WO2017031925A1 - 一种相变型氧化钒材料及其制备方法 - Google Patents

一种相变型氧化钒材料及其制备方法 Download PDF

Info

Publication number
WO2017031925A1
WO2017031925A1 PCT/CN2016/070278 CN2016070278W WO2017031925A1 WO 2017031925 A1 WO2017031925 A1 WO 2017031925A1 CN 2016070278 W CN2016070278 W CN 2016070278W WO 2017031925 A1 WO2017031925 A1 WO 2017031925A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium oxide
phase change
change type
oxide material
substrate
Prior art date
Application number
PCT/CN2016/070278
Other languages
English (en)
French (fr)
Inventor
欧欣
贾棋
黄凯
王曦
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to US15/755,298 priority Critical patent/US10858728B2/en
Publication of WO2017031925A1 publication Critical patent/WO2017031925A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Definitions

  • the invention belongs to the field of functional materials, and relates to a phase change type vanadium oxide material and a preparation method thereof.
  • vanadium dioxide VO 2
  • MIT metal-insulator
  • the crystal structure of vanadium dioxide is converted between a monoclinic structure (at low temperatures) and a tetragonal rutile structure (at high temperatures).
  • many physical properties of vanadium dioxide have been abrupt, such as resistivity, transmittance, magnetic susceptibility, etc., especially in the infrared range, the optical transmittance / reflectivity changes most, and the resistivity changes Will reach 4-5 orders of magnitude. It is precisely because the phase transition temperature of vanadium dioxide is close to room temperature and its physical properties have undergone a huge mutation before and after the phase change, which has a very broad application prospect. However, practical use often requires adjusting its temperature to a specific temperature to meet the needs of the application.
  • phase transition temperature of vanadium dioxide above room temperature has become the biggest obstacle to its practical application. How to reduce the phase transition temperature of vanadium dioxide has become an urgent solution. problem.
  • phase transition temperature of vanadium dioxide can be controlled by doping metal ions with vanadium dioxide, introducing external/inner stress, and controlling microtopography/defects.
  • doping tungsten ions in vanadium dioxide can significantly reduce the phase transition temperature of vanadium dioxide.
  • the object of the present invention is to provide a phase change type vanadium oxide material and a preparation method thereof, which are used for solving the complicated phase change temperature adjustment process of the vanadium oxide material in the prior art, and the temperature adjustment range. Small, unable to achieve continuous adjustment and can not achieve the problem of regional phase change temperature regulation of materials.
  • the present invention provides a method for preparing a phase change type vanadium oxide material, including The following steps:
  • a vanadium oxide substrate is provided, and the vanadium oxide substrate is subjected to gas ion implantation to obtain a phase change type vanadium oxide material having a preset phase transition temperature.
  • the gas ions include at least one of O, N, H, He, Ne, Ar, and Xe.
  • the preset phase transition temperature is adjusted by adjusting the implantation dose of the gas ions.
  • the vanadium oxide substrate is a film, a patterned nanostructure or a block.
  • the phase change type vanadium oxide material is ground into a powder.
  • the vanadium oxide substrate is subjected to gas ion implantation using a mask, and a phase change type vanadium oxide material having a preset phase transition temperature is obtained in a partial region of the vanadium oxide substrate.
  • the material of the vanadium oxide substrate comprises VO 2 , VO, V 2 O 3 or V 2 O 5 .
  • the material of the vanadium oxide substrate is pure phase vanadium oxide or doped vanadium oxide.
  • the vanadium oxide substrate is prepared by a magnetron sputtering method, an ion beam assisted deposition method, a chemical vapor deposition method, a vacuum thermal evaporation method, an electron beam evaporation method, a laser pulse deposition method or a solution gel method.
  • a vanadium dioxide film on the substrate is prepared by a magnetron sputtering method, an ion beam assisted deposition method, a chemical vapor deposition method, a vacuum thermal evaporation method, an electron beam evaporation method, a laser pulse deposition method or a solution gel method.
  • a vanadium dioxide film on the substrate is prepared by a magnetron sputtering method, an ion beam assisted deposition method, a chemical vapor deposition method, a vacuum thermal evaporation method, an electron beam evaporation method, a laser pulse deposition method or a solution gel method.
  • the substrate is quartz glass, plain glass, sapphire, TiO 2 substrate, mica plate or silicon wafer.
  • the vanadium oxide substrate is a vanadium dioxide film, wherein the dioxide is doped during the preparation of the vanadium dioxide film by doping the sputtering target or changing the oxygen pressure during the preparation process
  • the phase transition temperature of the vanadium film is pre-regulated.
  • the phase change type vanadium oxide material is further annealed.
  • the annealing temperature ranges from 25 to 1000 ° C, and the annealing atmosphere includes at least one of O 2 and Ar.
  • the gas ion implantation energy range is 50 eV to 1 MeV
  • the gas ion implantation dose range is 1E1 to 1E20 cm -2
  • the gas ion implantation temperature ranges from -100 to 1000 °C.
  • the present invention also provides a phase change vanadium oxide material prepared by any of the above methods.
  • the phase change type vanadium oxide material of the present invention and the preparation method thereof have the following beneficial effects: (1) Strong flexibility: the present invention changes the inside of the vanadium oxide substrate by gas ion implantation on the vanadium oxide substrate. The state of stress and strain causes the vanadium oxide phase transition temperature to be adjusted in an ideal direction. The phase transition temperature of vanadium oxide can be continuously adjusted by changing the implantation dose of the gas ions. (2) Compatible with other phase change temperature adjustment modes: The present invention is a post-treatment process, and the vanadium oxide base material for gas ion implantation may be pure phase vanadium oxide, or may be doped or subjected to various other kinds. Treated vanadium oxide.
