略等しく受けるため、基本的には画素P1及びP2の第2副画素SP2について対向電圧ずれが生じない。 In the second embodiment, the discharge signals from the discharge signal lines Gs1 and Gs2 are simultaneously turned on, but these discharge signals are prevented from overlapping with the scan signals from the scan signal lines Gm1 and Gm2. What is necessary is the same as in the first embodiment. As long as this condition is cleared with a margin, the subpixel electrodes 11b of the subpixels SP2 of the pixels P1 and P2 are connected to the discharge signal lines Gs1 and Gs2 via the parasitic capacitance Cgp existing between the subpixel electrodes 11b and Gs2. Since the influence of the push-up and push-down is substantially equal from Gs2, there is basically no counter voltage shift for the second subpixel SP2 of the pixels P1 and P2.
 一方、画素P1の第1副画素SP1については、非特許文献1及び特許文献1に記載の発明の構成にて対向電圧ずれが発生する可能性がある。特に、本実施の形態2のように2ラインを同時に走査する場合は、走査信号が同一であるのに対して1ライン目と2ライン目とで第1副画素SP1が影響をうける放電信号が異なるため、1ライン目の第1副画素SP1で対向電圧ずれが顕著に発生し易い。その結果、表示画面上で2ライン毎に白い横スジが視認されることとなる。 On the other hand, for the first subpixel SP1 of the pixel P1, a counter voltage shift may occur in the configurations of the inventions described in Non-Patent Document 1 and Patent Document 1. In particular, when two lines are scanned simultaneously as in the second embodiment, the discharge signal affected by the first subpixel SP1 is affected by the first and second lines while the scanning signal is the same. Because of the difference, the counter voltage shift is likely to occur significantly in the first subpixel SP1 in the first line. As a result, white horizontal stripes are visually recognized every two lines on the display screen.
 以下では、本願の課題が解決される具体例について説明する。
 図12A及び図12Bは、実施の形態2に係る液晶表示装置で各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミング図である。図12A及び図12Bに示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、0ライン目の放電信号線Gs0、1ライン目の走査信号線Gm1、1ライン目の放電信号線Gs1、2ライン目の走査信号線Gm2及び2ライン目の放電信号線Gs2夫々の信号レベルと、画素P1及び画素P2夫々の副画素SP1の副画素電極11aの電圧レベルとを表す。信号レベルはオンの状態を正のパルスで表し、電圧レベルは対向電極21の電位、即ち対向電圧Vcomに対する電位差として表す。破線と破線との間の期間は、何れも1Hである。
Below, the specific example with which the subject of this application is solved is demonstrated.
12A and 12B are timing charts showing time changes of signals applied to the signal lines and voltages of the subpixel electrodes 11a in the liquid crystal display device according to Embodiment 2. FIG. In the seven timing charts shown in FIGS. 12A and 12B, the horizontal axis is the same time axis, and the vertical axis is the discharge signal line Gs0 of the 0th line and the scanning signal of the 1st line from the top of the figure. The line Gm1, the first discharge signal line Gs1, the second scanning signal line Gm2, and the second discharge signal line Gs2, and the subpixel electrode 11a of the subpixel SP1 of the pixel P1 and the pixel P2 respectively. Represents the voltage level. The signal level is represented by a positive pulse indicating the ON state, and the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom. The period between the broken lines is 1H.
