WO2017031762A1 - 一种上行信道的发射方法、ue及基站 - Google Patents

一种上行信道的发射方法、ue及基站 Download PDF

Info

Publication number
WO2017031762A1
WO2017031762A1 PCT/CN2015/088290 CN2015088290W WO2017031762A1 WO 2017031762 A1 WO2017031762 A1 WO 2017031762A1 CN 2015088290 W CN2015088290 W CN 2015088290W WO 2017031762 A1 WO2017031762 A1 WO 2017031762A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
channels
power
tti
uplink
Prior art date
Application number
PCT/CN2015/088290
Other languages
English (en)
French (fr)
Inventor
邵家枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/088290 priority Critical patent/WO2017031762A1/zh
Priority to EP15902033.8A priority patent/EP3324686B1/en
Priority to CN201580071567.0A priority patent/CN107113744B/zh
Priority to CN202010102487.XA priority patent/CN111246556B/zh
Priority to EP19190691.6A priority patent/EP3641413B1/en
Publication of WO2017031762A1 publication Critical patent/WO2017031762A1/zh
Priority to US15/899,287 priority patent/US10531481B2/en
Priority to US16/714,645 priority patent/US20200120699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for transmitting an uplink channel, a UE (User Equipment), and a base station.
  • UE User Equipment
  • the UE sends an uplink channel
  • the UE receives the downlink scheduling signaling sent by the base station, and then demodulates the downlink scheduling signaling, prepares the uplink data, and then obtains the uplink channel according to the obtained uplink channel.
  • the information eg, required power, maximum transmit power of the UE
  • the uplink channel is transmitted.
  • the length of the subframe is 1 ms
  • the length of the TTI Transmission Time Interval
  • All scheduling is scheduled with the TTI as the minimum scheduling unit.
  • a shorter TTI has been proposed, such as setting the TTI length to 0.5 ms or less.
  • the UE only supports the transmission of the uplink channel corresponding to the 1 ms TTI.
  • the short TTI for example, 0.5 ms TTI or shorter TTI
  • the long TTI for example, 1 ms TTI
  • the current technology can only ensure that the uplink channel corresponding to the long TTI is transmitted, which cannot be guaranteed.
  • the uplink channel corresponding to the short TTI is simultaneously transmitted. Therefore, it is not necessary to provide a scheme for enabling the UE to transmit the uplink channel corresponding to the short TTI in the scenario of supporting both the long TTI and the short TTI.
  • the embodiment of the present invention provides a method for transmitting an uplink channel, a UE, and a base station.
  • the UE When the UE supports both the long TTI and the short TTI, the UE can allocate the transmit power to the uplink channel corresponding to the short TTI, thereby enabling the uplink channel corresponding to the short TTI to be enabled.
  • the service carried by the uplink channel corresponding to the short TTI is normally received by the base station.
  • a method for transmitting an uplink channel including:
  • the UE determines to transmit information using the first channel on the first time unit numbered n and the second channel on the second time unit using m number j, wherein the number is the first of i
  • the length of the time unit is a first transmission time interval TTI
  • the length of the second time unit numbered j is a second TTI
  • the second TTI is shorter than the first TTI
  • at least one of the numbers is i
  • the first time unit overlaps with at least one of the second time units numbered j, and the information sent by the first channel and the second channel respectively correspond to different cells;
  • a maximum uplink transmission time difference between the n first time units numbered i and the m second time units numbered j, where the maximum uplink transmission time difference is the number n is a maximum of the difference between the n initial transmission times of the first time unit of i and the m initial transmission times of the m second time units numbered j;
  • the UE allocates transmit power for L uplink channels according to the maximum uplink transmission time difference, where the L uplink channels include at least k of the m second channels, where 1 ⁇ k ⁇ m.
  • the UE sends the L uplink channels.
  • At least one of the first channel on the first time unit numbered i has an overlap with the second channel on the at least one of the second time units numbered j.
  • the UE allocates transmit power to the L uplink channels according to the maximum uplink transmission time difference, which specifically includes:
  • the UE Allocating a first power value to k second channels of the m second channels according to a first channel priority
  • the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority, where the first power value is less than or Less than or equal to the maximum transmit power of the UE.
  • the UE allocates remaining power to at least one of the n first channels according to the first channel priority, where the remaining power is a difference between a maximum transmit power of the UE and the first power value.
  • the L channels further include at least one first channel selected in the n first channels.
  • the UE allocates transmit power to the L uplink channels according to the maximum uplink transmission time difference, which specifically includes:
  • the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority, and allocates the second power value according to the first channel priority. Determining z first channels in the n first channels, wherein a sum of the first power value and the second power value is less than or equal to a maximum transmit power of the UE;
  • the L channels further include z first channels of the n first channels, where 1 ⁇ z ⁇ n.
  • the method further includes: the UE allocates remaining power according to the first channel priority to at least one of mk second channels of the m second channels except the k second channels, The remaining power is a difference between a maximum transmit power of the UE and a sum of the first power value and the second power value;
  • the L channels further include at least one second channel selected among m-k second channels except the k second channels in the m second channels.
  • the UE allocates transmit power to the L uplink channels according to the maximum uplink transmission time difference, which specifically includes:
  • the UE When the maximum uplink transmission time difference is less than or equal to a second preset value, the UE first allocates a maximum transmit power of the UE to k second of the m second channels according to a second channel priority. channel;
  • the UE transmits the maximum transmit power of the UE to the k second channels of the m second channels according to the second channel priority.
  • the second channel priority is in the descending order of the priority level: the second channel, the first channel, wherein the first channel is allocated power according to the first channel priority, according to the The first channel priority is allocated power for the second channel.
  • the UE allocates transmit power to the L uplink channels according to the maximum uplink transmission time difference, which specifically includes:
  • the UE allocates the maximum transmit power of the UE to the first according to the third channel priority.
  • the UE first allocates the maximum transmit power of the UE to the k second channels of the m second channels and the z of the n first channels according to the third channel priority.
  • the L channels further include the z first channels.
  • the power value reserved by the UE for the uplink channel corresponding to the second TTI according to the received reserved power information of the second TTI.
  • the second power value specifically includes:
  • the power value reserved by the UE for the uplink channel corresponding to the first TTI according to the received reserved power information of the first TTI.
  • a physical random access channel PRACH a channel carrying a hybrid automatic repeat request acknowledgement response HARQ-ACK or a scheduling request SR, a channel carrying channel state information CSI, a channel carrying only data, and a channel sounding reference signal SRS;
  • the first channel priority is in the descending order of the priority level: a physical random access channel PRACH, a physical uplink control channel PUCCH, a physical uplink shared channel PUSCH, and a channel sounding reference signal SRS.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS channel sounding reference signal
  • the PRACH in the first channel and the second channel in which the SRS in the second channel is removed and the second channel carrying the data the first channel carrying the HARQ-ACK or the SR, the second channel carrying only the data, and the first channel carrying only the data SRS in the second channel, SRS in the first channel.
  • the method further includes:
  • the UE reports capability information, where the capability information is used to indicate that the UE can support simultaneous transmission and/or simultaneous reception of a channel corresponding to a long TTI and a channel corresponding to a short TTI;
  • the UE receives capability indication information, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the first preset value, the second preset value, and the third preset value are parameters pre-stored by the UE; or the first preset value determined by the UE according to the received power control indication information The second preset value and the third preset value.
  • a method for transmitting an uplink channel is disclosed, characterized in that
  • the base station sends the reserved power information of the first transmission time interval TTI and the reserved power information of the second TTI to the user equipment UE, so that the UE overlaps the first time unit numbered i and the second time unit numbered j And allocating transmission power to the L uplink channels according to the reserved power information of the first TTI and the reserved power information of the second TTI; or transmitting reserved power information of the second TTI to the UE, so that the UE is When the first time unit numbered i and the second time unit numbered j overlap, the transmission power is allocated to the L uplink channels according to the reserved power information of the second TTI;
  • the L uplink channels include at least k second channels of the m second channels; 1 ⁇ k ⁇ m, the second channel is an uplink channel on the second time unit numbered j,
  • the duration of the first time unit is the first TTI
  • the duration of the second time unit is the second TTI
  • the duration of the second TTI is shorter than the duration of the first TTI.
  • At least one of the first time unit on the first time unit of the number i and the at least one second time unit numbered j The second channel has an overlap.
  • the L channels further include z first channels of the n first channels; the first channel is an uplink channel on the first time unit numbered i; the first channel and the The information transmitted by the second channel respectively corresponds to different cells.
  • the method further includes:
  • the base station sends the capability indication information to the UE, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI;
  • the capability information is used to indicate that the UE supports simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the method further includes:
  • the base station sends the power control indication information to the UE, where the power control indication information is used to instruct the UE to determine the first preset value, the second preset value, and the third preset value.
  • a UE including:
  • a determining unit configured to determine, by using n first channel transmission information numbered i, and transmitting data using a second channel on a second time unit numbered j, wherein the number is The length of the first time unit of i is a first transmission time interval TTI, the length of the second time unit numbered j is a second TTI, and the second TTI is shorter than the first TTI, at least one of the The first time unit numbered i overlaps with the at least one second time unit numbered j, and the information sent by the first channel and the second channel respectively correspond to different cells;
  • the determining unit is further configured to determine a maximum uplink transmission time difference between the n first time units numbered i and the m second time units numbered j, where the maximum uplink transmission time difference is the number a maximum value of the difference between the n initial transmission times of the n first time units numbered i and the m initial transmission times of the m second time units numbered j;
  • a power power allocation unit configured to allocate, according to the maximum uplink transmission time difference, transmission power for L uplink channels, where the L uplink channels include at least k second channels of the m second channels, where 1 ⁇ K ⁇ m;
  • a sending unit configured to send the L uplink channels.
  • At least one of the first channel on the first time unit numbered i and at least one The second channel on the second time unit numbered j has an overlap.
  • the power allocation unit is specifically configured to: when the maximum uplink transmission time difference is greater than a first preset value, and the initial transmission time of the first time unit with the number i is in the second time unit of the number j Before the initial transmission time, the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority;
  • the first power value is allocated to the k second channels of the m second channels according to the first channel priority, wherein the first power value is less than or less than or equal to a maximum transmit power of the UE.
  • the power allocation unit is further configured to allocate remaining power to at least one of the n first channels according to the first channel priority, where the remaining power is a maximum transmit power of the UE and the first The difference between a power value;
  • the L channels further include at least one first channel selected in the n first channels.
  • the power allocation unit is specifically configured to: when the maximum uplink transmission time difference is greater than a first preset value, and the initial transmission time of the first time unit numbered i is in the second time unit numbered j Before the initial transmission time, the first power value is allocated to the k second channels of the m second channels according to the first channel priority, and the second power value is allocated according to the first channel priority Describe z first channels in the n first channels;
  • the maximum uplink transmission time difference is greater than or equal to the first preset value
  • the initial transmission time of the first time unit numbered i is before the initial transmission time of the second time unit numbered j
  • the first power value is allocated to the m according to the first channel priority
  • the k second channels in the second channel, the second power value is allocated to the z first channels in the n first channels according to the first channel priority, wherein the first power value is The sum of the second power values is less than or less than or equal to the maximum transmit power of the UE;
  • the L channels further include z first channels of the n first channels, where 1 ⁇ z ⁇ n.
  • the power allocation unit is further configured to allocate, according to the first channel priority, residual power to at least one of the m second second channels other than the k second channels, The remaining power is a difference between a maximum transmit power of the UE and a sum of the first power value and the second power value;
  • the L channels further include at least one second channel selected among m-k second channels except the k second channels in the m second channels.
  • the power allocation unit is configured to: when the maximum uplink transmission time difference is less than or equal to a second preset value, allocate, according to the second channel priority, the maximum transmit power of the UE to the m second channels. k second channels;
  • the maximum transmit power of the UE is first allocated to the k second channels of the m second channels;
  • the second channel priority is sequentially in the descending order of the priority level: the second channel, the first channel; and the first channel is allocated power according to the first channel priority, according to the The first channel priority is the power allocated to the second channel.
  • the power allocation unit is configured to: when the maximum uplink transmission time difference is less than or equal to a second preset value, allocate, according to a third channel priority, the maximum transmit power of the UE to the m second k second channels in the channel and z first channels of the n first channels;
  • the maximum transmit power of the UE is first allocated to the k second channels of the m second channels and the z first channels of the n first channels, Where 1 ⁇ z ⁇ n;
  • the L channels further include the z first channels.
  • the first power value specifically includes:
  • the power value reserved by the UE for the uplink channel corresponding to the second TTI according to the received reserved power information of the second TTI.
  • the second power value specifically includes:
  • the power value reserved by the UE for the uplink channel corresponding to the first TTI according to the received reserved power information of the first TTI.
  • a physical random access channel PRACH a channel carrying a hybrid automatic repeat request acknowledgement response HARQ-ACK or a scheduling request SR, a channel carrying channel state information CSI, a channel carrying only data, and a channel sounding reference signal SRS;
  • the first channel priority is in the descending order of the priority level: a physical random access channel PRACH, a physical uplink control channel PUCCH, a physical uplink shared channel PUSCH, and a channel sounding reference signal SRS.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS channel sounding reference signal
  • the PRACH in the first channel and the second channel in which the SRS in the second channel is removed and the second channel carrying the data the first channel carrying the HARQ-ACK or the SR, the second channel carrying only the data, and the first channel carrying only the data SRS in the second channel, SRS in the first channel.
  • the sending unit is further configured to: report capability information, where the capability information is used to indicate that the UE can support simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI;
  • the receiving unit is further configured to receive capability indication information, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the first preset value, the second preset value, and the third preset value are parameters pre-stored by the UE; or the first preset value determined by the UE according to the received power control indication information The second preset value and the third preset value.
  • a base station including:
  • a sending unit configured to send the reserved power information of the first transmission time interval TTI and the reserved power information of the second TTI to the user equipment UE, so that the UE is in the first time unit numbered i and the second time numbered j
  • the units overlap in time, allocate transmit power to the L uplink channels according to the reserved power information of the first TTI and the reserved power information of the second TTI; or send the reserved power information of the second TTI to the UE.
  • a receiving unit configured to receive the L uplink channels sent by the UE
  • the L uplink channels include at least k second channels of the m second channels, 1 ⁇ k ⁇ m, and the second channel number is an uplink channel on the second time unit of j, the The duration of a time unit is the first TTI, the duration of the second time unit is the second TTI, and the duration of the second TTI is shorter than the duration of the first TTI.
  • the second channel has an overlap.
  • the L channels further include z first channels of n first channels;
  • a channel is an uplink channel corresponding to the first cell on the first time unit numbered i.
  • the sending unit is further configured to: send the capability indication information to the UE, where the capability indication information is used to indicate that the UE simultaneously sends and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI;
  • the receiving unit is further configured to receive the capability information reported by the UE, where the capability information is used to indicate that the UE supports simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the sending unit is further configured to send, to the UE, the power control indication information, where the power control indication information is used to indicate that the UE determines The first preset value, the second preset value, and the third preset value.
  • the present invention provides a method for transmitting an uplink channel, a UE, and a base station, where the UE determines n first channels (uplink channels corresponding to long TTIs) and m second channels (upstream channels corresponding to short TTIs), according to the n
  • the maximum uplink transmission time difference between the first channel and the m second channels is allocated for L uplink channels, and the L uplink channels include at least k second channels of the m second channels, Where 1 ⁇ k ⁇ m, and the first TTI corresponding to the first channel is shorter than the second TTI corresponding to the second channel.
  • the UE sends the L uplink channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI. If the UE supports the long TTI and the short TTI at the same time, the prior art cannot allocate the transmit power to the uplink channel corresponding to the short TTI, and the uplink channel corresponding to the short TTI cannot be allocated and cannot be transmitted.
  • the method, the UE and the base station provided by the present invention are provided. When the UE supports both the long TTI and the short TTI, the uplink channel corresponding to the short TTI can be allocated to the transmit power, and the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is used by the base station. Normal reception.
  • FIG. 1 is a schematic diagram of a type of a TTI according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an uplink channel for simultaneously transmitting long and short TTIs according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for transmitting an uplink channel according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic flowchart of a method for transmitting an uplink channel according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic flowchart of a method for transmitting an uplink channel according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a UE according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram of a UE according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to Embodiment 7 of the present invention.
  • the first 1-3 symbols of a TTI are called control areas, and the control channels such as the PDCCH (Physical Downlink Control Channel) are mainly transmitted, and the PDCCH is used to schedule the PDSCH (Physical).
  • Downlink Shared Channel Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • One The remaining symbols of the TTIs are referred to as data regions, and mainly transmit PDSCH or EPDCCH (Enhance Physical downlink Control Channel).
  • the uplink transmission of the LTE system generally includes a PUCCH (Physical Uplink Control Channel), a PRACH (Physical Random Access Channel), a SRS (Sounding Reference Signal), and a physical uplink sharing.
  • Channel PUSCH Physical Uplink Control Channel
  • the UCI Uplink Control Information
  • the UCI specifically includes: HARQ-ACK (Hybrid Automatic Repeat Request-Acknowledge), SR (Scheduling Request), and CSI (Channel State Information).
  • the subframe length is 1 ms
  • the TTI length is set to 1 ms. All scheduling is scheduled with the TTI as the minimum scheduling unit.
  • the Round-Trip Time (RTT) from the initial transmission to the retransmission is generally 8 ms. In order to achieve a shorter RTT and a shorter data transmission delay, a scenario in which the TTI length is set to 0.5 ms or shorter has been proposed.
  • the UE may transmit short-latency services (such as small data packets, voices, etc.) on a cell (cell) with a 0.5 ms TTI, and simultaneously transmit a large data volume service (for example, online) on the cell or another cell with a 1 ms TTI. Video, download large files, etc.).
  • short-latency services such as small data packets, voices, etc.
  • a large data volume service for example, online
  • the 0.5 ms TTI can be in slot 0 (the first time slot in one subframe) or slot 1 (the second time slot in one subframe), where the time unit in which slot 0 is located is one subframe.
  • the first time slot, the time unit in which slot 1 is located is the second time slot of one subframe.
  • the PDCCH channel is received from the UE to the UE to transmit the uplink channel, and the processing time of the 1 ms TTI UE is about 4 ms. It is inferred in turn that in the LTE system of 0.5 ms TTI, the processing time left for the 0.5 ms TTI UE is approximately 2 ms.
  • 0.5ms+1ms for example, a first device supporting a 1ms TTI on a UE and a second device supporting a 0.5ms TTI
  • FIG. 1 for the two scenarios.
  • the UE processing time is done to illustrate:
  • the time at which the first device and the second device receive the downlink scheduling signaling sent by the base station is different. For example, as shown in FIG. 2, if the first device transmits an uplink channel in a subframe numbered n+4, the second device transmits an uplink channel in a slot numbered m+4, where the number is m+4.
  • the slot is the first slot in the subframe numbered n+4.
  • the subframe from the receiving downlink scheduling signaling time number of the base station is n, and the uplink is transmitting the uplink channel in the subframe numbered n+4, and the processing time of the first device is about It is 4ms.
  • the uplink channel is sent from the time slot of the downlink scheduling signaling time number received by the base station to the m, and the uplink channel is sent to the uplink time slot numbered m+4, and the processing time of the second device is approximately 2ms.
  • the UE is simultaneously 0.5 ms for the subframe with the number n+4 and the slot with the number m+4.
  • the uplink channel of the slot with the number m+4 corresponding to the TTI and the number corresponding to the 1 ms TTI are n+4.
  • the uplink channel of the subframe is allocated transmit power, and the processing time of the UE is still 2 ms, which is the same as the processing capability of the 0.5 ms TTI UE.
  • the first device transmits an uplink channel in a subframe numbered n+4
  • the second device is in a slot numbered m+5 (corresponding to a subframe numbered n+4)
  • the second time slot transmits the uplink channel.
  • the processing time of the first device is about 4 ms.
  • the time slot from the receiving downlink scheduling signaling time number of the base station is m+1, and the uplink transmitting the uplink channel in the subframe numbered m+5, the processing time of the second device It is 2ms.
