WO2017032214A1 - 一种偏振分束器 - Google Patents

一种偏振分束器 Download PDF

Info

Publication number
WO2017032214A1
WO2017032214A1 PCT/CN2016/093610 CN2016093610W WO2017032214A1 WO 2017032214 A1 WO2017032214 A1 WO 2017032214A1 CN 2016093610 W CN2016093610 W CN 2016093610W WO 2017032214 A1 WO2017032214 A1 WO 2017032214A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
beam splitter
cross
mode
refractive index
Prior art date
Application number
PCT/CN2016/093610
Other languages
English (en)
French (fr)
Inventor
沈百林
方舟
张琦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017032214A1 publication Critical patent/WO2017032214A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Definitions

  • the present application relates to, but is not limited to, the field of optical communications, and in particular to a polarizing beam splitter.
  • a polarization beam splitter (or polarization splitter and rotator) in an optical communication is an integrated optoelectronic device that realizes separation of a transverse electric (TE) mode and a transverse magnetic (TM) mode in a silicon optical related communication chip. In the middle, it is also necessary to convert the TM mode to the TE' mode.
  • TE transverse electric
  • TM transverse magnetic
  • the implementation method of the polarization beam splitter is mainly based on two types of two-dimensional gratings and waveguides.
  • the waveguide-based method can be further divided into mode evolution and mode coupling.
  • the asymmetric waveguide method may be employed based on the mode coupling.
  • the through waveguide (waveguide A) employs a strip waveguide
  • the cross waveguide (waveguide B) employs a progressive secondary etched waveguide.
  • the processing for width adjustment of the secondary etched waveguide is very difficult, and the related processing technique is difficult to realize a silicon waveguide having a width of less than 100 nm.
  • the related implementation scheme of the polarization beam splitter has problems such as processing difficulty, complicated or even non-standard process steps, and small process tolerance.
  • the embodiment of the present invention provides a polarization beam splitter for solving the problem that the polarization beam splitter in the related art has a large processing difficulty, requires complicated or even non-standard process steps, and has a small process tolerance.
  • Embodiments of the present invention provide a polarization beam splitter, comprising: a through waveguide and a cross waveguide; the coupled waveguide of the through waveguide is a fixed shape secondary etched waveguide, and the coupled waveguide of the cross waveguide is a progressive strip waveguide, the through waveguide and There is a gap between the cross waveguides and asymmetry.
  • a transverse electric (TE) mode signal is input from the input waveguide of the through waveguide, and is output from the output waveguide of the through waveguide;
  • a transverse magnetic (TM) mode signal is input from the input waveguide of the through waveguide, and the mode is converted to horizontal in the coupled waveguide.
  • the coupled waveguide of the through waveguide is an L-shaped waveguide realized by secondary etching.
  • the width of the coupled waveguide of the cross-waveguide gradually becomes larger along the direction of light propagation.
  • the effective refractive index of the TE mode of the through waveguide is greater than the effective refractive index of the TE mode of the crossed waveguide; the effective refractive index of the TM mode of the through waveguide is equal to the effective refractive index of the TE mode of the crossed waveguide.
  • the polarizing beam splitter further comprises: a cladding covering the through waveguide and the cross waveguide; and a buried layer under the through waveguide and the cross waveguide, wherein the material of the through waveguide and the cross waveguide has a refractive index greater than that of the cladding layer and the buried layer The refractive index of the material.
  • the material of the through waveguide and the cross waveguide is silicon
  • the cladding and buried material is silicon dioxide.
  • the width of the through waveguide is greater than the width of the crossed waveguide.
  • the width of the through waveguide is 550 nanometers (nm)
  • the width of the unetched portion of the through waveguide is 400 nm
  • the height of the highest portion of the through waveguide is 220 nm
  • the height of the etched portion is 150 nm
  • the width of the crossed waveguide is from 250 nm.
  • the height of the crossed waveguide is 220 nm.
  • the spacing between the through waveguide and the crossed waveguide is 200 nm.
  • the length of the coupled waveguide of the through waveguide and the cross waveguide is greater than or equal to 100 micrometers ( ⁇ m).
  • the polarization beam splitter comprises a through waveguide and a cross waveguide, and the through waveguide and the cross waveguide are spaced and asymmetric, and the coupled waveguide of the through waveguide is a fixed shape secondary etched waveguide, and the cross waveguide is coupled.
  • the waveguide is a progressive strip waveguide.
  • the silicon light process is compatible, no complicated or even non-standard process steps are required, and the progressive structure of the cross-waveguide allows the processing process tolerance to be large, achieving the effects of small device size, high coupling efficiency, low loss, and low crosstalk.
  • the minimum dimension parameter of the device is no greater than the minimum feature size under the associated silicon light processing technique.