 図12Aでは走査信号及び放電信号の信号幅が1Hの長さ未満であるのに対し、図12Bでは走査信号及び放電信号の信号幅が1Hの長さより長く2Hの長さ未満である点に違いがある。走査信号線Gmkから(kは0以上の整数)の走査信号が2ライン同時にオンする点と、走査信号及び放電信号が、2ライン毎に1Hずつ遅れてオンする点と、放電信号線Gsk-1からの放電信号の前縁(図12A及び図12Bでは立ち上がり)が、走査信号線Gmkからの走査信号の後縁(図12A及び図12Bでは立ち下がり)よりもTd以上遅れている点とは、図12A及び図12Bで共通している。走査信号及び放電信号の信号幅が2Hの長さより長い場合についても同様である。 In FIG. 12A, the signal width of the scanning signal and the discharge signal is less than 1H, whereas in FIG. 12B, the signal width of the scanning signal and the discharge signal is longer than 1H and less than 2H. There is. The scanning signal line Gmk (k is an integer of 0 or more) is turned on simultaneously for two lines, the scanning signal and the discharge signal are turned on with a delay of 1H every two lines, and the discharge signal line Gsk− The leading edge of the discharge signal from 1 (rising edge in FIGS. 12A and 12B) is delayed by Td or more than the trailing edge of the scanning signal from the scanning signal line Gmk (falling edge in FIGS. 12A and 12B). 12A and 12B are common. The same applies to the case where the signal width of the scanning signal and the discharge signal is longer than 2H.
 図12Aにおいて、走査信号線Gm1及びGm2からの走査信号が、時刻t1からt2までの間で立ち上がってTFT15a及び15bがオンした後に、時刻t2で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t3(又はt4)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。 In FIG. 12A, when the scanning signals from the scanning signal lines Gm1 and Gm2 rise from the time t1 to the time t2 and turn on the TFTs 15a and 15b and then fall at the time t2, the influence of the pull-in phenomenon (feedthrough) As a result, the voltage level of the sub-pixel electrode 11a slightly decreases. Thereafter, the discharge signal from the discharge signal line Gs0 (or Gs1) rises after a delay of Td or more, and the discharge signal falls at time t3 (or t4). During this time, the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1). The voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
 図12Bにおいても同様であり、走査信号線Gm1及びGm2からの走査信号が、時刻t0からt1までの間で立ち上がってTFT15a及び15bがオンした後に、時刻t2で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t4(又はt5)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。 The same applies to FIG. 12B. When the scanning signals from the scanning signal lines Gm1 and Gm2 rise from time t0 to t1 and turn on the TFTs 15a and 15b and then fall at time t2, the pull-in phenomenon (feed) The voltage level of the sub-pixel electrode 11a slightly decreases due to the influence of “through”. Thereafter, the discharge signal from the discharge signal line Gs0 (or Gs1) rises after a delay of Td or more, and the discharge signal falls at time t4 (or t5). During this time, the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1). The voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
 以下では、上述のTdを変化させたときの対向電圧ずれを実測した結果と本発明の視覚的な効果とについて説明する。
 図13は、放電信号の遅れ時間と最適対向電圧との関係を示すグラフであり、図14は、対向電圧ずれにより発生する横スジの有無を説明するための説明図である。図13の横軸は、走査信号の後縁に対する1ライン前の放電信号の前縁の遅れ時間(μs)を表し、縦軸は最適対向電圧(V)を表す。ここで実測に用いた液晶表示装置は、フルHDでフレームレートが120Hzのものであり、表示される階調が64/255の場合について実測した。実線は画素P1の副画素SP1についての最適対向電圧を表し、破線は、比較のために示した画素P2の副画素SP1についての最適対向電圧を表す。なお、Tdの値が負である場合は、画素P1の走査信号の立ち下がりに対して画素P0の放電信号の立ち上がりが時間的に先行していることを表す。
In the following, the results of actually measuring the counter voltage deviation when Td is changed and the visual effect of the present invention will be described.
FIG. 13 is a graph showing the relationship between the delay time of the discharge signal and the optimum counter voltage, and FIG. 14 is an explanatory diagram for explaining the presence or absence of a horizontal stripe caused by the counter voltage deviation. The horizontal axis in FIG. 13 represents the delay time (μs) of the leading edge of the discharge signal one line before the trailing edge of the scanning signal, and the vertical axis represents the optimum counter voltage (V). Here, the liquid crystal display device used for the actual measurement was measured for the case of full HD, frame rate of 120 Hz, and displayed gradation of 64/255. A solid line represents the optimum counter voltage for the subpixel SP1 of the pixel P1, and a broken line represents the optimum counter voltage for the subpixel SP1 of the pixel P2 shown for comparison. Note that when the value of Td is negative, it indicates that the rise of the discharge signal of the pixel P0 precedes the fall of the scan signal of the pixel P1.