  • the processing time of the UE is required to be further reduced to about 1.5ms. If the processing time of the UE becomes shorter, the requirement for the chip processing speed of the UE is further increased, It also increases the implementation cost of the UE. For a 2ms processing capability UE that does not meet the processing capability of 1.5ms, before the start of the subframe numbered n+4, the transmit power is allocated to the uplink channel of the subframe numbered n+4 corresponding to the 1ms TTI, because it cannot be completely prepared.
  • the 0.5ms TTI corresponds to the uplink channel data of the slot numbered m+5, so the transmit power cannot be allocated for the uplink channel corresponding to the 0.5ms TTI, so that the UE allocates all the power to the uplink channel corresponding to the 1ms TTI.
  • the uplink channel corresponding to the 0.5 ms TTI may not be allocated to the transmit power.
  • the UE can allocate an important uplink channel or a delay-sensitive uplink channel in an uplink channel corresponding to a 0.5 ms TTI (or a short TTI less than 0.5 ms) in the above two scenarios. To match the transmit power, to ensure that its business is properly communicated.
  • An embodiment of the present invention provides a method for transmitting an uplink channel, where the execution subject is a UE. As shown in FIG. 3, the method includes the following steps:
  • the UE determines to transmit information by using the first channel on the first time unit numbered with n and using the second channel on the second time unit with m number j, where the number is i.
  • the length of the first time unit is a first transmission time interval TTI
  • the length of the second time unit numbered j is a second TTI
  • the second TTI is shorter than the first TTI
  • at least one of the numbers is
  • the first time unit of i overlaps with at least one of the second time units numbered j, and the information sent by the first channel and the second channel respectively correspond to different cells.
  • the first channel on the first time unit of the number i is i is understood to be that there is a first channel on each of the first time units numbered i, that is, there are n numbers.
  • the first time unit may be a subframe of length 1 ms, may be a time slot of 0.5 ms length, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols;
  • the second time unit can be a long A time slot of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be a shorter time unit than one SC-FDMA symbol or one OFDMA symbol.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the first TTI may be 0.5 ms
  • the second TTI may be a 1SC-FDMA symbol.
  • the UE determines a maximum uplink transmission time difference between the n first time units numbered i and the m second time units numbered j, where the maximum uplink transmission time difference is the number n.
  • the determining, by the UE, the maximum uplink transmission time difference includes the following steps:
  • the UE uses the start time (uplink start transmission time) of the first time unit numbered i of each of the n first channels, and the m second
  • the second transmission time of the second channel a in the channel is the modulo value of the second time unit of the number j, and the modulo value is obtained after subtraction, and n difference values are obtained.
  • the initial transmission time may be the first time unit or the second time unit start transmission time, or may be the time when the first channel or the second channel starts to transmit.
  • the UE allocates transmit power for L uplink channels according to the maximum uplink transmission time difference, where the L uplink channels include at least k of the m second channels, where 1 ⁇ k ⁇ m.
  • the UE can allocate the transmit power to the uplink channel corresponding to the short TTI when the long TTI and the short TTI are supported at the same time, so that the uplink channel corresponding to the short TTI can be transmitted, and the service carried by the uplink channel corresponding to the short TTI is used by the base station. Normal reception.
  • the UE may also allocate a transmission for the first channel (the uplink channel corresponding to the long TTI).
  • the UE can simultaneously transmit the uplink channel allocation power corresponding to the uplink channel and the short TTI (that is, the second TTI according to the present invention) corresponding to the long TTI (ie, the first TTI according to the present invention), and ensure that the channels are carried by the channels.
  • the service is received by the base station.
  • the L uplink channels are selected by the UE according to the priority of the channel in m+n (n first channel and m second channel) channels.
  • the k second channels corresponding to the short TTI may be channels carrying important services or delay-sensitive services, so when the L uplink channels include k second channels, the uplink channel can be guaranteed.
  • the traffic carried by the channel of the important service or the channel sensitive to the delay is normally received by the base station.
  • the UE sends the L uplink channels.
  • step 103 allocates transmit power to the L uplink channels, it can be ensured that the L uplink channels are transmitted. If the second channel exists, the k second channels are inevitably included, so that data carried on the second channel cannot be transmitted, which affects service communication between the UE and the base station.
  • the UE allocates transmit power for L uplink channels according to the maximum uplink transmission time difference, which specifically includes the following four situations:
  • the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority, where the first power value is smaller than a maximum transmit power of the UE.
  • the UE When the maximum uplink transmission time difference is greater than or equal to a first preset value, and the first time unit numbered i is earlier than the second time unit numbered j.
  • the UE will reserve the first power value to allocate transmit power to the k second channels of the m second channels to avoid all transmit power used to transmit the n first channels.
  • a subframe here can be understood as a first time unit, and a time slot can be understood as a second time unit.
  • the first time unit numbered i is earlier than the second time unit numbered j, and it can be understood that the initial sending time of the n first time units is greater than the m time units.
  • the initial transmission time of the second time unit is earlier, and can also be understood as the initial transmission time of the main first time unit in the n first time units is greater than the main second time unit in the m second time units.
  • the initial transmission time is early, wherein the primary first time unit may be a first time unit carrying important information in all first time units, or a first time unit carrying a PUCCH, or a first time unit carrying a PRACH, or
  • the base station is configured as a first time unit corresponding to the important cell.
  • the primary second time unit may be a second time unit carrying important information in all second time units, or a second time unit carrying a PUCCH, or a second time unit carrying a PRACH, or configured by the base station as an important cell corresponding The second time unit.
  • the k second channels are the first k channels in which the m second channels are sorted in descending order of the first channel priority.
  • the first power is 10 dBm
  • the transmission power required by one PRACH with the highest priority is 6 dBm
  • a physical random access channel PRACH a channel carrying a hybrid automatic repeat request acknowledgement response HARQ-ACK or a scheduling request SR, a channel carrying channel state information CSI, a channel carrying only data, and a channel sounding reference signal SRS;
  • the first channel priority is in descending order of priority level: PRACH, physical uplink control channel PUCCH, physical uplink shared channel PUSCH, SRS;
  • the first channel priority is in descending order of sending time:
  • the UE allocates remaining power to at least one of the n first channels according to the first channel priority; the remaining power is a maximum transmit power of the UE and the first power value. The difference.
  • the L channels further include at least one first channel selected in the n first channels.
  • the UE may allocate the remaining power to the first channel, and may allocate the remaining power to a part of the first channel. This is not limited here. Exemplarily: if the remaining power is 5dBm, the first channel A has the highest priority, the first channel B is second, the first channel A needs 3dBm power, and the second channel B needs 2dBm power, then the remaining power is allocated.
  • Two first channels, the L channels further comprising two first channels, namely a first channel A and a first channel B.
  • the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority, and allocates the second power value according to the first channel priority.
  • the L channels further include z first channels of the n first channels, where 1 ⁇ z ⁇ n.
  • the UE sends a first power value to the k second channels of the m second channels, and the second power value is given to the z first channels of the n first channels.
  • the first time unit numbered i is earlier than the second time unit numbered j, which can be understood as: the initial transmission time of the n first time units can be understood as The initial transmission time of the m second time units is earlier, and can also be understood as the initial transmission time of the main first time unit in the n first time units is greater than the main second in the m second time units.
  • the start time of the time unit is sent early, where The definitions of the main first time unit and the main second time unit are the same as before, and therefore will not be described again.
  • the UE since the UE selects k of the m second channels according to the first channel priority, the k second channels are sorted by m second channels in descending order of the first channel priority.
  • the z first channels are the first z channels in which the n first channels are sorted in descending order of the first channel priority.
  • the first power value is 10 dBm
  • the transmit power required by one PRACH with the highest priority is 6 dBm
  • the second power value is 8 dBm
  • the transmit power required by one PRACH having the highest priority is 6 dBm
  • the transmit power required for the first channel carrying the SR with a lower priority is 4 dBm
  • the first of the channel state information CSI is carried.
  • the required power of the channel is 4 dBm
  • the second power value is first allocated power for the PRACH, and then the first channel carrying the SR, because the remaining 2 dBm power in the second power value does not meet the required transmission of the first channel carrying the SR. Power, so the first channel carrying the SR can only be transmitted with 2dBm.
  • the UE allocates remaining power according to the first channel priority to at least one of mk second channels of the m second channels except the k second channels;
  • the power is a difference between a maximum transmit power of the UE and a sum of the first power value and a second power value;
  • the L channels further include at least one second channel selected among m-k second channels except the k second channels in the m second channels.
  • the UE allocates a maximum transmit power of the UE to k of the m second channels according to a second channel priority. a second channel; or when the maximum uplink transmission time difference is greater than or equal to a third preset value and the second time unit of the number j is initiated Sending time, before the initial transmission time of the first time unit numbered i, the UE allocates the maximum transmit power of the UE to k of the m second channels according to the second channel priority Second channel.
  • the second channel priority is in the descending order of the priority level: the second channel, the first channel, wherein the first channel is allocated power according to the first channel priority, according to the The first channel priority is allocated power for the second channel. It should be noted that, here, power is preferentially allocated for the second channel, and if the transmission power of the UE is left, the power is allocated for the first channel.
  • the first channel priority criterion is adopted, that is, the power is allocated by the first channel priority from high to low for the second channel until the UE's transmit power is allocated or all the second channels are allocated. All are allocated power. After the UE allocates m second channels, there is still transmit power, and the UE allocates the remaining transmit power to the z first channels in the n first channels according to the first channel priority.
  • the second preset value may be a small value, such as 35.21 us or 55.21 us.
  • the difference between the initial transmission time of the n first time units and the initial transmission time of the m second time units is considered to be small, so the UE can simultaneously be n times when the processing time is reduced by a small processing time.
  • Power is allocated for one channel and m second channels.
  • the second channel of the short TTI is considered to be more important, so the UE preferentially allocates transmit power for the k second channels of the m second channels. For example, it may be a scenario of slot0+1ms shown in FIG.
  • the maximum uplink transmission time difference of the initial transmission time of the channel is less than or equal to a second preset value.
  • the maximum uplink transmission time difference is greater than or equal to a third preset value, and the second time unit of the number j is earlier than the first time unit numbered i, the m second channels at this time
  • the initial transmission transmission time of the time unit is earlier than the time of the initial transmission time transmission of the n first time unit channels.
  • the second time unit corresponding to the short TTI is in front, and for a UE capable of supporting a short TTI, it is recognized here.
  • the processing time for the UE is sufficient and the second channel of the short TTI is considered more important in the present invention, so power is preferentially allocated for the second channel.
  • the first power value specifically includes: a transmit power value used by the uplink channel corresponding to the second cell on the second time unit of the UE transmitting the number j-1; or the UE last time a transmit power value used by the channel of the second cell to be sent; or a power value reserved by the UE for an uplink channel corresponding to the second TTI according to a predefined parameter;
  • the predefined parameter may be a transmit The power ratio r1, the UE determines, according to the predefined parameter, that the reserved power value is equal to r1* the maximum transmit power value allowed by the current UE.
  • the predefined parameter may be a power value, and the UE determines The reserved power value is equal to the fixed power value.
  • the reserved power information may be a transmit power ratio r2 configured by the base station, and the UE determines, according to the reserved power information, that the reserved power value is equal to r2* the maximum transmit power value allowed by the current UE, for example, reserved power.
  • the information may be a power value configured by the base station, and the UE determines that the reserved power value is equal to the power value configured by the base station.
  • the first power value is a value of a transmit power used by the UE to transmit a channel of the second cell, that is, a first power value used by the nth time to transmit a channel of the second cell, and an n-1th transmission station.
  • the channel of the second cell uses the same transmit power value
  • the second power value specifically includes: a transmit power value used by the UE to transmit an uplink channel corresponding to the first cell on the first time unit with the number i-1; or the UE sends the first time
  • the value of the transmit power used by the channel of the cell or the power value reserved by the UE for the uplink channel corresponding to the first TTI according to a predefined parameter; or the reservation of the UE according to the received first TTI
  • the power information is a power value reserved for the uplink channel corresponding to the first TTI.
  • the predefined parameter/reserved power information may be a percentage of the maximum transmit power of the UE, or an absolute power number. value.
  • the method before the user equipment UE determines n first channels and m second channels, the method further includes:
  • the UE reports capability information to the base station; the capability information is used to indicate that the UE can support simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the UE receives the capability indication information sent by the base station, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the UE preferentially allocates power to the channel with the highest priority, and then the UE preferentially allocates power to the channel with the highest priority, and then considers the allocation of power for the channel with the lower priority.
  • Each carrier has its own upper transmit power limit. Even if the channel transmit power of each carrier does not exceed the power limit of each carrier, the total transmit power of multiple channels may still exceed the configured maximum transmit power of the UE.
  • the UE may preferentially allocate power to the channel with higher priority, and then consider assigning power to the channel with lower priority. If the UE allocates insufficient power to the channel with higher priority, then the channel with lower priority has no transmission power. For the case of the same priority channel or the priority of the power allocation of the channel, if the transmission power required by the multiple channels causes the maximum transmission power of the UE to be exceeded, Power Scaling is performed, that is, power compression.
  • the first time unit numbered i and the second time unit numbered j when at least one of the first time unit numbered i and the second time unit numbered j are overlapped at step 101, at least one must also exist
  • the first channel on the first time unit numbered i may overlap with the second channel on the at least one second time unit numbered j to perform steps 102-104 of the embodiment of the present invention.
  • the first preset value, the second preset value, and the third preset value are parameters pre-stored by the UE; or the UE according to the received power control indication information, Determining the first preset value, the second preset value, and the third preset value.
  • the present invention provides a method for transmitting an uplink channel, where the UE determines n first channels (uplink channels corresponding to long TTIs) and m second channels (uplinks corresponding to short TTIs) And transmitting, according to a maximum uplink transmission time difference between the n first channels and the m second channels, L transmit powers, where the L uplink channels include at least the m second channels.
  • the k second channels in the first channel and the first TTI corresponding to the first channel is shorter than the second TTI corresponding to the second channel.
  • the UE sends the L uplink channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI.
  • the UE knows the information of the uplink channel corresponding to the long TTI when transmitting the uplink channel, and does not know the information of the uplink channel corresponding to the short TTI, and the UE allocates all the transmit power to the long TTI.
  • the corresponding uplink channel causes the uplink channel corresponding to the short TTI to be allocated less power and cannot be transmitted.
  • the method provided by the present invention can ensure that the uplink channel corresponding to the short TTI is allocated to the transmit power, thereby ensuring that the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is normally received by the base station.
  • An embodiment of the present invention provides a method for transmitting an uplink channel, where the execution entity is a base station. As shown in FIG. 4, the method includes the following steps:
  • the base station sends the reserved power information of the first transmission time interval TTI and the reserved power information of the second TTI to the UE, so that the UE is in time at the first time unit numbered i and the second time unit numbered j.
  • the transmit power is allocated for the L uplink channels according to the reserved power information of the first TTI and the reserved power information of the second TTI; or the reserved power information of the second TTI is sent to the UE, so that When the first time unit numbered i and the second time unit numbered j overlap in time, the UE allocates transmit power to the L uplink channels according to the reserved power information of the second TTI.
  • the L uplink channels include at least k second channels of the m second channels, 1 ⁇ k ⁇ m.
  • the L uplink channels may further include the remaining m-k second channels and the n first channels of the m second channels.
  • the L uplink channels may further include the remaining m-k second channels of the m second channels and z first channels of the n first channels.
  • the L uplink channels may further include The remaining m-k second channels and the n first channels of the m second channels.
  • the first channel is an uplink channel corresponding to the first cell on the first time unit numbered i.
  • the first channel is an uplink channel corresponding to the first cell on the first time unit numbered i, and the duration of the first time unit is a first transmission time interval TTI, and the second channel is In the uplink channel corresponding to the second cell on the second time unit numbered j, the duration of the second time unit is a second TTI, and the duration of the second TTI is shorter than the duration of the first TTI duration.
  • the first channel on the first time unit of the number i is i is understood to be that there is a first channel on each of the first time units numbered i, that is, there are n numbers.
  • the base station receives the L uplink channels sent by the UE.
  • the first time unit may be a subframe with a length of 1 ms, may be a slot with a length of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMAs.
  • the second time unit may be a time slot of length 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be more than one SC-FDMA symbol or one The shorter time unit of the OFDMA symbol.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the first TTI may be 0.5 ms
  • the second TTI may be a 1SC-FDMA symbol.
  • the method further includes: the base station transmitting capability indication information to the UE, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to a long TTI. a channel corresponding to a short TTI;
  • the capability information is used to indicate that the UE supports simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the base station sends the power control indication information to the UE, where the power control indication information is used to instruct the UE to determine the first preset value, the second preset value, and the first Three preset values.
  • the present invention provides a method for transmitting an uplink channel, where the UE determines n first channels (uplink channels corresponding to long TTIs) and m second channels (uplink channels corresponding to short TTIs), according to the n first channels and The maximum uplink transmission time difference between the m second channels is allocated for L uplink channels, the L uplink channels include at least k second channels of the m second channels, and the first channel The corresponding first TTI is shorter than the second TTI corresponding to the second channel.
  • the UE sends the L uplink channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI.
  • the UE knows the information of the uplink channel corresponding to the long TTI when transmitting the uplink channel, and does not know the information of the uplink channel corresponding to the short TTI, and the UE allocates all the transmit power to the long TTI.
  • the corresponding uplink channel causes the uplink channel corresponding to the short TTI to be allocated less power and cannot be transmitted.
  • the method provided by the present invention can ensure that the uplink channel corresponding to the short TTI is allocated to the transmit power, thereby ensuring that the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is normally received by the base station.
  • An embodiment of the present invention provides a method for transmitting an uplink channel. As shown in FIG. 5, the method includes the following steps:
  • the base station sends capability indication information to the UE.
  • the capability indication information is used to indicate that the UE simultaneously transmits a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the UE may transmit short-latency services (such as packet/voice) on a cell (cell) with 0.5 ms TTI, and simultaneously transmit large-data services (such as video and download) on the cell with 1 ms TTI. Therefore, the UE can simultaneously support long TTI (eg, 1 ms TTI) and short TTI (eg, 0.5 ms TTI), and the UE can also The channel corresponding to the long TTI and the channel corresponding to the short TTI are simultaneously transmitted.
  • short-latency services such as packet/voice
  • large-data services such as video and download
  • the UE receives capability indication information sent by the base station.
  • the UE determines to use first channel transmission information on the first time unit numbered i and second channel transmission information on the second time unit with m numbered j.
  • the duration of the first time unit is a first transmission time interval TTI
  • the duration of the second time unit is a second TTI
  • the duration of the second TTI is shorter than the duration of the first TTI. duration.
  • the first time unit may be a subframe having a length of 1 ms, may be a slot having a length of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols;
  • the second time unit may be a time slot of length 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be more than one SC-FDMA symbol or one OFDMA symbol.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the first TTI may be 0.5 ms
  • the second TTI may be a 1SC-FDMA symbol.
  • the first channel on the first time unit of the number i is i is understood to be that there is a first channel on each of the first time units numbered i, that is, there are n numbers.
  • the UE determines a maximum uplink transmission time difference between the n first time units numbered i and m second time units numbered j, and allocates L uplink channels according to the maximum uplink transmission time difference. Transmit power, the L uplink channels including at least k second channels of the m second channels.
  • the maximum uplink transmission time difference is between n start transmission times of n first time units numbered i and m start transmission times of the m second time units numbered j. The maximum of the differences. It should be noted that the initial transmission The time may be the time at which the first time unit or the second time unit starts transmitting, or may be the time at which the first channel or the second channel starts transmitting.