  • FIG. 1 is a schematic diagram of a polarization beam splitter according to an embodiment of the present invention.
  • FIG. 2 is a top plan view of an asymmetrically coupled waveguide of a polarization beam splitter according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of an asymmetrically coupled waveguide of a polarization beam splitter according to an embodiment of the present invention
  • FIG. 4 is an electric field diagram of a polarization beam splitter inputting a TE mode according to an embodiment of the present invention
  • FIG. 5 is an electric field diagram of a polarization beam splitter inputting a TM mode according to an embodiment of the present invention
  • Figure 6 is a diagram showing the relationship between the insertion loss of the input TE signal and the coupling length
  • Figure 7 is a graph showing the relationship between the polarization conversion loss of the input TM signal and the coupling length
  • Figure 8 is a diagram showing the relationship between the crosstalk of the input TE signal and the coupling length
  • Figure 9 is a diagram showing the relationship between the crosstalk of the input TM signal and the coupling length
  • Figure 10 is a graph showing changes in the effective refractive index of the waveguide B as a function of the width WB of the waveguide B;
  • Figure 11 is a graph showing changes in effective refractive index of waveguide A with width WAe;
  • Figure 12 is a graph showing the variation of the double waveguide mode mixing with the width WB of the waveguide B.
  • Embodiments of the present invention provide a polarization beam splitter including a through waveguide and a cross waveguide.
  • the through waveguide and the cross waveguide are spaced and asymmetric, and the coupled waveguide of the through waveguide is a fixed shape secondary etched waveguide, and the cross waveguide
  • the coupled waveguide is a progressive strip waveguide.
  • the transverse electric (TE) mode signal is input from the input waveguide of the through waveguide, and is output from the output waveguide of the through waveguide;
  • the transverse magnetic (TM) mode signal is input from the input waveguide of the through waveguide, and the mode is converted to horizontal electric in the coupled waveguide ( TE') mode and output from the output waveguide of the cross-waveguide.
  • the coupled waveguide of the through waveguide is an L-shaped waveguide realized by secondary etching.
  • the width of the coupled waveguide of the cross-waveguide gradually increases along the direction of light propagation, and this progressive structure makes the device good. Process tolerance tolerance.
  • the effective refractive index of the TE mode of the through waveguide is greater than the effective refractive index of the TE mode of the crossed waveguide, so that the TE mode of the through waveguide is not coupled to the cross waveguide; the effective refractive index of the TM mode of the through waveguide is equal to the TE of the crossed waveguide The effective refractive index of the mode is such that the TM mode of the through waveguide is coupled to the cross waveguide.
  • the width of the through waveguide is greater than the width of the crossed waveguide.
  • the heights of the through waveguide and the cross waveguide are at the usual heights of the associated machining process.
  • the lengths of the through waveguide and the cross waveguide are designed to have device losses within a desired range.
  • the polarization beam splitter further includes a cladding overlying the through waveguide and the cross waveguide and a buried layer under the through waveguide and the cross waveguide.
  • the refractive index of the material of the through waveguide and the cross waveguide is greater than the refractive index of the material of the cladding layer and the buried layer.
  • the materials of the cladding and the buried layer may be the same.
  • the material of the through waveguide and the cross waveguide is silicon
  • the cladding and buried material is silicon dioxide.
  • FIG. 1 is a schematic diagram of a polarization beam splitter according to an embodiment of the present invention.
  • the waveguide of the polarization beam splitter provided by the embodiment of the present invention is divided into three parts: an input waveguide, a coupled waveguide, and an output waveguide.
  • the waveguide consists of a through waveguide (waveguide A) and a crossover waveguide (waveguide B).
  • the TE mode signal is input from the input waveguide of the waveguide A, and is output from the output waveguide of the waveguide A;
  • the TM mode is input from the input waveguide of the waveguide A, and is converted into a TE' mode in the coupled waveguide, and is output from the output waveguide of the waveguide B.
  • the input waveguide and the output waveguide can be implemented by common techniques, such as bending the waveguide structure to reduce mode coupling. Therefore, it will not be repeated here.
  • FIG. 2 is a top plan view of an asymmetrically coupled waveguide of a polarization beam splitter according to an embodiment of the present invention.
  • 3 is a cross-sectional view of an asymmetrically coupled waveguide of a polarization beam splitter according to an embodiment of the present invention.
  • the waveguide is composed of an asymmetric waveguide A (Waveguide A) and a waveguide B (Waveguide B).
  • the waveguide is located between the cladding layer and the buried layer.