 本実施の形態2にあっては、画素P1に対する走査信号の立ち下がりからTd以上遅れて画素P0に対する放電信号が立ち上がり、画素P2に対する走査信号の立ち下がりから1H+Td以上遅れて画素P1に対する放電信号が立ち上がる。このため、画素P2の副画素SP1の副画素電極11aについては基本的に対向電圧ずれが発生せず、最適対向電圧は略6.4Vで一定となる(図13の破線参照)。 In the second embodiment, the discharge signal for the pixel P0 rises with a delay of Td or more from the fall of the scanning signal for the pixel P1, and the discharge signal for the pixel P1 with a delay of 1H + Td or more after the fall of the scanning signal for the pixel P2. stand up. For this reason, the sub-pixel electrode 11a of the sub-pixel SP1 of the pixel P2 basically does not cause a counter voltage shift, and the optimum counter voltage is constant at about 6.4 V (see the broken line in FIG. 13).
 一方、画素P1の副画素SP1の副画素電極11aについては、上記Tdを-7.4μs、-3.0μs、-0.74μs、±0μs、及び+1.5μsと変化させると、最適対向電圧が5.05V、5.12V、5.60V、6.17V、及び6.42Vと変化する。つまり、Tdが0μsでは依然として対向電圧ずれが発生し、Tdが1.5μs以上確保されていれば対向電圧ずれが解消されると言える。
 なお、表示画面上の位置によって、対向電圧ずれが防止可能なTdの値が異なる場合は、最大のTdを採用すればよい。
On the other hand, for the subpixel electrode 11a of the subpixel SP1 of the pixel P1, when the Td is changed to -7.4 μs, −3.0 μs, −0.74 μs, ± 0 μs, and +1.5 μs, the optimum counter voltage is Varies with 5.05V, 5.12V, 5.60V, 6.17V, and 6.42V. That is, it can be said that the counter voltage deviation still occurs when Td is 0 μs, and that the counter voltage deviation is eliminated if Td is secured to 1.5 μs or more.
Note that if the value of Td that can prevent the counter voltage deviation differs depending on the position on the display screen, the maximum Td may be adopted.
 図14に移って、図の上段は対向電圧ずれが発生している場合の液晶パネル100cの表示画面を表し、下段は対向電圧ずれが発生していない場合の液晶パネル100cの表示画面を表す。階調変化に対する画素Pの輝度変化が非直線的であるため、対向電圧ずれが発生している場合に、画素Pの輝度が理想的な輝度よりも明るい方にずれる傾向があることが知られている。このため、一律な中間調の画面を表示させた場合に、表示画面上の2ライン毎に白い横スジが視認される(上段の図参照)。これに対して、対向電圧ずれが発生していない場合、表示画面上には白い横スジが視認されない(下段の図参照)。 14, the upper part of the figure represents the display screen of the liquid crystal panel 100c when the counter voltage deviation occurs, and the lower part represents the display screen of the liquid crystal panel 100c when the counter voltage deviation does not occur. Since the luminance change of the pixel P with respect to the gradation change is non-linear, it is known that the luminance of the pixel P tends to shift to a brighter side than the ideal luminance when a counter voltage shift occurs. ing. For this reason, when a uniform halftone screen is displayed, a white horizontal stripe is visually recognized every two lines on the display screen (see the upper diagram). On the other hand, when the counter voltage deviation does not occur, white horizontal stripes are not visually recognized on the display screen (see the lower diagram).
 以上のように本実施の形態2によれば、マトリックスの列毎に配された2つのソース信号線SL1及びSL2からライン毎に交互に異なるデータ信号が、TFT15a及び15b夫々を介して第1副画素SP1の副画素電極11a及び第2副画素SP2の副画素電極11bに印加されており、隣り合う2つのラインの走査信号を同時的にオンする。
 従って、1水平走査期間内に2ラインを走査することが可能となる一方で、同時に走査される2ラインのうち1ライン目の画素Pの副画素SP1に対向電圧ずれが発生し易い構成であっても、対向電圧ずれを防止することが可能となる。
As described above, according to the second embodiment, data signals that are alternately different for each line from the two source signal lines SL1 and SL2 arranged for each column of the matrix are supplied to the first sub-line via the TFTs 15a and 15b, respectively. Applied to the subpixel electrode 11a of the pixel SP1 and the subpixel electrode 11b of the second subpixel SP2, the scanning signals of two adjacent lines are simultaneously turned on.