  • the L second channels are selected by the UE according to the priority of the channel in m+n (n first channel and m second channel) channels, wherein the k times corresponding to the short TTI
  • the two channels may be channels carrying important services or delay-sensitive services, so when the L uplink channels contain k second channels, the channel carrying important services in the uplink channel or sensitive to delay can be ensured.
  • the traffic carried by the channel is normally received by the base station, and the UE is prevented from allocating the transmission power to the first channel, so that the second channel is not allocated to the transmission power and cannot be transmitted, so as to affect the data service carried by the second channel.
  • the UE allocates transmit power for L uplink channels according to the maximum uplink transmission time difference, and the L uplink channels include at least K second channels, 1 ⁇ k ⁇ m, specific The following three situations are included:
  • the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority, where the first power value is smaller than a maximum transmit power of the UE.
  • a physical random access channel PRACH a channel carrying a hybrid automatic repeat request acknowledgement response HARQ-ACK or a scheduling request SR, a channel carrying channel state information CSI, a channel carrying only data, and a channel sounding reference signal SRS;
  • the first channel priority is in the descending order of the priority level: the PRACH, the physical uplink control channel PUCCH, the physical uplink shared channel PUSCH, and the SRS.
  • the UE allocates remaining power to at least one of the n first channels according to the first channel priority; the remaining power is a maximum transmit power of the UE and the first power value. The difference.
  • the L channels further include at least one selected in the n first channels First channel.
  • the UE allocates a first power value to the k second channels of the m second channels according to the first channel priority, and allocates the second power value according to the first channel priority.
  • the L channels further include z first channels of the n first channels, where 1 ⁇ z ⁇ n.
  • the first time unit numbered i is earlier than the second time unit numbered j, which can be understood as: the initial transmission time of the n first time units can be understood as The initial transmission time of the m second time units is earlier, and can also be understood as the initial transmission time of the main first time unit in the n first time units is greater than the main second in the m second time units.
  • the start time of the time unit is earlier, wherein the definitions of the main first time unit and the main second time unit are the same as before, so they are not described again.
  • the UE allocates remaining power according to the first channel priority to at least one of mk second channels of the m second channels except the k second channels;
  • the power is a difference between a maximum transmit power of the UE and a sum of the first power value and a second power value;
  • the L channels further include at least one second channel selected among m-k second channels except the k second channels in the m second channels.
  • the UE allocates a maximum transmit power of the UE to k of the m second channels according to a second channel priority. a second channel; or when the maximum uplink transmission time difference is greater than or equal to a third preset value and the initial transmission time of the second time unit numbered j is from the first time unit numbered i Before the initial transmission time, the UE allocates the maximum transmit power of the UE to the m according to the second channel priority. k second channels in the second channel.
  • the second channel priority is sequentially in the descending order of the priority level: the second channel, the first channel; and the first channel is allocated power according to the first channel priority, according to the The first channel priority is the power allocated to the second channel.
  • the UE allocates transmit power to the L uplink channels according to the maximum uplink transmission time difference, and may further include: when the maximum uplink transmission time difference is less than or equal to a second preset value, or when the maximum uplink transmission is performed.
  • the time difference is greater than or equal to the third preset value and the second time unit numbered j is earlier than the first time unit numbered j, and the UE transmits the maximum transmission of the UE according to the third channel priority.
  • Power is allocated to k second channels of the m second channels and z first channels of the n first channels.
  • the L channels further include the z first channels.
  • the UE allocates power for the first k+z channels in the descending order of priority for the m second channels and the n first channels, and then k may be 0, or z may be 0.
  • the third channel priority is sequentially performed in descending order of the priority level: the PRACH channel in the first channel and the second channel in the second channel except the SRS, and the first channel carries a first channel of the HARQ-ACK or the SR, a first channel carrying the CSI in the first channel, a first channel carrying only data, an SRS in the second channel, and an SRS in the first channel;
  • the PRACH in the first channel and the second channel in which the SRS in the second channel is removed and the second channel carrying the data the first channel carrying the HARQ-ACK or the SR, the second channel carrying only the data, and the first channel carrying only the data SRS in the second channel, SRS in the first channel.
  • the first power value specifically includes: a transmit power value used by the uplink channel corresponding to the second cell on the second time unit of the UE transmitting the number j-1; or the UE last time Transmit power value used by the channel of the second cell; or the power value reserved by the UE for the uplink channel corresponding to the second TTI according to a predefined parameter.
  • the predefined parameter may be a transmit Power The ratio r1, the UE determines, according to the predefined parameter, that the reserved power value is equal to r1* the maximum transmit power value allowed by the current UE.
  • the predefined parameter may be a power value, and the UE determines to reserve.
  • the power value is equal to the fixed power value; or the power value reserved by the UE for the uplink channel corresponding to the second TTI according to the received reserved power information of the second TTI, for example, the reserved power information may be The ratio of the transmit power ratio r2 configured for the base station, the UE determines, according to the reserved power information, a product of the reserved power value r2 and the maximum transmit power value allowed by the current UE.
  • the reserved power information may be configured by the base station.
  • the power value the UE determines that the reserved power value is equal to the power value configured by the base station.
  • the second time unit numbered j-1 is next to the second time unit numbered j, and the initial transmission time of the second time unit numbered j-1 is from the time unit numbered j.
  • the first power value is a value of a transmit power used by the UE to transmit a channel of the second cell, that is, a transmit power value used for transmitting the second cell at the nth time and a second transmit value of the nth time.
  • the transmit power values used by the cells are the same.
  • the second power value specifically includes: a transmit power value used by the UE to transmit an uplink channel corresponding to the first cell on the first time unit with the number i-1; or the UE sends the first time The value of the transmit power used by the channel of the cell; or the power value reserved by the UE for the uplink channel corresponding to the first TTI according to a predefined parameter; or the reservation of the UE according to the received first TTI
  • the power information is a power value reserved for the uplink channel corresponding to the first TTI.
  • the UE preferentially allocates power to the channel with the highest priority, and then the UE preferentially allocates power to the channel with the highest priority, and then allocates power to the channel with lower priority.
  • Each carrier has its own upper transmit power limit. Even if the channel transmit power of each carrier does not exceed the power limit of each carrier, the total transmit power of multiple channels may still exceed the configured maximum transmit power of the UE.
  • the UE may preferentially allocate power to the channel with higher priority, and then consider assigning power to the channel with lower priority. If the UE allocates insufficient power to the channel with higher priority, then the channel with lower priority has no transmission power. For channels of the same priority or In the case where the priority of the power allocation of the channel is not distinguished, if the transmission power required by the multiple channels causes the maximum transmission power of the UE to be exceeded, Power Scaling is performed, that is, power compression.
  • the UE sends the L uplink channels.
  • the k second channels can be transmitted to prevent the data carried on the k second channels from being transmitted, affecting the UE and the UE. Service communication between base stations.
  • the first time unit numbered i and the second time unit numbered j are overlapped at step 303, at least one must also exist
  • the first channel on the first time unit numbered i is overlapped with the second channel on the at least one second time unit numbered j, and steps 304 and 305 of the embodiment of the present invention can be performed.
  • the present invention provides a method for transmitting an uplink channel, where the UE determines n first channels (uplink channels corresponding to long TTIs) and m second channels (uplink channels corresponding to short TTIs), according to the n first channels and The maximum uplink transmission time difference between the m second channels is allocated for L uplink channels, the L uplink channels include at least k second channels of the m second channels, and the first channel The corresponding first TTI is shorter than the second TTI corresponding to the second channel.
  • the UE sends the L uplink channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI.
  • the UE knows the information of the uplink channel corresponding to the long TTI when transmitting the uplink channel, and does not know the information of the uplink channel corresponding to the short TTI, and the UE allocates all the transmit power to the long TTI.
  • the corresponding uplink channel causes the uplink channel corresponding to the short TTI to be allocated less power and cannot be transmitted.
  • the method provided by the present invention can ensure that the uplink channel corresponding to the short TTI is allocated to the transmit power, thereby ensuring that the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is normally received by the base station.
  • An embodiment of the present invention provides a UE.
  • the UE includes: determining Unit 401, power distribution unit 402, and transmission unit 403.
  • Determining unit 401 determining to transmit information using first channel information on n first time units numbered i and second channel transmission information on m second time units numbered j, wherein the number is i
  • the length of the first time unit is a first transmission time interval TTI
  • the length of the second time unit numbered j is a second TTI
  • the second TTI is shorter than the first TTI
  • the first time unit of i overlaps with at least one of the second time units numbered j, and the information sent by the first channel and the second channel respectively correspond to different cells.
  • the first time unit may be a subframe with a length of 1 ms, may be a slot with a length of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols;
  • the second time unit may be a time slot of length 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be more than one SC-FDMA symbol or one OFDMA symbol A shorter time unit.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the determining unit 401 is further configured to determine a maximum uplink transmission time difference between the n first time units numbered i and the m second time units numbered j, where the maximum uplink transmission time difference is The maximum value of the difference between the n initial transmission times of the n first time units numbered i and the m initial transmission times of the m second time units numbered j.
  • the power allocation unit 402 is configured to allocate, according to the maximum uplink transmission time difference, transmit power for L uplink channels, where the L uplink channels include at least k second channels of the m second channels.
  • the UE can allocate the transmit power to the uplink channel corresponding to the short TTI when the long TTI and the short TTI are supported at the same time, so that the uplink channel corresponding to the short TTI can be transmitted, and the service carried by the uplink channel corresponding to the short TTI is used by the base station. Normal reception.
  • the UE may also allocate transmit power for the first channel (the uplink channel corresponding to the long TTI), and the UE may simultaneously transmit the long TTI (ie, the present invention)
  • the uplink channel allocated power corresponding to the uplink channel and the short TTI (that is, the second TTI in the present invention) of the first TTI) ensures that services carried by the channels are received by the base station.
  • the L uplink channels are selected by the UE according to the priority of the channel in m+n (n first channel and m second channel) channels.
  • the k second channels corresponding to the short TTI may be channels carrying important services or delay-sensitive services, so when the L uplink channels include k second channels, the uplink channel can be guaranteed.
  • the traffic carried by the channel of the important service or the channel sensitive to the delay is normally received by the base station.
  • the sending unit 403 is configured to send the L uplink channels.
  • At least one of the first channel on the first time unit numbered i overlaps with the second channel on the at least one second time unit numbered j.
  • the power distribution unit 402 is specifically configured to: when the maximum uplink transmission time difference is greater than or equal to a first preset value, and the first transmission time of the first time unit with the number i is in the number of the number j Before the initial transmission time of the second time unit, the first power value is allocated to the k second channels of the m second channels according to the first channel priority, wherein the first power value is less than or equal to or less than The maximum transmit power of the UE, 1 ⁇ k ⁇ m.
  • the power allocation unit 402 is further configured to allocate remaining power to at least one of the n first channels according to the first channel priority, where the remaining power is a maximum transmit power of the UE and the The difference in the first power value.
  • the UE may allocate the remaining power to the first channel, and may allocate the remaining power to a part of the first channel. This is not limited here. Exemplarily: if the remaining power is 5dBm, the first channel A has the highest priority, the first channel B is second, the first channel A needs 3dBm power, and the second channel B needs 2dBm power, then the remaining power is allocated.
  • Two first channels, the L channels further comprising two first channels, namely a first channel A and a first channel B.
  • the L channels further include at least one first channel selected in the n first channels.
  • the power allocation unit 402 is specifically configured to: when the maximum uplink transmission time difference is greater than or equal to a first preset value, and the initial transmission time of the first time unit with the number i is in the number j Before the initial transmission time of the second time unit, the first power value is allocated to the k second channels of the m second channels according to the first channel priority, and the second channel is determined according to the first channel priority
  • the power value allocates z first channels of the n first channels, wherein a sum of the first power value and the second power value is less than or less than or equal to a maximum transmit power of the UE; wherein 1 ⁇ k ⁇ m.
  • the L channels further include z first channels of the n first channels, where 1 ⁇ z ⁇ n.
  • the UE since the UE selects k of the m second channels according to the first channel priority, the k second channels are sorted by m second channels in descending order of the first channel priority.
  • the z first channels are the first z channels in which the n first channels are sorted in descending order of the first channel priority.
  • the first power value is 10 dBm
  • the transmit power required by one PRACH with the highest priority is 6 dBm
  • the second power value is 8 dBm
  • the transmit power required by one PRACH having the highest priority is 6 dBm
  • the transmit power required for the first channel carrying the SR with a lower priority is 4 dBm
  • the first of the channel state information CSI is carried.
  • the required power of the channel is 4 dBm
  • the second power value is first allocated power for the PRACH, and then the first channel carrying the SR, because the remaining 2 dBm power in the second power value does not meet the required transmission of the first channel carrying the SR. Power, so the first channel carrying the SR can only be transmitted with 2dBm.
  • the power distribution unit 402 is further configured to: according to the first channel priority The remaining power is allocated to at least one of the m second second channels other than the k second channels, wherein the remaining power is the maximum transmit power of the UE and the a difference between a power value and a sum of the second power values;
  • the L channels further include at least one second channel selected among m-k second channels except the k second channels in the m second channels.
  • the power allocation unit 402 is specifically configured to: when the maximum uplink transmission time difference is less than or equal to a second preset value, allocate, according to the second channel priority, the maximum transmit power of the UE to the m second k second channels in the channel;
  • the maximum transmit power of the UE is first allocated to the k second channels of the m second channels, 1 ⁇ k ⁇ m.
  • the second channel priority is sequentially in the descending order of the priority level: the second channel, the first channel; and the first channel is allocated power according to the first channel priority, according to the The first channel priority is the power allocated to the second channel.
  • the power allocation unit 402 is specifically configured to: when the maximum uplink transmission time difference is less than or equal to a second preset value, allocate a maximum transmit power of the UE to the m first according to a third channel priority. k second channels in the two channels and z first channels in the n first channels;
  • the maximum transmit power of the UE is first allocated to the k second channels of the m second channels and the z first channels of the n first channels.
  • the UE allocates power for the first k+z channels in the descending order of priority for the m second channels and the n first channels, and then k may be 0. Or z may be 0.
  • the L channels further include the z first channels.
  • the first power value specifically includes: a transmit power value used by the uplink channel corresponding to the second cell on the second time unit of the UE transmitting the number j-1; or the second time the UE sends the second The value of the transmit power used by the channel of the cell; or the power value reserved by the UE for the uplink channel corresponding to the second TTI according to a predefined parameter; or the reservation of the UE according to the received second TTI
  • the power information is a power value reserved for the uplink channel corresponding to the second TTI.
  • the second power value specifically includes: a transmit power value used by the UE to transmit an uplink channel corresponding to the first cell on the first time unit with the number i-1; or the UE sends the first time The value of the transmit power used by the channel of the cell; or the power value reserved by the UE for the uplink channel corresponding to the first TTI according to a predefined parameter; or the reservation of the UE according to the received first TTI
  • the power information is a power value reserved for the uplink channel corresponding to the first TTI.
  • the first channel priority is in order of descending order of priority levels: a physical random access channel PRACH, a channel carrying a hybrid automatic repeat request acknowledgement response HARQ-ACK or a scheduling request SR, a channel carrying channel state information CSI, A channel carrying only data, a channel sounding reference signal SRS.
  • the first channel priority is in the descending order of the priority level: the PRACH, the physical uplink control channel PUCCH, the physical uplink shared channel PUSCH, and the SRS.
  • the third channel priority is sequentially in the descending order of the priority level: the PRACH channel in the first channel and the second channel except the channel sounding reference signal SRS in the second channel, the first channel a first channel carrying a HARQ-ACK or SR, a first channel carrying CSI in the first channel, a first channel carrying only data, an SRS in the second channel, and an SRS in the first channel ;
  • the PRACH in the first channel and the second channel in which the SRS in the second channel is removed and the second channel carrying the data the first channel carrying the HARQ-ACK or the SR, the second channel carrying only the data, and the first channel carrying only the data SRS in the second channel, SRS in the first channel.
  • the sending unit is further configured to report capability information, where the capability information is used to indicate
  • the UE may support simultaneously transmitting and/or simultaneously receiving a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the receiving unit is further configured to receive capability indication information, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the first preset value, the second preset value, and the third preset value are parameters pre-stored by the UE; or the first preset value determined by the UE according to the received power control indication information The second preset value and the third preset value.
  • the present invention provides a UE, where the UE determines n first channels (uplink channels corresponding to long TTIs) and m second channels (uplink channels corresponding to short TTIs), according to the n first channels and the m
  • the maximum uplink transmission time difference between the second channels allocates transmission power for L uplink channels
  • the L uplink channels include at least k second channels of the m second channels, where 1 ⁇ k ⁇ m, and
  • the first TTI corresponding to the first channel is shorter than the second TTI corresponding to the second channel.
  • the UE sends the L uplink channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI.
  • the prior art cannot allocate the transmit power for the uplink channel corresponding to the short TTI, and the uplink channel corresponding to the short TTI cannot be allocated and cannot be transmitted.
  • the uplink channel corresponding to the short TTI can be allocated to the transmit power, and the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is normally received by the base station.
  • the embodiment of the present invention provides a base station.
  • the base station includes: a sending unit 501 and a receiving unit 502.
  • the sending unit 501 is configured to send the reserved power information of the first transmission time interval TTI and the reserved power information of the second TTI to the user equipment UE, so that the UE is in the first time unit numbered i and the second number numbered j When the time units overlap in time, according to the reserved power information of the first TTI and the reserved work of the second TTI
  • the rate information is allocated to the L uplink channels; or the reserved power information of the second TTI is sent to the UE, so that the UE is in time at the first time unit numbered i and the second time unit numbered j
  • the L uplink channels are allocated transmit power according to the reserved power information of the second TTI.
  • the first time unit may be a subframe with a length of 1 ms, may be a slot with a length of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMAs.
  • the second time unit may be a time slot of length 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be more than one SC-FDMA symbol or one The shorter time unit of the OFDMA symbol.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the receiving unit 502 is configured to receive the L uplink channels sent by the UE.
  • the L uplink channels include at least k second channels of the m second channels, 1 ⁇ k ⁇ m, and the second channel is on the second time unit numbered j.
  • the L channels further include z first channels of the n first channels; the first channel is an uplink channel corresponding to the first cell on the first time unit numbered i.
  • the sending unit 501 is further configured to send the capability indication information to the UE, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the receiving unit 502 is further configured to receive the capability information reported by the UE, where the capability information is used to indicate that the UE supports simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the sending unit 501 is further configured to send the power control indication information to the UE, where the power control indication information is used to instruct the UE to determine the first preset value and the second preset Value, third preset value.
  • the base station provided by the present invention sends the reserved power information of the first transmission time interval TTI and/or the reserved power information of the second TTI to the UE, so that the UE allocates transmit power for the L uplink channels, where the L uplink channels are at least Include k of the m second channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI. If the UE supports the long TTI and the short TTI at the same time, the prior art cannot allocate the transmit power to the uplink channel corresponding to the short TTI, and the uplink channel corresponding to the short TTI cannot be allocated and cannot be transmitted.
  • the method, the UE and the base station provided by the present invention are provided.
  • the uplink channel corresponding to the short TTI can be allocated to the transmit power, and the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is used by the base station. Normal reception.