  • the refractive index of the waveguide material is larger than that of the cladding layer and the buried layer.
  • the rate, in which the cladding and buried material can be the same.
  • the waveguide material is silicon, and the cladding and buried material are silicon dioxide.
  • the effective refractive index of the TE mode of the waveguide A is greater than the effective refractive index of the TE mode of the waveguide B, so that the TE mode of the waveguide A is not coupled to the waveguide B; the effective refractive index of the TM mode of the waveguide A is approximately equal to the TE mode of the waveguide B.
  • the effective refractive index is such that the TM mode of the waveguide A is coupled to the waveguide B.
  • the coupled waveguide of the waveguide A is a secondary etched waveguide of a fixed shape (such as an L-shape).
  • the width of the waveguide A is WA, for example, 550 nm
  • the shaded portion of the waveguide A is twice.
  • the coupled waveguide of the waveguide A has the same length as the coupled waveguide of the waveguide B (LDC as shown in FIG. 2). In general, the width of the waveguide A is larger than the width of the waveguide B.
  • the coupled waveguide of the waveguide B is a graded strip waveguide, and the width of the waveguide B is slowly increased from WB1 (eg, 250 nm) to WB2 (eg, 300 nm), that is, the width of the strip waveguide is along the direction of light propagation (direction shown in FIG. 2) D) Gradually getting larger, this progressive structure gives the device a good process tolerance.
  • WB1 eg, 250 nm
  • WB2 eg, 300 nm
  • the spacing between the waveguide A and the waveguide B is GAP, which is generally determined by the minimum spacing allowed by the silicon light processing technique, such as a typical value of 200 nm.
  • the highest part of the waveguide A and the waveguide B have a height H, which is generally 220 nm according to the relevant silicon light process standard.
  • the device parameters provided in this embodiment are only typical values of the principle. When the specific process is implemented, other reasonable values may be used, but the device working principle is required to match the effective refractive index of the waveguide A and the waveguide B. To achieve TE mode pass-through and TM mode coupling.
  • the embodiment realizes CMOS silicon light process compatibility, does not require complicated or even non-standard process steps, allows the processing process tolerance to be large through the progressive structure, and realizes that the minimum size parameter of the device is not greater than the relevant silicon light processing technology.
  • the minimum feature size is not greater than the relevant silicon light processing technology.
  • FIG. 4 is an electric field diagram of a polarization beam splitter inputting a TE mode according to an embodiment of the present invention
  • FIG. 5 is an electric field diagram of a polarization beam splitter inputting a TM mode according to an embodiment of the present invention.
  • the TE mode signal is directly outputted from the waveguide A
  • the TM mode signal is coupled from the waveguide A to the waveguide B cross output, realizing the intended function of polarization beam splitting.
  • FIG. 6 is a diagram showing the relationship between the insertion loss (IL) and the coupling length of the input TE signal
  • FIG. 7 is a graph showing the relationship between the polarization conversion loss (PCL) of the input TM signal and the coupling length
  • FIG. 8 is the input TE signal.
  • Figure 9 is a plot of crosstalk (XT) of the input TM signal versus coupling length. It can be seen from FIGS. 6 to 9 that the coupling length requires at least 100 ⁇ m, wherein in order to ensure a design margin, it is possible to take 200 ⁇ m. It can be seen that this embodiment is designed A suitable coupling length can achieve high coupling efficiency, low loss, and low crosstalk.
  • FIG. 10 is a graph showing the effective refractive index of the waveguide B as a function of the width WB of the waveguide B, wherein the ordinate Neff represents the effective refractive index
  • Fig. 12 is a graph showing the mode mixing state of the waveguide A and the waveguide B as a function of the width WB of the waveguide B, wherein the ordinate TE PF represents the polarization ratio of the TE mode.
  • the polarization beam splitter provided by the embodiment of the present invention has simple processing and is compatible with the CMOS silicon light process, and allows the processing process tolerance to be large through the progressive structure, and the minimum size parameter of the device is not greater than
  • the minimum feature size under the related silicon light processing technology achieves the effects of small device size, high coupling efficiency, low loss, and low crosstalk.
  • the embodiment of the present application provides a polarization beam splitter, which is simple in processing, solves the problem that the polarization beam splitter of the related art has a large processing difficulty, and realizes compatibility of the CMOS silicon light process, and does not require complicated or even non-standard process steps, and crossover.
  • the progressive structure of the waveguide allows the machining process tolerance to be large, achieving the effects of small device size, high coupling efficiency, low loss, and low crosstalk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种偏振分束器,包括直通波导和交叉波导,直通波导与交叉波导之间存在间隔且非对称,直通波导的耦合波导为固定形状的二次刻蚀波导,交叉波导的耦合波导为渐进型条形波导。上述偏振分束器,用来解决相关技术的偏振分束器存在加工难度大、需要复杂甚至非标准的工艺步骤、工艺容差小的问题。

