WO2017031956A1 - 一种业务分流方法及装置 - Google Patents

一种业务分流方法及装置 Download PDF

Info

Publication number
WO2017031956A1
WO2017031956A1 PCT/CN2016/073673 CN2016073673W WO2017031956A1 WO 2017031956 A1 WO2017031956 A1 WO 2017031956A1 CN 2016073673 W CN2016073673 W CN 2016073673W WO 2017031956 A1 WO2017031956 A1 WO 2017031956A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
throughput
primary base
air interface
secondary base
Prior art date
Application number
PCT/CN2016/073673
Other languages
English (en)
French (fr)
Inventor
武见
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017031956A1 publication Critical patent/WO2017031956A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present invention relates to the field of communications, and in particular, to a service offloading method and apparatus.
  • the method is applicable to all schemes for dividing service packets by X2 transmission, that is, 2A/2C/2D/3A/3C/3D, but these methods do not explicitly specify how to perform data segmentation, so how to perform services in dual link technology
  • the diversion scheme has yet to be proposed.
  • the invention provides a service offloading method and device, which are used to solve the problem that the service offloading mode in the prior art cannot reasonably divide the service.
  • a service offloading method includes: determining a proportional relationship between a data transmission rate of a primary base station and a secondary base station according to a weight of a preset data transmission rate and a weight of the air interface throughput; / or the ratio of the air interface throughput of the primary base station and the secondary base station to calculate the distribution ratio of the total throughput; the total throughput is allocated to the primary base station and the secondary base station according to the allocation ratio of the total throughput.
  • the ratio between the data transmission rate of the primary base station and the secondary base station and/or the air interface throughput of the primary base station and the secondary base station are determined according to the weight of the preset data transmission rate and the weight of the air interface throughput.
  • the ratio of the total throughput of the relationship calculation includes: the ratio of the data transmission rate and the air interface throughput as the factors affecting the total throughput, and the first proportional relationship between the data transmission rates of the primary base station and the secondary base station.
  • the weight of the preset transmission rate is multiplied, and the second proportional relationship between the air interface throughput of the primary base station and the secondary base station is multiplied by the weight of the air interface throughput, and the obtained two products are added to obtain the total throughput.
  • Ratio of allocation the second proportional relationship between the air interface throughput of the primary base station and the secondary base station is multiplied by the weight of the air interface throughput without considering the data transmission rate, and the allocation ratio of the total throughput is obtained;
  • the first proportional relationship between the data transmission rates of the primary base station and the secondary base station is multiplied by the weight of the preset transmission rate. The proportion of the total throughput to the distribution.
  • the allocating the total throughput to the primary base station and the secondary base station according to the allocation ratio of the throughput includes: allocating the throughput of the primary base station according to TR m in the following formula, and allocating the throughput of the secondary base station according to TR s in the following formula:
  • TR m TR*(P v *(T r +T X2 )/(2T r +T X2 )+P t *TR m1 /(TR m1 +TR s1 ));
  • TR s TR*(P v *( T r +T X2 )/(2T r +T X2 )+P t *TR s1 /(TR m1 +TR s1 ));
  • TR m is the throughput allocated by the primary base station
  • TR s is the throughput allocated by the secondary base station Quantity
  • TR is the total throughput
  • P v is the weight of the data transmission rate
  • P t is the weight of the throughput
  • T r is calculated comprising: when the primary base station performs TCP traffic, at the packet data convergence protocol PDCP layer according to the uplink an uplink TCP service acquired from the TCP packet transmitted to the packet received acknowledgment character ACK TCP packet used The time T u is obtained according to the downlink service, and the time T d used for sending the TCP ACK from the transmission to the receipt of the message; summing T u and T d to obtain T r .
  • the calculation manner of the first proportional relationship includes: calculating a ratio of a data transmission rate of the primary base station to a sum of transmission data rates of the primary base station and the secondary base station, and calculating the ratio as a first proportional relationship; and calculating a second proportional relationship
  • the method includes: calculating a ratio of air interface throughput of the primary base station to a sum of throughputs of the primary base station and the secondary base station, and calculating the ratio as a second proportional relationship.
  • a service offloading apparatus including: a determining module, configured to determine a data transmission rate using a primary base station and a secondary base station according to a weight of a preset data transmission rate and a weight of an air interface throughput The ratio between the proportional relationship and/or the air interface throughput of the primary base station and the secondary base station to calculate the distribution ratio of the total throughput; the allocation module is configured to allocate the total throughput to the primary according to the allocation ratio of the total throughput Base station and secondary base station.
  • the determining module includes: a first determining unit, configured to: between a data transmission rate of the primary base station and the secondary base station, in a case where the data transmission rate and the air interface throughput are both factors affecting the total throughput
  • the proportional relationship is multiplied by the weight of the preset transmission rate, and the second proportional relationship between the air interface throughput of the primary base station and the secondary base station is multiplied by the weight of the air interface throughput, and the obtained two products are added to obtain
  • the ratio of the total throughput is allocated;
  • the second determining unit is configured to multiply the second proportional relationship between the air interface throughput of the primary base station and the secondary base station by the weight of the air interface throughput without considering the data transmission rate.
  • a third determining unit configured to adjust a first proportional relationship between a data transmission rate of the primary base station and the secondary base station and a preset transmission rate without considering the air interface throughput Multiply, to get the distribution ratio of the total throughput.