  • the embodiment of the present invention provides a UE.
  • the UE may include a processor 601, a system bus 602, a communication interface 603, and a memory 604.
  • the processor 601 can be a central processing unit (English: central processing unit, abbreviation: CPU).
  • the memory 604 is configured to store the program code and transmit the program code to the processor 601.
  • the processor 601 executes the following instructions according to the program code.
  • the memory 604 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 604 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD).
  • Memory 604 may also include a combination of the types of memories described above.
  • the processor 601, the memory 604, and the communication interface 603 are connected by the system bus 602 and complete communication with each other.
  • Communication interface 603 can be implemented by an optical transceiver, an electrical transceiver, a wireless transceiver, or any combination thereof.
  • an optical transceiver can be pluggable in a small package (English: small Form-factor pluggable transceiver, abbreviation: SFP) transceiver (English: transceiver), enhanced small form-factor pluggable (English: enhanced small form-factor pluggable, abbreviation: SFP+) transceiver or 10 gigabit small package pluggable ( English: 10Gigabit small form-factor pluggable, abbreviation: XFP) transceiver.
  • SFP small Form-factor pluggable transceiver
  • SFP+ enhanced small form-factor pluggable
  • XFP 10 gigabit small package pluggable
  • the electrical transceiver can be an Ethernet (Ethernet) network interface controller (English: network interface controller, abbreviation: NIC).
  • the wireless transceiver can be a wireless network interface controller (English: wireless network interface controller, abbreviation: WNIC).
  • the UE 60 can have multiple communication interfaces 603.
  • the processor 601 is configured to determine to send information by using the first channel on the first time unit with n number i and the second channel sending information on the second time unit with m number j, where the number The length of the first time unit of i is a first transmission time interval TTI, the length of the second time unit numbered j is a second TTI, and the second TTI is shorter than the first TTI, at least one The first time unit numbered i is overlapped with the at least one second time unit numbered j, and the information sent by the first channel and the second channel respectively correspond to different cells.
  • the first channel on the first time unit of the number i is i is understood to be that there is a first channel on each of the first time units numbered i, that is, there are n numbers.
  • the first time unit may be a subframe with a length of 1 ms, may be a slot with a length of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMAs.
  • the second time unit may be a time slot of length 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be more than one SC-FDMA symbol or one The shorter time unit of the OFDMA symbol.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the processor 601 is further configured to determine the n first time sheets numbered i a maximum uplink transmission time difference between the element and the m second time units numbered j, wherein the maximum uplink transmission time difference is n initial transmission times and numbers of the first time unit number n numbered i The maximum of the difference between the m initial transmission times of the m second time units numbered j.
  • the initial transmission time may be the first time unit or the second time unit start transmission time, or may be the time when the first channel or the second channel starts to transmit.
  • the processor 601 is further configured to allocate, according to the maximum uplink transmission time difference, transmit power for the L uplink channels, where the L uplink channels include at least k second channels of the m second channels.
  • the processor 601 is configured to send the L uplink channels through the communication interface 603.
  • At least one of the first channel on the first time unit numbered i overlaps with the second channel on the at least one second time unit numbered j.
  • the UE can allocate the transmit power to the uplink channel corresponding to the short TTI when the long TTI and the short TTI are supported at the same time, so that the uplink channel corresponding to the short TTI can be transmitted, and the service carried by the uplink channel corresponding to the short TTI is used by the base station. Normal reception.
  • the UE may also allocate transmit power for the first channel (the uplink channel corresponding to the long TTI), and the UE may simultaneously transmit the long TTI (ie, the first TTI according to the present invention).
  • the uplink channel allocation power corresponding to the uplink channel and the short TTI ie, the second TTI according to the present invention ensures that the services carried by these channels are received by the base station.
  • the L uplink channels are selected by the UE according to the priority of the channel in m+n (n first channel and m second channel) channels.
  • the k second channels corresponding to the short TTI may be channels carrying important services or delay-sensitive services, so when the L uplink channels include k second channels, the uplink channel can be guaranteed.
  • the traffic carried by the channel of the important service or the channel sensitive to the delay is normally received by the base station.
  • the processor 601 is specifically configured to: when the maximum uplink transmission time difference is greater than or equal to a first preset value, and the first time unit of the number i is initially sent Before the initial transmission time of the second time unit numbered j, the first power value is allocated to the k second channels of the m second channels according to the first channel priority, where The first power value is less than or less than or equal to the maximum transmit power of the UE, 1 ⁇ k ⁇ m.
  • the processor 601 is further configured to allocate remaining power to at least one of the n first channels according to the first channel priority, where the remaining power is a maximum transmit power of the UE and the first The difference between a power value.
  • the UE may allocate the remaining power to the first channel, and may allocate the remaining power to a part of the first channel. This is not limited here. Exemplarily: if the remaining power is 5dBm, the first channel A has the highest priority, the first channel B is second, the first channel A needs 3dBm power, and the second channel B needs 2dBm power, then the remaining power is allocated.
  • Two first channels, the L channels further comprising two first channels, namely a first channel A and a first channel B.
  • the L channels further include at least one first channel selected in the n first channels.
  • the processor 601 is specifically configured to: when the maximum uplink transmission time difference is greater than or equal to a first preset value, and the first sending time of the first time unit with the number i is in the number of the number j Before the initial transmission time of the second time unit, the first power value is allocated to the k second channels of the m second channels according to the first channel priority, and the second power is determined according to the first channel priority And a value of the z first channels in the n first channels, wherein a sum of the first power value and the second power value is less than or equal to a maximum transmit power of the UE, 1 ⁇ k ⁇ m .
  • the L channels further include z first channels of the n first channels, where 1 ⁇ z ⁇ n.
  • the UE since the UE selects k of the m second channels according to the first channel priority, the k second channels are sorted by m second channels in descending order of the first channel priority.
  • the z first channels are the first z channels in which the n first channels are sorted in descending order of the first channel priority.
  • the first power value is 10 dBm
  • the transmit power required for one PRACH having the highest priority is 6 dBm
  • the second power value is 8 dBm
  • the transmit power required by one PRACH having the highest priority is 6 dBm
  • the transmit power required for the first channel carrying the SR with a lower priority is 4 dBm
  • the first of the channel state information CSI is carried.
  • the required power of the channel is 4 dBm
  • the second power value is first allocated power for the PRACH, and then the first channel carrying the SR, because the remaining 2 dBm power in the second power value does not meet the required transmission of the first channel carrying the SR. Power, so the first channel carrying the SR can only be transmitted with 2dBm.
  • the processor 601 is further configured to allocate, according to the first channel priority, residual power to at least one of the m second second channels other than the k second channels, The remaining power is a difference between a maximum transmit power of the UE and a sum of the first power value and the second power value;
  • the L channels further include at least one second channel selected among m-k second channels except the k second channels in the m second channels.
  • the processor 601 is specifically configured to: when the maximum uplink transmission time difference is less than or equal to a second preset value, allocate the maximum transmit power of the UE to the m second channels according to the second channel priority. k second channels; or when the maximum uplink transmission time difference is greater than or equal to a third preset value and the initial transmission time of the second time unit numbered j is in the number i Before the initial transmission time of a time unit, the maximum transmission power of the UE is first allocated to the k second channels of the m second channels according to the second channel priority, 1 ⁇ k ⁇ m.
  • the second channel priority is sequentially in the descending order of the priority level: the second channel, the first channel; and the first channel is allocated power according to the first channel priority, according to the The first channel priority is the power allocated to the second channel.
  • the processor 601 is specifically configured to: when the maximum uplink transmission time difference is less than or equal to a second preset value, allocate, according to a third channel priority, the maximum transmit power of the UE to the m second k second channels in the channel and z first channels in the n first channels; or second when the maximum uplink transmission time difference is greater than or equal to a third preset value and the number is j
  • the initial transmission time of the time unit is prior to the initial transmission time of the first time unit numbered i, and the maximum transmission power of the UE is first allocated to the m second channels according to the third channel priority.
  • the k first channels and the z first channels of the n first channels further include the z first channels.
  • the UE allocates power for the first k+z channels in the descending order of priority for the m second channels and the n first channels, and then k may be 0. Or z may be 0.
  • the first power value specifically includes: a transmit power value used by the uplink channel corresponding to the second cell on the second time unit of the UE transmitting the number j-1; or the second time the UE sends the second The value of the transmit power used by the channel of the cell; or the power value reserved by the UE for the uplink channel corresponding to the second TTI according to a predefined parameter; or the reservation of the UE according to the received second TTI
  • the power information is a power value reserved for the uplink channel corresponding to the second TTI.
  • the second power value specifically includes: a transmit power value used by the UE to transmit an uplink channel corresponding to the first cell on the first time unit with the number i-1; or the UE sends the first time The value of the transmit power used by the channel of the cell; or the power value reserved by the UE for the uplink channel corresponding to the first TTI according to a predefined parameter; or the reservation of the UE according to the received first TTI
  • the power information is a power value reserved for the uplink channel corresponding to the first TTI.
  • the first channel priority is in order of descending order of priority levels: a physical random access channel PRACH, a channel carrying a hybrid automatic repeat request acknowledgement response HARQ-ACK or a scheduling request SR, a channel carrying channel state information CSI, A channel carrying only data, a channel sounding reference signal SRS.
  • the first channel priority is in descending order of priority levels:
  • the PRACH a physical uplink control channel PUCCH, a physical uplink shared channel PUSCH, and the SRS.
  • the third channel priority is sequentially in the descending order of the priority level: the PRACH channel in the first channel and the second channel except the channel sounding reference signal SRS in the second channel, the first channel a first channel carrying a HARQ-ACK or SR, a first channel carrying CSI in the first channel, a first channel carrying only data, an SRS in the second channel, and an SRS in the first channel ;
  • the PRACH in the first channel and the second channel in which the SRS in the second channel is removed and the second channel carrying the data the first channel carrying the HARQ-ACK or the SR, the second channel carrying only the data, and the first channel carrying only the data SRS in the second channel, SRS in the first channel.
  • the sending unit is further configured to: report capability information, where the capability information is used to indicate that the UE can support simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the receiving unit is further configured to receive capability indication information, where the capability indication information is used to indicate that the UE simultaneously transmits and/or simultaneously receives a channel corresponding to the long TTI and a channel corresponding to the short TTI.
  • the first preset value, the second preset value, and the third preset value are parameters pre-stored by the UE; or the first preset value determined by the UE according to the received power control indication information The second preset value and the third preset value.
  • the present invention provides a UE, where the UE determines n first channels (uplink channels corresponding to long TTIs) and m second channels (uplink channels corresponding to short TTIs), according to the n first channels and the m
  • the maximum uplink transmission time difference between the second channels allocates transmission power for L uplink channels
  • the L uplink channels include at least k second channels of the m second channels, where 1 ⁇ k ⁇ m, and
  • the first TTI corresponding to the first channel is shorter than the second TTI corresponding to the second channel.
  • the UE sends the L uplink channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI.
  • the uplink channel allocates the transmit power, and the uplink channel corresponding to the short TTI is not allocated power and cannot be transmitted.
  • the UE provided by the present invention can ensure that the uplink channel corresponding to the short TTI is allocated to the transmit when the UE supports both the long TTI and the short TTI.
  • the power ensures that the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is normally received by the base station.
  • the embodiment of the present invention provides a base station 70.
  • the base station 70 can include a processor 701, a system bus 702, a communication interface 703, and a memory 704.
  • the processor 701 can be a central processing unit (English: central processing unit, abbreviation: CPU).
  • the memory 704 is configured to store the program code and transmit the program code to the processor 701.
  • the processor 701 executes the following instructions according to the program code.
  • the memory 704 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 704 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD).
  • Memory 704 can also include a combination of the above types of memory.
  • the processor 701, the memory 704, and the communication interface 703 are connected by the system bus 702 and complete communication with each other.
  • Communication interface 703 can be implemented by an optical transceiver, an electrical transceiver, a wireless transceiver, or any combination thereof.
  • the optical transceiver can be a small form-factor pluggable transceiver (sFP) transceiver (English: transceiver), and the enhanced small form-factor pluggable (English: enhanced small form-factor pluggable, Abbreviation: SFP+) Transceiver or 10 Gigabit small form-factor pluggable (XFP) transceiver.
  • the electrical transceiver can be an Ethernet (Ethernet) network interface controller (English: network interface controller, abbreviation: NIC).
  • the wireless transceiver can be a wireless network interface controller (English: wireless network interface controller, abbreviation: WNIC).
  • Base station 70 can have multiple communication interfaces 703.
  • the processor 701 is configured to send the reserved power information of the first transmission time interval TTI and the reserved power information of the second TTI to the user equipment UE through the communication interface 703, so that the UE is in the first time unit numbered i
  • the transmission power is allocated for the L uplink channels according to the reserved power information of the first TTI and the reserved power information of the second TTI; or to the UE Transmitting the reserved power information of the second TTI, so that the UE overlaps according to the reserved power information of the second TTI when the first time unit numbered i and the second time unit numbered j overlap in time.
  • the L uplink channels are allocated transmit power.
  • the first time unit may be a subframe with a length of 1 ms, may be a slot with a length of 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMAs.
  • the second time unit may be a time slot of length 0.5 ms, or may be one or several SC-FDMA symbols, or may be one or several OFDMA symbols, or may be more than one SC-FDMA symbol or one The shorter time unit of the OFDMA symbol.
  • the first cell and the second cell may correspond to one base station, or may correspond to multiple base stations.
  • the first TTI may be 1 ms
  • the second TTI may be 0.5 ms.
  • the processor 701 is configured to receive, by using the communication interface 703, the L uplink channels sent by the UE.
  • the L uplink channels include at least k second channels of the m second channels, 1 ⁇ k ⁇ m, and the second channel is on the second time unit numbered j.
  • the L channels further include z first channels of the n first channels; the first channel is an uplink channel corresponding to the first cell on the first time unit numbered i.
  • the processor 701 is further configured to send capability indication information to the UE by using the communication interface 703, where the capability indication information is used to indicate that the UE sends and/or simultaneously The channel corresponding to the long TTI and the channel corresponding to the short TTI are received.
  • the processor 701 is configured to: receive the capability information reported by the UE by using the communication interface 703, where the capability information is used to indicate that the UE supports simultaneous transmission and/or simultaneous reception of a channel corresponding to the long TTI and a channel corresponding to the short TTI. .
  • the processor 701 is configured to send the power control indication information to the UE by using the communication interface 703, where the power control indication information is used to instruct the UE to determine the first preset value, the second preset value, and the third pre- Set the value.
  • the base station provided by the present invention sends the reserved power information of the first transmission time interval TTI and/or the reserved power information of the second TTI to the UE, so that the UE allocates transmit power for the L uplink channels, where the L uplink channels are at least Include k of the m second channels.
  • the current technology can only ensure that the UE allocates transmit power to the uplink channel corresponding to the uplink channel corresponding to the long TTI. If the UE supports the long TTI and the short TTI at the same time, the prior art cannot allocate the transmit power to the uplink channel corresponding to the short TTI, and the uplink channel corresponding to the short TTI cannot be allocated and cannot be transmitted.
  • the method, the UE and the base station provided by the present invention are provided.
  • the uplink channel corresponding to the short TTI can be allocated to the transmit power, and the uplink channel corresponding to the short TTI can be transmitted, so that the service carried by the uplink channel corresponding to the short TTI is used by the base station. Normal reception.
  • the numbers i, j and the symbols m, n, and the like in the embodiment of the present invention are merely exemplary descriptions, and in the process of actually implementing various embodiments of the present invention, the first channel may not be used.
  • the second channel or other object is marked with a number.
  • the user equipment UE determines the first channel set transmission information and transmits the information using the second channel set, the first channel set includes at least one first channel; and the second channel set includes at least one second channel, The duration of the first channel in the first channel set is a first TTI, the second channel duration in the second channel set is a second TTI, and the second TTI is shorter than the first TTI, at least one The first channel and the at least one second channel overlap, and the information sent by the first channel set and the second channel set respectively correspond to different cells;
  • the UE Determining, by the UE, a maximum transmission time difference between the first channel set and the second channel set, where the maximum transmission time difference is a start transmission time of each channel in each of the first channel sets and each The largest time difference among the differences between the initial transmission times of the second channel set.
  • the UE allocates transmit power for L channels according to the maximum transmission time difference, and the L channels include at least k of the second channel set, where the UE is L according to the maximum transmission time difference.
  • the channel allocates transmit power, and the L uplink channels include at least k of the second set of channels. In one embodiment, at least one of the first channels overlaps with at least one of the second channels.
  • Example 1 When the maximum transmission time difference is greater than a first preset value and the initial transmission time of the first channel in all the first channel sets is sent at the beginning of the second channel in all the second channel sets Before the time, the UE allocates a first power value to the k of the second channel set according to the first channel priority;
  • the UE allocates the first power value to the k of the second channel set according to the first channel priority.
  • the first power value is less than or less than or equal to a maximum transmit power of the UE.
  • the UE allocates remaining power to at least one of the first channel set according to the first channel priority, where the remaining power is a maximum transmit power of the UE and the a difference in power values; the L channels further comprising at least one first channel selected in the first set of channels.
  • the UE allocates remaining power to at least one of the first channel set according to the first channel priority, where the remaining power is a maximum transmit power of the UE and the first power a difference in values; in one embodiment, the L channels further include at least one first channel selected in the first set of channels.
  • Example 2 When the maximum uplink transmission time difference is greater than a first preset value, and the initial transmission time of the first channel in all the first channel sets is in all the second letters Before the initial transmission time of the second channel in the set of tracks, the first power value is allocated to k of the second channel set according to the first channel priority, and the second power is determined according to the first channel priority Values are assigned to z of the first set of channels;
  • the UE allocates a first power value to the k of the second channel set according to the first channel priority, and allocates the second power value according to the first channel priority. z of the first set of channels.
  • the sum of the first power value and the second power value is less than or equal to a maximum transmit power of the UE; in still another embodiment, the L channels further include the first channel z in the collection.
  • the UE allocates remaining power according to the first channel priority to at least one of the second channel set except the k second channels, where the remaining power is the a difference between a maximum transmit power of the UE and a sum of the first power value and the second power value; the L channels further comprising a second channel outside the k second channels in the second channel At least one second channel selected.
  • Example 3 When the maximum uplink transmission time difference is less than or equal to a second preset value, the UE first allocates a maximum transmit power of the UE to k in the second channel set according to a second channel priority. Second channel
  • the UE when the maximum uplink transmission time difference is greater than or equal to a third preset value and the initial transmission time of the second channel in all the second channel sets is the first channel in the all first channel sets Before the initial transmission time, the UE first allocates the maximum transmit power of the UE to the k second channels in the second channel set according to the second channel priority;
  • the second channel priority is in the descending order of the priority level: the second channel, the first channel, wherein the first channel is allocated power according to the first channel priority, according to the The first channel priority is allocated power for the second channel.
  • Example 4 When the maximum uplink transmission time difference is less than or equal to or less than the second preset a value, the UE first allocates a maximum transmit power of the UE to k of the second channel set and z of the first channel set according to a third channel priority;
  • the UE first allocates the maximum transmit power of the UE to the k second channels and the n first channels in the m second channels according to the third channel priority.
  • the L channels further include the z first channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种上行信道的发射方法、UE及基站,涉及通信领域,在UE同时支持长TTI和短TTI时,能够为短TTI对应的上行信道分配发射功率。包括:UE确定n个第一信道和m个第二信道;根据n个第一信道和m个第二信道之间的最大上行传输时间差,为L个上行信道分配发射功率,L个上行信道至少包括m个第二信道中的k个第二信道;发送L个上行信道。第一信道是在编号为i的第一时间单元上的第一小区对应的上行信道,第一时间单元的持续时长为第一TTI,第二信道是在编号为j的第二时间单元上的第二小区对应的上行信道,第二时间单元的持续时长为第二TTI,第二TTI短于第一TTI。

