WO2017031800A1 - 一维大行程精密定位平台 - Google Patents

一维大行程精密定位平台 Download PDF

Info

Publication number
WO2017031800A1
WO2017031800A1 PCT/CN2015/090073 CN2015090073W WO2017031800A1 WO 2017031800 A1 WO2017031800 A1 WO 2017031800A1 CN 2015090073 W CN2015090073 W CN 2015090073W WO 2017031800 A1 WO2017031800 A1 WO 2017031800A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing member
piezoelectric ceramic
guide rail
precision positioning
positioning platform
Prior art date
Application number
PCT/CN2015/090073
Other languages
English (en)
French (fr)
Inventor
钟博文
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US15/549,248 priority Critical patent/US10483877B2/en
Publication of WO2017031800A1 publication Critical patent/WO2017031800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors

Definitions

  • the invention relates to a one-dimensional large-stroke precision positioning platform, belonging to the technical field of micro-nano.
  • Nanotechnology is one of the basic means for human beings to explore and utilize the microcosm. Among them, nanomanipulation is an important part of nanotechnology, and it is a hot research field that has received extensive attention in the field of international robotics and nanotechnology.
  • the high-precision and controllable nano-operating system has great application prospects in the fields of optoelectronic information technology and medical technology.
  • Automated and precise manipulation of objects or materials at the nanometer scale is one of the essential means of nano-operating systems.
  • important scientific engineering fields such as micro-system engineering, bio-engineering, medical engineering, precision manufacturing, aerospace and other fields require positioning platforms to achieve high-precision positioning and operation, and also have a larger operating range in a limited operating space.
  • the cross-scale precision positioning actuators based on piezoelectric ceramics mainly include: a ruler drive, a piezoelectric ultrasonic motor, a piezoelectric harmonic drive, and a macro-micro hybrid drive.
  • a ruler drive a piezoelectric ultrasonic motor
  • a piezoelectric harmonic drive a piezoelectric harmonic drive
  • a macro-micro hybrid drive has various types of drives, complex structure, large size, high cost, and complex drive control system.
  • the object of the present invention is to provide a one-dimensional large-stroke precision positioning platform with high precision, good consistency, small friction, stable performance, and strong carrying capacity.
  • a one-dimensional large-stroke precision positioning platform comprising a housing, a cross ball guide disposed on one side of the housing, and a piezoelectricity disposed in the housing a ceramic ball and an elastic member
  • the cross ball guide includes a mover guide rail and a stator guide rail disposed opposite to the mover guide rail, the stator guide rail is disposed in parallel with the mover guide rail, and the stator rail is fixed to the housing
  • the housing is provided with a receiving cavity for accommodating the piezoelectric ceramic and the elastic member, and the receiving cavity is further provided with a first fixing member and a second fixing member, and the first fixing member and the second fixing member are
  • the longitudinal direction of the mover guide moves in the accommodating cavity, and one end of the piezoelectric ceramic abuts the first fixing member and the other end abuts the second fixing member in a longitudinal direction of the mover guide
  • the mover rail is fixed on the second fixing member, and the elastic member is fixed on
  • the piezoelectric ceramic has a first abutting surface that abuts the first fixing member and a second abutting surface that abuts the second fixing member, and one side of the piezoelectric ceramic is provided with a pre-tightening screw.
  • the pre-tightening screw abuts the first abutting surface or the second abutting surface.
  • a gasket is sandwiched between the pre-tightening screw and the piezoelectric ceramic.
  • the pre-tightening screw is screwed on the second fixing member, and the spacer is clamped between the pre-tightening screw and the second abutting surface of the piezoelectric ceramic.
  • the opposite sides of the elastic member are respectively provided with a mounting hole and an adjusting hole, and the first fixing member is disposed on the first fixing member A set screw in the mounting hole and an adjusting screw installed in the adjusting hole.
  • the first fixing member includes a first frame body and a first hollow cavity formed in the first frame body, the elastic member is received in the first hollow cavity, and the first fixing member is disposed on the first fixing member There is a resisting portion that abuts against the piezoelectric ceramic, and the resisting portion is formed by protruding from the first frame body toward the piezoelectric ceramic, and the flexible member is disposed on the resisting portion.
  • the flexible member is a plate body extending outward from a side surface of the abutting portion.
  • the second fixing member includes a second frame body and a second hollow cavity formed in the second frame body, the piezoelectric ceramic is received in the second hollow cavity, and the second frame
  • the body includes oppositely disposed top and bottom walls and two side walls extending downward from the top wall, the second frame having an opening facing the first frame, the abutting portion extending from the opening Into the second hollow cavity.
  • the plate body is formed by two outwardly extending from the two sides of the abutting portion, and the two plate bodies are respectively connected to the two side walls of the second frame body.
  • the housing includes opposite upper and lower end walls, the stator rail is fixed on the upper end wall, and the upper end wall is provided with a channel, and the mover rail is located in the channel Upper, the lower end wall defines a through hole communicating with the receiving cavity.
  • the present invention has at least the following advantages: the one-dimensional large-stroke precision positioning platform of the present invention solves the existing precision by adopting a cross-ball guide, an elastic member and a piezoelectric ceramic, and connecting through a flexible member.
  • the problem of poor consistency, lost step, low retention force and large impact of the performance of the positioning platform on the positioning platform has the advantages of high precision, good consistency, small friction, stable performance and strong carrying capacity.
  • FIG. 1 is a schematic structural view of a one-dimensional large stroke precision positioning platform of the present invention
  • Figure 2 is a front elevational view of Figure 1;
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 4 is a plan view of Figure 1;
  • Figure 5 is a partial structural view of Figure 1;
  • Figure 6 is a schematic structural view of the flexible frame of Figure 5;
  • Figure 7 is a plan view of Figure 6;
  • Figure 8 is a schematic structural view of the elastic member of Figure 1;
  • Figure 9 is a schematic structural view of the adjusting screw of Figure 1;
  • Fig. 10 is a schematic view showing the sawtooth wave input during the movement of the one-dimensional large-stroke precision positioning platform of the present invention.