Therefore, while it becomes possible to scan two lines within one horizontal scanning period, a counter voltage shift is likely to occur in the sub-pixel SP1 of the pixel P of the first line among the two lines scanned simultaneously. However, it is possible to prevent the counter voltage deviation.
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. In addition, the technical features described in each embodiment can be combined with each other.
 P、P0、P1、P2 画素
 SP1、SP2 副画素
 Clc1、Clc2 液晶容量
 Ccs1、Ccs2 補助容量
 Cdc 放電容量
 Cdc2 第2の放電容量
 CS1、CS2 補助容量電圧線
 CSL 補助容量電圧幹配線
 Gm、Gm1、Gm2 走査信号線
 GDa、GDb ゲートドライバ
 Gs、Gs0、Gs1、Gs2 放電信号線
 SDa、SDb ソースドライバ
 SL、SL1、SL2 ソース信号線
 11a、11b 副画素電極
 12a、12b 補助容量電極
 13 放電容量電極
 14、15a、15b TFT
 21 対向電極
 22a、22b 補助容量対向電極
 23 放電容量対向電極
 3 液晶層
 4a、4b、4c 表示制御回路
 40 画像信号入力回路
 41a、41b ソース信号制御回路
 42a、42b 走査信号制御回路
 43a、43b 放電信号制御回路
 44 補助容量電圧発生回路
 100a、100b、100c 液晶パネル
P, P0, P1, P2 Pixel SP1, SP2 Subpixel Clc1, Clc2 Liquid crystal capacitance Ccs1, Ccs2 Auxiliary capacitance Cdc Discharge capacitance Cdc2 Second discharge capacitance CS1, CS2 Auxiliary capacitance voltage line CSL Auxiliary capacitance voltage trunk wiring Gm, Gm1, Gm2 Scan signal line GDa, GDb Gate driver Gs, Gs0, Gs1, Gs2 Discharge signal line SDa, SDb Source driver SL, SL1, SL2 Source signal line 11a, 11b Subpixel electrode 12a, 12b Auxiliary capacitance electrode 13 Discharge capacitance electrode 14, 15a 15b TFT
21 Counter electrode 22a, 22b Auxiliary capacity counter electrode 23 Discharge capacity counter electrode 3 Liquid crystal layer 4a, 4b, 4c Display control circuit 40 Image signal input circuit 41a, 41b Source signal control circuit 42a, 42b Scan signal control circuit 43a, 43b Discharge signal Control circuit 44 Auxiliary capacitance voltage generation circuit 100a, 100b, 100c Liquid crystal panel

Claims (8)

  1.  液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有する画素がマトリックス状に配列されており、前記第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子と、該第1及び第2スイッチング素子の制御電極に走査信号をマトリックスの行毎に印加するための走査信号線と、前記第2副画素に含まれる放電容量電極及び所定電位に接続された放電容量対向電極の電極対と、前記第2副画素の副画素電極及び前記放電容量電極間に接続された第3スイッチング素子と、該第3スイッチング素子の制御電極に前記第3スイッチング素子をオンさせる放電信号をマトリックスの行毎に印加するための放電信号線とを備える液晶表示装置において、
     前記放電信号の前縁は、1つ後の行の走査信号の後縁よりも所定時間以上遅れていることを特徴とする液晶表示装置。
    Pixels having at least first and second subpixels defined including a subpixel electrode and an electrode pair of the counter electrodes facing each other through a liquid crystal layer are arranged in a matrix, and the first and second subpixels are arranged. First and second switching elements for applying data signals to the subpixel electrodes included therein, and scanning signals for applying scanning signals to the control electrodes of the first and second switching elements for each row of the matrix A line, a discharge capacity electrode included in the second sub-pixel and an electrode pair of a discharge capacity counter electrode connected to a predetermined potential, and a first electrode connected between the sub-pixel electrode and the discharge capacity electrode of the second sub-pixel. A liquid crystal display device comprising: 3 switching elements; and a discharge signal line for applying a discharge signal for turning on the third switching element to the control electrode of the third switching element for each row of the matrix. In,
    2. A liquid crystal display device according to claim 1, wherein the leading edge of the discharge signal is delayed by a predetermined time or more than the trailing edge of the scanning signal of the next row.