Description

一种上行信道的发射方法、UE及基站 技术领域
本发明涉及通信领域,尤其涉及一种上行信道的发射方法、UE(User Equipment,用户设备)及基站。
背景技术
LTE(Long Term Evolution,长期演进)系统中,UE发送上行信道的过程包括:UE接收基站发送的下行调度信令,然后解调该下行调度信令,准备上行数据,然后根据获取到的上行信道的信息(如:需求功率、UE最大允许的发射功率)为上行信道分配发射功率,之后发送上行信道。
目前,子帧长度为1ms,TTI(Transmission Time Interval,传输时间间隔)长度为1ms。所有的调度均是以TTI为最小调度单位进行调度。为了实现更短的数据传输时延,已经提出了更短的TTI,如:将TTI长度设置成0.5ms或更短。
目前技术中,UE仅支持1ms TTI对应的上行信道的发送。在实现短TTI(如:0.5ms TTI或者更短的TTI)之后,若UE同时支持长TTI(如:1ms TTI)和短TTI,目前技术只能保证长TTI对应的上行信道被发射,无法保证短TTI对应的上行信道同时被发送,因此,亟需提供一种方案,能够使得UE在同时支持长TTI和短TTI的场景下,能够发送短TTI对应的上行信道。
发明内容
本发明的实施例提供一种上行信道的发射方法、UE及基站,在UE同时支持长TTI和短TTI时,能够为短TTI对应的上行信道分配发射功率,进而使得短TTI对应的上行信道能够被发送,短TTI对应的上行信道承载的业务被基站正常接收。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,公开了一种上行信道的发射方法,包括:
UE确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述第二信道发送的信息分别对应不同小区;
所述UE确定所述n个编号为i的第一时间单元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值;
所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个,其中1≤k≤m。
所述UE发送所述L个上行信道。
结合第一方面,在第一方面的第一种可能的实现方式中,
至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,
所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
当所述最大上行传输时间差大于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道;
或,当所述最大上行传输时间差大于等于所述第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时 间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,其中,所述第一功率值小于或小于等于所述UE的最大发射功率。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,
所述UE根据所述第一信道优先级将剩余功率分配给所述n个第一信道的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值;
则,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,
所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
当所述最大上行传输时间差大于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道;
或,当所述最大上行传输时间差大于等于所述第一预设值,且且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道,其中所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率;
则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
结合第一方面的第四种可能的实现方式,在第一方面的第五种 可能的实现方式中,
所述方法还包括:所述UE根据所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第二功率值之和的差值;
则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
结合第一方面的第一种可能的实现方式,在第一方面的第六种可能的实现方式中,
所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
当所述最大上行传输时间差小于或等于第二预设值,所述UE根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,所述UE根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;其中,根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
结合第一方面的第一种可能的实现方式,在第一方面的第七种可能的实现方式中,
所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
当所述最大上行传输时间差小于或小于等于第二预设值,所述UE根据第三信道优先级,将所述UE的最大发射功率先分配给所述 m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道,其中,1≤z≤n;
或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,所述UE根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;
则,所述L个信道还包括所述z个第一信道。
结合第一方面的第一至第五种可能的实现方式,在第一方面的第八种可能的实现方式中,
所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;
或,所述UE上一次发送所述第二小区的信道所用的发射功率值;
或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;
或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。
结合第一方面的第四或第五种可能的实现方式,在第一方面的第九种可能的实现方式中,
所述第二功率值具体包括:
所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;
或,所述UE上一次发送所述第一小区的信道所用的发射功率值;
或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;
或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
结合第一方面的第二至第六种可能的实现方式,在第一方面的第十种可能的实现方式中,
所述第一信道优先级按照优先级等级的降序顺序依次为:
物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS;
或,所述第一信道优先级按照优先级等级的降序顺序依次为:物理随机接入信道PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、信道探测参考信号SRS。
结合第一方面的第七种可能的实现方式,在第一方面的第十一种可能的实现方式中,
所述第三信道优先级按照优先级等级的降序顺序依次为:
所述第一信道中的PRACH信道和所述第二信道中除信道探测参考信号SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
结合第一方面的第一至第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,
所述UE确定n个第一信道和m个第二信道之前,所述方法还包括:
所述UE上报能力信息,所述能力信息用于表示所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
或,所述UE接收能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
结合第一方面的第一至第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中,
所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
第二方面,公开了一种上行信道的发射方法,其特征在于,
基站向用户设备UE发送第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元存在交叠时,根据所述第一TTI的保留功率信息和所述第二TTI的保留功率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在所述编号为i的第一时间单元与所述编号为j的第二时间单元存在交叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率;
所述基站接收所述UE发送的所述L个上行信道;
其中,所述L个上行信道至少包括m个第二信道中的k个第二信道;1≤k≤m,所述第二信道是在编号为j的第二时间单元上的上行信道,所述第一时间单元的持续时长为所述第一TTI,第二时间单元的持续时长为所述第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
结合第二方面,在第二方面的第一种可能的实现方式中,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
结合第二方面,在第二方面的第二种可能的实现方式中,
所述L个信道还包括n个第一信道中的z个第一信道;所述第一信道是在所述编号为i的第一时间单元上的上行信道;所述第一信道和所述第二信道发送的信息分别对应不同小区。
结合第二方面,在第二方面的第三种可能的实现方式中,所述方法还包括:
所述基站向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
或,接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
结合第二方面,在第二方面的第四种可能的实现方式中,所述方法还包括:
所述基站向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设值、第三预设值。
第三方面,公开了一种UE,包括:
确定单元,用于确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述第二信道发送的信息分别对应不同小区;
所述确定单元还用于,确定所述n个编号为i的第一时间单元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值;
功率功率分配单元,用于根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,其中1≤k≤m;
发送单元,用于发送所述L个上行信道。
结合第三方面,在第三方面的第一种可能的实现方式中,
至少一个所述编号为i的第一时间单元上的第一信道与至少一 个所述编号为j的第二时间单元上的第二信道存在交叠。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,
所述功率分配单元具体用于,当所述最大上行传输时间差大于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道;
或,当所述最大上行传输时间差大于等于所述第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,其中,所述第一功率值小于或小于等于所述UE的最大发射功率。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,
所述功率分配单元还用于,根据所述第一信道优先级将剩余功率分配给所述n个第一信道的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值;
则,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
结合第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,
所述功率分配单元具体用于,当所述最大上行传输时间差大于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道;
或,当所述最大上行传输时间差大于等于所述第一预设值,且 所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道,其中所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率;
则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,
所述功率分配单元还用于,根据所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第二功率值之和的差值;
则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
结合第三方面的第一种可能的实现方式,在第三方面的第六种可能的实现方式中,
所述功率分配单元具体用于,当所述最大上行传输时间差小于或等于第二预设值,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;且根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
结合第三方面的第一种可能的实现方式,在第三方面的第七种 可能的实现方式中,
所述功率分配单元具体用于,当所述最大上行传输时间差小于或小于等于第二预设值,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;
或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道,其中,1≤z≤n;
则,所述L个信道还包括所述z个第一信道。
结合第三方面的第一至第五种可能的实现方式,在第三方面的第八种可能的实现方式中,
所述第一功率值具体包括:
所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;
或,所述UE上一次发送所述第二小区的信道所用的发射功率值;
或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;
或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。
结合第三方面的第四或第五种可能的实现方式,在第三方面的第九种可能的实现方式中,
所述第二功率值具体包括:
所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;
或,所述UE上一次发送所述第一小区的信道所用的发射功率值;
或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;
或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
结合第三方面的第二至第六种可能的实现方式,在第三方面的第十种可能的实现方式中,
所述第一信道优先级按照优先级等级的降序顺序依次为:
物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS;
或,所述第一信道优先级按照优先级等级的降序顺序依次为:物理随机接入信道PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、信道探测参考信号SRS。
结合第三方面的第七种可能的实现方式,在第三方面的第十一种可能的实现方式中,
所述第三信道优先级按照优先级等级的降序顺序依次为:
所述第一信道中的PRACH信道和所述第二信道中除信道探测参考信号SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
结合第三方面的第一至第十一种可能的实现方式,在第三方面的第十二种可能的实现方式中,
所述发送单元还用于,上报能力信息,所述能力信息用于表示所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
或,还包括接收单元,所述接收单元用于,接收能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
结合第三方面的第一至第十二种可能的实现方式,在第三方面的第十三种可能的实现方式中,
所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
第四方面,公开了一种基站,包括:
发送单元,用于向用户设备UE发送第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第一TTI的保留功率信息和所述第二TTI的保留功率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在所述编号为i的第一时间单元与所述编号为j的第二时间单元在时间上存在重叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率;
接收单元,用于接收所述UE发送的所述L个上行信道;
其中,所述L个上行信道至少包括m个第二信道中的k个第二信道,1≤k≤m,所述第二信道编号为j的第二时间单元上的上行信道,所述第一时间单元的持续时长为所述第一TTI,第二时间单元的持续时长为所述第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
结合第四方面,在第四方面的第一种可能的实现方式中,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,
所述L个信道还包括n个第一信道中的z个第一信道;所述第 一信道是在所述编号为i的第一时间单元上的第一小区对应的上行信道。
结合第四方面,在第四方面的第三种可能的实现方式中,
所述发送单元还用于,向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
或,所述接收单元还用于接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
结合第四方面,在第四方面的第四种可能的实现方式中,所述发送单元还用于,向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设值、第三预设值。
本发明提供一种上行信道的发射方法、UE及基站,UE确定n个第一信道(长TTI对应的上行信道)和m个第二信道(短TTI对应的上行信道),根据所述n个第一信道和所述m个第二信道之间的最大上行传输时间差为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,其中1≤k≤m,且第一信道对应的第一TTI短于第二信道对应的第二TTI。所述UE发送所述L个上行信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,现有技术就无法为短TTI对应的上行信道分配发射功率,导致短TTI对应的上行信道分配不到功率,无法发送,本发明提供的方法、UE及基站,在UE同时支持长TTI和短TTI时,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的TTI的类型示意图;
图2为本发明实施例提供的同时发射长、短TTI的上行信道的示意图;
图3为本发明实施例1提供的上行信道的发射方法的流程示意图;
图4为本发明实施例2提供的上行信道的发射方法的流程示意图;
图5为本发明实施例3提供的上行信道的发射方法的流程示意图;
图6为本发明实施例4提供的UE的结构示意图;
图7为本发明实施例5提供的基站的结构示意图;
图8为本发明实施例6提供的UE的结构示意图;
图9为本发明实施例7提供的基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
LTE系统的下行传输中,在一个TTI的前1-3个符号被称为控制区域,主要传输PDCCH(Physical downlink Control Channel,物理下行控制信道)等控制信道,而PDCCH是用来调度PDSCH(Physical downlink Shared Channel,物理下行共享信道)或者PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。一 个TTI的剩余的符号被称为数据区域,主要传输PDSCH或EPDCCH(Enhance Physical downlink Control Channel,增强物理下行控制信道)。
LTE系统的上行传输中,一般包括PUCCH(Physical Uplink Control Channel,上行控制信道)、PRACH(Physical Random Access Channel,物理随机接入信道)、SRS(Sounding Reference Signal,探测参考信号)、和物理上行共享信道PUSCH。其中,UCI(Uplink Control Information,上行控制信息)一般承载在PUCCH信道和PUSCH信道上。UCI具体包含为:HARQ-ACK(Hybrid Automatic Repeat request-Acknowledge,混合自动重传请求-应答),SR(Scheduling Request,调度请求),CSI(Channel State Information,信道状态信息)。
目前LTE系统中,子帧长度为1ms,同时设定TTI长度为1ms。所有的调度均是以TTI为最小调度单位进行调度,从初次传输到进行重传的往返时间(Round-Trip Time,RTT)一般为8ms。为了实现更短的RTT和更短的数据传输时延,已经提出将TTI长度设置成0.5ms或更短的场景。
那么UE有可能在一个cell(小区)上用0.5ms TTI传输短时延业务(如小数据包,语音等),同时在该cell或另一个cell上用1ms TTI传输大数据量业务(如在线视频,下载大文件等)。如图1所示,0.5ms TTI可以在slot0(一个子帧内的第一个时隙)或slot1(一个子帧内的第二个时隙),其中,slot0所在的时间单元为一个子帧的第一个时隙,slot1所在的时间单元为一个子帧的第二个时隙。在1ms TTI的LTE系统中,从UE接收PDCCH信道到UE发送上行信道,1ms TTI UE的处理时间大约为4ms。依次推断,在0.5ms TTI的LTE系统中,留给0.5ms TTI UE的处理时间大约为2ms。对于0.5ms+1ms的混合场景(如:UE上有支持1ms TTI的第一装置和支持0.5ms TTI的第二装置)来说,就有两种处理情况,结合图1对这两种场景下的UE处理时间做以说明:
1、对于UE需要同时发送0.5ms TTI对应的编号为m+4的时隙的上行信道和1msTTI对应编号为n+4的子帧的上行信道的场景,但由于基站对不同长度的TTI是分开调度的,因此第一装置、第二装置接收到基站发送的下行调度信令的时刻是不同的。示例的,如图2所示,若第一装置在编号为n+4的子帧发射上行信道,第二装置在编号为m+4的时隙发射上行信道,这里编号为m+4的时隙是编号为n+4的子帧中的第一时隙。对于支持1ms TTI的第一装置来说从接收到基站发送的下行调度信令时刻编号为n的子帧,到上行在编号为n+4的子帧发送上行信道,第一装置的处理时间大约为4ms。对于0.5ms TTI第二装置来说从接收到基站发送的下行调度信令时刻编号为m的时隙,到上行在编号为m+4的时隙发送上行信道,第二装置的处理时间大约为2ms。那么UE在编号为n+4的子帧和编号为m+4的时隙开始之前要同时为0.5ms TTI对应的编号为m+4的时隙的上行信道和1msTTI对应的编号为n+4的子帧的上行信道分配发射功率,UE的处理时间仍为2ms,与0.5ms TTI UE的处理能力相同。
2、对于UE需要同时发送0.5ms TTI对应的m+5时隙的上行信道和1msTTI对应的编号为n+4的子帧的上行信道的场景。示例的,如图2所示,若第一装置在编号为n+4的子帧发射上行信道,第二装置在编号为m+5的时隙(对应编号为n+4的子帧中的第二时隙)发射上行信道。对于1ms TTI第一装置来说从接收到基站发送的下行调度信令时刻编号为n的子帧,到上行在编号为n+4的子帧发送上行信道,第一装置的处理时间大约为4ms。对于0.5ms TTI第二装置来说从接收到基站发送的下行调度信令时刻编号为m+1的时隙,到上行在编号为m+5的子帧发送上行信道,第二装置的处理时间为2ms。假如UE要在编号为n+4的子帧为1ms TTI对应的上行信道时分配发射功率,同时为0.5ms TTI对应的上行信道分配发射功率,这样要求UE的处理时间进一步的降低为1.5ms左右,如果UE的处理时间变短意味着对于UE的芯片处理速度的要求进一步增大, 也就增加了UE的实现成本。对于满足不了1.5ms处理能力的2ms处理能力UE,在编号为n+4的子帧开始之前,为1ms TTI对应的编号为n+4的子帧的上行信道分配发射功率时,因为无法完全准备好0.5ms TTI对应的编号为m+5的时隙的上行信道数据,所以不能为0.5ms TTI对应的上行信道分配发射功率,这样UE将所有功率都分配给1ms TTI对应的上行信道,就会导致0.5ms TTI对应的上行信道可能不能被分配到发射功率。
因此,有必要提出一种方法,使得在上述两种场景中UE能够为0.5ms TTI(或者小于0.5ms的短TTI)对应的上行信道中重要的上行信道或对时延敏感的上行信道被分配到配发射功率,保证其业务得到正常通信。
实施例1:
本发明实施例提供一种上行信道的发射方法,执行主体为UE,如图3所示,所述方法包括以下步骤:
101、UE确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述第二信道发送的信息分别对应不同小区。
需要说明的是,n个编号为i的第一时间单元上的第一信道可以理解为在每个编号为i的是第一时间单元上都存在一个第一信道,即等同于存在n个第一信道;m个编号为j的第二时间单元上的第二信道,可以理解为在每个编号为j的是第二时间单元上都存在一个第二信道,即等同于存在m个第二信道。
其中,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长 度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。所述第一TTI可以是0.5ms,所述第二TTI可以是1SC-FDMA符号。
102、所述UE确定所述n个编号为i的第一时间单元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值。
具体地,所述UE确定所述最大上行传输时间差包括以下步骤:
1.UE分别用所述n个第一信道中的每一个第一信道所在的所述编号为i的第一时间单元的起始发送时间(上行起始发送时间)与所述m个第二信道中的第二信道a所在所述编号为j的第二时间单元的起始发送时间做减法后取模值,获得n个差值。
2.针对所述m个第二信道中除第二信道a外的m-1个第二信道执行上述步骤1,获得n×(m-1)个差值。
结合步骤1,UE就获得了n×(m-1)+n=n×m个差值。
3.将所述n×m个差值中的最大值作为所述最大上行传输时间差。
需要说明的是,起始发送时间可以是第一时间单元或第二时间单元开始发送时刻,也可以是第一信道或第二信道开始发送的时刻。
103、所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个,其中1≤k≤m。
这样,UE就可以在同时支持长TTI和短TTI时,必须为短TTI对应的上行信道分配发射功率,进而使得短TTI对应的上行信道能够被发送,短TTI对应的上行信道承载的业务被基站正常接收。另 外,当k小于L时,即所述UE还可以为第一信道(长TTI对应的上行信道)分配了发射
功率,UE就可以同时发送长TTI(即本发明所述的第一TTI)对应的上行信道和短TTI(即本发明所述的第二TTI)对应的上行信道分配功率,保证这些信道承载的业务被基站接收。
当然,所述L个上行信道是所述UE按照信道的优先级在m+n(n个第一信道和m个第二信道)个信道中选中的。其中,短TTI对应的k个第二信道可能是承载重要业务的信道或对时延敏感的业务的信道,所以当L个上行信道中包含k个第二信道,这样就可以保证上行信道中承载重要业务的信道或对时延敏感的信道承载的业务被基站正常接收。
104、所述UE发送所述L个上行信道。
由于步骤103为所述L个上行信道分配了发射功率,进而就可以保证这L个上行信道被发射。其中,如果第二信道存在,则必然包括k个第二信道,避免第二信道上携带的数据不能被发射,影响所述UE与基站之间的业务通信。
在本发明的具体实施例中,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括以下四三种情况:
第一、当所述最大上行传输时间差大于或大于等于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,所述第一功率值小于所述UE的最大发射功率。
当所述最大上行传输时间差大于或大于等于第一预设值、且所述编号为i的第一时间单元早于所述编号为j的第二时间单元。所述UE将保留第一功率值为所述m个第二信道中的k个第二信道分配发射功率,以避免所有发射功率都用于发射所述n个第一信道。
示例的,可以是图1所示的slot1+1ms的场景,在n个编号为n+4的子帧的起始发送时间与在m个编号为m+5的时隙的起始发送 时间的最大上行传输时间差大于或大于等于第一预设值,由于所述UE保留第一功率值为所述m个第二信道中的k个第二信道,这样所述m个第二信道中的k个第二信道也可以被发射。这里的子帧可理解为第一时间单元,时隙可理解为第二时间单元。
需要说明的是:所述编号为i的第一时间单元早于所述编号为j的第二时间单元,可以理解为所述n个第一时间单元的起始发送时间均比所述m个第二时间单元的起始发送时间早,也可以理解为n个第一时间单元中的主第一时间单元的起始发送时间比所述m个第二时间单元中的主第二时间单元的起始发送时间早,其中主第一时间单元可以是在所有第一时间单元中承载重要信息的第一时间单元,或承载PUCCH的第一时间单元,或承载PRACH的第一时间单元,或被基站配置为重要小区对应的第一时间单元。主第二时间单元可以是在所有第二时间单元中承载重要信息的第二时间单元,或承载PUCCH的第二时间单元,或承载PRACH的第二时间单元,或被基站配置为重要小区对应的第二时间单元。
由于UE是按照第一信道优先级在所述m个第二信道中选中k个,因此所述k个第二信道为m个第二信道按照第一信道优先级降序排序的前k个信道。示例性的,若所述第一功率为10dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的信道需要的发射功率为4dBm。那么UE就将所述第一功率分配给了一个PRACH和一个携带SR的第二信道,则k=2。
其中,所述第一信道优先级按照优先级等级的降序顺序依次为:
物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS;
或,所述第一信道优先级按照优先级等级的降序顺序依次为:PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS;
或,所述第一信道优先级按照发送时间的降序顺序:
最先发送的信道A,在信道A之后发送的信道B。
进一步地,所述UE按照所述第一信道优先级将剩余功率分配给所述n个第一信道中的至少一个;所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值。
则,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
需要说明的是,由于UE是根据所述第一信道优先级进行分配,因此所述UE可以将所述剩余功率全部分配给第一信道,也可以将所述剩余功率分配给部分第一信道,在此不作限定。示例性的:若剩余功率为5dBm,第一信道A的优先级最高,第一信道B次之,第一信道A需要3dBm功率,第二信道B需要2dBm功率,则就是将剩余功率分给了2个第一信道,所述L个信道还包括2个第一信道,即第一信道A和第一信道B。
第二、当所述最大上行传输时间差大于或大于等于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE则根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道;所述第一功率值与所述第二功率值之和小于所述UE的最大发射功率;
则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
其中,所述UE将第一功率值给所述m个第二信道中的k个第二信道,将所述第二功率值给所述n个第一信道中的z个第一信道。
需要说明的是,所述编号为i的第一时间单元早于所述编号为j的第二时间单元可理解为:可以理解为所述n个第一时间单元的起始发送时间均比所述m个第二时间单元的起始发送时间早,也可以理解为n个第一时间单元中的主第一时间单元的起始发送时间比所述m个第二时间单元中的主第二时间单元的起始发送时间早,其中 主第一时间单元和主第二时间单元的定义与之前的相同,所以不再赘述。
需要说明的是,由于UE是按照第一信道优先级在所述m个第二信道中选中k个,因此所述k个第二信道为m个第二信道按照第一信道优先级降序排序的前k个信道。同理,所述z个第一信道为n个第一信道按照第一信道优先级降序排序的前z个信道。示例性的,若所述第一功率值为10dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的第二信道需要的发射功率为4dBm。那么UE就将所述第一功率值分配给了一个PRACH和一个携带SR的第二信道,则k=2。若所述第二功率值为8dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的第一信道需要的发射功率为4dBm,携带信道状态信息CSI的第一信道需要的发射功率为4dBm,所述第二功率值先为PRACH分配功率,再为携带SR的第一信道,因为第二功率值中剩余的2dBm功率不满足携带SR的第一信道需要的发射功率,所以携带SR的第一信道只能用2dBm发射,最后因为再没有剩余功率给携带CSI的第一信道,所以携带CSI的第一信道不能发送。那么UE就将所述第二功率值分配给了一个PRACH和一个携带SR的第一信道,则z=2。
进一步地,所述UE按照所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个;所述剩余功率为所述UE的最大发射功率与所述第一功率值与第二功率值之和的差值;
则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
第三、当所述最大上行传输时间差小于或小于等于第二预设值,所述UE根据第二信道优先级将所述UE的最大发射功率分配给所述m个第二信道中的k个第二信道;或当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发 送时间在所述编号为i的第一时间单元的起始发送时间之前,所述UE根据第二信道优先级将所述UE的最大发射功率分配给所述m个第二信道中的k个第二信道。
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;其中,根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。需要说明的是,这里是优先为第二信道分配功率,若UE的发射功率有剩余则再为第一信道分配功率。当为第二信道分配功率时,采用第一信道优先级准则,即由第一信道优先级由高到低的为第二信道分配功率,直到UE的发射功率都被分配完或所有第二信道都被分配完功率。当UE分配完m个第二信道后,仍有发射功率,那么UE将剩余的发射功率按照第一信道优先级分配给n个第一信道中的z个第一信道。