  • a one-dimensional large-stroke precision positioning platform 100 includes a housing 1 , a cross ball guide 2 disposed on one side of the housing 1 , and a set in the same.
  • the piezoelectric ceramic 3 and the elastic member 4 in the casing 1 are described.
  • the housing 1 is provided with a receiving cavity 11 , and the housing 1 includes opposite upper end walls 12 and lower end walls 13 and opposite side end walls 14 , the upper end wall 12 , the lower end wall 13 and both sides
  • the end wall 14 surrounds the storage chamber 11.
  • the upper end wall 12 is recessed and formed with a groove 15 including a vertically disposed horizontal surface 151 and a vertical surface 152.
  • the upper end wall 12 defines a channel 16 extending from the rear end surface of the upper end wall 12.
  • the front end surface 122 of the upper end wall 12 penetrates and penetrates downward from the horizontal surface 151 to communicate with the accommodation chamber 11.
  • a through hole 17 communicating with the receiving cavity 11 is defined in the lower end wall 13 .
  • the cross ball guide 2 includes a mover guide 21 and a stator guide 22 disposed opposite to both sides of the mover guide 21.
  • the stator guide 22 is disposed in parallel with the mover guide 21, and the stator guide 22 is fixed to the
  • the upper end wall 12 of the housing 1 is located in the recess 15 of the upper end wall 12, which in this embodiment is the stator rail 22 is fixed on the upper end wall 12 by a fastener 51.
  • the vertical surface 152 is provided with a screw hole 153.
  • the screw hole 153 is provided with a set screw 52.
  • the set screw 52 abuts the stator of the cross ball guide 2
  • the guide rail 22 passes through the set screw 52 to adjust the mounting clearance of the cross ball guide 2 to adjust the assembly error caused by the cross ball guide 2 during the mounting process.
  • the mover rail 21 is located above the channel 16, and the longitudinal extension direction of the mover rail 21 extends in the longitudinal direction of the channel 16.
  • the piezoelectric ceramic 3 and the elastic member 4 are disposed in the accommodating cavity 11, and the accommodating cavity 11 has an inner bottom surface 111 and a vertical inner bottom surface 111 and opposite inner side surfaces 112.
  • a first fixing member 61 and a second fixing member 62 are further disposed in the receiving cavity 11, and the first fixing member 61 and the second fixing member 62 are arranged along a longitudinal direction of the mover guide 21, and the The first fixing member 61 and the second fixing member 62 are movable in the housing cavity 11 along the longitudinal direction of the mover guide 21. In the longitudinal direction of the mover rail 21, one end of the piezoelectric ceramic 3 abuts against the first fixing member 61, and the other end abuts against the second fixing member 62.
  • the mover rail 21 is fixed on the second fixing member 62.
  • the elastic member 4 is fixed on the first fixing member 61, and the elastic member 4 is in the width direction of the mover guide 21. Both sides press against the inner side surface 112 of the housing chamber 11.
  • the first fixing member 61 and the second fixing member 62 are connected by a flexible member 63.
  • the first fixing member 61 includes a first frame body 611 and a first hollow cavity 612 formed in the first frame body 611.
  • the elastic member 4 is received in the first hollow cavity 612.
  • the first fixing member 61 is provided with a resisting portion 613 that abuts against the piezoelectric ceramic 3 , and the resisting portion 613 includes a protruding portion from the first frame body 611 toward the piezoelectric ceramic 3 .
  • the flexible member 63 is disposed on the abutting portion 613.
  • the flexible member 63 is a plate body extending outward from a side surface of the resisting portion 613, and the thickness of the plate body 63 is set according to the rigidity of the piezoelectric ceramic 3 to prevent the piezoelectric ceramic. The displacement loss of 3 is too large.
  • the cross section of the abutting portion 613 is formed in a T shape, and the head portion of the T-shaped abutting portion 613 is abutted against the piezoelectric ceramic 3 to increase the contact area between the piezoelectric ceramic 3 and the abutting portion 613.
  • the second fixing member 62 includes a second frame 621 and a second hollow cavity 622 formed in the second frame 621. The piezoelectric ceramic 3 is received in the second hollow cavity 622.
  • the second frame 621 includes oppositely disposed top walls 623 and bottom walls 624 from the top wall
  • the 623 extends downward to connect the two side walls 625 of the bottom wall 624 and the rear wall 626 connecting the top wall 623, the bottom wall 624 and the two side walls 625, the second frame 621 having an opening 627 facing the first frame 611.
  • the opening 627 is disposed opposite the rear wall 626.
  • the abutting portion 613 extends from the opening 627 into the second hollow cavity 622 to make the overall structure more compact and highly integrated.
  • the plate body 63 is formed by extending outwardly from both sides of the abutting portion 613, and the two plate bodies 63 are respectively connected to the two side walls 625 of the second frame body 621.
  • the plate 63 may be of other numbers to be connected to the top wall 623, the bottom wall 624 and the two side walls 625 of the second fixing member 62, or only to the top wall 623 and the bottom wall 624. Either of the two side walls 625 are connected or connected to any of the top wall 623, the bottom wall 624 and the two side walls 625. In this embodiment, since the flexible member 63 is only connected to the two side walls 625, the opposite wall 63, the top wall 623, the bottom wall 624 and the two side walls 625 of the second fixing member 62 are connected or connected to the top wall 623 and the bottom.
  • the movement between the first fixing member 61 and the second fixing member 62 is more sensitive, which helps to prevent the displacement loss of the piezoelectric ceramic 3 from being excessively large, and relatively only
  • the first fixing member 61 and the second fixing member 62 move more smoothly.
  • the rear wall 626 of the first housing 1 is provided with a pre-tightening screw hole 627, the top wall 623 of the first housing 1 projects into the channel 16, and the mover rail 21 is fixed to the top wall 623 by screws 53. .
  • the first fixing member 61, the second fixing member 62 and the flexible member 63 are disposed in the receiving cavity 11 as a unitary structure, and are named as a flexible frame 6, and the flexible frame 6 is made of 7075 aluminum alloy.
  • the flexible frame 6 can not only provide the pre-tightening force to the piezoelectric ceramics 3, but also avoid the tensile force of the piezoelectric ceramics 3, prolong the service life of the piezoelectric ceramics 3, and eliminate the transmission gap, and electrically electrify the piezoelectric ceramics 3. The long displacement is passed out.
  • the elastic member 4 is an O-shaped spring piece 4 including a first planar section 41 and a second planar section 42 disposed opposite to each other and connecting the first planar section 41 and the second planar section 42.
  • Two curved segments 43 In the height direction of the stator rail 22, the first plane segment 41 and the second plane segment 42 are upper and lower sides of the O-shaped spring piece 4.
  • the two arcuate segments 43 are mirrored, and the two arcuate segments 43 respectively abut the inner side surfaces 112 of the receiving cavity 11 to provide the frictional force necessary for the one-dimensional large-stroke precision positioning platform 100 to move.
  • the O A mounting hole 44 and an adjusting hole 45 are defined in the first flat section 41 and the second flat section 42 of the spring piece 4, and the second fixing member 62 is provided with a positioning screw 54 mounted in the mounting hole 44. And an adjusting screw 55 mounted in the adjusting hole 45.
  • the O-shaped spring piece 4 is provided with a fixing block 7 for resisting the O-shaped spring piece 4, and the positioning screw 54 is screwed with the fixing block 7.
  • the adjusting screw 55 has a threaded portion 551 fixed to the second fixing member 62 and a boss 552 which projects into the adjusting hole 45. The adjusting is performed by the clearance of the boss 552 and the adjusting hole 45.
  • the screw 55 can not only adjust the deformation and preloading action of the O-shaped spring piece 4, but also adjust the platform to an optimal working state, and can also serve as a limit.
  • the adjusting screw 55 presses the O-shaped spring piece 4 upward, the O-shaped spring piece 4 is opened in the horizontal direction, and the two inner side faces 112 of the receiving cavity 11 are pressed, thereby increasing the O-shaped spring piece 4 and the housing 1
  • the adjusting screw 55 is loosened downward, the positive pressure of the O-shaped spring piece 4 and the two inner side faces 112 of the receiving cavity 11 is reduced, and the friction between the two is also reduced, thereby facilitating The size of the frictional force is adjusted.
  • the through hole 17 communicating with the receiving cavity 11 is opened on the lower end wall 13 so as to accurately position the one-dimensional large stroke without disassembling the one-dimensional large-stroke precision positioning platform 100.
  • the platform 100 is adjusted to the best working condition.
  • the material of the O-shaped spring piece 4 is 65Mn, which has good wear resistance and elasticity, and has a thickness of 0.2 mm, which is formed by bending.
  • the piezoelectric ceramic 3 has a first abutting surface 31 that abuts against the abutting portion 613 of the first fixing member 61 and a second abutting surface 32 that abuts the rear wall 626 of the second fixing member 62.
  • One side of the piezoelectric ceramic 3 is provided with a pre-tightening screw 56, which is mounted in a pre-tightening screw hole 627, and the pre-tightening screw 56 abuts against the second abutting surface 32 by setting the pre-tightening screw 56 to provide a preload to the piezoelectric ceramic 3, thereby extending the service life of the piezoelectric ceramic 3.
  • a gasket 8 is interposed between the pre-tightening screw 56 and the piezoelectric ceramic 3 to prevent the screw 56 from being damaged by the pre-tightening screw 56 during the adjustment of the pre-tightening force by providing the spacer 8.
  • the pre-tightening screw 56 is screwed onto the second fixing member 62, and the spacer 8 is clamped between the pre-tightening screw 56 and the second abutting surface 32 of the piezoelectric ceramic 3.
  • the pre-tightening screw 56 abuts the second abutting surface 32 to achieve adjustment of the piezoelectric ceramic 3, and in other embodiments, the pre-tightening screw 56 may also be abutted against the first abutting surface 31 to effect adjustment of the piezoelectric ceramic 3.
  • the above-mentioned one-dimensional large-stroke precision positioning platform 100 can meet the requirements of nano-level positioning accuracy and realize a millimeter-scale motion stroke cross-scale precision positioning platform.
  • the one-dimensional large-stroke precision positioning platform 100 adopts a stepping type. And scanning two working modes, the stepping working mode realizes large stroke motion, and the scanning working mode realizes nano-level precision positioning.
  • the working process of the one-dimensional large-stroke precision positioning platform 100 is as follows: when a sawtooth wave as shown in FIG. 10 is input to the piezoelectric ceramic 3, the one-dimensional large-stroke precision positioning platform 100 enters a working state. .
  • Step signal When the piezoelectric ceramic 3 is driven to move at a large acceleration, the piezoelectric ceramic 3 transmits the step displacement through the flexible frame 6, and the mover guide 21 and the O-shaped spring piece 4 of the cross ball guide 2 generate different micro directions in opposite directions.
  • Displacement, and the displacement of the mover guide 21 and the O-shaped spring piece 4 of the cross ball guide 2 is the amount of deformation of the piezoelectric ceramic 3; when the drive signal applied to the piezoelectric ceramic 3 is a sawtooth ramp
  • the piezoelectric ceramic 3 is slowly shortened, the flexible frame 6 is slowly restored to its original shape, the O-shaped spring piece 4 is held in place under the frictional force, and the mover guide 21 of the cross ball guide 2 is pulled toward the O-shape under the traction of the flexible frame 6.
  • the direction of the spring piece 4 is moved to realize a one-cycle motion, and the above-mentioned motion process is repeated, so that the accumulation of single-step displacement can be realized, and the cross-scale motion can be realized.
  • the scan motion mode can be switched, and the piezoelectric ceramic 3 is controlled to be slowly moved by the electric signal having a small slope.
  • the spring piece 4 moves together with the piezoelectric ceramic 3 under the action of static friction to accurately position.
  • the one-dimensional large-stroke precision positioning platform 100 is in contact with the casing 1 in any working state, and has a large frictional force, the one-dimensional large-stroke precision positioning platform 100 is powered off. After that, it is in a self-locking state.
  • the one-dimensional large-stroke precision positioning platform 100 of the present invention solves the existing precision positioning platform by adopting the cross ball guide 2, the elastic member 4 and the piezoelectric ceramic 3, and the connection by the flexible member 63.
  • problems such as poor consistency of step length, lost step, small retention force, and large impact of motion performance, it has the advantages of high precision, good consistency, small friction, stable performance, and strong carrying capacity. Nano-scale positioning Degree and millimeter motion travel.
  • the flexible frame 6 since the flexible frame 6 is employed, the flexible frame 6 is disposed in the housing cavity 11, and the piezoelectric ceramics 3 and the O-shaped spring pieces 4 are respectively disposed in the first fixing member 61 and the second fixing frame 62, thereby
  • the entire one-dimensional large-stroke precision positioning platform 100 has a small size and high integration.
  • the one-dimensional large-stroke precision positioning platform 100 is suitable for applications where space is limited and positioning accuracy is high.

Abstract

一种一维大行程精密定位平台(100),包括壳体(1)、设置在壳体(1)一侧的交叉滚珠导轨(2)及设置在壳体(1)内的压电陶瓷(3)和弹性件(4),交叉滚珠导轨(2)包括动子导轨(21)和相对设置在动子导轨(21)两侧的定子导轨(22),定子导轨(22)与动子导轨(21)平行设置,定子导轨(22)固定在壳体(1)上,壳体(1)内设置有收纳压电陶瓷(3)和弹性件(4)的收纳腔(11),收纳腔(11)内还设置有第一固定件(61)和第二固定件(62),第一固定件(61)和第二固定件(62)可沿动子导轨(21)的纵长方向在收纳腔(11)内移动,于动子导轨(21)的纵长方向,压电陶瓷(3)的一端抵持第一固定件(61),另一端抵持第二固定件(62),动子导轨(21)固定在第二固定件(62)上,弹性件(4)固定在第一固定件(61)上,于动子导轨(21)的宽度方向,弹性件(4)的两侧抵压收纳腔(11)的内侧面(112),第一固定件(61)和第二固定件(62)之间通过柔性件(63)连接。该精密定位平台(100)通过采用交叉滚珠导轨(2)、弹性件(4)与压电陶瓷(3)的配合,并通过柔性件(63)实现连接,解决了现有精密定位平台中出现的步长一致性差、保持力小等问题。

Description

一维大行程精密定位平台
本申请要求了申请日为2015年08月27日,申请号为201510530696.3,发明名称为“一维大行程精密定位平台”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种一维大行程精密定位平台,属于微纳技术领域。
背景技术
纳米技术是人类对微观世界探索认识改造和利用的基本手段之一,其中纳米操作是纳米技术的重要内容,是国际机器人学和纳米科技领域受到广泛关注的热点研究领域。高效精密可控的纳米操作系统在光电信息技术及医疗技术等领域具有很大的应用前景。其中针对纳米尺度的物体或材料的自动化精确操纵是纳米操作系统必不可少的手段之一。目前,微系统工程、生物工程、医学工程、精密制造、航空航天等重要科学工程领域要求定位平台在有限的操作空间内,实现高精度定位和操作的同时,也能拥有更大的操作范围。具有微纳米级定位精度、毫米级行程、体积较小的跨尺度纳米定位技术已经成为纳米尺度操作必须解决的关键技术。此时,由常用的伺服电机驱动及精密丝杠传动等方式组成的机电系统很难满足要求。近年来,把压电陶瓷作为驱动源的微驱动技术渐渐兴起,压电陶瓷具备许多优良的特性,如:体积小、频响高、发热少、输出力大、无噪声、性能稳定等,且传动机构由柔性铰链组成,该方式无机械摩擦、无间隙、运动灵敏等,充分满足微纳精密定位的要求。通常基于压电陶瓷的跨尺度精密定位驱动器主要有:尺蠖驱动器、压电超声马达、压电谐波驱动器、宏微混合驱动器。通过对现有各种跨尺度驱动器的运动原理及结构分析研究发现:尺蠖驱动器运动速度较低,需要用到多个压电陶瓷叠堆,加工 精度要求较高,结构复杂;压电超声马达效率较低,由于摩擦磨损严重影响了马达的使用寿命;压电谐波驱动器分辨率较低,在需要亚纳米精度、纳米精度的场合不再适用;宏微混合型驱动器驱动类型多样,结构复杂,尺寸较大,成本较高,驱动控制系统复杂。
发明内容
本发明的目的是提供一种一维大行程精密定位平台,其精度高,一致性好,摩擦小,性能稳定,且承载能力强。
为了达到上述目的,本发明所采用的技术方案如下:一种一维大行程精密定位平台,包括壳体、设置在所述壳体一侧的交叉滚珠导轨及设置在所述壳体内的压电陶瓷和弹性件,所述交叉滚珠导轨包括动子导轨和相对设置在所述动子导轨两侧的定子导轨,所述定子导轨与动子导轨平行设置,所述定子导轨固定在所述壳体上,所述壳体内设置有收纳压电陶瓷和弹性件的收纳腔,所述收纳腔内还设置有第一固定件和第二固定件,所述第一固定件和第二固定件可沿动子导轨的纵长方向在收纳腔内移动,于所述动子导轨的纵长方向,所述压电陶瓷的一端抵持所述第一固定件,另一端抵持所述第二固定件,所述动子导轨固定在所述第二固定件上,所述弹性件固定在所述第一固定件上,于所述动子导轨的宽度方向,所述弹性件的两侧抵压收纳腔的内侧面,所述第一固定件和第二固定件之间通过柔性件连接。
进一步的,所述压电陶瓷具有抵持第一固定件的第一抵持面和抵持第二固定件的第二抵持面,所述压电陶瓷的一侧设置有预紧螺钉,所述预紧螺钉抵持第一抵持面或第二抵持面。
进一步的,所述预紧螺钉与压电陶瓷之间夹持有垫片。
进一步的,所述预紧螺钉螺纹连接在所述第二固定件上,且所述垫片夹持在所述预紧螺钉与压电陶瓷的第二抵持面之间。
进一步的,于所述定子导轨的高度方向上,所述弹性件的相对两侧分别开设有安装孔和调节孔,所述第一固定件上设置有安装在所述 安装孔内的定位螺钉和安装在所述调节孔内的调节螺钉。
进一步的,所述第一固定件包括第一架体和形成在第一架体内的第一中空腔,所述弹性件容置在所述第一中空腔内,所述第一固定件上设置有与所述压电陶瓷抵持的抵持部,所述抵持部包括自所述第一架体朝压电陶瓷突伸形成,所述柔性件设置在所述抵持部上。
进一步的,所述柔性件为自所述抵持部的侧面向外延伸形成的板体。
进一步的,所述第二固定件包括第二架体和形成在所述第二架体内的第二中空腔,所述压电陶瓷容置在所述第二中空腔内,所述第二架体包括相对设置的顶壁和底壁及自所述顶壁向下延伸形成的两侧壁,所述第二架体具有朝向第一架体的开口,所述抵持部自所述开口伸入至所述第二中空腔。
进一步的,所述板体为自抵持部的两侧面向外延伸形成的两个,两个所述板体分别与第二架体的两侧壁连接。
进一步的,所述壳体包括相对设置的上端壁和下端壁,所述定子导轨固定在所述上端壁上,所述上端壁上开设有槽道,所述动子导轨位于在所述槽道上方,所述下端壁上开设有与所述收纳腔连通的通孔。
借由上述方案,本发明至少具有以下优点:本发明的一维大行程精密定位平台通过采用交叉滚珠导轨、弹性件与压电陶瓷的配合,并通过柔性件实现连接,以解决了现有精密定位平台中出现的步长一致性差、丢步、保持力小、运动性能受负载影响大等问题,使其具有精度高,一致性好,摩擦小,性能稳定,且承载能力强的优点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
图1是本发明的一维大行程精密定位平台的结构示意图;
图2是图1的主视图;
图3是图1中A-A向剖视图;
图4是图1的俯视图;
图5是图1中的部分结构图;
图6是图5中柔性架的结构示意图;
图7是图6的俯视图;
图8是图1中弹性件的结构示意图;
图9是图1中调节螺钉的结构示意图;
图10是本发明的一维大行程精密定位平台在运动时输入的锯齿波示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
参见图1至图9,本发明一较佳实施例所述的一种一维大行程精密定位平台100包括壳体1、设置在所述壳体1一侧的交叉滚珠导轨2及设置在所述壳体1内的压电陶瓷3和弹性件4。所述壳体1内设置有收纳腔11,所述壳体1包括相对设置的上端壁12和下端壁13和相对设置的两侧端壁14,所述上端壁12、下端壁13和两侧端壁14围设形成收纳腔11。所述上端壁12上凹陷形成有凹槽15,该凹槽15包括垂直设置的水平面151和垂直面152,该上端壁12上开设有槽道16,该槽道16自上端壁12的后端面121朝上端壁12的前端面122贯穿,并且自水平面151向下贯穿以与收纳腔11连通。所述下端壁13上开设有与所述收纳腔11连通的通孔17。所述交叉滚珠导轨2包括动子导轨21和相对设置在所述动子导轨21两侧的定子导轨22,所述定子导轨22与动子导轨21平行设置,所述定子导轨22固定在所述壳体1的上端壁12上,位于上端壁12的凹槽15内,在本实施例中,该定子导轨 22通过紧固件51固定在上端壁12上,所述垂直面152上开设有螺钉孔153,该螺钉孔153内设置有紧定螺钉52,该紧定螺钉52抵持交叉滚珠导轨2的定子导轨22,通过该紧定螺钉52以调节交叉滚珠导轨2的安装间隙,以调整由于交叉滚珠导轨2在安装过程所造成的装配误差。所述动子导轨21位于在所述槽道16上方,所述动子导轨21的纵长延伸方向同槽道16的纵长方向延伸。
所述压电陶瓷3和弹性件4设置在所述收纳腔11内,所述收纳腔11具有内底面111和垂直内底面111且相对设置的两内侧面112。所述收纳腔11内还设置有第一固定件61和第二固定件62,所述第一固定件61和第二固定件62沿所述动子导轨21的纵长方向排列,且所述第一固定件61和第二固定件62可沿动子导轨21的纵长方向在收纳腔11内移动。于所述动子导轨21的纵长方向,所述压电陶瓷3的一端抵持所述第一固定件61,另一端抵持所述第二固定件62。所述动子导轨21固定在所述第二固定件62上,所述弹性件4固定在所述第一固定件61上,且于所述动子导轨21的宽度方向,所述弹性件4的两侧抵压收纳腔11的内侧面112。所述第一固定件61和第二固定件62之间通过柔性件63连接。在本实施例中,所述第一固定件61包括第一架体611和形成在第一架体611内的第一中空腔612,所述弹性件4容置在所述第一中空腔612内,所述第一固定件61上设置有与所述压电陶瓷3抵持的抵持部613,所述抵持部613包括自所述第一架体611朝压电陶瓷3突伸形成,所述柔性件63设置在所述抵持部613上。在本实施例中,所述柔性件63为自所述抵持部613的侧面向外延伸形成的板体,所述板体63的厚度根据压电陶瓷3的刚度设置,以防止压电陶瓷3的位移损失过大。所述抵持部613的截面形成呈T型,该T型抵持部613的头部与压电陶瓷3抵持,以增加压电陶瓷3和抵持部613之间的接触面积。所述第二固定件62包括第二架体621和形成在所述第二架体621内的第二中空腔622,所述压电陶瓷3容置在所述第二中空腔622内,所述第二架体621包括相对设置的顶壁623和底壁624、自所述顶壁 623向下延伸以连接底壁624的两侧壁625及连接顶壁623、底壁624和两侧壁625的后壁626,所述第二架体621具有朝向第一架体611的开口627,该开口627与后壁626相对设置。所述抵持部613自所述开口627伸入至所述第二中空腔622,以使整体结构更紧凑,集成度高。在本实施例中,所述板体63为自抵持部613的两侧面向外延伸形成的两个,两个所述板体63分别与第二架体621的两侧壁625连接,在其他实施方式中,该板体63可以为其他数量,以与第二固定件62的顶壁623、底壁624和两侧壁625均连接,或者,仅与其中顶壁623、底壁624、两侧壁625中的任意一个连接,或者与顶壁623、底壁624和两侧壁625中的任意三个连接。在本实施例中,由于柔性件63仅与两侧壁625连接,相对板体63与第二固定件62的顶壁623、底壁624和两侧壁625都连接或与顶壁623、底壁624和两侧壁625其中的三个连接来说,第一固定件61和第二固定件62之间活动更灵敏,有助于防止压电陶瓷3的位移损失过大,而相对仅与第二固定件62的顶壁623、底壁624和两侧壁625中的一个连接来说,第一固定件61和第二固定件62移动更平稳。所述第一壳体1的后壁626设置有预紧螺钉孔627,该第一壳体1的顶壁623伸入至槽道16,动子导轨21通过螺钉53固定在该顶壁623上。所述第一固定件61、第二固定件62和柔性件63作为一整体结构设置在收纳腔11内,其命名为柔性架6,该柔性架6选用7075铝合金。通过该柔性架6既能给压电陶瓷3提供预紧力,还能避免压电陶瓷3承受拉力,延长了压电陶瓷3的使用寿命,且消除了传动间隙,将压电陶瓷3通电伸长的位移传递出去。
在本实施例中,该弹性件4为O型弹簧片,该O型弹簧片4包括相对设置的第一平面段41和第二平面段42及连接第一平面段41和第二平面段42的两个弧形段43。于所述定子导轨22的高度方向上,该第一平面段41和第二平面段42为O型弹簧片4的上下两侧。两个弧形段43镜像设置,该两个弧形段43分别抵持收纳腔11的两内侧面112,以提供该一维大行程精密定位平台100运动所必须的摩擦力。所述O 型弹簧片4的第一平面段41和第二平面段42上分别开设有安装孔44和调节孔45,所述第二固定件62上设置有安装在所述安装孔44内的定位螺钉54和安装在所述调节孔45内的调节螺钉55,所述O型弹簧片4内设置有抵持O型弹簧片4的固定块7,定位螺钉54与该固定块7螺纹连接。在本实施例中,该调节螺钉55具有固定在第二固定件62上的螺纹段551和伸入至调节孔45内的凸台552,通过凸台552和调节孔45的间隙配合,该调节螺钉55不仅能起到调整O型弹簧片4的变形和预紧作用,以将平台调整到最佳的工作状态,另外还可以起到限位作用。当调节螺钉55向上挤压O型弹簧片4时,O型弹簧片4会在水平方向上撑开,挤压收纳腔11的两内侧面112,从而增大O型弹簧片4与壳体1之间的摩擦力,当调节螺钉55向下松开时,O型弹簧片4与收纳腔11的两内侧面112的正压力减小,两者之间的摩擦力也随之减小,从而方便调整摩擦力的大小,另外,由于下端壁13上开设有与收纳腔11连通的通孔17,以便于在不拆卸该一维大行程精密定位平台100的情况下,将一维大行程精密定位平台100调整到最佳工作状态。在本实施例中,所述O型弹簧片4选用的材料为65Mn,其具有较好的耐磨性和弹性,厚度为0.2mm,经弯制而成。
所述压电陶瓷3具有抵持第一固定件61的抵持部613的第一抵持面31和抵持第二固定件62的后壁626的第二抵持面32。所述压电陶瓷3的一侧设置有预紧螺钉56,该预紧螺钉56安装在预紧螺钉孔627内,该预紧螺钉56抵持第二抵持面32,通过设置该预紧螺钉56以给压电陶瓷3提供预紧力,从而延长压电陶瓷3的使用寿命。在装配过程中,该预紧力不可加太大,以防止柔性架6发生失效破坏。所述预紧螺钉56与压电陶瓷3之间夹持有垫片8,以通过设置该垫片8以防止在调整预紧力的过程中预紧螺钉56对压电陶瓷3造成破坏。所述预紧螺钉56螺纹连接在所述第二固定件62上,且所述垫片8夹持在所述预紧螺钉56与压电陶瓷3的第二抵持面32之间。在本实施例中,该预紧螺钉56抵持第二抵持面32以实现对压电陶瓷3的调节,而在 其他实施方式中,也可以将预紧螺钉56抵持第一抵持面31以实现对压电陶瓷3的调节。
上述一维大行程精密定位平台100既能满足纳米级的定位精度,又能实现毫米级的运动行程的跨尺度精密定位平台,为满足要求,该一维大行程精密定位平台100采用步进式和扫描式两种工作模式,步进式工作模式实现大行程运动,扫描式工作模式实现纳米级精密定位。请结合图1至图10,该一维大行程精密定位平台100的工作过程如下:当向压电陶瓷3输入如图10所示的锯齿波时,一维大行程精密定位平台100进入工作状态。当阶跃信号
Figure PCTCN2015090073-appb-000001
驱动压电陶瓷3以很大加速度运动时,压电陶瓷3通过柔性架6将阶跃位移传递出去,交叉滚珠导轨2的动子导轨21和O型弹簧片4在相反的方向产生不同的微位移,而交叉滚珠导轨2的动子导轨21和O型弹簧片4的位移和即为压电陶瓷3的变形量;当施加在压电陶瓷3上的驱动信号为锯齿波斜坡
Figure PCTCN2015090073-appb-000002
时,压电陶瓷3缓慢缩短,柔性架6慢慢恢复原状,O型弹簧片4在摩擦力作用下保持原位,交叉滚珠导轨2的动子导轨21在柔性架6的牵引下向着O型弹簧片4的方向运动,从而实现一个周期的运动,重复上述运动过程,就可以实现单步位移的累积,实现跨尺度运动。当交叉滚珠导轨2的动子导轨21接近目标位置,达到小于压电陶瓷3的最大变形量的范围内,可以切换扫描运动模式,通过斜率较小的电信号控制压电陶瓷3缓慢运动,O型弹簧片4在静摩擦力的作用下与压电陶瓷3一同运动,精确定位。另外,由于该一维大行程精密定位平台100在任何工作状态下O型弹簧片4均与壳体1之间保持接触,有较大的摩擦力,所以一维大行程精密定位平台100断电后,处于自锁状态。
综上所述,本发明的一维大行程精密定位平台100通过采用交叉滚珠导轨2、弹性件4与压电陶瓷3的配合,并通过柔性件63实现连接,以解决了现有精密定位平台中出现的步长一致性差、丢步、保持力小、运动性能受负载影响大等问题,使其具有精度高,一致性好,摩擦小,性能稳定,且承载能力强的优点,且能实现纳米级的定位精 度和毫米级的运动行程。另外,由于采用柔性架6,并将柔性架6设置在收纳腔11内,且将压电陶瓷3和O型弹簧片4分别设置在第一固定件61和第二固定架62中,从而使得整个一维大行程精密定位平台100尺寸较小,集成度高。该一维大行程精密定位平台100适用于空间受限制且定位精度要求高的场合。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种一维大行程精密定位平台,其特征在于:包括壳体、设置在所述壳体一侧的交叉滚珠导轨及设置在所述壳体内的压电陶瓷和弹性件,所述交叉滚珠导轨包括动子导轨和相对设置在所述动子导轨两侧的定子导轨,所述定子导轨与动子导轨平行设置,所述定子导轨固定在所述壳体上,所述壳体内设置有收纳压电陶瓷和弹性件的收纳腔,所述收纳腔内还设置有第一固定件和第二固定件,所述第一固定件和第二固定件可沿动子导轨的纵长方向在收纳腔内移动,于所述动子导轨的纵长方向,所述压电陶瓷的一端抵持所述第一固定件,另一端抵持所述第二固定件,所述动子导轨固定在所述第二固定件上,所述弹性件固定在所述第一固定件上,于所述动子导轨的宽度方向,所述弹性件的两侧抵压收纳腔的内侧面,所述第一固定件和第二固定件之间通过柔性件连接。
  2. 根据权利要求1所述的一维大行程精密定位平台,其特征在于:所述压电陶瓷具有抵持第一固定件的第一抵持面和抵持第二固定件的第二抵持面,所述压电陶瓷的一侧设置有预紧螺钉,所述预紧螺钉抵持第一抵持面或第二抵持面。
  3. 根据权利要求2所述的一维大行程精密定位平台,其特征在于:所述预紧螺钉与压电陶瓷之间夹持有垫片。
  4. 根据权利要求3所述的一维大行程精密定位平台,其特征在于:所述预紧螺钉螺纹连接在所述第二固定件上,且所述垫片夹持在所述预紧螺钉与压电陶瓷的第二抵持面之间。
  5. 根据权利要求1所述的一维大行程精密定位平台,其特征在于:于所述定子导轨的高度方向上,所述弹性件的相对两侧分别开设有安装孔和调节孔,所述第一固定件上设置有安装在所述安装孔内的定位螺钉和安装在所述调节孔内的调节螺钉。
  6. 根据权利要求1所述的一维大行程精密定位平台,其特征在于:所述第一固定件包括第一架体和形成在第一架体内的第一中空腔,所述弹性件容置在所述第一中空腔内,所述第一固定件上设置有与所述压电陶瓷抵持的抵持部,所述抵持部包括自所述第一架体朝压电陶瓷突伸形成,所述柔性件设置在所述抵持部上。
  7. 根据权利要求6所述的一维大行程精密定位平台,其特征在于:所述柔性件为自所述抵持部的侧面向外延伸形成的板体。
  8. 根据权利要求7所述的一维大行程精密定位平台,其特征在于:所述第二固定件包括第二架体和形成在所述第二架体内的第二中空腔,所述压电陶瓷容置在所述第二中空腔内,所述第二架体包括相对设置的顶壁和底壁及自所述顶壁向下延伸形成的两侧壁,所述第二架体具有朝向第一架体的开口,所述抵持部自所述开口伸入至所述第二中空腔。
  9. 根据权利要求8所述的一维大行程精密定位平台,其特征在于:所述板体为自抵持部的两侧面向外延伸形成的两个,两个所述板体分别与第二架体的两侧壁连接。
  10. 根据权利要求1所述的一维大行程精密定位平台,其特征在于:所述壳体包括相对设置的上端壁和下端壁,所述定子导轨固定在所述上端壁上,所述上端壁上开设有槽道,所述动子导轨位于在所述槽道上方,所述下端壁上开设有与所述收纳腔连通的通孔。
PCT/CN2015/090073 2015-08-26 2015-09-21 一维大行程精密定位平台 WO2017031800A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/549,248 US10483877B2 (en) 2015-08-26 2015-09-21 One-dimensional large-stroke precise positioning platform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510530696.3 2015-08-26
CN201510530696.3A CN105240656B (zh) 2015-08-26 2015-08-26 一维大行程精密定位平台

Publications (1)

Publication Number Publication Date
WO2017031800A1 true WO2017031800A1 (zh) 2017-03-02

Family

ID=55038422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090073 WO2017031800A1 (zh) 2015-08-26 2015-09-21 一维大行程精密定位平台

Country Status (3)

Country Link
US (1) US10483877B2 (zh)
CN (1) CN105240656B (zh)
WO (1) WO2017031800A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014997B4 (de) * 2014-10-09 2018-05-17 Attocube Systems Ag Haft-Gleit-Antrieb, insbesondere piezo-aktuierter Trägheitsantrieb
CN106971762B (zh) * 2017-04-07 2019-04-23 哈尔滨理工大学 多定位平台的微纳操作系统方案设计
KR20200030055A (ko) * 2017-06-12 2020-03-19 마이크로파인 머티리얼즈 테크날로지즈 피티이 엘티디 비용 효율적인 고 굽힘 강성 커넥터 및 이로 이루어진 피에조일렉트릭 액추에이터
CN108696179B (zh) * 2018-05-21 2023-10-20 吉林大学 辅助增压型压电粘滑直线电机及其激励方法
CN109256175B (zh) * 2018-11-08 2023-04-28 江南大学 高精度大行程空间平动微定位平台
CN109256174B (zh) * 2018-11-08 2023-06-06 江南大学 高精度空间平动微定位平台
CN109545274B (zh) * 2018-12-26 2023-08-25 仪晟科学仪器(嘉兴)有限公司 超高真空用大行程精密压电位移台及其安装方法
CN110752768B (zh) * 2019-04-08 2022-12-27 浙江师范大学 一种基于非对称三角形圆弧式柔性铰链机构的压电精密驱动装置
CN110064956A (zh) * 2019-06-10 2019-07-30 广东工业大学 一种微位移驱动机构
CN110474562B (zh) * 2019-09-06 2024-03-12 仪晟科学仪器(嘉兴)有限公司 超高真空用精密压电陶瓷摆动台
CN110900565A (zh) * 2019-11-28 2020-03-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种基于柔性铰链放大的压电微搓动夹持钳
CN113872464B (zh) * 2021-08-06 2024-03-08 季华实验室 预紧力可调的压电促动器及其驱动模式自动切换方法
CN113759770B (zh) * 2021-08-10 2023-11-14 华中科技大学 一种二维纳米定位平台控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702329A (zh) * 2009-11-11 2010-05-05 哈尔滨工业大学 一维微位移装置
EP2084758B1 (de) * 2006-11-02 2012-10-17 SmarAct GmbH Trägheitsantriebsvorrichtung
US20130015745A1 (en) * 2011-07-13 2013-01-17 Academia Sinica Friction-driven actuator
CN203179557U (zh) * 2013-03-04 2013-09-04 东莞华中科技大学制造工程研究院 一种精密定位一维平台
CN203251240U (zh) * 2013-05-13 2013-10-23 吉林大学 正压力可调的微纳米级粘滑惯性驱动平台
CN104467525A (zh) * 2014-12-01 2015-03-25 苏州大学 可调预紧力式惯性粘滑驱动跨尺度精密定位平台
CN104767421A (zh) * 2015-04-15 2015-07-08 中国科学院合肥物质科学研究院 相向摩擦减阻力惯性压电马达及控制法和扫描探针显微镜
CN205029575U (zh) * 2015-08-26 2016-02-10 苏州大学张家港工业技术研究院 惯性粘滑平台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043606A1 (de) * 2003-09-09 2005-04-14 Smc K.K. Stellglied
JP4755429B2 (ja) * 2005-03-04 2011-08-24 株式会社ミツトヨ 検出器駆動装置
CN1693028A (zh) * 2005-05-26 2005-11-09 天津大学 大行程纳米级步距压电微动工作平台及其驱动控制系统
EP1732197B1 (de) * 2005-06-09 2015-06-10 Alois Jenny Linearmotor mit integrierter Führung
NL2003128C2 (en) * 2009-07-03 2011-01-04 Tecnotion B V A method for fabricating an electromagnetic actuator, an electromagnetic actuator, and a charged particle device comprising the same.
CN102361411B (zh) * 2011-10-25 2014-07-02 哈尔滨工业大学深圳研究生院 一种压电直线驱动器
CN103391023A (zh) * 2013-07-25 2013-11-13 苏州大学 一种粘滑驱动跨尺度精密运动平台
CN103883849A (zh) * 2014-03-28 2014-06-25 苏州大学 大行程纳米定位平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084758B1 (de) * 2006-11-02 2012-10-17 SmarAct GmbH Trägheitsantriebsvorrichtung
CN101702329A (zh) * 2009-11-11 2010-05-05 哈尔滨工业大学 一维微位移装置
US20130015745A1 (en) * 2011-07-13 2013-01-17 Academia Sinica Friction-driven actuator
CN203179557U (zh) * 2013-03-04 2013-09-04 东莞华中科技大学制造工程研究院 一种精密定位一维平台
CN203251240U (zh) * 2013-05-13 2013-10-23 吉林大学 正压力可调的微纳米级粘滑惯性驱动平台
CN104467525A (zh) * 2014-12-01 2015-03-25 苏州大学 可调预紧力式惯性粘滑驱动跨尺度精密定位平台
CN104767421A (zh) * 2015-04-15 2015-07-08 中国科学院合肥物质科学研究院 相向摩擦减阻力惯性压电马达及控制法和扫描探针显微镜
CN205029575U (zh) * 2015-08-26 2016-02-10 苏州大学张家港工业技术研究院 惯性粘滑平台

Also Published As

Publication number Publication date
US20180097457A1 (en) 2018-04-05
US10483877B2 (en) 2019-11-19
CN105240656A (zh) 2016-01-13
CN105240656B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2017031800A1 (zh) 一维大行程精密定位平台
CN110138266B (zh) 一种尺蠖式压电作动器
JP4510007B2 (ja) Xyガイドテーブル
CN102490021A (zh) 一种宏/微二维位移台
CN104467525A (zh) 可调预紧力式惯性粘滑驱动跨尺度精密定位平台
CN105743387A (zh) 基于杠杆放大的交替步进压电直线电机
CN109787505B (zh) 一种直线型压电电机及其驱动方法
CN110798094B (zh) 一种基于寄生惯性原理的压电直线精密驱动装置
CN113315411B (zh) 平台移动装置
CN102664554B (zh) 被动箝位式压电驱动器
CN110138265A (zh) 一种自定心式压电尺蠖直线电机
CN110912444A (zh) 一种仿生爬行式压电驱动器
CN101860256B (zh) 高精度可调速直线型微位移工作台
CN115085581A (zh) 一种主动抑制回退运动的粘滑驱动器及方法
CN112713799B (zh) 一种基于柔性铰链导向的大行程无回退纳米压电电机
CN205029575U (zh) 惯性粘滑平台
CN109347363B (zh) 一种蠕动式柔性铰链组合压电驱动器
CN102136811B (zh) 多足箝位式压电电机
CN215639504U (zh) 压电驱动器及纳米位移台
CN110768570B (zh) 一种微纳米级步进式压电驱动装置
CN215772947U (zh) 一种精密粘滑压电直线驱动器
CN216672878U (zh) 移动平台及其驱动结构
CN110890850B (zh) 纳米级精度压电驱动线性位移台
CN116155136B (zh) 二自由度解耦大行程柔性结构微动平台
CN111953227B (zh) 一种高定位精度的非接触式压电电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902071

Country of ref document: EP

Kind code of ref document: A1