  • the gas ion implantation is performed on the prepared vanadium oxide substrate, it can be compatible with the method of adjusting the phase transition temperature by doping the sputtering target or changing the oxygen pressure in the process of preparing the vanadium oxide substrate. In combination with other phase change temperature adjustment methods, the present invention can achieve a phase change temperature adjustment range that is greater. (3) It can realize regional phase change temperature regulation: Since the invention adopts gas ion implantation to adjust the phase transition temperature, gas ion implantation can be performed by using a mask plate in the region where the vanadium oxide substrate needs to undergo phase change temperature adjustment, thereby realizing the phase transition temperature adjustment of the vanadium oxide substrate. , provides a new direction for the preparation of vanadium oxide devices.
  • FIG. 1 is a schematic view showing gas ion implantation of a vanadium dioxide film formed on a substrate in a method for producing a phase change type vanadium oxide material of the present invention.
  • Figure 2 shows the resistance-temperature graph of the vanadium dioxide film before and after different Ne ion implantation doses.
  • Figure 3 shows the phase transition temperature of the vanadium dioxide film as a function of ion implantation dose.
  • Figure 4 is a schematic view showing the phase change temperature of the vanadium dioxide film locally changed by using a mask.
  • the invention provides a preparation method of a phase change type vanadium oxide material, comprising the following steps:
  • the vanadium oxide substrate may be in the form of a film, or may be in the form of a patterned nanostructure, a block or the like.
  • the material of the vanadium oxide substrate may be VO 2 or other low-oxide oxides of vanadium VO, V 2 O 3 or V 2 O 5 , which all have semiconductor-metal phase transition characteristics.
  • a vanadium dioxide film is used as the vanadium oxide substrate.
  • a vanadium dioxide film 2 is first prepared on a substrate 1, and then the vanadium dioxide film 2 is subjected to gas ion implantation.
  • the preparation method of the vanadium dioxide film 2 includes, but is not limited to, magnetron sputtering, ion beam assisted deposition, chemical vapor deposition, vacuum thermal evaporation, electron beam evaporation, laser pulse deposition or solution gel method.
  • the substrate 1 includes, but is not limited to, quartz glass, plain glass, sapphire, TiO 2 substrate, mica plate or silicon wafer.
  • the gas ions injected include, but are not limited to, at least one of O, N, H, He, Ne, Ar, and Xe.
  • the gas ion implantation energy and the injected gas ion species are related to the film thickness, generally 50 eV to 1 MeV, the gas ion implantation dose range is 1E1 to 1E20 cm -2 , and the gas ion implantation temperature range is -100 to 1000 ° C.
  • the specific injection dose can be adjusted according to the phase transition temperature to be achieved, and the scope of protection of the present invention should not be unduly limited herein.
  • the invention realizes the change of the phase transition temperature by ion implantation on the vanadium oxide substrate, and the mechanism thereof mainly comprises forming bubbles in the vanadium oxide substrate by injecting gas ions, changing the stress and strain state inside the vanadium oxide substrate, and promoting the vanadium oxide phase.
  • the temperature is adjusted to the desired direction.
  • the present invention changes the phase transition temperature of vanadium oxide by gas ion implantation and is fundamentally different from the phase transition temperature of vanadium oxide by the implantation of metal ions by the doping means in the conventional art.
  • the injected metal ions replace some vanadium ions, which may cause changes in the internal valence state of the vanadium oxide, and introduce crystal defects, which adversely affect the performance of the vanadium oxide itself.
  • the injected gas ions only change the stress-strain state of the vanadium oxide by the pressure of the gas inside the vanadium oxide, thereby changing the phase transition temperature of the vanadium oxide; and the injected gas ions are zero-valent and do not cause vanadium oxide. Changes in the internal valence state do not adversely affect the properties of the vanadium oxide itself.
  • the phase change type vanadium oxide material may be selectively annealed to adjust vanadium oxide.
  • the formation of bubbles is injected to further adjust the stress strain and the phase transition temperature.
  • the annealing temperature ranges from 25 to 1000 ° C, and the annealing atmosphere includes at least one of O 2 and Ar.
  • the present invention can achieve continuous adjustment of the phase transition temperature of vanadium oxide by changing the implantation dose of gas ions, and the phase transition temperature can be reduced by 0 to 80 ° C or even higher.
  • a 200 nm thick pure phase vanadium dioxide film was epitaxially grown on the (0001) side of a sapphire substrate by laser pulse deposition.
  • Four samples were prepared to compare the effects of different implant doses on the phase transition temperature.
  • One of the samples was used as the original sample, and the other three samples were separately implanted with Ne ion.
  • the implantation energy was 100 keV, and the implantation doses were D1, D2, and D3, respectively, where D1 ⁇ D2 ⁇ D3, and the gas ions were not annealed after implantation. Electrical measurements were then made on vanadium dioxide samples not subjected to Ne ion implantation and three different injection doses of vanadium dioxide samples.
  • the Ne ion implantation dose range is preferably 1E10 to 1E18 cm -2 .
  • D1 1E14cm -2
  • D2 5E14cm -2
  • D3 1E15cm -2 .
  • Figure 2 shows the resistance-temperature graph of the vanadium dioxide film before and after different Ne ion implantation doses.
  • the phase transition temperature of vanadium dioxide is reduced after Ne ion implantation.
  • the sample injected with the dose D1 had a sudden change in resistance at 57 ° C, and the phase transition temperature was lowered from 68 ° C to 57 ° C.
  • the phase transition temperatures of the samples implanted at D2 and D3 were reduced to 30 ° C and 0 ° C, respectively.
  • the sample with D3 injection rate is in the low temperature region (150K-250K), and its resistance and temperature show an exponential decreasing relationship. Therefore, the vanadium dioxide film can be used as a super sensitive low temperature thermometer or a super sensitive strain gauge. .
  • Figure 3 shows the phase transition temperature of the vanadium dioxide film versus the ion implantation dose.
  • Two test methods were used: electron transport test and Raman test. It can be seen that the results of the two tests are consistent, that is, the higher the injection dose, the lower the phase transition temperature. Therefore, the present invention can achieve continuous adjustment of the vanadium oxide phase transition temperature by changing the implantation dose of gas ions.
  • the preparation method of the phase change type vanadium oxide material of the present invention is a post-treatment process, that is, the vanadium oxide substrate is prepared first, and then gas ion implantation is performed to obtain a phase change type vanadium oxide.
  • the material can be in its original form, such as film morphology, patterned nanostructures, blocks, and the like.
  • the patterned nanostructures may be nanowires, or other conventional application device shapes, which may be implemented by conventional semiconductor means such as photolithography, development, etching, etc., and the scope of protection of the present invention should not be unduly limited herein.
  • the phase change type vanadium oxide material obtained after the gas ion implantation can be further ground into a powder for the corresponding application.
  • the material of the vanadium oxide substrate is pure phase vanadium oxide.
  • the material of the vanadium oxide substrate may also be doped or subjected to various other treatments. vanadium.
  • Ne ion implantation may also be replaced by at least one of O, N, H, He, Ar, and Xe.
  • the preparation method of the phase change type vanadium oxide material of the present invention is a post-treatment process
  • the present invention can be compatible with other methods for adjusting the phase transition temperature. That is, in the process of preparing the vanadium oxide substrate, the phase transition temperature of the vanadium oxide can be pre-regulated by using a conventional method such as doping a sputtering target or changing the oxygen pressure to obtain a vanadium oxide substrate having a phase transition temperature after pre-regulation. Further, the phase transition temperature is further adjusted by the gas ion implantation method of the present invention.
  • the invention combines with other phase change temperature adjustment methods, and the phase change temperature adjustment range that can be realized is larger, and the continuous adjustment of the vanadium oxide phase transition temperature from -100 to 100 ° C can be realized.
  • the preparation method of the phase change type vanadium oxide material of the invention has simple steps, and the whole process only needs the step of gas ion implantation (the annealing step can be selectively added to adjust the formation of the injected bubbles in the vanadium oxide, and further adjust the stress strain and phase. Variable temperature), no complicated process, easy operation and good process repeatability.
  • the phase change oxidation of the present invention The preparation method of vanadium material has good flexibility.
  • the phase change temperature of vanadium oxide can be continuously adjusted by changing the injection dose of gas ions, and the phase change type vanadium oxide material can be applied to various application fields.
  • This embodiment adopts substantially the same technical solution as the first embodiment, except that in the first embodiment, the overall phase transition temperature of the vanadium oxide substrate is changed, and in this embodiment, only the local region of the vanadium oxide substrate is changed. Phase transition temperature.
  • a vanadium dioxide film 2 is first prepared on the substrate 1, and then the vanadium dioxide film 2 is subjected to gas ion implantation.
  • gas ion implantation is performed, a mask 3 is used.
  • the mask 3 exposes only a partial region of the vanadium dioxide film 2, so that gas ions are only injected into the exposed region, and a change in the phase transition temperature of the local region of the vanadium oxide substrate is achieved.
  • the phase change vanadium oxide material with local phase change temperature change has good application prospects in the preparation of Thz supermaterial structure and other vanadium dioxide devices.
  • the phase change type vanadium oxide material of the present invention and the preparation method thereof have the following beneficial effects: (1) strong flexibility: the present invention changes the interior of the vanadium oxide substrate by gas ion implantation on the vanadium oxide substrate. The condition of the stress strain causes the vanadium oxide phase transition temperature to be adjusted in an ideal direction. The phase transition temperature of vanadium oxide can be continuously adjusted by changing the implantation dose of the gas ions. (2) Compatible with other phase change temperature adjustment modes: The present invention is a post-treatment process, and the vanadium oxide base material for gas ion implantation may be pure phase vanadium oxide, or may be doped or subjected to various other kinds. Treated vanadium oxide.
  • the gas ion implantation is performed on the prepared vanadium oxide substrate, it can be compatible with the method of adjusting the phase transition temperature by doping the sputtering target or changing the oxygen pressure in the process of preparing the vanadium oxide substrate.
  • the present invention can achieve a phase change temperature adjustment range that is greater. (3) achievable regional phase change temperature adjustment: since the present invention adjusts the phase transition temperature by gas ion implantation, gas ion implantation can be performed by using a mask plate in a region where the entire vanadium oxide substrate needs to undergo phase change temperature adjustment, thereby The realization of the phase transition temperature adjustment of the vanadium oxide substrate provides a new direction for the preparation of vanadium oxide devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种相变型氧化钒材料的制备方法,包括如下步骤:提供氧化钒基材,对氧化钒基材进行气体离子注入,得到具有预设相变温度的相变型氧化钒材料。以及一种由制备方法获得的相变型氧化钒材料。