需要说明的是,当所述最大上行传输时间差小于等于小于或小于等于第二预设值时,由于第二预设值可以是一个很小的数值,如35.21us或55.21us,因此此时可认为所述n个第一时间单元的起始发送时间和所述m个第二时间单元的起始发送时间相差很小,所以UE在减少很小处理时间的情况下,可以同时为n个第一信道和m个第二信道分配功率。在本发明中认为短TTI的第二信道更为重要,所以所述UE优先为所述m个第二信道中的k个第二信道分配发射功率。示例的,可以是图1所示的slot0+1ms的场景,在n个编号为n+4的子帧的起始发送时间与m个在编号为m+4的时隙所述m个第二信道的起始发送时间的最大上行传输时间差小于或小于等于第二预设值。当所述最大上行传输时间差大于或大于等于第三预设值、且所述编号为j的第二时间单元早于所述编号为i的第一时间单元,此时所述m个第二信道时间单元的起始发送发射时间比所述n个第一时间单元信道的起始发送时间发射的时间早。虽然第一时间单元信道和第二时间单元信道的传输时间差很大,但是短TTI对应的第二时间单元在前面,对于一个能支持短TTI的UE来说,这里可认 为UE的处理时间足够并且本发明中认为短TTI的第二信道更为重要,因此优先为第二信道分配功率。
需要说明的是,所述第一功率值具体包括:所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第二小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;示例性的,预先定义的参数可以为发射功率比例r1,所述UE根据所述预先定义的参数,确定保留的功率值等于r1*当前的UE允许的最大发射功率值,示例性的,预先定义的参数可以为功率值,所述UE确定保留的功率值等于固定功率值。或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。示例的,保留功率信息可以为基站配置的发射功率比例r2,所述UE根据所述保留功率信息,确定保留的功率值等于r2*当前的UE允许的最大发射功率值,示例性的,保留功率信息可以基站配置的功率值,所述UE确定保留的功率值等于基站配置的功率值。
另外,编号为j-1的第二时间单元紧邻编号为j的第二时间单元,且编号为j-1的第二时间单元的起始发送时间在编号为j的时间单元的起始发送时间之前。所述第一功率值为UE上一次发送所述第二小区的信道所用的发射功率值,即第n次发送所述第二小区的信道所用的第一功率值与第n-1次发送所述第二小区的信道所用的发射功率值相同
所述第二功率值具体包括:所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第一小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。示例的,预先定义参数/保留功率信息可以是UE的最大发送功率的百分比,或者绝对功率数 值。
在本发明的优选实施例中,所述用户设备UE确定n个第一信道和m个第二信道之前,所述方法还包括:
UE向基站上报能力信息;所述能力信息用于表示所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
或,所述UE接收所述基站发送的能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
需要说明的是,UE优先为优先级最高的信道分配功率,然后UE优先为余下的优先级高的信道分配功率,再考虑为优先级低的信道分配功率。每个载波有自己的上行发送功率上限,即使每个载波的信道发送功率不超过每个载波的功率上限,多个信道的总的发送功率仍然可能超过UE的配置的最大发送功率。这时,UE可以优先为优先级高的信道分配功率,再考虑为优先级低的信道分配功率,如果UE给优先级高的信道分配功率不够时,那么优先级低的信道就没有发送功率。而对于相同优先级的信道或者不区分信道的功率分配的优先级的情况,如果多个信道需要的发送功率导致超过UE的最大发送功率,就进行Power Scaling,就是功率压缩。
在本发明的优选实施例中,在步骤101确定的在至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠时,还必须存在至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠,才可以进行本发明实施例步骤102-104。
在本发明的优选实施例中,所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
本发明提供一种上行信道的发射方法,UE确定n个第一信道(长TTI对应的上行信道)和m个第二信道(短TTI对应的上行信 道),根据所述n个第一信道和所述m个第二信道之间的最大上行传输时间差为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,且第一信道对应的第一TTI短于第二信道对应的第二TTI。所述UE发送所述L个上行信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,UE在发射上行信道时已获知长TTI对应的上行信道的信息,并未获知短TTI对应的上行信道的信息,UE就会将发射功率全部分配给长TTI对应的上行信道,导致短TTI对应的上行信道分配不到功率,无法发送。本发明提供的方法,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例2:
本发明实施例提供一种上行信道的发射方法,执行主体为基站,如图4所示,所述方法包括以下步骤:
201、基站向UE发送第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第一TTI的保留功率信息和所述第二TTI的保留功率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在所述编号为i的第一时间单元与所述编号为j的第二时间单元在时间上存在重叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率,其中,所述L个上行信道至少包括m个第二信道中的k个第二信道,1≤k≤m。
具体实现中,所述L个上行信道还可以包括m个第二信道中的其余m-k个第二信道和所述n个第一信道。或者,所述L个上行信道还可以包括所述m个第二信道中的其余m-k个第二信道和所述n个第一信道中z个第一信道。或者,所述L个上行信道还可以包括 所述m个第二信道中的其余m-k个第二信道和所述n个第一信道。所述第一信道是在所述编号为i的第一时间单元上的第一小区对应的上行信道。
其中,所述第一信道是在编号为i的第一时间单元上的第一小区对应的上行信道,所述第一时间单元的持续时长为第一传输时间间隔TTI,所述第二信道是在编号为j的第二时间单元上的第二小区对应的上行信道,所述第二时间单元的持续时长为第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
需要说明的是,n个编号为i的第一时间单元上的第一信道可以理解为在每个编号为i的是第一时间单元上都存在一个第一信道,即等同于存在n个第一信道;m个编号为j的第二时间单元上的第二信道,可以理解为在每个编号为j的是第二时间单元上都存在一个第二信道,即等同于存在m个第二信道。
202、所述基站接收所述UE发送的所述L个上行信道。
需要说明的是,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。示例的,所述第一TTI可以是0.5ms,所述第二TTI可以是1SC-FDMA符号。
在本发明的优选实施例中,所述方法还包括:所述基站向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
或,接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
在本发明的优选实施例中,所述基站向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设值、第三预设值。
本发明提供一种上行信道的发射方法,UE确定n个第一信道(长TTI对应的上行信道)和m个第二信道(短TTI对应的上行信道),根据所述n个第一信道和所述m个第二信道之间的最大上行传输时间差为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,且第一信道对应的第一TTI短于第二信道对应的第二TTI。所述UE发送所述L个上行信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,UE在发射上行信道时已获知长TTI对应的上行信道的信息,并未获知短TTI对应的上行信道的信息,UE就会将发射功率全部分配给长TTI对应的上行信道,导致短TTI对应的上行信道分配不到功率,无法发送。本发明提供的方法,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例3:
本发明实施例提供一种上行信道的发射方法,如图5所示,所述方法包括以下步骤:
301、基站向UE发送能力指示信息。
其中,所述能力指示信息用于指示所述UE同时发送长TTI对应的信道和短TTI对应的信道。
为了实现更短的RTT和更短的数据传输时延,已经提出将TTI长度设置成0.5ms或更短的场景。那么UE有可能在一个cell(小区)上用0.5ms TTI传输短时延业务(如小包/语音),同时在该cell上用1ms TTI传输大数据量业务(如视频,下载)。因此,UE就可以同时支持长TTI(如:1ms TTI)和短TTI(如:0.5ms TTI),UE也就可 以同时发送长TTI对应的信道和短TTI对应的信道。
302、所述UE接收所述基站发送的能力指示信息。
303、所述UE确定使用编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息。
其中,所述第一时间单元的持续时长为第一传输时间间隔TTI,所述第二时间单元的持续时长为第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
另外,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。所述第一TTI可以是0.5ms,所述第二TTI可以是1SC-FDMA符号。
需要说明的是,n个编号为i的第一时间单元上的第一信道可以理解为在每个编号为i的是第一时间单元上都存在一个第一信道,即等同于存在n个第一信道;m个编号为j的第二时间单元上的第二信道,可以理解为在每个编号为j的是第二时间单元上都存在一个第二信道,即等同于存在m个第二信道。
304、所述UE确定所述n个编号为i的第一时间单元与m个编号为j的第二时间单元的最大上行传输时间差,并根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道。
其中,所述最大上行传输时间差为为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值。需要说明的是,起始发送 时间可以是第一时间单元或第二时间单元开始发送时刻,也可以是第一信道或第二信道开始发送的时刻。
当然,所述L个第二信道是所述UE按照信道的优先级在m+n(n个第一信道和m个第二信道)个信道中选中的,其中,短TTI对应的k个第二信道可能是承载重要业务的信道或对时延敏感的业务的信道,所以当L个上行信道中包含k个第二信道,这样就可以保证上行信道中承载重要业务的信道或对时延敏感的信道承载的业务被基站正常接收,避免UE将发射功率全部分配给了第一信道,导致第二信道没有分配到发射功率而无法被发射,以致影响第二信道承载的数据业务。
在本发明的具体实施例中,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括K个第二信道,1≤k≤m,具体包括以下三种情况:
第一、当所述最大上行传输时间差大于或大于等于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,所述第一功率值小于所述UE的最大发射功率。
其中,所述第一信道优先级按照优先级等级的降序顺序依次为:
物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS;
或,所述第一信道优先级按照优先级等级的降序顺序依次为:所述PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、SRS。
进一步地,所述UE按照所述第一信道优先级将剩余功率分配给所述n个第一信道中的至少一个;所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值。
则,所述L个信道还包括在所述n个第一信道中选中的至少一 个第一信道。
第二、当所述最大上行传输时间差大于或大于等于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE则根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道;所述第一功率值与所述第二功率值之和小于所述UE的最大发射功率;
则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
需要说明的是,所述编号为i的第一时间单元早于所述编号为j的第二时间单元可理解为:可以理解为所述n个第一时间单元的起始发送时间均比所述m个第二时间单元的起始发送时间早,也可以理解为n个第一时间单元中的主第一时间单元的起始发送时间比所述m个第二时间单元中的主第二时间单元的起始发送时间早,其中主第一时间单元和主第二时间单元的定义与之前的相同,所以不再赘述。
进一步地,所述UE按照所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个;所述剩余功率为所述UE的最大发射功率与所述第一功率值与第二功率值之和的差值;
则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
第三、当所述最大上行传输时间差小于或小于等于第二预设值,所述UE根据第二信道优先级将所述UE的最大发射功率分配给所述m个第二信道中的k个第二信道;或当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,所述UE根据第二信道优先级将所述UE的最大发射功率分配给所述m个 第二信道中的k个第二信道。
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;且根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
另外,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,还可以包括:当所述最大上行传输时间差小于或小于等于第二预设值,或当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元早于所述编号为j的第一时间单元,所述UE根据第三信道优先级将所述UE的最大发射功率分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道。
则,所述L个信道还包括所述z个第一信道。
此时,UE是为所述m个第二信道和n个第一信道共m+n个信道按照优先级降序顺序的前k+z个信道分配功率,那么k可能为0,或者z可能为0。
其中,所述第三信道优先级按照优先级等级的降序顺序依次为:所述第一信道中的PRACH信道和所述第二信道中除SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
需要说明的是,所述第一功率值具体包括:所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第二小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值,示例性的,预先定义的参数可以为发射功率 比例r1,所述UE根据所述预先定义的参数,确定保留的功率值等于r1*当前的UE允许的最大发射功率值,示例性的,预先定义的参数可以为功率值,所述UE确定保留的功率值等于固定功率值;或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值,示例性的,保留功率信息可以为基站配置的发射功率比例r2,所述UE根据所述保留功率信息,确定保留的功率值为r2与当前的UE允许的最大发射功率值的乘积,示例性的,保留功率信息可以基站配置的功率值,所述UE确定保留的功率值等于基站配置的功率值。
需要说明的是,编号为j-1的第二时间单元紧邻编号为j的第二时间单元,且编号为j-1的第二时间单元的起始发送时间在编号为j的时间单元的起始发送时间之前。所述第一功率值为UE上一次发送所述第二小区的信道所用的发射功率值,即第n次发送所述第二小区所用的发射功率值与第n-1次发送所述第二小区所用的发射功率值相同。
所述第二功率值具体包括:所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第一小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
在本实施例中,需要说明的是,UE优先为优先级最高的信道分配功率,然后UE优先为余下的优先级高的信道分配功率,再考虑为优先级低的信道分配功率。每个载波有自己的上行发送功率上限,即使每个载波的信道发送功率不超过每个载波的功率上限,多个信道的总的发送功率仍然可能超过UE的配置的最大发送功率。这时,UE可以优先为优先级高的信道分配功率,再考虑为优先级低的信道分配功率,如果UE给优先级高的信道分配功率不够时,那么优先级低的信道就没有发送功率。而对于相同优先级的信道或者 不区分信道的功率分配的优先级的情况,如果多个信道需要的发送功率导致超过UE的最大发送功率,就进行Power Scaling,就是功率压缩。
305、所述UE发送所述L个上行信道。
由于步骤304为所述L个上行信道分配了发射功率,进而就可以保证所述k个第二信道被发射,避免所述k个第二信道上携带的数据不能被发射,影响所述UE与基站之间的业务通信。
在本发明的优选实施例中,在步骤303确定的在至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠时,还必须存在至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠,才可以进行本发明实施例步骤304、305。
本发明提供一种上行信道的发射方法,UE确定n个第一信道(长TTI对应的上行信道)和m个第二信道(短TTI对应的上行信道),根据所述n个第一信道和所述m个第二信道之间的最大上行传输时间差为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,且第一信道对应的第一TTI短于第二信道对应的第二TTI。所述UE发送所述L个上行信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,UE在发射上行信道时已获知长TTI对应的上行信道的信息,并未获知短TTI对应的上行信道的信息,UE就会将发射功率全部分配给长TTI对应的上行信道,导致短TTI对应的上行信道分配不到功率,无法发送。本发明提供的方法,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例4:
本发明实施例提供一种UE,如图6所示,所述UE包括:确定 单元401、功率分配单元402以及发送单元403。
确定单元401,确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述第二信道发送的信息分别对应不同小区。
示例的,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。
所述确定单元401还用于,确定所述n个编号为i的第一时间单元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值。
功率分配单元402,用于根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道。
这样,UE就可以在同时支持长TTI和短TTI时,必须为短TTI对应的上行信道分配发射功率,进而使得短TTI对应的上行信道能够被发送,短TTI对应的上行信道承载的业务被基站正常接收。另外,当k小于L时,即所述UE还可以为第一信道(长TTI对应的上行信道)分配了发射功率,UE就可以同时发送长TTI(即本发明 所述的第一TTI)对应的上行信道和短TTI(即本发明所述的第二TTI)对应的上行信道分配功率,保证这些信道承载的业务被基站接收。
当然,所述L个上行信道是所述UE按照信道的优先级在m+n(n个第一信道和m个第二信道)个信道中选中的。其中,短TTI对应的k个第二信道可能是承载重要业务的信道或对时延敏感的业务的信道,所以当L个上行信道中包含k个第二信道,这样就可以保证上行信道中承载重要业务的信道或对时延敏感的信道承载的业务被基站正常接收。
发送单元403,用于发送所述L个上行信道。
需要说明的是,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
所述功率分配单元402具体用于,当所述最大上行传输时间差大于或大于等于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,其中,所述第一功率值小于或小于等于所述UE的最大发射功率,1≤k≤m。
所述功率分配单元402还用于,根据所述第一信道优先级将剩余功率分配给所述n个第一信道的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值。
需要说明的是,由于UE是根据所述第一信道优先级进行分配,因此所述UE可以将所述剩余功率全部分配给第一信道,也可以将所述剩余功率分配给部分第一信道,在此不作限定。示例性的:若剩余功率为5dBm,第一信道A的优先级最高,第一信道B次之,第一信道A需要3dBm功率,第二信道B需要2dBm功率,则就是将剩余功率分给了2个第一信道,所述L个信道还包括2个第一信道,即第一信道A和第一信道B。
此时,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
所述功率分配单元402具体用于,当所述最大上行传输时间差大于或大于等于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道,其中所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率;其中1≤k≤m。
则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
需要说明的是,由于UE是按照第一信道优先级在所述m个第二信道中选中k个,因此所述k个第二信道为m个第二信道按照第一信道优先级降序排序的前k个信道。同理,所述z个第一信道为n个第一信道按照第一信道优先级降序排序的前z个信道。示例性的,若所述第一功率值为10dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的第二信道需要的发射功率为4dBm。那么UE就将所述第一功率值分配给了一个PRACH和一个携带SR的第二信道,则k=2。若所述第二功率值为8dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的第一信道需要的发射功率为4dBm,携带信道状态信息CSI的第一信道需要的发射功率为4dBm,所述第二功率值先为PRACH分配功率,再为携带SR的第一信道,因为第二功率值中剩余的2dBm功率不满足携带SR的第一信道需要的发射功率,所以携带SR的第一信道只能用2dBm发射,最后因为再没有剩余功率给携带CSI的第一信道,所以携带CSI的第一信道不能发送。那么UE就将所述第二功率值分配给了一个PRACH和一个携带SR的第一信道,则z=2。
所述功率分配单元402还用于,根据所述第一信道优先级将剩 余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第二功率值之和的差值;
则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
所述功率分配单元402具体用于,当所述最大上行传输时间差小于或等于第二预设值,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
或当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道,1≤k≤m。
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;且根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
所述功率分配单元402具体用于,当所述最大上行传输时间差小于或小于等于第二预设值,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;
或当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道。
在此需要说明的是,UE是为所述m个第二信道和n个第一信道共m+n个信道按照优先级降序顺序的前k+z个信道分配功率,那么k可能为0,或者z可能为0。
则,所述L个信道还包括所述z个第一信道。
所述第一功率值具体包括:所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第二小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。
所述第二功率值具体包括:所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第一小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
所述第一信道优先级按照优先级等级的降序顺序依次为:物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS。
或,所述第一信道优先级按照优先级等级的降序顺序依次为:所述PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、所述SRS。
所述第三信道优先级按照优先级等级的降序顺序依次为:所述第一信道中的PRACH信道和所述第二信道中除信道探测参考信号SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
所述发送单元还用于,上报能力信息,所述能力信息用于表示 所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
或,还包括接收单元,所述接收单元用于,接收能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
本发明提供一种UE,UE确定n个第一信道(长TTI对应的上行信道)和m个第二信道(短TTI对应的上行信道),根据所述n个第一信道和所述m个第二信道之间的最大上行传输时间差为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,其中1≤k≤m,且第一信道对应的第一TTI短于第二信道对应的第二TTI。所述UE发送所述L个上行信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,现有技术就无法为短TTI对应的上行信道分配发射功率,导致短TTI对应的上行信道分配不到功率,无法发送,本发明提供的UE,在UE同时支持长TTI和短TTI时,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例5:
本发明实施例提供一种基站,如图7所示,所述基站包括:发送单元501、接收单元502。
发送单元501,用于向用户设备UE发送第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第一TTI的保留功率信息和和所述第二TTI的保留功 率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率。
示例的,其中,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。
接收单元502,用于接收所述UE发送的所述L个上行信道。
需要说明的是,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,1≤k≤m,所述第二信道是在编号为j的第二时间单元上的第二小区对应的上行信道,所述第一时间单元的持续时长为所述第一TTI,第二时间单元的持续时长为所述第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
所述L个信道还包括n个第一信道中的z个第一信道;所述第一信道是在所述编号为i的第一时间单元上的第一小区对应的上行信道。
所述发送单元501还用于,向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
或,所述接收单元502还用于接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
所述发送单元501还用于,向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设 值、第三预设值。
本发明提供的基站,向UE发送所述第一传输时间间隔TTI的保留功率信息和/或第二TTI的保留功率信息,以便UE为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,现有技术就无法为短TTI对应的上行信道分配发射功率,导致短TTI对应的上行信道分配不到功率,无法发送,本发明提供的方法、UE及基站,在UE同时支持长TTI和短TTI时,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例6:
本发明实施例提供一种UE,如图8所示,所述UE可以包括处理器601、系统总线602和通信接口603和存储器604。
其中,处理器601可以为中央处理器(英文:centralprocessing unit,缩写:CPU)。
存储器604,用于存储程序代码,并将该程序代码传输给该处理器601,处理器601根据程序代码执行下述指令。存储器604可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器604也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)。存储器604还可以包括上述种类的存储器的组合。处理器601、存储器604和通信接口603之间通过系统总线602连接并完成相互间的通信。
通信接口603可以由光收发器,电收发器,无线收发器或其任意组合实现。例如,光收发器可以是小封装可插拔(英文:small  form-factor pluggable transceiver,缩写:SFP)收发器(英文:transceiver),增强小封装可插拔(英文:enhanced small form-factor pluggable,缩写:SFP+)收发器或10吉比特小封装可插拔(英文:10Gigabit small form-factor pluggable,缩写:XFP)收发器。电收发器可以是以太网(英文:Ethernet)网络接口控制器(英文:network interface controller,缩写:NIC)。无线收发器可以是无线网络接口控制器(英文:wireless network interface controller,缩写:WNIC)。UE60可以有多个通信接口603。
处理器601,用于确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述第二信道发送的信息分别对应不同小区。
需要说明的是,n个编号为i的第一时间单元上的第一信道可以理解为在每个编号为i的是第一时间单元上都存在一个第一信道,即等同于存在n个第一信道;m个编号为j的第二时间单元上的第二信道,可以理解为在每个编号为j的是第二时间单元上都存在一个第二信道,即等同于存在m个第二信道。
示例的,其中,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。
所述处理器601还用于,确定所述n个编号为i的第一时间单 元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值。需要说明的是,起始发送时间可以是第一时间单元或第二时间单元开始发送时刻,也可以是第一信道或第二信道开始发送的时刻。
处理器601还用于,根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道。
处理器601用于通过通信接口603发送所述L个上行信道。
需要说明的是,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
这样,UE就可以在同时支持长TTI和短TTI时,必须为短TTI对应的上行信道分配发射功率,进而使得短TTI对应的上行信道能够被发送,短TTI对应的上行信道承载的业务被基站正常接收。另外,当k小于L时,即所述UE还可以为第一信道(长TTI对应的上行信道)分配了发射功率,UE就可以同时发送长TTI(即本发明所述的第一TTI)对应的上行信道和短TTI(即本发明所述的第二TTI)对应的上行信道分配功率,保证这些信道承载的业务被基站接收。
当然,所述L个上行信道是所述UE按照信道的优先级在m+n(n个第一信道和m个第二信道)个信道中选中的。其中,短TTI对应的k个第二信道可能是承载重要业务的信道或对时延敏感的业务的信道,所以当L个上行信道中包含k个第二信道,这样就可以保证上行信道中承载重要业务的信道或对时延敏感的信道承载的业务被基站正常接收。
所述处理器601具体用于,当所述最大上行传输时间差大于或大于等于第一预设值且所述编号为i的第一时间单元的起始发送时 间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,其中,所述第一功率值小于或小于等于所述UE的最大发射功率,1≤k≤m。
所述处理器601还用于,根据所述第一信道优先级将剩余功率分配给所述n个第一信道的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值。
需要说明的是,由于UE是根据所述第一信道优先级进行分配,因此所述UE可以将所述剩余功率全部分配给第一信道,也可以将所述剩余功率分配给部分第一信道,在此不作限定。示例性的:若剩余功率为5dBm,第一信道A的优先级最高,第一信道B次之,第一信道A需要3dBm功率,第二信道B需要2dBm功率,则就是将剩余功率分给了2个第一信道,所述L个信道还包括2个第一信道,即第一信道A和第一信道B。
此时,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
所述处理器601具体用于,当所述最大上行传输时间差大于或大于等于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道,其中所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率,1≤k≤m。
则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
需要说明的是,由于UE是按照第一信道优先级在所述m个第二信道中选中k个,因此所述k个第二信道为m个第二信道按照第一信道优先级降序排序的前k个信道。同理,所述z个第一信道为n个第一信道按照第一信道优先级降序排序的前z个信道。示例性的, 若所述第一功率值为10dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的第二信道需要的发射功率为4dBm。那么UE就将所述第一功率值分配给了一个PRACH和一个携带SR的第二信道,则k=2。若所述第二功率值为8dBm,优先级最高的一个PRACH需要的发射功率为6dBm,优先级较低的一个携带SR的第一信道需要的发射功率为4dBm,携带信道状态信息CSI的第一信道需要的发射功率为4dBm,所述第二功率值先为PRACH分配功率,再为携带SR的第一信道,因为第二功率值中剩余的2dBm功率不满足携带SR的第一信道需要的发射功率,所以携带SR的第一信道只能用2dBm发射,最后因为再没有剩余功率给携带CSI的第一信道,所以携带CSI的第一信道不能发送。那么UE就将所述第二功率值分配给了一个PRACH和一个携带SR的第一信道,则z=2。