  2.  前記第1及び第2副画素は、前記放電信号線と公差する方向に配置されており、
     前記放電信号線は、前記方向に隣り合う画素における隣り合う第1及び第2副画素の間に配置されていることを特徴とする請求項1に記載の液晶表示装置。
    The first and second subpixels are disposed in a direction that is in tolerance with the discharge signal line,
    The liquid crystal display device according to claim 1, wherein the discharge signal line is disposed between adjacent first and second subpixels in pixels adjacent in the direction.
  3.  前記第1及び第2副画素に印加されるデータ信号の極性は、1フレーム期間毎に反転することを特徴とする請求項1又2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the polarity of the data signal applied to the first and second sub-pixels is inverted every frame period.
  4.  前記第1及び第2副画素の夫々は、前記副画素電極に接続された補助容量電極及び前記所定電位に接続された補助容量対向電極の電極対を含んで画定されていることを特徴とする請求項1から3の何れか1項に記載の液晶表示装置。 Each of the first and second subpixels is defined to include an electrode pair of an auxiliary capacitance electrode connected to the subpixel electrode and an auxiliary capacitance counter electrode connected to the predetermined potential. The liquid crystal display device according to claim 1.
  5.  前記放電信号線に前記放電信号を印加する放電信号線駆動回路を更に備えることを特徴とする請求項1から4の何れか1項に記載の液晶表示装置。 5. The liquid crystal display device according to claim 1, further comprising a discharge signal line driving circuit that applies the discharge signal to the discharge signal line. 6.
  6.  前記画素は、前記第1副画素の副画素電極及び前記放電容量電極夫々に接続された電極を有する電極対を含んで画定されていることを特徴とする請求項1から5の何れか1項に記載の液晶表示装置。 The said pixel is demarcated including the electrode pair which has an electrode connected to the sub-pixel electrode of said 1st sub-pixel, and said discharge capacity electrode, respectively. A liquid crystal display device according to 1.
  7.  マトリックスの行毎に交互に異なるデータ信号を前記第1及び第2スイッチング素子の一端に印加するための2つのデータ信号線をマトリックスの列毎に更に備え、
     隣り合う2つの行を同時に走査するようにしてある
     ことを特徴とする請求項1から6の何れか1項に記載の液晶表示装置。
    Two data signal lines for applying different data signals alternately to each row of the matrix to one end of the first and second switching elements for each column of the matrix;
    The liquid crystal display device according to any one of claims 1 to 6, wherein two adjacent rows are simultaneously scanned.
  8.  液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有する画素がマトリックス状に配列されており、前記第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子と、該第1及び第2スイッチング素子の制御電極に走査信号をマトリックスの行毎に印加するための走査信号線と、前記第2副画素に含まれる放電容量電極及び所定電位に接続された放電容量対向電極の電極対と、前記第2副画素の副画素電極及び前記放電容量電極間に接続された第3スイッチング素子と、該第3スイッチング素子の制御電極に前記第3スイッチング素子をオンさせる放電信号をマトリックスの行毎に印加するための放電信号線とを備える液晶表示装置を駆動する方法において、
     前記放電信号の前縁を、1つ後の行の走査信号の後縁よりも所定時間以上遅らせることを特徴とする液晶表示装置の駆動方法。
    Pixels having at least first and second subpixels defined including a subpixel electrode and an electrode pair of the counter electrodes facing each other through a liquid crystal layer are arranged in a matrix, and the first and second subpixels are arranged. First and second switching elements for applying data signals to the subpixel electrodes included therein, and scanning signals for applying scanning signals to the control electrodes of the first and second switching elements for each row of the matrix A line, a discharge capacity electrode included in the second sub-pixel and an electrode pair of a discharge capacity counter electrode connected to a predetermined potential, and a first electrode connected between the sub-pixel electrode and the discharge capacity electrode of the second sub-pixel. A liquid crystal display device comprising: 3 switching elements; and a discharge signal line for applying a discharge signal for turning on the third switching element to the control electrode of the third switching element for each row of the matrix. A method of driving a
    A driving method of a liquid crystal display device, wherein the leading edge of the discharge signal is delayed by a predetermined time or more from the trailing edge of the scanning signal of the next row.