Description

一种偏振分束器 技术领域
本申请涉及但不限于光通信领域,尤其涉及一种偏振分束器。
背景技术
目前,偏振控制在许多应用领域起着非常关键的作用,例如通信、生物传感、量子光学。高效率和小尺寸的偏振控制器件具有非常重要的应用价值。光通信中的偏振分束器(polarization beam splitter,或者,polarization splitter and rotator)是一种集成光电子器件,实现横电(TE)模和横磁(TM)模的分离,在硅光相关通信芯片中,还需实现将TM模转换为TE’模。
目前,偏振分束器的实现方法主要基于二维光栅和波导两大类。其中,基于波导的方法又可分为模式演化(mode evolution)和模式耦合(mode coupling)。基于模式耦合可以采用非对称波导方式,例如,在相关技术中,直通波导(波导A)采用条形波导,交叉波导(波导B)采用渐进型二次刻蚀波导。然而,在上述方案中,对二次刻蚀波导进行宽度调整的加工难度很大,相关加工技术很难实现宽度小于100nm的硅波导。可见,偏振分束器的相关实现方案存在加工难度大、需要复杂甚至非标准的工艺步骤、工艺容差小等问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种偏振分束器,用来解决相关技术中的偏振分束器存在加工难度大、需要复杂甚至非标准的工艺步骤、工艺容差小的问题。
本发明实施例提供一种偏振分束器,包括:直通波导及交叉波导,直通波导的耦合波导为固定形状的二次刻蚀波导,交叉波导的耦合波导为渐进型条形波导,直通波导与交叉波导之间存在间隔且非对称。
可选地,横电(TE)模信号从直通波导的输入波导输入,从直通波导的输出波导输出;横磁(TM)模信号从直通波导的输入波导输入,在耦合波导中模式转换为横电(TE’)模,并从交叉波导的输出波导输出。
可选地,直通波导的耦合波导为通过二次刻蚀实现的L型波导。
可选地,交叉波导的耦合波导的宽度沿着光传播方向逐渐变大。
可选地,直通波导的TE模的有效折射率大于交叉波导的TE模的有效折射率;直通波导的TM模的有效折射率等于交叉波导的TE模的有效折射率。
可选地,上述偏振分束器还包括:覆盖在直通波导和交叉波导上的包层以及位于直通波导和交叉波导下面的埋层,直通波导和交叉波导的材料折射率大于包层和埋层的材料折射率。
可选地,直通波导和交叉波导的材料为硅,包层和埋层的材料为二氧化硅。
可选地,直通波导的宽度大于交叉波导的宽度。
可选地,直通波导的宽度为550纳米(nm),直通波导的未刻蚀部分宽度为400nm,直通波导的最高部分的高度为220nm,刻蚀部分的高度为150nm,交叉波导的宽度从250nm逐渐增加到300nm,交叉波导的高度为220nm。
可选地,直通波导与交叉波导之间的间隔为200nm。
可选地,直通波导和交叉波导的耦合波导的长度为大于或等于100微米(μm)。
在本发明实施例中,偏振分束器包括直通波导和交叉波导,直通波导与交叉波导之间存在间隔且非对称,直通波导的耦合波导为固定形状的二次刻蚀波导,交叉波导的耦合波导为渐进型条形波导。本发明实施例提供的偏振分束器与相关技术相比,加工简单,解决了相关技术的偏振分束器存在加工难度大的问题,而且实现了互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)硅光工艺兼容,无需复杂甚至非标准的工艺步骤,交叉波导的渐进结构允许加工工艺容差大,达到了器件尺寸小、耦合效率高、损耗小、串扰小的效果。而且,在本发明实施例中,器件最小尺寸参数不大于相关硅光加工技术下的最小特征尺寸。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的偏振分束器的示意图;