Description

一种相变型氧化钒材料及其制备方法 技术领域
本发明属于功能材料领域,涉及一种相变型氧化钒材料及其制备方法。
背景技术
金属钒与氧气反应可形成复杂的钒氧化物系统,化学计量比具有多种形式。其中大多数钒氧化物在热激励作用下可发生绝缘体-金属的转变,且具有不同的相变温度。在所有钒的氧化物中,二氧化钒(VO2)由于在68℃附近具有显著且可逆的金属-绝缘体(MIT)相变特性,且相变温度最接近室温,而受到科研工作者的广泛关注。
在相变过程中,二氧化钒的晶体结构在单斜结构(低温时)与四方金红石结构(高温时)之间转变。与此同时,二氧化钒的许多物理性质都发生了突变,如电阻率、透射率、磁化率等,尤其是在红外波段的光学透过率/反射率的变化最为明显,而电阻率的突变会达到4-5个量级。正是由于二氧化钒的相变温度接近室温且相变前后其物理性质发生了巨大的突变,使其具有非常广泛的应用前景。但真正实用化往往需要调节其温度到某一个特定的温度以符合应用的需求。特别是在智能窗、光电开关、红外探测、太赫兹等领域,二氧化钒高于室温的相变温度成为其实际应用的最大阻碍,如何降低二氧化钒的相变温度成了一个亟待解决的问题。
研究者们发现,通过对二氧化钒进行金属离子掺杂、引入外/内应力以及控制微观形貌/缺陷等都可以调控二氧化钒的相变温度。比如在二氧化钒中掺杂钨离子就可以显著的降低二氧化钒的相变温度。
然而,目前的调节氧化钒相变温度的方法工艺复杂、温度调节范围小、不能实现连续调节,同时也不能实现区域相变温度的调节。
因此,如何提供一种相变型氧化钒材料及其制备方法以解决上述问题,成为本领域技术人员亟待解决的一个重要技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种相变型氧化钒材料及其制备方法,用于解决现有技术中氧化钒材料的相变温度调节过程复杂,温度调节范围小、不能实现连续调节及不能实现材料的区域相变温度调节的问题。
为实现上述目的及其他相关目的,本发明提供一种相变型氧化钒材料的制备方法,包括 如下步骤:
提供氧化钒基材,对所述氧化钒基材进行气体离子注入,得到具有预设相变温度的相变型氧化钒材料。
可选地,所述气体离子包括O、N、H、He、Ne、Ar及Xe中的至少一种。
可选地,通过调整气体离子的注入剂量来调控所述预设相变温度。
可选地,所述氧化钒基材为薄膜、图形化纳米结构或块体。
可选地,对所述氧化钒基材进行气体离子注入得到具有预设相变温度的相变型氧化钒材料之后,将所述相变型氧化钒材料研磨为粉体。
可选地,利用掩膜版对所述氧化钒基材进行气体离子注入,在所述氧化钒基材的局部区域得到具有预设相变温度的相变型氧化钒材料。
可选地,所述氧化钒基材的材料包括VO2、VO、V2O3或V2O5
可选地,所述氧化钒基材的材料为纯相氧化钒或掺杂氧化钒。
可选地,所述氧化钒基材为通过磁控溅射法、离子束辅助沉积法、化学气相沉积法、真空热蒸发法、电子束蒸发法、激光脉冲沉积法或溶液凝胶法制备于衬底上的二氧化钒薄膜。
可选地,所述衬底为石英玻璃、普通玻璃、蓝宝石、TiO2衬底、云母片或硅片。
可选地,所述氧化钒基材为二氧化钒薄膜,其中,在制备所述二氧化钒薄膜的过程中,通过掺杂溅射靶材或者改变制备过程中的氧压对所述二氧化钒薄膜的相变温度进行预调控。
可选地,对所述氧化钒基材进行气体离子注入得到具有预设相变温度的相变型氧化钒材料之后,进一步对所述相变型氧化钒材料进行退火。
可选地,退火温度范围是25~1000℃,退火气氛包括O2及Ar中的至少一种。
可选地,气体离子注入能量范围是50eV~1MeV,气体离子注入剂量范围是1E1~1E20cm-2,气体离子注入温度范围是-100~1000℃。
本发明还提供一种采用上述任意一种方法制备的相变型氧化钒材料。
如上所述,本发明的相变型氧化钒材料及其制备方法,具有以下有益效果:(1)灵活性强:本发明通过对氧化钒基材进行气体离子注入,改变氧化钒基材内部的应力应变的状况,促使氧化钒相变温度向理想的方向调节。通过改变气体离子的注入剂量,可以连续调节氧化钒的相变温度。(2)兼容其它相变温度调节方式:本发明是一种后处理过程,进行气体离子注入的氧化钒基材材料既可以是纯相的氧化钒,也可以是经过掺杂或者经过其他各种处理的氧化钒。由于进行气体离子注入的是已经制备好的氧化钒基材,因而可以与在制备氧化钒基材过程中采用掺杂溅射靶材或者改变氧压等调节相变温度的方法兼容。本发明与其他相变温度调节方法相结合,能够实现的相变温度调节范围会更大。(3)可实现区域相变温度调节: 由于本发明是采用气体离子注入调节相变温度,因而可以在整个氧化钒基材需要进行相变温度调节的区域利用掩膜版进行气体离子注入,从而实现氧化钒基材的区域相变温度调节,为氧化钒器件的制备提供了一个新的方向。(4)步骤简单:由于本发明整个工艺流程只需要气体离子注入这一步,没有复杂的工艺过程,操作简便,工艺重复性好。当然,后续可通过进一步退火来调整氧化钒中注入气泡的形成情况,进一步调整应力应变及相变温度。
附图说明
图1显示为本发明的相变型氧化钒材料的制备方法中对形成于衬底上的二氧化钒薄膜进行气体离子注入的示意图。
图2显示为二氧化钒薄膜在不同Ne离子注入剂量前后的电阻-温度曲线图。
图3显示为二氧化钒薄膜的相变温度与离子注入剂量的关系曲线。
图4显示为利用掩膜版局部改变二氧化钒薄膜的相变温度的示意图。
元件标号说明
1  衬底
2  二氧化钒薄膜
3  掩膜版
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图4。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
本发明提供一种相变型氧化钒材料的制备方法,包括如下步骤:
提供氧化钒基材,对所述氧化钒基材进行气体离子注入,得到具有预设相变温度的相变 型氧化钒材料。
具体的,所述氧化钒基材可以为薄膜形态,也可以为图形化纳米结构、块体等形式。所述氧化钒基材的材料可以为VO2,也可以为其它钒的低价氧化物VO、V2O3或V2O5,其都存在半导体-金属相变特性。
作为示例,以二氧化钒薄膜作为所述氧化钒基材。如图1所示,首先在衬底1上制备二氧化钒薄膜2,再对所述二氧化钒薄膜2进行气体离子注入。所述二氧化钒薄膜2的制备方法包括但不限于磁控溅射法、离子束辅助沉积法、化学气相沉积法、真空热蒸发法、电子束蒸发法、激光脉冲沉积法或溶液凝胶法。所述衬底1包括但不限于石英玻璃、普通玻璃、蓝宝石、TiO2衬底、云母片或硅片。注入的所述气体离子包括但不限于O、N、H、He、Ne、Ar及Xe中的至少一种。
具体的,气体离子的注入能量及注入的气体离子种类与薄膜厚度有关,一般为50eV~1MeV,气体离子注入剂量范围是1E1~1E20cm-2,气体离子注入温度范围是-100~1000℃。具体的注入剂量可根据需要达到的相变温度进行调整,此处不应过分限制本发明的保护范围。
本发明通过对氧化钒基材进行离子注入实现相变温度的改变,其机理主要是通过注入气体离子在氧化钒基材内形成气泡,改变氧化钒基材内部的应力应变状况,促使氧化钒相变温度向理想的方向调节。
需要指出的是,本发明通过气体离子注入改变氧化钒相变温度与传统技术中注入金属离子通过掺杂手段改变氧化钒的相变温度有着本质区别。传统技术中注入金属离子后,注入的金属离子替代部分钒离子,会引起氧化钒内部价态的变化,同时引入晶体缺陷,对氧化钒本身的性能产生不良影响。而本发明中,注入的气体离子仅通过气体在氧化钒内部的压力引起氧化钒应力应变状态的改变,从而改变氧化钒的相变温度;且注入的气体离子为零价,不会引起氧化钒内部价态的变化,不会对氧化钒本身的特性造成不良影响。
具体的,对所述氧化钒基材进行气体离子注入得到具有预设相变温度的相变型氧化钒材料之后,可选择性地对所述相变型氧化钒材料进行退火以调整氧化钒中注入气泡的形成情况,从而进一步调整应力应变及相变温度。其中,退火温度范围是25~1000℃,退火气氛包括O2及Ar中的至少一种。
特别的,本发明能够通过改变气体离子的注入剂量来实现氧化钒相变温度的连续可调,相变温度降低幅度可达0~80℃,甚至更高。
作为示例,采用激光脉冲沉积法在蓝宝石衬底的(0001)面上外延一层200nm厚的纯相二氧化钒薄膜,为了对比不同注入剂量对相变温度的影响,制作了四个样品。将其中一个样品作为原始样品,对其余三个样品分别进行Ne离子注入,注入能量为100keV,注入剂量分 别为D1、D2、D3,其中,D1<D2<D3,气体离子注入后未经退火。然后对未进行Ne离子注入的二氧化钒样品和三种不同注入剂量的二氧化钒样品分别进行电学测量。本实施例中,Ne离子注入剂量范围优选为1E10~1E18cm-2。作为示例,D1=1E14cm-2,D2=5E14cm-2,D3=1E15cm-2
图2显示为二氧化钒薄膜在不同Ne离子注入剂量前后的电阻-温度曲线图。如图2所示,经过Ne离子注入后,二氧化钒的相变温度都得到了降低。如注入剂量D1的样品在57℃处电阻发生突变,相变温度从68℃降至57℃。同样的,注入剂量为D2、D3的样品相变温度分别降至30℃和0℃。值得注意的是,注入剂量为D3的样品在低温区域(150K-250K),其电阻与温度呈现指数递减关系,因而该二氧化钒薄膜可以用来作为超级敏感的低温温度计或者超级敏感的应变片。
图3显示为二氧化钒薄膜的相变温度与离子注入剂量的关系曲线,采用了两种测试手段:电子传输测试及Raman测试。可见,两种测试的结果趋势一致,即注入剂量越高,相变温度越低。因此,本发明能够通过改变气体离子的注入剂量来实现氧化钒相变温度的连续可调。
需要指出的是,本发明的相变型氧化钒材料的制备方法是一种后处理过程,即先制备好所述氧化钒基材,再对其进行气体离子注入,得到的相变型氧化钒材料可为其原始形态,如薄膜形态、图形化纳米结构、块体等。其中,所述图形化纳米结构可以为纳米线,或其它常规应用器件形状,其可通过光刻、显影、刻蚀等常规半导体手段来实现,此处不应过分限制本发明的保护范围。当然,对于进行气体离子注入之后得到的相变型氧化钒材料,也可进一步将其研磨为粉体来进行相应的应用。
此外,上述示例中,所述氧化钒基材的材料是纯相的氧化钒,在另一实施例中,所述氧化钒基材的材料也可以是经过掺杂或者经过其他各种处理的氧化钒。同时,Ne离子注入也可采用O、N、H、He、Ar及Xe中的至少一种来代替。
进一步的,由于本发明的相变型氧化钒材料的制备方法是一种后处理过程,因而本发明可以与其它调节相变温度的方法兼容。即在制备氧化钒基材过程中,可采用掺杂溅射靶材或者改变氧压等现有方式对氧化钒的相变温度进行预调控,得到相变温度经过预调控的氧化钒基材之后,再采用本发明的气体离子注入法对相变温度进一步调节。本发明与其他相变温度调节方法相结合,能够实现的相变温度调节范围会更大,可以实现对氧化钒相变温度从-100~100℃的大范围连续调节。
本发明的相变型氧化钒材料的制备方法步骤简单,整个工艺流程只需要气体离子注入这一步(可选择性地增加退火步骤来调整氧化钒中注入气泡的形成情况,进一步调整应力应变及相变温度),没有复杂的工艺过程,操作简便,工艺重复性好。同时,本发明的相变型氧化 钒材料的制备方法灵活性好,通过改变气体离子的注入剂量,可以连续调节氧化钒的相变温度,从而得到的相变型氧化钒材料可适用于多种应用领域。
实施例二
本实施例与实施例一采用基本相同的技术方案,不同之处在于,实施例一中是改变氧化钒基材的整体相变温度,而本实施例中,仅改变氧化钒基材局部区域的相变温度。
如图4所示,首先在衬底1上制备二氧化钒薄膜2,再对所述二氧化钒薄膜2进行气体离子注入,其中,进行气体离子注入时,采用了掩膜版3,所述掩膜版3仅暴露出所述二氧化钒薄膜2的部分区域,从而气体离子仅注入该暴露的区域,实现氧化钒基材的局部区域相变温度的改变。这种局部区域相变温度改变的相变型氧化钒材料在制备Thz超材料结构方面及其它二氧化钒器件方面具有良好应用前景。
综上所述,本发明的相变型氧化钒材料及其制备方法,具有以下有益效果:(1)灵活性强:本发明通过对氧化钒基材进行气体离子注入,改变氧化钒基材内部的应力应变的状况,促使氧化钒相变温度向理想的方向调节。通过改变气体离子的注入剂量,可以连续调节氧化钒的相变温度。(2)兼容其它相变温度调节方式:本发明是一种后处理过程,进行气体离子注入的氧化钒基材材料既可以是纯相的氧化钒,也可以是经过掺杂或者经过其他各种处理的氧化钒。由于进行气体离子注入的是已经制备好的氧化钒基材,因而可以与在制备氧化钒基材过程中采用掺杂溅射靶材或者改变氧压等调节相变温度的方法兼容。本发明与其他相变温度调节方法相结合,能够实现的相变温度调节范围会更大。(3)可实现区域相变温度调节:由于本发明是采用气体离子注入调节相变温度,因而可以在整个氧化钒基材需要进行相变温度调节的区域利用掩膜版进行气体离子注入,从而实现氧化钒基材的区域相变温度调节,为氧化钒器件的制备提供了一个新的方向。(4)步骤简单:由于本发明整个工艺流程只需要气体离子注入这一步,没有复杂的工艺过程,操作简便,工艺重复性好。当然,后续可通过进一步退火来调整氧化钒中注入气泡的形成情况,进一步调整应力应变及相变温度。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (15)

  1. 一种相变型氧化钒材料的制备方法,其特征在于,包括如下步骤:
    提供氧化钒基材,对所述氧化钒基材进行气体离子注入,得到具有预设相变温度的相变型氧化钒材料。
  2. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:所述气体离子包括O、N、H、He、Ne、Ar及Xe中的至少一种。
  3. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:通过调整气体离子的注入剂量来调控所述预设相变温度。
  4. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:所述氧化钒基材为薄膜、图形化纳米结构或块体。
  5. 根据权利要求4所述的相变型氧化钒材料的制备方法,其特征在于:对所述氧化钒基材进行气体离子注入得到具有预设相变温度的相变型氧化钒材料之后,将所述相变型氧化钒材料研磨为粉体。
  6. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:利用掩膜版对所述氧化钒基材进行气体离子注入,在所述氧化钒基材的局部区域得到具有预设相变温度的相变型氧化钒材料。
  7. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:所述氧化钒基材的材料包括VO2、VO、V2O3或V2O5
  8. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:所述氧化钒基材的材料为纯相氧化钒或掺杂氧化钒。
  9. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:所述氧化钒基材为通过磁控溅射法、离子束辅助沉积法、化学气相沉积法、真空热蒸发法、电子束蒸发法、激光脉冲沉积法或溶液凝胶法制备于衬底上的二氧化钒薄膜。
  10. 根据权利要求9所述的相变型氧化钒材料的制备方法,其特征在于:所述衬底为石英玻璃、普通玻璃、蓝宝石、TiO2衬底、云母片或硅片。
  11. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:所述氧化钒基材为二氧化钒薄膜,其中,在制备所述二氧化钒薄膜的过程中,通过掺杂溅射靶材或者改变制备过程中的氧压对所述二氧化钒薄膜的相变温度进行预调控。
  12. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:对所述氧化钒基材进行气体离子注入得到具有预设相变温度的相变型氧化钒材料之后,进一步对所述相变型氧化钒材料进行退火。
  13. 根据权利要求12所述的相变型氧化钒材料的制备方法,其特征在于:退火温度范围是25~1000℃,退火气氛包括O2及Ar中的至少一种。
  14. 根据权利要求1所述的相变型氧化钒材料的制备方法,其特征在于:气体离子注入能量范围是50eV~1MeV,气体离子注入剂量范围是1E1~1E20cm-2,气体离子注入温度范围是-100~1000℃。
  15. 一种采用如权利要求1~14任意一项所述方法制备的相变型氧化钒材料。
PCT/CN2016/070278 2015-08-24 2016-01-06 一种相变型氧化钒材料及其制备方法 WO2017031925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/755,298 US10858728B2 (en) 2015-08-24 2016-01-06 Phase-change type vanadium oxide material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510524327.3A CN105088166B (zh) 2015-08-24 2015-08-24 一种相变型氧化钒材料及其制备方法
CN2015105243273 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017031925A1 true WO2017031925A1 (zh) 2017-03-02

Family

ID=54569480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070278 WO2017031925A1 (zh) 2015-08-24 2016-01-06 一种相变型氧化钒材料及其制备方法

Country Status (3)

Country Link
US (1) US10858728B2 (zh)
CN (1) CN105088166B (zh)
WO (1) WO2017031925A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802033A (zh) * 2018-12-19 2019-05-24 华南师范大学 一种利用离子注入诱导BiFeO3薄膜可逆相变的方法
CN113260690A (zh) * 2019-01-09 2021-08-13 国立研究开发法人产业技术综合研究所 烧结用粉末材料和使用它的潜热型固体蓄热构件

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088166B (zh) * 2015-08-24 2017-12-15 中国科学院上海微系统与信息技术研究所 一种相变型氧化钒材料及其制备方法
CN107779831B (zh) * 2016-08-26 2019-08-16 中国科学院上海硅酸盐研究所 磁控溅射制备a相二氧化钒薄膜的方法
CN109181650B (zh) * 2018-09-05 2020-12-04 长沙理工大学 一种基于双重相变的动态热红外隐身复合材料及制备方法
CN112285952B (zh) * 2020-09-17 2023-11-24 首都师范大学 一种基于二氧化钒的可编程太赫兹记忆调制器件及系统
CN112064021B (zh) * 2020-09-22 2021-10-19 南京航空航天大学 一种采用热致相变膜调控刀具涂层应力的方法
CN113235042B (zh) * 2021-05-12 2022-09-13 哈尔滨工业大学 抗激光损伤混杂VOx相的制备方法
CN113981400B (zh) * 2021-09-10 2023-10-20 浙江上方电子装备有限公司 可显示图案的电致变色器件及其镀膜方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800440A (zh) * 2005-04-30 2006-07-12 江苏工业学院 室温电阻温度系数高于10%k的多晶二氧化钒薄膜制备方法
WO2008004787A1 (en) * 2006-07-06 2008-01-10 Electronics And Telecommunications Research Institute Method of forming vanadium trioxide thin film showing abrupt metal-insulator transition
CN101471421A (zh) * 2007-12-26 2009-07-01 中国科学院微电子研究所 二元过渡族金属氧化物非挥发电阻转变型存储器
CN105088166A (zh) * 2015-08-24 2015-11-25 中国科学院上海微系统与信息技术研究所 一种相变型氧化钒材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358307B1 (en) * 1995-11-03 2002-03-19 Les Peintures Jefco Vanadium dioxide microparticles, method for preparing same, and use thereof, in particular for surface coating
EP1886318B1 (en) * 2005-05-19 2008-10-08 Koninklijke Philips Electronics N.V. Method for controlling the "first-to-melt" region in a pcm cell and devices obtained thereof
JP2010219207A (ja) * 2009-03-16 2010-09-30 Sony Corp 金属−絶縁体相転移材料を用いた機能要素の形成方法及びこれによって形成された機能要素、並びに機能デバイスの製造方法及びこれによって製造された機能デバイス
US7915585B2 (en) * 2009-03-31 2011-03-29 Bae Systems Information And Electronic Systems Integration Inc. Microbolometer pixel and fabrication method utilizing ion implantation
CN102412335B (zh) * 2010-09-21 2014-11-05 上海凯世通半导体有限公司 太阳能晶片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800440A (zh) * 2005-04-30 2006-07-12 江苏工业学院 室温电阻温度系数高于10%k的多晶二氧化钒薄膜制备方法
WO2008004787A1 (en) * 2006-07-06 2008-01-10 Electronics And Telecommunications Research Institute Method of forming vanadium trioxide thin film showing abrupt metal-insulator transition
CN101471421A (zh) * 2007-12-26 2009-07-01 中国科学院微电子研究所 二元过渡族金属氧化物非挥发电阻转变型存储器
CN105088166A (zh) * 2015-08-24 2015-11-25 中国科学院上海微系统与信息技术研究所 一种相变型氧化钒材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CASE, F.C.;: "Modifications in the Phase Transition Properties of Predeposited V02 Films", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, vol. 2, no. 4, 31 December 1984 (1984-12-31), pages 1509 - 1512, XP055365073, ISSN: 0734-2101 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802033A (zh) * 2018-12-19 2019-05-24 华南师范大学 一种利用离子注入诱导BiFeO3薄膜可逆相变的方法
CN109802033B (zh) * 2018-12-19 2023-04-28 华南师范大学 一种利用离子注入诱导BiFeO3薄膜可逆相变的方法
CN113260690A (zh) * 2019-01-09 2021-08-13 国立研究开发法人产业技术综合研究所 烧结用粉末材料和使用它的潜热型固体蓄热构件

Also Published As

Publication number Publication date
US10858728B2 (en) 2020-12-08
CN105088166A (zh) 2015-11-25
US20180327894A1 (en) 2018-11-15
CN105088166B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2017031925A1 (zh) 一种相变型氧化钒材料及其制备方法
JP2009275236A (ja) 酸窒化物半導体
Chen et al. Characterization of transparent conductive delafossite-CuCr1− xO2 films
Wu et al. Structural, optical, and electrical properties of Mo-doped ZnO thin films prepared by magnetron sputtering
Xiong et al. Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers
Xu et al. Realization of strong violet and blue emissions from ZnO thin films by incorporation of Cu ions
Zhang et al. Preparation and investigation of sputtered vanadium dioxide films with large phase-transition hysteresis loops
CN110676339A (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
Bind et al. Ion implantation induced phase transformation and enhanced crystallinity of as deposited copper oxide thin films by pulsed laser deposition
Mabakachaba et al. Structural and electrical properties of Mg-doped vanadium dioxide thin films via room-temperature ion implantation
Im et al. Improvement in the electrical performance of Ge-doped InZnO thin-film transistor
Pan et al. High performance of ZnSnO thin-film transistors engineered by oxygen defect modulation
Cho et al. Low temperature processed InGaZnO oxide thin film transistor using ultra-violet irradiation
JP6036984B2 (ja) 酸窒化物半導体薄膜
Zhu et al. The novel preparation method of thermochromic VO2 films with a low phase transition temperature by thermal oxidation of V–Mo cosputtered alloy films
Matamura et al. Formation of Uniquely Oriented VO2 Thin Films by Topotactic Oxidation of V2O3 Epitaxial Films on R-Plane Al2O3
CN109440071B (zh) 一种硅集成低光学损耗磁光薄膜及其制备方法
CN103194798B (zh) 一种过渡金属掺杂ZnO基铁磁多晶薄膜及其制备方法
Xiang et al. Low temperature fabrication of high-performance VO2 film via embedding low vanadium buffer layer
Hassan et al. Measuring the Response of Annealed Zinc Oxide Thin Films to Ethanol Gas
Egbo et al. Effects of acceptor doping and oxygen stoichiometry on the properties of sputter-deposited p-type rocksalt NixZn1-xO (0.3≤ x≤ 1.0) alloys
Yan et al. Thin-film transistors based on amorphous ZnNbSnO films with enhanced behaviors
JP2015216241A (ja) 機能性素子、二酸化バナジウム薄膜製造方法
CN110890280B (zh) 一种利用钯/钯氧化物双层肖特基电极制备氧化物半导体肖特基二极管的方法
US9583517B2 (en) Polycrystalline oxide thin-film transistor array substrate and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15755298

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16838194

Country of ref document: EP

Kind code of ref document: A1