PCT/JP2015/073627 2015-08-21 2015-08-21 Liquid crystal display device and method for driving liquid crystal display device WO2017033243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073627 WO2017033243A1 (en) 2015-08-21 2015-08-21 Liquid crystal display device and method for driving liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073627 WO2017033243A1 (en) 2015-08-21 2015-08-21 Liquid crystal display device and method for driving liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2017033243A1 true WO2017033243A1 (en) 2017-03-02

Family

ID=58100146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073627 WO2017033243A1 (en) 2015-08-21 2015-08-21 Liquid crystal display device and method for driving liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2017033243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824793A (en) * 2018-08-09 2020-02-21 南京瀚宇彩欣科技有限责任公司 Special-shaped display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065058A1 (en) * 2009-11-30 2011-06-03 シャープ株式会社 Substrate for liquid crystal display device, liquid crystal display device, and method for driving liquid crystal display device
WO2012005038A1 (en) * 2010-07-09 2012-01-12 シャープ株式会社 Liquid crystal display device
JP2012008543A (en) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065058A1 (en) * 2009-11-30 2011-06-03 シャープ株式会社 Substrate for liquid crystal display device, liquid crystal display device, and method for driving liquid crystal display device
JP2012008543A (en) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd Liquid crystal display device
WO2012005038A1 (en) * 2010-07-09 2012-01-12 シャープ株式会社 Liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824793A (en) * 2018-08-09 2020-02-21 南京瀚宇彩欣科技有限责任公司 Special-shaped display panel
CN110824793B (en) * 2018-08-09 2022-04-22 南京瀚宇彩欣科技有限责任公司 Special-shaped display panel

Similar Documents

Publication Publication Date Title
KR101369587B1 (en) Liquid crystal display device
US8248336B2 (en) Liquid crystal display device and operating method thereof
TWI393094B (en) Liquid crystal display device and driving method
US8810491B2 (en) Liquid crystal display with color washout improvement and method of driving same
US20200192167A1 (en) Liquid crystal display device
US8411003B2 (en) Liquid crystal display and methods of driving same
WO2008056574A1 (en) Liquid crystal display device
US9230497B2 (en) Display device having each pixel divided into sub pixels for improved view angle characteristic
KR101730552B1 (en) In-Plane Switching Mode LCD and method of driving the same
JP6220466B2 (en) Liquid crystal display device and driving method of liquid crystal display device
JP4592384B2 (en) Liquid crystal display
JP6490811B2 (en) Liquid crystal display device and driving method of liquid crystal display device
US20040196243A1 (en) Method of driving liquid crystal display device
KR101167929B1 (en) In plane switching mode liquid crystal display device
WO2017033243A1 (en) Liquid crystal display device and method for driving liquid crystal display device
JP5789354B2 (en) Electro-optical device and electronic apparatus
KR20070002221A (en) Multi-domain liquid crystal display device
JP2010128004A (en) Liquid crystal display
CN109313877B (en) Liquid crystal display device and method for driving liquid crystal display device
WO2013100086A1 (en) Liquid crystal display device
KR100922296B1 (en) Liquid crystal display device
JP4787911B2 (en) Liquid crystal display device and method for preventing seizure thereof
KR20110074035A (en) Liquid crystal display device and method of driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15902214

Country of ref document: EP

Kind code of ref document: A1