  • the foregoing allocation module is specifically configured to: allocate a throughput of the primary base station according to TR m in the following formula, and allocate a throughput of the secondary base station according to TR s in the following formula:
  • TR m TR*(P v *(T r +T X2 )/(2Tr+T X2 )+P t *TR m1 /(TR m1 +TR s1 ));
  • TR s TR*(P v *(T r +T X2 )/(2Tr+T X2 +P t *TR s1 /(TR m1 +TR s1 ));
  • TR m is the throughput allocated by the primary base station
  • TR s is the throughput allocated by the secondary base station
  • TR is the total throughput
  • P v is the data
  • P t is the weight of the throughput
  • T r is the round trip time RTT delay
  • T X2 is the
  • the determining module is further configured to: when the primary base station performs the TCP service, the PDCP layer used by the packet data convergence protocol to obtain the uplink TCP packet according to the uplink TCP service from the TCP acknowledgement character ACK message sent to the received message.
  • the time T u is obtained according to the downlink service, and the time T d used for sending the TCP ACK from the transmission to the receipt of the message; summing T u and T d to obtain T r .
  • the determining module further includes: a first calculating unit, configured to calculate a ratio of a data transmission rate of the primary base station to a sum of data transmission rates of the primary base station and the secondary base station, and the calculated ratio is a first proportional relationship; the second calculation The unit is configured to calculate a ratio of the air interface throughput of the primary base station to the sum of the throughputs of the primary base station and the secondary base station, and the calculated ratio is a second proportional relationship.
  • the solution provided by the embodiment of the present invention determines the proportion of the total throughput allocated to the primary base station and the secondary base station according to the ratio of the data transmission rate between the primary base station and the secondary base station and the air interface throughput ratio of the primary base station and the secondary base station.
  • the effect of the delay on the data transmission speed of the base station and the throughput together determine the service offload, so that the allocation of the service flow is reasonable.
  • Embodiment 1 is a flowchart of a service offloading method in Embodiment 2 of the present invention.
  • FIG. 2 is a flowchart of a service offloading method in Embodiment 3 of the present invention.
  • Figure 3 is a block diagram showing the structure of a service offloading apparatus in Embodiment 4 of the present invention.
  • the present invention provides a service offloading method and apparatus, and the present invention will be further described in detail below with reference to the accompanying drawings and embodiments, in order to solve the problem that the TCP traffic offloading mode in the prior art cannot reasonably distribute the traffic. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • This embodiment provides a service offloading method, which is used to implement service offload between a primary base station and a secondary base station in a dual link technology.
  • the delay introduced by the X2 transmission is calculated according to the RTT delay of the actual TCP service, according to the extra time.
  • the delay determines the impact on the rate, and combines the air interface throughput (theoretical throughput) of the primary and secondary base stations to perform traffic segmentation on the primary and secondary base stations.
  • the time difference between the path keepalive request message and the response message sent to the path is X2-U (X2 is divided into two interfaces.
  • V s W / (T r + T X2 )
  • T r is the RTT delay, which indicates the delay from the time the data is sent by the sender to the time when the sender receives the acknowledgement from the receiver.
  • the primary and secondary base stations perform data segmentation according to their respective transmission data rates in combination with their respective air interface throughput allocations, wherein the air interface throughput is in accordance with the base station's standard, ratio, and MCS (Modulation and Coding Scheme) in the case of full scheduling. Calculation.
  • the factors affecting traffic offloading have throughput and delay.
  • the total actual throughput is TR.
  • TR m1 the primary base station throughput
  • TR s1 the secondary base station's throughput
  • Only delays are considered.
  • specific shunting is:
  • TR m TR*TR m1 /(TR m1 +TR s1 )
  • the actual environment may perform weight allocation according to the impact of the two impact factors on the service. For example, if the weight of the delay occupies P v and the weight of the throughput occupies P t , then in the present embodiment, the shunting result according to the two is as follows:
  • TR m TR*(P v *(T r +T X2 )/(2T r +T X2 )+P t *TR m1 /(TR m1 +TR s1 ))
  • TR m TR*((T r +T X2 )/(2T r +T X2 )+TR m1 /(TR m1 +TR s1 ))/2
  • TR s TR*((T r +T X2 )/(2T r +T X2 )+TR s1 /(TR m1 +TR s1 ))/2........ «( 4)
  • FIG. 1 is a flowchart of the method. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Determine, according to a preset weight of the data transmission rate and a weight of the air interface throughput, a proportional relationship between a data transmission rate of the primary base station and the secondary base station and/or an air interface throughput between the primary base station and the secondary base station. Proportional relationship to calculate the distribution ratio of total throughput;
  • Step 102 Allocate the total throughput to the primary base station and the secondary base station according to the allocation ratio of the total throughput.
  • the ratio between the data transmission rate of the primary base station and the secondary base station and/or the air interface throughput of the primary base station and the secondary base station are determined according to the weight of the preset data transmission rate and the weight of the air interface throughput.
  • the relationship between the total throughput of the relationship calculation can be specifically included in the following three cases:
  • the first proportional relationship between the data transmission rates of the primary base station and the secondary base station is multiplied by the weight of the preset transmission rate.
  • the second proportional relationship between the air interface throughput of the primary base station and the secondary base station is multiplied by the weight of the air interface throughput, and the obtained two products are added to obtain a distribution ratio of the total throughput;
  • the second proportional relationship between the air interface throughput of the primary base station and the secondary base station is multiplied by the weight of the air interface throughput without considering the data transmission rate, to obtain a distribution ratio of the total throughput;
  • the first proportional relationship between the data transmission rates of the primary base station and the secondary base station is multiplied by the weight of the preset transmission rate without considering the air interface throughput, and the allocation ratio of the total throughput is obtained.
  • the method for determining a first proportional relationship between the TCP data transmission rate of the primary base station and the secondary base station, and the second ratio of the air interface throughput of the primary base station and the secondary base station may specifically include:
  • the ratio of the air interface throughput of the primary base station to the sum of the throughputs of the primary base station and the secondary base station is calculated, and the calculated ratio is a second proportional relationship.
  • the processing for determining the allocation ratio of the total throughput according to the first proportional relationship and the second proportional relationship may specifically include:
  • the allocating the total throughput to the primary base station and the secondary base station according to the allocation ratio may specifically include:
  • the throughput of the primary base station is allocated according to TR m in the following formula, and the throughput of the secondary base station is allocated according to TR s in the following formula:
  • TR m TR*(P v *(T r +T X2 )/(2T r +T X2 )+P t *TR m1 /(TR m1 +TR s1 ));
  • TR s TR*(P v *(T r +T X2 )/(2T r +T X2 )+P t *TR s1 /(TR m1 +TR s1 ));
  • TR m is the throughput allocated by the primary base station
  • TR s is the throughput allocated by the secondary base station
  • TR is the total throughput
  • P v is the weight of the TCP data transmission rate
  • P t is the weight of the throughput
  • T r is RTT delay
  • T X2 is the delay of transmitting TCP data on the link between the primary base station and the secondary base station
  • TR m1 is the air interface throughput of the primary base station
  • TR s1 is the air interface throughput of the secondary base station.
  • T r is calculated comprising: a TCP acknowledgment operations, when executed in a packet data convergence protocol layer PDCP uplink TCP service obtains the uplink packet according to the TCP packet received from the master station to the TCP ACK packet character The time T u used by the text; the time T d used for transmitting the downlink TCP message from the downlink service to the TCP ACK of the message according to the downlink service; and calculating the T r according to the following formula:
  • T r T u +T d .
  • the present example performs service offloading based on the formula (4) in the foregoing embodiment 2, as shown in FIG. 2, in which the specific implementation steps are as follows:
  • Step 1 The time consumed by the X2-U link back and forth may be obtained by the primary base station receiving the path response message, which is obtained by the primary base station, and is recorded as T X2 ;
  • Step 2 Performing a TCP service at the primary base station, and learning, at the PDCP layer, the time taken for the uplink TCP packet to be sent to the TCP ACK packet receiving the packet according to the uplink TCP service, learning T u ; learning according to the downlink service The time T d used by the downlink TCP packet to be sent to receive the TCP ACK of the packet;
  • the TCP service is firstly distributed to the primary and secondary base stations.
  • the MAC (Media Access Control) layer of the primary and secondary base stations can obtain the MCS value according to the primary and secondary base stations.
  • the base station's standard and MCS calculate the air interface throughput of the primary and secondary base stations under full scheduling conditions.
  • the air interface throughputs of the primary and secondary base stations are TR m1 and TR s1 , respectively.
  • the primary base station is notified to the primary base station, and the primary base station MAC is directly notified to the PDCP layer.
  • the configuration message is notified to the primary base station PDCP through the X2 path.
  • Step 4 According to the collected RTT delay T r and the theoretical throughputs TR m1 and TR s1 of the primary and secondary base stations, after performing header compression on the PDCP layer of the primary base station, after encrypting and decrypting and adding the PDCP header, the following formula is performed. Diversion:
  • TR m TR*((T r +T X2 )/(2T r +T X2 )+TR m1 /(TR m1 +TR s1 ))/2;
  • TR s TR*((T r +T X2 )/(2T r +T X2 )+TR s1 /(TR m1 +TR s1 ))/2;
  • TR m is the traffic split by the primary base station
  • TR s is the traffic split by the secondary base station.
  • FIG. 3 is a structural block diagram of the device. As shown in FIG. 3, the device 30 includes the following components:
  • the determining module 31 is configured to determine, according to a preset weight of the data transmission rate and a weight of the air interface throughput, a proportional relationship between a data transmission rate of the primary base station and the secondary base station, and/or an air interface throughput of the primary base station and the secondary base station. The proportional relationship between them to calculate the distribution ratio of total throughput;
  • the allocating module 32 is configured to allocate the total throughput to the primary base station and the secondary base station according to the allocation ratio of the total throughput.
  • the determining module 31 may specifically include:
  • a first determining unit configured to: compare a first proportional relationship between a data transmission rate of the primary base station and the secondary base station with a predetermined one, in a case where the data transmission rate and the air interface throughput are both factors affecting the total throughput The weight of the transmission rate is multiplied, the second proportional relationship between the air interface throughput of the primary base station and the secondary base station is multiplied by the weight of the air interface throughput, and the obtained two products are added to obtain a distribution ratio of the total throughput;
  • a second determining unit configured to multiply the second proportional relationship between the air interface throughput of the primary base station and the secondary base station by the weight of the air interface throughput without considering the data transmission rate, to obtain a distribution ratio of the total throughput ;
  • a third determining unit configured to multiply a first proportional relationship between a data transmission rate of the primary base station and the secondary base station by a weight of the preset transmission rate without considering the air interface throughput, to obtain a total throughput Distribution ratio.
  • the determining module may be configured to: respectively: the first proportional relationship and the second proportional relationship respectively correspond to preset TCP data transmission rates, where the data transmission rate and the air interface throughput are simultaneously used as factors affecting the total throughput allocation ratio.
  • the two products obtained by multiplying the weights corresponding to the weights or air interface throughputs are summed to obtain The ratio of the total throughput.
  • the foregoing allocation module 32 may specifically be used to:
  • the throughput of the primary base station is allocated according to TR m in the following formula, and the throughput of the secondary base station is allocated according to TR s in the following formula:
  • TR m TR*(P v *(T r +T X2 )/(2T r +T X2 )+P t *TR m1 /(TR m1 +TR s1 ));
  • TR s TR*(P v *(T r +T X2 )/(2T r +T X2 )+P t *TR s1 /(TR m1 +TR s1 ));
  • TR m is the throughput allocated by the primary base station
  • TR s is the throughput allocated by the secondary base station
  • TR is the total throughput
  • P v is the weight of the TCP data transmission rate
  • P t is the weight of the throughput
  • T r is RTT delay
  • T X2 is the delay of transmitting TCP data on the link between the primary base station and the secondary base station
  • TR m1 is the air interface throughput of the primary base station
  • TR s1 is the air interface throughput of the secondary base station.
  • the determining module 32 may be further configured to: when the primary base station performs the TCP service, the time T used by the PDCP layer to obtain the uplink TCP packet according to the uplink TCP service from the TCP acknowledgement character ACK packet sent to the received packet u ;
  • the determining module 32 may specifically include: a first calculating unit, configured to calculate a ratio of a TCP transmission rate of the primary base station to a sum of a TCP transmission rate of the primary base station and the secondary base station, where the calculated ratio is a first proportional relationship;
  • the second calculating unit is configured to calculate a ratio of the air interface throughput of the primary base station to the sum of the throughputs of the primary base station and the secondary base station, and the calculated ratio is a second proportional relationship.
  • the solution provided by the embodiment of the present invention first determines the data transmission rate of the primary base station and the secondary base station, and the air interface throughput of the primary base station and the secondary base station, and then according to the ratio of the data transmission rate between the primary base station and the secondary base station, and the primary base station and the secondary base station.
  • the proportional relationship of the air interface throughput of the base station is used to determine the proportion of the total throughput allocated to the primary base station and the secondary base station, and the service offload can be determined according to the influence of the delay on the data transmission speed of the base station and the throughput, so that the service flow allocation is reasonable.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware or in the form of a software function module.
  • the invention is not limited to any specific form of combination of hardware and software.
  • Each module of the service offloading device according to the present invention may be located on a main control board, a baseband board or other board of the base station.
  • the present invention is applicable to a primary base station and a secondary base station, and is used to implement reasonable service split between the primary base station and the secondary base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种业务分流方法及装置,用以解决现有技术中的业务分流方式无法对业务进行合理分流的问题。其中,业务分流方法包括:根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;按照总吞吐量的分配比例将总吞吐量分配给主基站以及辅基站,该方案使得业务的分流更加合理。

Description

一种业务分流方法及装置 技术领域
本发明涉及通讯领域,特别是涉及一种业务分流方法及装置。
背景技术
基于对频谱资源的充分利用的考虑,全球同时拥有FDD(Frequency Division Duplexing,频分双工)与TDD(Time Division Duplexing,时分双工)频段的运营商越来越多,对于同时拥有FDD和TDD网络的运营商,迫切需要高效率地使用其FDD和TDD网络资源。通常运营商以联合部署的方式进行FDD和TDD运营的需求非常强烈,这种情况下,就会出现FDD和TDD联合部署的场景。基于此出现了双链接的需求,双链接即两个基站的资源为同一终端服务,因此需要基站实现数据分割,目前协议给出的数据分割方法共有9种,其中2B和2D为待定方案,其他的方法适用于所有通过X2传输来分割业务报文的方案即2A/2C/2D/3A/3C/3D,但是这些方法中并未明确具体如何进行数据分割,可见如何在双链接技术中进行业务分流的方案有待被提出。
发明内容
本发明提供一种业务分流方法及装置,用以解决现有技术中的业务分流方式无法对业务进行合理分流的问题。
根据本发明的一个方面,提供了一种业务分流方法,包括:根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;按照总吞吐量的分配比例将总吞吐量分配给主基站以及辅基站。
其中,根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系计算总吞吐量的分配比例包括:在将数据的传输速率以及空口吞吐量均作为影响总吞吐量的因素的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,将得到的两个乘积相加,得到总吞吐量的分配比例;在不考虑数据传输速率的情况下,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,得到总吞吐量的分配比例;在不考虑空口吞吐量的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,得到总吞吐量的分配比例。
其中,按照吞吐量的分配比例将总吞吐量分配给主基站以及辅基站包括:按照如 下公式中的TRm分配主基站的吞吐量,以及按照如下公式中的TRs分配辅基站的吞吐量:TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1));TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1));其中,TRm为主基站分配的吞吐量,TRs为辅基站分配的吞吐量,TR为总的吞吐量,Pv为数据传输速率的权重,Pt为吞吐量的权重,Tr为往返时间RTT时延,TX2为主基站与辅基站之间链路上传输数据的时延,TRm1为主基站的空口吞吐量,TRs1为辅基站的空口吞吐量。
其中,Tr的计算方式包括:在主基站执行TCP业务时,在分组数据汇聚协议PDCP层根据上行TCP业务获取上行TCP报文从发送到收到该报文的TCP确认字符ACK报文所用的时间Tu;根据下行业务获取下行TCP报文从发送到收到该报文TCP ACK所用的时间Td;将Tu与Td求和,得到Tr
其中,第一比例关系的计算方式包括:计算主基站的数据传输速率占主基站、辅基站传输数据速率之和的比例,计算出的该比例为第一比例关系;第二比例关系的计算方式包括:计算主基站的空口吞吐量占主基站、辅基站吞吐量之和的比例,计算出的该比例为第二比例关系。
根据本发明的另一个方面,提供了一种业务分流装置,包括:确定模块,用于根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;分配模块,用于按照总吞吐量的分配比例将总吞吐量分配给主基站以及辅基站。
其中,上述确定模块包括:第一确定单元,用于在将数据的传输速率以及空口吞吐量均作为影响总吞吐量的因素的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,将得到的两个乘积相加,得到总吞吐量的分配比例;第二确定单元,用于在不考虑数据传输速率的情况下,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,得到总吞吐量的分配比例;第三确定单元,用于在不考虑空口吞吐量的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,得到总吞吐量的分配比例。
其中,上述分配模块具体用于包括:按照如下公式中的TRm分配主基站的吞吐量,以及按照如下公式中的TRs分配辅基站的吞吐量:TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1));TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1));其中,TRm为主基站分配的吞吐量,TRs为辅基站分配的吞吐量,TR为总的吞吐量,Pv为数据传输速率的权重,Pt为吞吐量的权重,Tr为往返时间RTT时延,TX2为主基站与辅基站之间链路上传输数据的时延,TRm1为主基站的空口吞吐量,TRs1为辅基站的空口吞吐量。
其中,上述确定模块还用于:在主基站执行TCP业务时,在分组数据汇聚协议PDCP层根据上行TCP业务获取上行TCP报文从发送到收到该报文的TCP确认字符ACK报文所用的时间Tu;根据下行业务获取下行TCP报文从发送到收到该报文TCP ACK所用的时间Td;将Tu与Td求和,得到Tr
其中,确定模块还包括:第一计算单元,用于计算主基站的数据传输速率占主基站、辅基站的数据传输速率之和的比例,计算出的该比例为第一比例关系;第二计算单元,用于计算主基站的空口吞吐量占主基站、辅基站吞吐量之和的比例,计算出的该比例为第二比例关系。
本发明实施例提供的方案,根据主基站与辅基站数据传输速率的比例关系以及主基站与辅基站空口吞吐量的比例关系来确定总吞吐量分配给主基站以及辅基站的比例,可以依据时延对基站数据传输速度的影响以及吞吐量共同来决定业务分流,使得业务流的分配较为合理。
附图说明
图1是本发明实施例2中的业务分流方法的流程图;
图2是本发明实施例3中的业务分流方法的流程图;
图3是本发明实施例4中的业务分流装置的结构框图。
具体实施方式
为了解决现有技术中的TCP业务分流方式无法对业务进行合理分流的问题,本发明提供了一种业务分流方法及装置,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
实施例1
本实施例提供了一种业务分流方法,该方法用于实现双链接技术中主基站与辅基站之间的业务分流。
由于业务数据在辅基站处理流程比在主基站的处理流程仅仅多了一次X2传输,鉴于此,本实施例结合实际TCP业务的RTT时延计算出X2传输引入的时延,根据多出来的时延判断出对速率的影响,再结合主、辅基站的空口吞吐量(理论吞吐量),来对主、辅基站进行流量分割。
由于路径保活消息报文很简单,其组包时间可以忽略,所以路径保活的请求消息从发送到收到路径保活的响应消息的时间差即为X2-U(X2分为两个接口,一个用于控制平面(X2-C),一个用于用户平面(X2-U))链路上损耗的时间,如果发送窗不变,辅基站传输数据的速率受X2-U链路的影响为Vs=W/(Tr+TX2),主基站传输数据的速率为Vm=W/Tr,其中,主、辅基站的通信是否正常,要根据路径保活消息 的周期性发送来保证。Tr为RTT时延,该RTT时延表示从发送端发送数据开始,到发送端收到来自接收端的确认的时延。TCP协议中介绍,TCP业务的速率(V)以及发送窗长(W)和RTT时延(Tr)之间满足下面的关系V=W/Tr,W为发送窗长。主、辅基站根据各自传输数据速率结合各自的空口吞吐量分配进行数据分割,其中,空口吞吐量在满调度情况下根据基站的制式、配比和MCS(Modulation and Coding Scheme,调制与编码策略)进行计算。
根据以上分析可知,影响业务分流的因子有吞吐量、时延,设总的实际吞吐量是TR,假设主基站吞吐量是TRm1,辅基站的可吞吐量是TRs1,在只考虑时延的情况下具体分流为:
TRm=TR*(Vm)/(Vs+Vm)=TR*(Tr+TX2)/(2Tr+TX2)
TRs=TR*(Tr+TX2)/(2Tr+TX2).......................................(1)
在只考虑吞吐量的情况下,具体的分流为:
TRm=TR*TRm1/(TRm1+TRs1)
TRs=TR*TRs1/(TRm1+TRs1).........................................(2)
然而,由于在实际应用中,由于时延和吞吐量对速率的影响可能不同,故实际环境可以根据这两个影响因子对业务的影响进行权重分配。如:时延的权重占Pv,吞吐量的权重占Pt,则,在本实施例中根据这两者分流结果见如下公式:
TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1))
TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1))......(3)
如果两者的影响因子相同,也就是权重相等,则分流公式见下:
TRm=TR*((Tr+TX2)/(2Tr+TX2)+TRm1/(TRm1+TRs1))/2
TRs=TR*((Tr+TX2)/(2Tr+TX2)+TRs1/(TRm1+TRs1))/2..............(4)
如果只考虑吞吐量则分流结果同上述公式(2)。
实施例2
本实施例提供了一种业务分流方法,图1是该方法的流程图,如图1所示,该方法包括如下步骤:
步骤101:根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;
步骤102:按照总吞吐量的分配比例将总吞吐量分配给主基站以及辅基站。
其中,根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系计算总吞吐量的分配比例,具体可以包括以下三种情况:
在将数据的传输速率以及空口吞吐量均作为影响总吞吐量的因素的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,将 主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,将得到的两个乘积相加,得到总吞吐量的分配比例;
在不考虑数据传输速率的情况下,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,得到总吞吐量的分配比例;
在不考虑空口吞吐量的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,得到总吞吐量的分配比例。
确定主基站与辅基站的TCP数据传输速率之间的第一比例关系,以及主基站与辅基站的空口吞吐量之间的第二比例关系的方式具体可以包括:
计算主基站的TCP传输速率占主基站、辅基站TCP传输速率之和的比例,计算出的该比例为第一比例关系;
计算主基站的空口吞吐量占主基站、辅基站吞吐量之和的比例,计算出的该比例为第二比例关系。
其中,根据第一比例关系以及第二比例关系确定总吞吐量的分配比例的处理具体可以包括:
其中,按照分配比例将总吞吐量分配给主基站以及辅基站具体可以包括:
按照如下公式中的TRm分配主基站的吞吐量,以及按照如下公式中的TRs分配辅基站的吞吐量:
TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1));
TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1));
其中,TRm为主基站分配的吞吐量,TRs为辅基站分配的吞吐量,TR为总的吞吐量,Pv为TCP数据传输速率的权重,Pt为吞吐量的权重,Tr为RTT时延,TX2为主基站与辅基站之间链路上传输TCP数据的时延,TRm1为主基站的空口吞吐量,TRs1为辅基站的空口吞吐量。
在上述公式中,Tr的计算方式包括:在主基站执行TCP业务时,在分组数据汇聚协议PDCP层根据上行TCP业务获取上行TCP报文从发送到收到该报文的TCP确认字符ACK报文所用的时间Tu;根据下行业务获取下行TCP报文从发送到收到该报文TCP ACK所用的时间Td;根据如下公式计算Tr
Tr=Tu+Td
实施例3
本实例基于上述实施例2中的公式(4)为基础进行业务分流,如图2所示,在该实例中,具体实现步骤如下:
步骤1,X2-U链路上来回所消耗的时间可以由主基站接收路径响应消息-主基站发送路径保活消息得到,记为TX2
步骤2,在主基站执行TCP业务,在PDCP层,根据上行TCP业务可以学习到上行TCP报文发送到收到该报文的TCP ACK报文所用的时间,学习到Tu;根据下 行业务学习到下行TCP报文发送到收到该报文TCP ACK所用的时间Td
Tr=Tu+Td
步骤3,先对TCP业务进行均分分流到主、辅基站,因为只有均分执行业务时,主、辅基站的MAC(Media Access Control,介质访问控制)层可以获取到MCS值,根据主辅基站的制式和MCS在满调度条件下计算主、辅基站的空口吞吐量。主、辅基站的空口吞吐量分别为TRm1、TRs1。然后分别通知主基站,主基站MAC直接通知给PDCP层,辅基站MAC直接通知给PDCP层后,构造消息通过X2路径通知给主基站PDCP。
步骤4,根据收集到的RTT时延Tr,和主辅基站的理论吞吐量TRm1、TRs1,在主基站PDCP层进行头压缩后,加解密和添加完PDCP头之后,按照如下公式进行分流:
TRm=TR*((Tr+TX2)/(2Tr+TX2)+TRm1/(TRm1+TRs1))/2;
TRs=TR*((Tr+TX2)/(2Tr+TX2)+TRs1/(TRm1+TRs1))/2;
其中,TRm为主基站分流的流量,TRs为辅基站分流的流量。
实施例4
本实施例提供了一种业务分流装置,图3是该装置的结构框图,如图3所示,该装置30包括如下组成部分:
确定模块31,用于根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;
分配模块32,用于按照总吞吐量的分配比例将总吞吐量分配给主基站以及辅基站。
其中,上述确定模块31具体可以包括:
第一确定单元,用于在将数据的传输速率以及空口吞吐量均作为影响总吞吐量的因素的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,将得到的两个乘积相加,得到总吞吐量的分配比例;
第二确定单元,用于在不考虑数据传输速率的情况下,将主基站与辅基站的空口吞吐量之间的第二比例关系与空口吞吐量的权重相乘,得到总吞吐量的分配比例;
第三确定单元,用于在不考虑空口吞吐量的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的传输速率的权重相乘,得到总吞吐量的分配比例。
其中,在同时将数据传输速率以及空口吞吐量作为影响总吞吐量分配比例的因素,上述确定模块可以用于:分别将第一比例关系、第二比例关系与预设的TCP数据传输速率对应的权重或空口吞吐量对应的权重相乘得到的两个乘积进行求和,得到 总吞吐量的分配比例。
其中,上述分配模块32具体可以用于:
按照如下公式中的TRm分配主基站的吞吐量,以及按照如下公式中的TRs分配辅基站的吞吐量:
TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1));
TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1));
其中,TRm为主基站分配的吞吐量,TRs为辅基站分配的吞吐量,TR为总的吞吐量,Pv为TCP数据传输速率的权重,Pt为吞吐量的权重,Tr为RTT时延,TX2为主基站与辅基站之间链路上传输TCP数据的时延,TRm1为主基站的空口吞吐量,TRs1为辅基站的空口吞吐量。
其中,上述确定模块32还可以用于:在主基站执行TCP业务时,在PDCP层根据上行TCP业务获取上行TCP报文从发送到收到该报文的TCP确认字符ACK报文所用的时间Tu
根据下行业务获取下行TCP报文从发送到收到该报文TCP ACK所用的时间Td
根据如下公式计算Tr:Tr=Tu+Td
其中,上述确定模块32具体可以包括:第一计算单元,用于计算主基站的TCP传输速率占主基站、辅基站TCP传输速率之和的比例,计算出的该比例为第一比例关系;第二计算单元,用于计算主基站的空口吞吐量占主基站、辅基站吞吐量之和的比例,计算出的该比例为第二比例关系。
本发明实施例提供的方案,首先确定出主基站以及辅基站的数据传输速率、以及主基站与辅基站的空口吞吐量,然后根据主基站与辅基站数据传输速率的比例关系以及主基站与辅基站空口吞吐量的比例关系来确定总吞吐量分配给主基站以及辅基站的比例,可以依据时延对基站数据传输速度的影响以及吞吐量共同来决定业务分流,使得业务流的分配较为合理。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。根据本发明的业务分流装置的各模块均可以位于基站的主控板、基带板或其他板卡上中。
工业实用性
本发明适用于主基站以及辅基站,用以实现主基站与辅基站之间的合理业务分流。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (10)

  1. 一种业务分流方法,其中,包括:
    根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;
    按照所述总吞吐量的分配比例将所述总吞吐量分配给所述主基站以及所述辅基站。
  2. 根据权利要求1所述的方法,其中,所述根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例,包括:
    在将数据的传输速率以及空口吞吐量均作为影响总吞吐量的因素的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的所述传输速率的权重相乘,将所述主基站与所述辅基站的空口吞吐量之间的第二比例关系与所述空口吞吐量的权重相乘,将得到的两个乘积相加,得到总吞吐量的分配比例;
    在不考虑数据传输速率的情况下,将所述主基站与所述辅基站的空口吞吐量之间的第二比例关系与所述空口吞吐量的权重相乘,得到总吞吐量的分配比例;
    在不考虑空口吞吐量的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的所述传输速率的权重相乘,得到总吞吐量的分配比例。
  3. 根据权利要求1所述的方法,其中,所述按照所述吞吐量的分配比例将所述总吞吐量分配给所述主基站以及所述辅基站,包括:
    按照如下公式中的TRm分配所述主基站的吞吐量,以及按照如下公式中的TRs分配所述辅基站的吞吐量:
    TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1));
    TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1));
    其中,所述TRm为所述主基站分配的吞吐量,所述TRs为所述辅基站分配的吞吐量,所述TR为总的吞吐量,所述Pv为所述数据传输速率的权重,所述Pt为所述吞吐量的权重,所述Tr为往返时间RTT时延,所述TX2为主基站与辅基站之间链路上传输数据的时延,所述TRm1为所述主基站的空口吞吐量,所述TRs1为所述辅基站的空口吞吐量。
  4. 根据权利要求3所述的方法,其中,所述Tr的计算方式包括:
    在所述主基站执行TCP业务时,在分组数据汇聚协议PDCP层根据上行TCP业务获取上行TCP报文从发送到收到该报文的TCP确认字符ACK报文所用的时间Tu
    根据下行业务获取下行TCP报文从发送到收到该报文TCP ACK所用的时间Td
    将所述Tu与所述Td求和,得到所述Tr
  5. 根据权利要求2所述的方法,其中,
    所述第一比例关系的计算方式包括:计算所述主基站的数据传输速率占所述主基站、辅基站传输数据速率之和的比例,计算出的该比例为所述第一比例关系;
    所述第二比例关系的计算方式包括:计算所述主基站的空口吞吐量占所述主基站、辅基站吞吐量之和的比例,计算出的该比例为所述第二比例关系。
  6. 一种业务分流装置,其中,所述装置包括:
    确定模块,设置为根据预设的数据传输速率的权重以及空口吞吐量的权重,确定使用主基站与辅基站的数据传输速率之间的比例关系和/或主基站与辅基站的空口吞吐量之间的比例关系来计算总吞吐量的分配比例;
    分配模块,设置为按照所述总吞吐量的分配比例将所述总吞吐量分配给所述主基站以及所述辅基站。
  7. 根据权利要求6所述的装置,其中,所述确定模块包括:
    第一确定单元,设置为在将数据的传输速率以及空口吞吐量均作为影响总吞吐量的因素的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的所述传输速率的权重相乘,将所述主基站与所述辅基站的空口吞吐量之间的第二比例关系与所述空口吞吐量的权重相乘,将得到的两个乘积相加,得到总吞吐量的分配比例;
    第二确定单元,设置为在不考虑数据传输速率的情况下,将所述主基站与所述辅基站的空口吞吐量之间的第二比例关系与所述空口吞吐量的权重相乘,得到总吞吐量的分配比例;
    第三确定单元,设置为在不考虑数据传输速率的情况下,将主基站与辅基站的数据传输速率之间的第一比例关系与预设的所述传输速率的权重相乘,得到总吞吐量的分配比例。
  8. 根据权利要求6所述的装置,其中,所述分配模块包括:
    按照如下公式中的TRm分配所述主基站的吞吐量,以及按照如下公式中的TRs分配所述辅基站的吞吐量:
    TRm=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRm1/(TRm1+TRs1));
    TRs=TR*(Pv*(Tr+TX2)/(2Tr+TX2)+Pt*TRs1/(TRm1+TRs1));
    其中,所述TRm为所述主基站分配的吞吐量,所述TRs为所述辅基站分配的吞吐量,所述TR为总的吞吐量,所述Pv为所述数据传输速率的权重,所述Pt为所述吞吐量的权重,所述Tr为往返时间RTT时延,所述TX2为主基站与辅基站之间链路上传输数据的时延,所述TRm1为所述主基站的空口吞吐量,所述TRs1为所述辅基站的空口吞吐量。
  9. 根据权利要求8所述的装置,其中,所述确定模块还设置为:
    在所述主基站执行TCP业务时,在分组数据汇聚协议PDCP层根据上行TCP业务获取上行TCP报文从发送到收到该报文的TCP确认字符ACK报文所用的时间Tu
    根据下行业务获取下行TCP报文从发送到收到该报文TCP ACK所用的时间Td
    将所述Tu与所述Td求和,得到所述Tr
  10. 根据权利要求7所述的装置,其中,所述确定模块还包括:
    第一计算单元,设置为计算所述主基站的数据传输速率占所述主基站、辅基站的数据传输速率之和的比例,计算出的该比例为所述第一比例关系;
    第二计算单元,设置为计算所述主基站的空口吞吐量占所述主基站、辅基站吞吐量之和的比例,计算出的该比例为所述第二比例关系。
PCT/CN2016/073673 2015-08-25 2016-02-05 一种业务分流方法及装置 WO2017031956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510525928.6A CN106488499A (zh) 2015-08-25 2015-08-25 一种业务分流方法及装置
CN201510525928.6 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017031956A1 true WO2017031956A1 (zh) 2017-03-02

Family

ID=58099354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073673 WO2017031956A1 (zh) 2015-08-25 2016-02-05 一种业务分流方法及装置

Country Status (2)

Country Link
CN (1) CN106488499A (zh)
WO (1) WO2017031956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664323A (zh) * 2017-03-29 2018-10-16 北京视联动力国际信息技术有限公司 一种基于多处理器的数据传输方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019098059A1 (ja) * 2017-11-15 2020-10-01 三菱電機株式会社 通信システム、通信端末装置および通信ノード
CN113647135A (zh) * 2019-03-28 2021-11-12 上海诺基亚贝尔股份有限公司 用于非授权频谱中的双连接的动态阈值
CN110121186A (zh) * 2019-06-28 2019-08-13 京信通信系统(中国)有限公司 一种双连接下数据分发方法及设备
CN111050360B (zh) * 2019-11-21 2022-12-30 京信网络系统股份有限公司 上行数据分流方法、装置、基站和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163315A1 (en) * 2010-12-23 2012-06-28 Qualcomm Incorporated System and method for performing a radio link control (rlc) reset in a downlink multipoint system
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站
CN104796945A (zh) * 2014-01-16 2015-07-22 中国移动通信集团广东有限公司 一种双链路数据传输方法、装置、系统及一种终端
CN104812003A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于主基站和辅基站的流控制方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
EP2854444A1 (en) * 2013-09-27 2015-04-01 Panasonic Intellectual Property Corporation of America Efficient uplink scheduling mechanism for dual connectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163315A1 (en) * 2010-12-23 2012-06-28 Qualcomm Incorporated System and method for performing a radio link control (rlc) reset in a downlink multipoint system
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站
CN104796945A (zh) * 2014-01-16 2015-07-22 中国移动通信集团广东有限公司 一种双链路数据传输方法、装置、系统及一种终端
CN104812003A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于主基站和辅基站的流控制方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664323A (zh) * 2017-03-29 2018-10-16 北京视联动力国际信息技术有限公司 一种基于多处理器的数据传输方法和装置

Also Published As

Publication number Publication date
CN106488499A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US10039122B2 (en) Scheduling virtualization for mobile cloud for low latency backhaul
WO2017031956A1 (zh) 一种业务分流方法及装置
US10021596B2 (en) Communication system, communication device, base station and method thereof for D2D communications
JP2020174394A (ja) 無線端末
JP6479040B2 (ja) 電力設定方法、ユーザ装置、及び基地局
RU2543978C2 (ru) Ретрансляционная станция для ретрансляции сигнала между пользовательским устройством и базовой станцией и способ ретрансляции сигнала
CN109787791B (zh) 通信方法及通信设备
US20210029777A1 (en) Discard timer operation in wireless communication
CN111448817B (zh) 一种提供ue能力以支持承载上的安全保护的方法和装置
WO2016082676A1 (zh) 一种进行数据传输的方法和设备
CN105265014B (zh) 一种数据传输的方法及用户设备
US20220286374A1 (en) Method and apparatus for splitting data in multi-connectivity
US11716181B1 (en) Systems and methods for packet segmentation in standalone small cell
US20240154715A1 (en) Wireless communication method and apparatus
EP2849485B1 (en) Scheduler virtualization for mobile cloud for high latency backhaul
JPWO2005115041A1 (ja) 移動体パケット通信システ厶
EP3952600A1 (en) Method and apparatus for establishing radio bearer
US20210127301A1 (en) Application Notifications from Network for Throughput and Flow Control Adaptation
US20240031822A1 (en) Communication control method
CN113141631B (zh) 双连接数据分流方法、装置、设备及存储介质
US20230421312A1 (en) Survival time processing method, and terminal device
KR20200046372A (ko) 업링크 스케줄링장치 및 업링크 스케줄링 방법, 단말장치
CN115209468A (zh) Iab网络中的用户装备第2层缓冲区操作
KR20100000668A (ko) 무선 통신 시스템에서 역방향 데이터의 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838219

Country of ref document: EP

Kind code of ref document: A1