图2为本发明实施例提供的偏振分束器的非对称耦合波导的俯视图;
图3为本发明实施例提供的偏振分束器的非对称耦合波导的剖面图;
图4为本发明实施例提供的偏振分束器输入TE模时的电场图;
图5为本发明实施例提供的偏振分束器输入TM模时的电场图;
图6为输入TE信号的插入损耗与耦合长度的关系图;
图7为输入TM信号的偏振转换损耗与耦合长度的关系图;
图8为输入TE信号的串扰与耦合长度的关系图;
图9为输入TM信号的串扰与耦合长度的关系图;
图10为波导B的有效折射率随波导B的宽度WB的变化图;
图11为波导A的有效折射率随宽度WAe的变化图;
图12为双波导模式混合情况随波导B的宽度WB的变化图。
本发明的实施方式
以下结合附图对本发明实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
本发明实施例提供一种偏振分束器,包括直通波导和交叉波导,直通波导与交叉波导之间存在间隔且非对称,直通波导的耦合波导为固定形状的二次刻蚀波导,交叉波导的耦合波导为渐进型条形波导。
其中,横电(TE)模信号从直通波导的输入波导输入,从直通波导的输出波导输出;横磁(TM)模信号从直通波导的输入波导输入,在耦合波导中模式转换为横电(TE’)模,并从交叉波导的输出波导输出。
其中,直通波导的耦合波导为通过二次刻蚀实现的L型波导。交叉波导的耦合波导的宽度沿着光传播方向逐渐变大,此渐进结构使器件具备良好的 工艺加工误差容忍度。
其中,直通波导的TE模的有效折射率大于交叉波导的TE模的有效折射率,从而实现直通波导的TE模不会耦合到交叉波导;直通波导的TM模的有效折射率等于交叉波导的TE模的有效折射率,从而实现直通波导的TM模耦合到交叉波导。
其中,直通波导的宽度大于交叉波导的宽度。直通波导和交叉波导的高度采用相关加工工艺的常用高度。直通波导和交叉波导的长度设计为器件损耗在期望范围内。
此外,偏振分束器还包括覆盖在直通波导和交叉波导上的包层以及位于直通波导和交叉波导下面的埋层。其中,直通波导和交叉波导的材料折射率大于包层和埋层的材料折射率。包层和埋层的材料可以相同。例如,直通波导和交叉波导的材料为硅,包层和埋层的材料为二氧化硅。
图1为本发明实施例提供的偏振分束器的示意图。如图1所示,本发明实施例提供的偏振分束器包括的波导(Waveguide)分成三部分:输入波导、耦合波导和输出波导。所述波导由直通波导(波导A)和交叉波导(波导B)组成。其中,TE模信号从波导A的输入波导输入,从波导A的输出波导输出;TM模从波导A的输入波导输入,在耦合波导中模式转换为TE’模,从波导B的输出波导输出。其中,输入波导和输出波导可以采用常见技术实现,例如弯曲波导结构来减少模式耦合。故于此不再赘述。
图2为本发明实施例提供的偏振分束器的非对称耦合波导的俯视图。图3为本发明实施例提供的偏振分束器的非对称耦合波导的剖面图。
如图2所示,波导由非对称的波导A(Waveguide A)和波导B(Waveguide B)组成,波导位于包层和埋层之间,波导的材料折射率大于包层和埋层的材料折射率,其中,包层和埋层材料可以相同。在硅光器件中,波导材料采用硅,包层和埋层材料采用二氧化硅。
波导A的TE模的有效折射率大于波导B的TE模的有效折射率,从而实现波导A的TE模不会耦合到波导B;波导A的TM模的有效折射率近似等于波导B的TE模的有效折射率,从而实现波导A的TM模耦合到波导B。