所述处理器601还用于,根据所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第二功率值之和的差值;
则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
所述处理器601具体用于,当所述最大上行传输时间差小于或等于第二预设值,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;或当所述最大上行传输时间差大于或大于等于第三预设值且且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道,1≤k≤m。
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;且根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
所述处理器601具体用于,当所述最大上行传输时间差小于或小于等于第二预设值,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;或当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道,则所述L个信道还包括所述z个第一信道。
在此需要说明的是,UE是为所述m个第二信道和n个第一信道共m+n个信道按照优先级降序顺序的前k+z个信道分配功率,那么k可能为0,或者z可能为0。
所述第一功率值具体包括:所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第二小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。
所述第二功率值具体包括:所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;或,所述UE上一次发送所述第一小区的信道所用的发射功率值;或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
所述第一信道优先级按照优先级等级的降序顺序依次为:物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS。
或,所述第一信道优先级按照优先级等级的降序顺序依次为: 所述PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、所述SRS。
所述第三信道优先级按照优先级等级的降序顺序依次为:所述第一信道中的PRACH信道和所述第二信道中除信道探测参考信号SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
所述发送单元还用于,上报能力信息,所述能力信息用于表示所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
或,还包括接收单元,所述接收单元用于,接收能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
本发明提供一种UE,UE确定n个第一信道(长TTI对应的上行信道)和m个第二信道(短TTI对应的上行信道),根据所述n个第一信道和所述m个第二信道之间的最大上行传输时间差为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,其中1≤k≤m,且第一信道对应的第一TTI短于第二信道对应的第二TTI。所述UE发送所述L个上行信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,现有技术就无法为短TTI对应的 上行信道分配发射功率,导致短TTI对应的上行信道分配不到功率,无法发送,本发明提供的UE,在UE同时支持长TTI和短TTI时,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例7:
本发明实施例提供一种基站70,如图9所示,所述基站70可以包括处理器701、系统总线702和通信接口703和存储器704。
其中,处理器701可以为中央处理器(英文:central processing unit,缩写:CPU)。
存储器704,用于存储程序代码,并将该程序代码传输给该处理器701,处理器701根据程序代码执行下述指令。存储器704可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器704也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)。存储器704还可以包括上述种类的存储器的组合。处理器701、存储器704和通信接口703之间通过系统总线702连接并完成相互间的通信。
通信接口703可以由光收发器,电收发器,无线收发器或其任意组合实现。例如,光收发器可以是小封装可插拔(英文:small form-factor pluggable transceiver,缩写:SFP)收发器(英文:transceiver),增强小封装可插拔(英文:enhanced small form-factor pluggable,缩写:SFP+)收发器或10吉比特小封装可插拔(英文:10Gigabit small form-factor pluggable,缩写:XFP)收发器。电收发器可以是以太网(英文:Ethernet)网络接口控制器(英文:network interface controller,缩写:NIC)。无线收发器可以是无线网络接口控制器(英文:wireless network interface controller,缩写:WNIC)。 基站70可以有多个通信接口703。
处理器701用于,通过通信接口703向用户设备UE发送所述第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第一TTI的保留功率信息和和所述第二TTI的保留功率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率。
示例的,其中,第一时间单元可以是一个长度为1ms的子帧,可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号;第二时间单元可以是一个长度为0.5ms的时隙,或者可以是一个或几个SC-FDMA符号,或者可以是一个或几个OFDMA符号,或者可以是比一个SC-FDMA符号或一个OFDMA符号更短的时间单元。所述第一小区、第二小区可以对应一个基站,也可以对应多个基站。示例的,所述第一TTI可以是1ms,所述第二TTI可以是0.5ms。
处理器701用于,通过通信接口703接收所述UE发送的所述L个上行信道。
需要说明的是,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,1≤k≤m,所述第二信道是在编号为j的第二时间单元上的第二小区对应的上行信道,所述第一时间单元的持续时长为所述第一TTI,第二时间单元的持续时长为所述第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
所述L个信道还包括n个第一信道中的z个第一信道;所述第一信道是在所述编号为i的第一时间单元上的第一小区对应的上行信道。
所述处理器701还用于,通过通信接口703向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同 时接收长TTI对应的信道和短TTI对应的信道。
或,处理器701用于,通过通信接口703接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
处理器701用于,通过通信接口703向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设值、第三预设值。
本发明提供的基站,向UE发送所述第一传输时间间隔TTI的保留功率信息和/或第二TTI的保留功率信息,以便UE为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道。由于目前并未出现UE同时支持长TTI和短TTI的场景,现有技术只能保证UE为长TTI对应的上行信道对应的上行信道分配发射功率。一旦UE同时支持长TTI和短TTI,现有技术就无法为短TTI对应的上行信道分配发射功率,导致短TTI对应的上行信道分配不到功率,无法发送,本发明提供的方法、UE及基站,在UE同时支持长TTI和短TTI时,能够保证为短TTI对应的上行信道分配到发射功率,进而保证短TTI对应的上行信道能够被发射,使得短TTI对应的上行信道承载的业务被基站正常接收。
实施例8:
应理解,本发明实施例中的编号i、j和表示数量的符号m、n等仅仅是一个示例性描述,在实际实现本发明各个实施例的过程中,可以不用为所述第一信道、第二信道或其他客体标示编号。
一个实施例中,用户设备UE确定第一信道集合发送信息和使用第二信道集合发送信息,所述第一信道集合包含至少一个第一信道;所述第二信道集合包含至少一个第二信道,所述第一信道集合中的第一信道的持续时间为第一TTI,第二信道集合中的第二信道持续时间为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述第一信道和至少一个所述第二信道存在交叠,所述第一信道集合和所述第二信道集合发送的信息分别对应不同小区;
所述UE确定所述第一信道集合和所述第二信道集合的最大传输时间差,所述最大传输时间差为每个所述第一信道集合中的第一信道的起始发送时间与每个所述第二信道集合的起始发送时间之间的差值中最大的时间差值。
所述UE根据所述最大传输时间差,为L个信道分配发射功率,所述L个信道至少包括所述第二信道集合中的k个,其中所述UE根据所述最大传输时间差,为L个信道分配发射功率,所述L个上行信道至少包括所述第二信道集合中的k个。一个实施例中,至少一个所述第一信道与至少一个所述第二信道存在交叠。
针对本实施例中的所述分配过程,具体再给出如下示例。
示例1:当所述最大传输时间差大于第一预设值且所述所有第一信道集合中的第一信道的起始发送时间在所述所有第二信道集合中的第二信道的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述第二信道集合中的k个;
或,当所述最大上行传输时间差大于等于所述第一预设值且所述所有第一信道集合中的第一信道的起始发送时间在所述所有第二信道集合中的第二信道的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述第二信道集合中的k个,
一个实施例中,所述第一功率值小于或小于等于所述UE的最大发射功率。又一个实施例中,所述UE根据所述第一信道优先级将剩余功率分配给所述第一信道集合中的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值;所述L个信道还包括在所述第一信道集合中选中的至少一个第一信道。
一个实施例中,所述UE根据所述第一信道优先级将剩余功率分配给所述第一信道集合的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值;一个实施例中,所述L个信道还包括在所述第一信道集合中选中的至少一个第一信道。
示例2:当所述最大上行传输时间差大于第一预设值,且所述所有第一信道集合中的第一信道的起始发送时间在所述所有第二信 道集合中的第二信道的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述第二信道集合中的k个,根据所述第一信道优先级将第二功率值分配所述第一信道集合中的z个;
或,当所述最大上行传输时间差大于等于所述第一预设值,且所述所有第一信道集合中的第一信道的起始发送时间在所述所有第二信道集合中的第二信道的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述第二信道集合中的k个,根据所述第一信道优先级将第二功率值分配所述第一信道集合中的z个。
一个实施例中,所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率;又一个实施例中,所述L个信道还包括所述第一信道集合中的z个。
一个实施例中,所述UE根据所述第一信道优先级将剩余功率分配给所述第二信道集合中除所述k个第二信道外的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第二功率值之和的差值;所述L个信道还包括在所述第二信道中k个第二信道外的第二信道中选中的至少一个第二信道。
示例3:当所述最大上行传输时间差小于或等于第二预设值,所述UE根据第二信道优先级,将所述UE的最大发射功率先分配给所述第二信道集合中的k个第二信道;
或,当所述最大上行传输时间差大于或大于等于第三预设值且且所述所有第二信道集合中的第二信道的起始发送时间在所述所有第一信道集合中的第一信道的起始发送时间之前,所述UE根据第二信道优先级,将所述UE的最大发射功率先分配给所述第二信道集合中的k个第二信道;
其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;其中,根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
示例4:当所述最大上行传输时间差小于或小于等于第二预设 值,所述UE根据第三信道优先级,将所述UE的最大发射功率先分配给所述第二信道集合中的k个和所述第一信道集合中的z个;
或,当所述最大上行传输时间差大于或大于等于第三预设值且所述所有第二信道集合中的第二信道的起始发送时间在所述所有第一信道集合中的第一信道的起始发送时间之前,所述UE根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;
则,所述L个信道还包括所述z个第一信道。
上述4个示例具体列出了UE分配功率的方法。应理解,所述第一功率值、第二功率值、第一信道优先级、第三信道优先级等具体内容可以参考本发明其它实施例,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种上行信道的发射方法,其特征在于,包括:
    用户设备UE确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述第二信道发送的信息分别对应不同小区;
    所述UE确定所述n个编号为i的第一时间单元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值;
    所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个,其中1≤k≤m;
    所述UE发送所述L个上行信道。
  2. 根据权利要求1所述的方法,其特征在于,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
  3. 根据权利要求2所述的方法,其特征在于,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
    当所述最大上行传输时间差大于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道;
    或,当所述最大上行传输时间差大于等于所述第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间 单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,其中,所述第一功率值小于或小于等于所述UE的最大发射功率。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:所述UE根据所述第一信道优先级将剩余功率分配给所述n个第一信道的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值;
    则,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
  5. 根据权利要求2所述的方法,其特征在于,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
    当所述最大上行传输时间差大于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道;
    或,当所述最大上行传输时间差大于等于所述第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道,其中所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率;
    则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述UE根据所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第 二功率值之和的差值;
    则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
  7. 根据权利要求2所述的方法,其特征在于,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
    当所述最大上行传输时间差小于或等于第二预设值,所述UE根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
    或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,所述UE根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
    其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;其中,根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
  8. 根据权利要求2所述的方法,其特征在于,所述UE根据所述最大上行传输时间差,为L个上行信道分配发射功率,具体包括:
    当所述最大上行传输时间差小于或小于等于第二预设值,所述UE根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道,其中,1≤z≤n;
    或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,所述UE根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;
    则,所述L个信道还包括所述z个第一信道。
  9. 根据权利要求3-6任一项所述的方法,其特征在于,所述第 一功率值具体包括:
    所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;
    或,所述UE上一次发送所述第二小区的信道所用的发射功率值;
    或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;
    或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。
  10. 根据权利要求5或6所述的方法,其特征在于,所述第二功率值具体包括:
    所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;
    或,所述UE上一次发送所述第一小区的信道所用的发射功率值;
    或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;
    或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
  11. 根据权利要求3-7任一项所述的方法,其特征在于,所述第一信道优先级按照优先级等级的降序顺序依次为:
    物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS;
    或,所述第一信道优先级按照优先级等级的降序顺序依次为:物理随机接入信道PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、信道探测参考信号SRS。
  12. 根据权利要求8所述的方法,其特征在于,所述第三信道优先级按照优先级等级的降序顺序依次为:
    所述第一信道中的PRACH信道和所述第二信道中除信道探测参考信号SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR 的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
    或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
  13. 根据权利要求2-12任一项所述的方法,其特征在于,所述UE确定n个第一信道和m个第二信道之前,所述方法还包括:
    所述UE上报能力信息,所述能力信息用于表示所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
    或,所述UE接收能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
  14. 根据权利要求2-13任一项所述的方法,其特征在于,所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
  15. 一种上行信道的发射方法,其特征在于,
    基站向用户设备UE发送第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元存在交叠时,根据所述第一TTI的保留功率信息和所述第二TTI的保留功率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在所述编号为i的第一时间单元与所述编号为j的第二时间单元存在交叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率;
    所述基站接收所述UE发送的所述L个上行信道;
    其中,所述L个上行信道至少包括m个第二信道中的k个第二信道;1≤k≤m,所述第二信道是在编号为j的第二时间单元上的上行 信道,所述第一时间单元的持续时长为所述第一TTI,第二时间单元的持续时长为所述第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
  16. 根据权利要求15所述的方法,其特征在于,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
  17. 根据权利要求16所述的方法,其特征在于,所述L个信道还包括n个第一信道中的z个第一信道;所述第一信道是在所述编号为i的第一时间单元上的上行信道;所述第一信道和所述第二信道发送的信息分别对应不同小区。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述方法还包括:
    所述基站向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
    或,接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
  19. 根据权利要求15-17任一项所述的方法,其特征在于,所述方法还包括:
    所述基站向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设值、第三预设值。
  20. 一种用户设备UE,其特征在于,包括:
    确定单元,用于确定使用n个编号为i的第一时间单元上的第一信道发送信息和使用m个编号为j的第二时间单元上的第二信道发送信息,其中,所述编号为i的第一时间单元的长度为第一传输时间间隔TTI,所述编号为j的第二时间单元的长度为第二TTI,所述第二TTI短于所述第一TTI,至少一个所述编号为i的第一时间单元与至少一个所述编号为j的第二时间单元存在交叠,所述第一信道和所述 第二信道发送的信息分别对应不同小区;
    所述确定单元还用于,确定所述n个编号为i的第一时间单元与所述m个编号为j的第二时间单元的最大上行传输时间差,所述最大上行传输时间差为所述编号为n个编号为i的第一时间单元的n个起始发送时间与所述m个编号为j的第二时间单元的m个起始发送时间之间的差值中的最大值;
    功率功率分配单元,用于根据所述最大上行传输时间差,为L个上行信道分配发射功率,所述L个上行信道至少包括所述m个第二信道中的k个第二信道,其中1≤k≤m;
    发送单元,用于发送所述L个上行信道。
  21. 根据权利要求20所述的UE,其特征在于,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
  22. 根据权利要求21所述的UE,其特征在于,所述功率分配单元具体用于,当所述最大上行传输时间差大于第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,所述UE根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道;
    或,当所述最大上行传输时间差大于等于所述第一预设值且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,其中,所述第一功率值小于或小于等于所述UE的最大发射功率。
  23. 根据权利要求22所述的UE,其特征在于,所述功率分配单元还用于,根据所述第一信道优先级将剩余功率分配给所述n个第一信道的至少一个,其中所述剩余功率为所述UE的最大发射功率与所述第一功率值的差值;
    则,所述L个信道还包括在所述n个第一信道中选中的至少一个第一信道。
  24. 根据权利要求21所述的UE,其特征在于,所述功率分配单元具体用于,当所述最大上行传输时间差大于第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道;
    或,当所述最大上行传输时间差大于等于所述第一预设值,且所述编号为i的第一时间单元的起始发送时间在所述编号为j的第二时间单元的起始发送时间之前,根据第一信道优先级将第一功率值分配给所述m个第二信道中的k个第二信道,根据所述第一信道优先级将第二功率值分配所述n个第一信道中的z个第一信道,其中所述第一功率值与所述第二功率值之和小于或小于等于所述UE的最大发射功率;
    则,所述L个信道还包括所述n个第一信道中的z个第一信道,其中,1≤z≤n。
  25. 根据权利要求24所述的UE,其特征在于,所述功率分配单元还用于,根据所述第一信道优先级将剩余功率分配给所述m个第二信道中除所述k个第二信道外的m-k个第二信道中的至少一个,其中,所述剩余功率为所述UE的最大发射功率与所述第一功率值与所述第二功率值之和的差值;
    则,所述L个信道还包括在所述m个第二信道中除所述k个第二信道外的m-k个第二信道中选中的至少一个第二信道。
  26. 根据权利要求21所述的UE,其特征在于,所述功率分配单元具体用于,当所述最大上行传输时间差小于或等于第二预设值,根据第二信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道;
    或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第二信道优先级,将所述UE的最 大发射功率先分配给所述m个第二信道中的k个第二信道;
    其中,所述第二信道优先级按照优先级等级的降序顺序依次为:所述第二信道、所述第一信道;且根据第一信道优先级为所述第一信道分配功率,根据所述第一信道优先级为所述第二信道分配功率。
  27. 根据权利要求21所述的UE,其特征在于,所述功率分配单元具体用于,当所述最大上行传输时间差小于或小于等于第二预设值,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道;
    或,当所述最大上行传输时间差大于或大于等于第三预设值且所述编号为j的第二时间单元的起始发送时间在所述编号为i的第一时间单元的起始发送时间之前,根据第三信道优先级,将所述UE的最大发射功率先分配给所述m个第二信道中的k个第二信道和所述n个第一信道中的z个第一信道,其中,1≤z≤n;
    则,所述L个信道还包括所述z个第一信道。
  28. 根据权利要求22-25任一项所述的UE,其特征在于,所述第一功率值具体包括:
    所述UE发射编号为j-1的第二时间单元上的第二小区对应的上行信道所用的发射功率值;
    或,所述UE上一次发送所述第二小区的信道所用的发射功率值;
    或,所述UE根据预先定义参数,为所述第二TTI对应的上行信道保留的功率值;
    或,所述UE根据接收到的所述第二TTI的保留功率信息,为所述第二TTI对应的上行信道保留的功率值。
  29. 根据权利要求24或25所述的UE,其特征在于,所述第二功率值具体包括:
    所述UE发射编号为i-1的第一时间单元上的第一小区对应的上行信道所用的发射功率值;
    或,所述UE上一次发送所述第一小区的信道所用的发射功率值;
    或,所述UE根据预先定义参数,为所述第一TTI对应的上行信道保留的功率值;
    或,所述UE根据接收到的所述第一TTI的保留功率信息,为所述第一TTI对应的上行信道保留的功率值。
  30. 根据权利要求22-26任一项所述的UE,其特征在于,所述第一信道优先级按照优先级等级的降序顺序依次为:
    物理随机接入信道PRACH、携带混合自动重传请求确认应答HARQ-ACK或调度请求SR的信道、携带信道状态信息CSI的信道、只携带数据的信道、信道探测参考信号SRS;
    或,所述第一信道优先级按照优先级等级的降序顺序依次为:物理随机接入信道PRACH、物理上行控制信道PUCCH、物理上行共享信道PUSCH、信道探测参考信号SRS。
  31. 根据权利要求27所述的UE,其特征在于,所述第三信道优先级按照优先级等级的降序顺序依次为:
    所述第一信道中的PRACH信道和所述第二信道中除信道探测参考信号SRS外的第二信道、所述第一信道中携带HARQ-ACK或SR的第一信道、所述第一信道中携带CSI的第一信道、只携带数据的第一信道、所述第二信道中的SRS、所述第一信道中的SRS;
    或,第一信道中的PRACH和除去第二信道中的SRS和只携带数据的第二信道、HARQ-ACK或SR的第一信道、只携带数据的第二信道、只携带数据的第一信道、第二信道中的SRS、第一信道中的SRS。
  32. 根据权利要求21-31任一项所述的UE,其特征在于,
    所述发送单元还用于,上报能力信息,所述能力信息用于表示所述UE可支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
    或,还包括接收单元,所述接收单元用于,接收能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
  33. 根据权利要求21-32任一项所述的UE,其特征在于,所述第一预设值、第二预设值、第三预设值为所述UE预先存储的参数;或所述UE根据接收到的功控指示信息,确定的所述第一预设值、所述第二预设值、所述第三预设值。
  34. 一种基站,其特征在于,包括:
    发送单元,用于向用户设备UE发送第一传输时间间隔TTI的保留功率信息和第二TTI的保留功率信息,以便所述UE在编号为i的第一时间单元与编号为j的第二时间单元在时间上存在重叠时,根据所述第一TTI的保留功率信息和所述第二TTI的保留功率信息为L个上行信道分配发射功率;或者向所述UE发送第二TTI的保留功率信息,以便所述UE在所述编号为i的第一时间单元与所述编号为j的第二时间单元在时间上存在重叠时,根据所述第二TTI的保留功率信息为所述L个上行信道分配发射功率;
    接收单元,用于接收所述UE发送的所述L个上行信道;
    其中,所述L个上行信道至少包括m个第二信道中的k个第二信道,1≤k≤m,所述第二信道编号为j的第二时间单元上的上行信道,所述第一时间单元的持续时长为所述第一TTI,第二时间单元的持续时长为所述第二TTI,所述第二TTI的持续时长短于所述第一TTI的持续时长。
  35. 根据权利要求34所述的基站,其特征在于,至少一个所述编号为i的第一时间单元上的第一信道与至少一个所述编号为j的第二时间单元上的第二信道存在交叠。
  36. 根据权利要求35所述的基站,其特征在于,所述L个信道还包括n个第一信道中的z个第一信道;所述第一信道是在所述编号为i的第一时间单元上的第一小区对应的上行信道。
  37. 根据权利要求34-36任一项所述的基站,其特征在于,
    所述发送单元还用于,向所述UE发送能力指示信息,所述能力指示信息用于指示所述UE同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道;
    或,所述接收单元还用于接收所述UE上报的能力信息;所述能力信息用于指示所述UE支持同时发送和/或同时接收长TTI对应的信道和短TTI对应的信道。
  38. 根据权利要求34-36任一项所述的基站,其特征在于,所述发送单元还用于,向所述UE发送功控指示信息,所述功控指示信息用于指示所述UE确定所述第一预设值、第二预设值、第三预设值。
PCT/CN2015/088290 2015-08-27 2015-08-27 一种上行信道的发射方法、ue及基站 WO2017031762A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2015/088290 WO2017031762A1 (zh) 2015-08-27 2015-08-27 一种上行信道的发射方法、ue及基站
EP15902033.8A EP3324686B1 (en) 2015-08-27 2015-08-27 Uplink channel transmitting method, ue and base station
CN201580071567.0A CN107113744B (zh) 2015-08-27 2015-08-27 一种上行信道的发射方法、ue及基站
CN202010102487.XA CN111246556B (zh) 2015-08-27 2015-08-27 一种上行信道的发射方法、ue及基站
EP19190691.6A EP3641413B1 (en) 2015-08-27 2015-08-27 Uplink channel transmission method, ue, and base station
US15/899,287 US10531481B2 (en) 2015-08-27 2018-02-19 Uplink channel transmission method, UE, and base station
US16/714,645 US20200120699A1 (en) 2015-08-27 2019-12-13 Uplink channel transmission method, ue, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088290 WO2017031762A1 (zh) 2015-08-27 2015-08-27 一种上行信道的发射方法、ue及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/899,287 Continuation US10531481B2 (en) 2015-08-27 2018-02-19 Uplink channel transmission method, UE, and base station