以下参照图2及图3,对波导A和波导B的耦合波导部分的参数及含义进行详细说明。
波导A的耦合波导为固定形状(如L型)的二次刻蚀波导,波导A的宽度为WA,例如550nm,波导A的未刻蚀部分宽度WAe=400nm,波导A的阴影部分为二次刻蚀部分,刻蚀部分的高度He=150nm,即采用浅刻蚀技术。波导A的耦合波导与波导B的耦合波导的长度相同(如图2所示的LDC)。一般说来,波导A的宽度大于波导B的宽度。波导B的耦合波导为渐变的条形波导,波导B的宽度从WB1(如250nm)缓慢增加到WB2(如300nm),即条形波导的宽度沿着光传播方向(如图2所示的方向D)逐渐变大,此渐进结构使器件具备良好的工艺加工误差容忍度。如此,相较于相关技术,本实施例中的波导A和波导B的加工相对简单,能够解决相关技术的偏振分束器加工难度大的问题。
波导A和波导B的间隔为GAP,一般取硅光加工技术允许的最小间隔,例如典型值为200nm。波导A和波导B的最高部分的高度均为H,根据相关硅光工艺标准,一般取220nm。需要注意的是,本实施例提供的器件参数仅为说明原理的典型值,涉及具体工艺实现时,可采用其他合理值,但需要符合器件工作原理,与波导A和波导B的有效折射率匹配以实现TE模直通和TM模耦合。综上可见,本实施例实现了CMOS硅光工艺兼容,无需复杂甚至非标准的工艺步骤,通过渐进结构允许加工工艺容差大,而且,实现了器件最小尺寸参数不大于相关硅光加工技术下的最小特征尺寸。
图4为本发明实施例提供的偏振分束器输入TE模时的电场图;图5为本发明实施例提供的偏振分束器输入TM模时的电场图。如图4及图5可见,TE模信号直接从波导A直通(straight)输出,TM模信号从波导A耦合到波导B交叉(cross)输出,实现了偏振分束的预期功能。
图6为输入TE信号的插入损耗(IL)与耦合长度(Coupling Length)的关系图;图7为输入TM信号的偏振转换损耗(PCL)与耦合长度的关系图;图8为输入TE信号的串扰(XT)与耦合长度的关系图;图9为输入TM信号的串扰(XT)与耦合长度的关系图。根据图6至图9可见,耦合长度至少需要100μm,其中,为保证设计余量,可取200μm。可见,本实施例通过设 计合适的耦合长度,可以达到耦合效率高、损耗小、串扰小的效果。
图10为波导B的有效折射率随波导B的宽度WB的变化图,其中,纵坐标Neff表示有效折射率;图11为波导A的有效折射率随宽度WAe的变化图,其中,波导A的宽度WA=550nm;图12为波导A和波导B的模式混合状态随波导B的宽度WB的变化图,其中,纵坐标TE PF表示TE模的偏振比率。从图12可以看出,当波导B的宽度WB在270nm附近时,模式混合达到了Ex:Ey=50:50,也就是说,此时模式转换效率最高。
综上所述,本发明实施例提供的偏振分束器与相关技术相比,加工简单,实现了CMOS硅光工艺兼容,通过渐进结构允许加工工艺容差大,实现了器件最小尺寸参数不大于相关硅光加工技术下的最小特征尺寸,达到了器件尺寸小、耦合效率高、损耗小、串扰小的效果。
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
本申请实施例提供一种偏振分束器,加工简单,解决了相关技术的偏振分束器存在加工难度大的问题,而且实现了CMOS硅光工艺兼容,无需复杂甚至非标准的工艺步骤,交叉波导的渐进结构允许加工工艺容差大,达到了器件尺寸小、耦合效率高、损耗小、串扰小的效果。

Claims (11)

  1. 一种偏振分束器,包括:
    直通波导,所述直通波导的耦合波导为固定形状的二次刻蚀波导;
    交叉波导,所述交叉波导的耦合波导为渐进型条形波导;
    所述直通波导与所述交叉波导之间存在间隔且非对称。
  2. 如权利要求1所述的偏振分束器,其中,横电TE模信号从所述直通波导的输入波导输入,从所述直通波导的输出波导输出;横磁TM模信号从所述直通波导的输入波导输入,在耦合波导中模式转换为横电TE’模,并从所述交叉波导的输出波导输出。
  3. 如权利要求1所述的偏振分束器,其中,所述直通波导的耦合波导为通过二次刻蚀实现的L型波导。
  4. 如权利要求1所述的偏振分束器,其中,所述交叉波导的耦合波导的宽度沿着光传播方向逐渐变大。
  5. 如权利要求1所述的偏振分束器,其中,所述直通波导的TE模的有效折射率大于所述交叉波导的TE模的有效折射率;所述直通波导的TM模的有效折射率等于所述交叉波导的TE模的有效折射率。
  6. 如权利要求1所述的偏振分束器,所述偏振分束器还包括:覆盖在所述直通波导和交叉波导上的包层以及位于所述直通波导和交叉波导下面的埋层,其中,所述直通波导和交叉波导的材料折射率大于所述包层和埋层的材料折射率。
  7. 如权利要求6所述的偏振分束器,其中,所述直通波导和交叉波导的材料为硅,所述包层和埋层的材料为二氧化硅。
  8. 如权利要求1所述的偏振分束器,其中,所述直通波导的宽度大于所述交叉波导的宽度。
  9. 如权利要求1所述的偏振分束器,其中,所述直通波导的宽度为550纳米nm,所述直通波导的未刻蚀部分宽度为400nm,所述直通波导的最高部分的高度为220nm,刻蚀部分的高度为150nm,所述交叉波导的宽度从 250nm逐渐增加到300nm,所述交叉波导的高度为220nm。
  10. 如权利要求1所述的偏振分束器,其中,所述直通波导与所述交叉波导之间的间隔为200nm。
  11. 如权利要求1所述的偏振分束器,其中,所述直通波导和交叉波导的耦合波导的长度为大于或等于100微米μm。
PCT/CN2016/093610 2015-08-25 2016-08-05 一种偏振分束器 WO2017032214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510526708.5A CN106483601B (zh) 2015-08-25 2015-08-25 一种偏振分束器
CN201510526708.5 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017032214A1 true WO2017032214A1 (zh) 2017-03-02

Family

ID=58099464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093610 WO2017032214A1 (zh) 2015-08-25 2016-08-05 一种偏振分束器

Country Status (2)

Country Link
CN (1) CN106483601B (zh)
WO (1) WO2017032214A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10684416B2 (en) * 2017-07-27 2020-06-16 Ii-Vi Delaware Inc. Fabrication-tolerant and broadband polarization splitter and rotator
CN107561646B (zh) * 2017-10-18 2020-05-05 西安奇芯光电科技有限公司 光波导偏振分离器及其制造方法
CN108563030B (zh) * 2018-01-31 2023-05-26 中国地质大学(武汉) 一种偏振分束器
CN111983753B (zh) * 2020-07-24 2022-09-02 中国科学院上海微系统与信息技术研究所 一种应用于3d光互连的层间偏振分束器
CN112711093B (zh) * 2021-03-26 2021-07-20 西安奇芯光电科技有限公司 一种偏振分束器结构及偏振分束方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373042B2 (en) * 2006-07-28 2008-05-13 Infinera Corporation Polarization sorter
WO2009043880A1 (fr) * 2007-10-03 2009-04-09 Commissariat A L'energie Atomique Dispositif optique a circuits photoniques superposes, pour couplage avec un ou plusieurs guides optiques
CN103091782A (zh) * 2013-01-23 2013-05-08 浙江大学 一种带有偏振控制的阵列波导光栅模块
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器
CN104090375A (zh) * 2014-07-30 2014-10-08 华为技术有限公司 光隔离装置和光隔离方法
KR20150055389A (ko) * 2013-11-13 2015-05-21 인하대학교 산학협력단 편광 모드 제어 기능을 이용한 평면 도파로 집적형 광 아이솔레이터 및 서큘레이터
JP2015121696A (ja) * 2013-12-24 2015-07-02 沖電気工業株式会社 光導波路素子
CN104849803A (zh) * 2014-02-17 2015-08-19 株式会社藤仓 基板型波导元件以及光调制器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373042B2 (en) * 2006-07-28 2008-05-13 Infinera Corporation Polarization sorter
WO2009043880A1 (fr) * 2007-10-03 2009-04-09 Commissariat A L'energie Atomique Dispositif optique a circuits photoniques superposes, pour couplage avec un ou plusieurs guides optiques
CN103091782A (zh) * 2013-01-23 2013-05-08 浙江大学 一种带有偏振控制的阵列波导光栅模块
CN103336330A (zh) * 2013-07-05 2013-10-02 中国科学院半导体研究所 一种基于非对称垂直狭缝波导的偏振旋转器
KR20150055389A (ko) * 2013-11-13 2015-05-21 인하대학교 산학협력단 편광 모드 제어 기능을 이용한 평면 도파로 집적형 광 아이솔레이터 및 서큘레이터
JP2015121696A (ja) * 2013-12-24 2015-07-02 沖電気工業株式会社 光導波路素子
CN104849803A (zh) * 2014-02-17 2015-08-19 株式会社藤仓 基板型波导元件以及光调制器
CN104090375A (zh) * 2014-07-30 2014-10-08 华为技术有限公司 光隔离装置和光隔离方法

Also Published As

Publication number Publication date
CN106483601A (zh) 2017-03-08
CN106483601B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2017032214A1 (zh) 一种偏振分束器
US10345524B2 (en) Optical edge coupler with controllable mode field for photonic chip
US8948553B2 (en) Deep-shallow optical radiation filters
CN111679363B (zh) 硅波导端面耦合结构及其制作方法
JP6000904B2 (ja) 偏波変換素子
WO2014208601A1 (ja) 高次偏波変換素子、光導波路素子、及びdp-qpsk変調器
CN109407229B (zh) 一种端面耦合器
US10241273B2 (en) Polarization rotator and optical signal processing method
CN112327411B (zh) 基于绝热锥形非对称耦合与y分支的硅基偏振分束旋转器
CN105425339B (zh) 一种方向耦合器
JP2017536572A (ja) 偏光分離・回転デバイス
CN106959485B (zh) 基于亚波长光栅的定向耦合型tm起偏器及分束器
JP2007072433A (ja) 光集積素子及び光制御素子
CN102323646B (zh) 光栅耦合器及其制作方法
CN111562650A (zh) 基于双三叉戟亚波长光栅结构的端面耦合器
US10096971B2 (en) Hybrid semiconductor lasers
JP2015169766A (ja) 偏波回転回路
CN105759351B (zh) 一种基于垂直耦合原理的硅基槽波导起偏器
WO2017101725A1 (zh) 基于截面l形波导和非对称y分支的偏振旋转与合束器
CN113376743B (zh) 一种基于长周期光栅的模斑转换器
CN112305671A (zh) 基于狭缝波导的锥形偏振分束器及制备方法
CN106468810B (zh) 一种光斑转换器及光学装置
CN210072135U (zh) 基于狭缝波导的锥形偏振分束器
CN112526675A (zh) 一种基于模式混合原理的w型硅基槽式片上偏振旋转器
CN108241190A (zh) 一种边缘耦合光器件及光通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838474

Country of ref document: EP

Kind code of ref document: A1