Publications (1)

Publication Number Publication Date
WO2017031762A1 true WO2017031762A1 (zh) 2017-03-02

Family

ID=58099542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088290 WO2017031762A1 (zh) 2015-08-27 2015-08-27 一种上行信道的发射方法、ue及基站

Country Status (4)

Country Link
US (2) US10531481B2 (zh)
EP (2) EP3641413B1 (zh)
CN (2) CN111246556B (zh)
WO (1) WO2017031762A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541065A (zh) * 2017-03-03 2018-09-14 上海诺基亚贝尔股份有限公司 用于发送和接收数据的方法、网络设备和终端设备
CN110637486A (zh) * 2017-05-18 2019-12-31 华为技术有限公司 确定功率控制调整状态变量的方法及装置
TWI816918B (zh) * 2018-10-31 2023-10-01 美商高通公司 用於分散式多使用者傳輸的相對時序漂移校正

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128998B2 (en) * 2015-10-06 2018-11-13 Lg Electronics Inc. Method and device for performing channel estimation in wireless communication system
CN107154837B (zh) * 2016-03-03 2018-03-23 上海朗帛通信技术有限公司 一种降低无线通信中的延迟的方法和装置
US11310809B2 (en) * 2016-05-04 2022-04-19 Qualcomm Incorporated Techniques for using a portion of a transmission time interval to transmit a transmission that is shorter than a duration of the transmission time interval
CN107690181B (zh) * 2016-08-05 2019-09-17 电信科学技术研究院 一种短传输时间间隔传输的功率控制方法及装置
WO2018027540A1 (en) * 2016-08-09 2018-02-15 Panasonic Intellectual Property Corporation Of America Terminal and communication method
WO2018030069A1 (ja) * 2016-08-10 2018-02-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
CN107734622B (zh) * 2016-08-12 2020-12-11 中兴通讯股份有限公司 上行功率控制方法及装置
US11147062B2 (en) * 2016-10-14 2021-10-12 Comcast Cable Communications, Llc Dual connectivity power control for wireless network and wireless device
US10397915B2 (en) * 2016-11-09 2019-08-27 Qualcomm Incorporated Latency reduction in shared or unlicensed spectrum
CN108347787B (zh) * 2017-01-25 2019-07-05 电信科学技术研究院 一种调度请求sr传输方法及相关设备
US10652885B2 (en) * 2017-05-02 2020-05-12 Qualcomm Incorporated Channel state information reporting for systems with multiple transmission time intervals
US11743840B2 (en) * 2017-05-26 2023-08-29 Qualcomm Incorporated Power limit determination for carrier aggregation with shortened transmission time intervals
US10750509B2 (en) * 2017-08-10 2020-08-18 Qualcomm Incorporated Power reservation and dropping rules for transmission time intervals
CN110831051B (zh) * 2018-08-07 2021-02-23 维沃移动通信有限公司 Pusch和sr处理方法及设备
US11064442B1 (en) * 2020-01-21 2021-07-13 Sprint Communications Company L.P. Uplink channel power management in dual connectivity devices
US11291019B2 (en) * 2020-08-25 2022-03-29 Moxa Inc. Method of handling channel allocation for multiple network nodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740407A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 上行调度方法及系统、终端及基站
CN104620629A (zh) * 2012-09-12 2015-05-13 华为技术有限公司 用于自适应发送时间间隔(tti)结构的系统和方法
WO2015096821A1 (en) * 2013-12-27 2015-07-02 Huawei Technologies Co., Ltd. System and Method for Adaptive TTI Coexistence with LTE

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233431B2 (en) * 2004-08-13 2012-07-31 Nokia Corporation WCDMA uplink HARQ operation during the reconfiguration of the TTI length
CN101237260B (zh) * 2007-02-02 2011-11-30 中兴通讯股份有限公司 一种上行功率控制装置与方法
US8811335B2 (en) * 2007-04-20 2014-08-19 Qualcomm Incorporated Method and apparatus for dynamic adjustment of uplink transmission time
CN101400072B (zh) * 2007-09-30 2012-12-12 电信科学技术研究院 提高覆盖能力的传输方法、系统及装置
CN101977099B (zh) * 2010-10-29 2016-06-01 中兴通讯股份有限公司 一种上行信道的发送方法、基站和用户设备
CN102469567B (zh) * 2010-11-05 2015-02-25 鼎桥通信技术有限公司 增强专用信道物理上行信道的功率授权的修正方法
GB2502014A (en) * 2011-11-07 2013-11-13 Renesas Mobile Corp Reselecting a different transmission time interval resource in a wireless network
CN102655486B (zh) * 2012-05-10 2014-12-31 华为技术有限公司 一种导频信号发射方法、信道估计方法、装置及系统
CN109495231B (zh) * 2013-04-25 2023-05-09 华为技术有限公司 传输信号的方法和设备
CN104812044B (zh) * 2014-01-23 2019-06-21 华为技术有限公司 一种发射控制方法、用户设备及基站
CN110856242B (zh) * 2014-01-29 2023-07-25 交互数字专利控股公司 无线通信中的上行链路传输
US9503888B2 (en) * 2014-04-17 2016-11-22 Qualcomm Incorporated Enhanced timer handling mechanism
US11452121B2 (en) * 2014-05-19 2022-09-20 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
US9629094B2 (en) * 2014-08-05 2017-04-18 Qualcomm Incorporated Techniques for prioritizing transmissions in multiple connectivity wireless communications
US20160128045A1 (en) * 2014-10-31 2016-05-05 Qualcomm Incorporated Reliable transmission of information on control channels
US9900843B2 (en) * 2015-01-12 2018-02-20 Qualcomm Incorporated Uplink power control techniques for ultra low latency in LTE devices
US9749970B2 (en) * 2015-02-27 2017-08-29 Qualcomm Incorporated Power control and power headroom for component carrier
CN107852313B (zh) * 2015-07-24 2021-08-03 Lg 电子株式会社 下行链路控制信息接收方法和用户设备以及下行链路控制信息发送方法和基站
JPWO2017033490A1 (ja) * 2015-08-21 2018-06-07 株式会社Nttドコモ ユーザ装置、基地局、通信方法及び指示方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740407A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 上行调度方法及系统、终端及基站
CN104620629A (zh) * 2012-09-12 2015-05-13 华为技术有限公司 用于自适应发送时间间隔(tti)结构的系统和方法
WO2015096821A1 (en) * 2013-12-27 2015-07-02 Huawei Technologies Co., Ltd. System and Method for Adaptive TTI Coexistence with LTE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324686A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541065A (zh) * 2017-03-03 2018-09-14 上海诺基亚贝尔股份有限公司 用于发送和接收数据的方法、网络设备和终端设备
CN108541065B (zh) * 2017-03-03 2021-09-10 上海诺基亚贝尔股份有限公司 用于发送和接收数据的方法、网络设备和终端设备
CN110637486A (zh) * 2017-05-18 2019-12-31 华为技术有限公司 确定功率控制调整状态变量的方法及装置
TWI816918B (zh) * 2018-10-31 2023-10-01 美商高通公司 用於分散式多使用者傳輸的相對時序漂移校正

Also Published As

Publication number Publication date
EP3324686B1 (en) 2019-10-09
EP3641413B1 (en) 2021-08-18
US20180176938A1 (en) 2018-06-21
CN111246556B (zh) 2021-10-26
US10531481B2 (en) 2020-01-07
CN107113744A (zh) 2017-08-29
US20200120699A1 (en) 2020-04-16
EP3324686A4 (en) 2018-08-01
CN111246556A (zh) 2020-06-05
EP3641413A1 (en) 2020-04-22
CN107113744B (zh) 2020-02-21
EP3324686A1 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
WO2017031762A1 (zh) 一种上行信道的发射方法、ue及基站
US11082993B2 (en) Terminal device, integrated circuit, and wireless communication method
JP6468658B2 (ja) 端末装置、集積回路、および、無線通信方法
WO2021022907A1 (zh) 数据传输方法、装置及存储介质
JP6516242B2 (ja) 端末装置、集積回路、および、無線通信方法
CN102264098B (zh) 一种缓冲区状态报告处理的方法和装置
CN108270516B (zh) 一种数据传输方法、装置及系统
EP3089535A1 (en) D2d resource allocation method, and data transmission method and device
KR102412963B1 (ko) 업링크 통신들을 위한 공동 자원 풀들
KR20220165726A (ko) Nr v2x에서 자원을 예약하는 방법 및 장치
US20220022224A1 (en) Communications method and apparatus
KR20220037492A (ko) 무선 통신 시스템에서 사이드링크 송신을 위한 방법 및 장치
WO2014048171A1 (zh) 集群业务处理方法、装置、基站及用户设备
KR20230049104A (ko) Nr v2x에서 자원 재선택을 수행하는 방법 및 장치
WO2021128318A1 (zh) 上行mac ce传输的方法和装置
EP4042625B1 (en) Methods and apparatuses for handling configured and dynamic downlink transmissions in a wireless communication network
CN114503501B (zh) 用于处理无线通信网络中已配置的和动态的下行链路传输的方法和装置
EP4218352B1 (en) Systems and methods for mac ce based inter-device coordination of sidelink transmissions
JP2012257036A (ja) 無線リソース割当装置、基地局装置、無線リソース割当方法、及び無線リソース割当プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015902033

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE