WO2017030518A1 - Heat engine - Google Patents

Heat engine Download PDF

Info

Publication number
WO2017030518A1
WO2017030518A1 PCT/UA2016/000013 UA2016000013W WO2017030518A1 WO 2017030518 A1 WO2017030518 A1 WO 2017030518A1 UA 2016000013 W UA2016000013 W UA 2016000013W WO 2017030518 A1 WO2017030518 A1 WO 2017030518A1
Authority
WO
WIPO (PCT)
Prior art keywords
tanks
heat engine
heat
reservoirs
working fluid
Prior art date
Application number
PCT/UA2016/000013
Other languages
French (fr)
Russian (ru)
Inventor
Андрий Игоровыч БРУСОВ
Original Assignee
Андрий Игоровыч БРУСОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрий Игоровыч БРУСОВ filed Critical Андрий Игоровыч БРУСОВ
Publication of WO2017030518A1 publication Critical patent/WO2017030518A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines

Definitions

  • the utility model relates to volume expansion engines and can be used to produce mechanical or other types of energy in the energy sector, transport and other industries.
  • Known heat engine [RU 2116488, IPC F02G1 / 04, publ. 07.27.1998], containing two closed containers with valves, in which are placed constant portions of a liquid working fluid. Closed containers are interconnected by a power take-off source and alternately receive either heat with the valve closed, or cold with the valve open. A change in the sources of heat and cold occurs at the beginning of the valve opening in a hot closed container.
  • F01B19 / 02. publ. 09/17/2001] containing a container for the working fluid, a heater of the working fluid, a converter of potential energy of the working fluid into useful work connected to the tank.
  • the capacity for the working fluid is made in the form of a metal casing-heat exchanger, inside of which a working fluid heater is installed in the form of a tubular heat exchanger.
  • the disadvantages of this design include the impossibility of heating the liquid to a temperature above critical, at which the process of converting the liquid into gas begins. This is due to the fact that the closed metal casing does not withstand the very high pressure that occurs as a result of expansion of the liquid during heating. Therefore, the liquid is heated to a low temperature and safer, and under such conditions its potential energy is low, and, accordingly, the efficiency of such an engine is low.
  • the objective of the utility model is to improve the liquid heat engine by using such a combination of structural elements and materials, as a result of which the highest possible efficiency is achieved in combination with high consumer properties.
  • a liquid heat engine consisting of two tanks located in areas with different ambient temperatures, containing a working fluid, the boiling point of which is lower than the ambient temperature in which the first tank is located and higher than the ambient temperature in which the second tank is located, in addition, at least one fitting with different inlet and outlet diameters and at least one return valve is placed between the tanks, in addition, at least one turbine is located in the tanks, the rotor which kinematically connected with at least one device located outside the tanks and designed to solve a specific problem, additionally between the tanks placed a heat-insulating layer.
  • the author also conducted experiments that found the feasibility of using ethers and freons as a working fluid due to their low boiling points, mainly from 20 ° C to 60 ° C.
  • the first environment is the hand of a person.
  • the working fluid Due to the fact that the boiling point of the working fluid is lower than the ambient temperature in which the first tank is located, and above the ambient temperature in which the second tank is located, the working fluid turns into a vapor state during boiling and is forced into the second tank, where it acts on the blades turbines are first in a vapor state and then in a condensed state.
  • V is the volume of gas
  • v is the number of moles of gas
  • R is the universal gas constant
  • T is the gas temperature in Kelvin.
  • the cycle of the inventive engine consists of four phases and is divided into two transition phases: heating, expansion, transition to a cold source, cooling, compression and transition to a heat source.
  • heating, expansion, transition to a cold source in the transition from a warm source to a cold source, expansion and contraction of the gas in the tanks occurs.
  • the pressure changes, due to which you can get useful work.
  • fittings with input and output diameters of a large difference can further increase the useful work aimed at the turbine blades, increasing the speed and inertia of their rotation.
  • the main advantages of the Brusov heat engine are: -
  • the Brusov heat engine can operate from almost any temperature difference: for example, between different layers of water in the ocean, from the sun, from a nuclear or isotope heater, a coal or wood stove, etc .;
  • the design of the engine is very simple, it does not require additional systems, such as, for example, a gas distribution mechanism. It starts independently and does not require a starter. Its characteristics allow you to get rid of the gearbox;
  • the Brusov engine does not have an exhaust, which means its noise level is much less than in piston internal combustion engines. It has an extremely low level of vibration, in itself does not have any parts or processes that can contribute to environmental pollution. He does not spend the working fluid, that is, the system is closed.
  • the environmental friendliness of the engine is primarily due to the environmental friendliness of the heat source. It is also worth noting that it is easier to ensure complete fuel combustion in an external combustion engine than in an internal combustion engine. In an internal combustion engine, the completeness of fuel combustion depends on the correspondence of the chemical composition of the fuel to the physical parameters of the internal combustion engine.
  • the liquid heat engine operates as follows: When the tanks (1) and (2) are placed in the media (3) and (4), the working fluid (5) in the first tank (1) starts to boil and goes into a gaseous state, while moving up acts on the blades of the turbines (8), then through the nozzle (6) with increasing pressure passes to the second tank (2), where the action rotates the blades of the turbines (8a). Due to the difference in ambient temperatures (4) and the working fluid (5), it condenses, while due to the attractive force, condensate falls on the turbine blades (86). Turbine shafts are kinematically connected and transmit rotational motion to device (9).
  • the special design of the claimed device ensures the achievement of a technical result, which consists in obtaining higher efficiency at minimum cost, in addition, the device does not require the use of non-renewable energy sources.
  • the inventive device has high reliability, convenience, long service life, efficiency and operational safety.

Abstract

A heat engine consisting of two reservoirs which are arranged in areas with a different environmental temperature, said reservoirs containing a working fluid, the boiling point of which is lower than the temperature of the environment in which the first reservoir is located and higher than the temperature of the environment in which the second reservoir is located; furthermore, at least one connecting pipe with a different inlet and outlet diameter and at least one rebound valve is located between the reservoirs; furthermore, at least one turbine is located in the reservoirs, the rotor of which turbine is kinematically connected to at least one device which is arranged outside the reservoirs and is intended for solving a specific task; and a heat-insulating layer is additionally located between the reservoirs.

Description

Тепловой двигатель  Heat engine
Полезная модель относится к двигателям объемного расширения и может быть использована для получения механической или других видов энергии в энергетике, на транспорте и других отраслях промышленности.  The utility model relates to volume expansion engines and can be used to produce mechanical or other types of energy in the energy sector, transport and other industries.
Известны различные конструкции тепловых двигателей, для работы которых требуется искусственный нагрев. Есть, тепловые двигатели, которые не требуют искусственного нагрева, но от таких двигателей достаточно сложно получить необходимую мощность.  Various designs of heat engines are known for which artificial heating is required. There are heat engines that do not require artificial heating, but it is quite difficult to get the required power from such engines.
Известно о двигателе внешнего сгорания Стирлинга [см. "Большая Советская Энциклопедия", издание третье, в 1976 г., Том 24 I, стр. 520], в котором рабочим телом является гелий или водород (под давлением 100-140 кгс/см2), которое находится в замкнутом пространстве и во время работы не заменяется, а только меняет объем при нагревании и охлаждении. Недостатком этого двигателя есть сложность его конструкции, ненадежность уплотнений, а также высокая стоимость двигателя. Кроме того, такой двигатель нельзя использовать без основательной переработки его конструкции для получения механической энергии из тепловых источников с низкой температурой, например из природных источников. It is known about the Stirling external combustion engine [see "Great Soviet Encyclopedia", third edition, in 1976, Volume 24 I, p. 520], in which the working fluid is helium or hydrogen (under a pressure of 100-140 kgf / cm 2 ), which is in a confined space and in the operating time is not replaced, but only changes the volume during heating and cooling. The disadvantage of this engine is the complexity of its design, unreliable seals, as well as the high cost of the engine. In addition, such an engine cannot be used without thorough processing of its design to obtain mechanical energy from heat sources with low temperature, for example, from natural sources.
Известный тепловой двигатель [RU 2116488, МПК F02G1/04, опубл. 27.07.1998], содержащий две замкнутые емкости с клапанами, в которых размещены постоянные порции жидкого рабочего тела. Замкнутые емкости соединены между собой источником отбора мощности и поочередно получают то тепло при закрытом клапане, то холод - при открытом. Изменение источников тепла и холода происходит в начале открытия клапана в горячей замкнутой емкости. Known heat engine [RU 2116488, IPC F02G1 / 04, publ. 07.27.1998], containing two closed containers with valves, in which are placed constant portions of a liquid working fluid. Closed containers are interconnected by a power take-off source and alternately receive either heat with the valve closed, or cold with the valve open. A change in the sources of heat and cold occurs at the beginning of the valve opening in a hot closed container.
Недостатком данного двигателя является достаточно большие потери тепла, обусловливающие его низкий КПД.  The disadvantage of this engine is a sufficiently large heat loss, resulting in its low efficiency.
Известный жидкостный тепловой двигатель [UA 41562А, МПК Known liquid heat engine [UA 41562A, IPC
F01B19/02. опубл. 17.09.2001], содержащий емкость для рабочей жидкости, подогреватель рабочей жидкости, подключенный к емкости преобразователь потенциальной энергии рабочей жидкости в полезную работу. Емкость для рабочей жидкости выполнена в виде металлического корпуса- теплообменника, внутри которого установлен подогреватель рабочей жидкости в виде трубчатого теплообменника. F01B19 / 02. publ. 09/17/2001], containing a container for the working fluid, a heater of the working fluid, a converter of potential energy of the working fluid into useful work connected to the tank. The capacity for the working fluid is made in the form of a metal casing-heat exchanger, inside of which a working fluid heater is installed in the form of a tubular heat exchanger.
К недостаткам такой конструкции относится невозможность нагрева жидкости до температуры выше критической, при которой начинается процесс преобразования жидкости в газ. Это обусловлено тем, что замкнутый металлический корпус не выдерживает очень высокого давления, которое возникает в результате расширения жидкости при нагревании. Поэтому жидкость нагревается до низкой температуры и более безопасной, а при таких условиях ее потенциальная энергия невысока, и, соответственно, КПД такого двигателя низкий.  The disadvantages of this design include the impossibility of heating the liquid to a temperature above critical, at which the process of converting the liquid into gas begins. This is due to the fact that the closed metal casing does not withstand the very high pressure that occurs as a result of expansion of the liquid during heating. Therefore, the liquid is heated to a low temperature and safer, and under such conditions its potential energy is low, and, accordingly, the efficiency of such an engine is low.
Задачей полезной модели является совершенствование жидкостного теплового двигателя путем использования такой совокупности конструкционных элементов и материалов, в результате чего достигается максимально высокий коэффициент полезного действия в сочетании с высокими потребительскими свойствами.  The objective of the utility model is to improve the liquid heat engine by using such a combination of structural elements and materials, as a result of which the highest possible efficiency is achieved in combination with high consumer properties.
Поставленная задача решается тем, что согласно полезной модели, жидкостный тепловой двигатель, состоящий из двух резервуаров, расположенных в зонах с различной температурой окружающей среды, содержащие рабочее тело, температура кипения которого ниже, чем температура окружающей среды, в которой размещен первый резервуар и выше температуры окружающей среды, в которой размещен второй резервуар, кроме того, между резервуарами размещен по меньшей мере один штуцер с различными входным и выходным диаметрами и по меньшей мере один клапан обратного хода, кроме того, в резервуарах размещена по меньшей мере одна турбина, ротор которой кинематически соединен по меньшей мере с одним устройством, расположенным за пределами резервуаров и предназначенным для решения специфической задачи, дополнительно между резервуарами размещен теплоизоляционный слой. The problem is solved in that according to a utility model, a liquid heat engine, consisting of two tanks located in areas with different ambient temperatures, containing a working fluid, the boiling point of which is lower than the ambient temperature in which the first tank is located and higher than the ambient temperature in which the second tank is located, in addition, at least one fitting with different inlet and outlet diameters and at least one return valve is placed between the tanks, in addition, at least one turbine is located in the tanks, the rotor which kinematically connected with at least one device located outside the tanks and designed to solve a specific problem, additionally between the tanks placed a heat-insulating layer.
Автором полезной модели доказана целесообразность использования именно двигателей и генераторов различных типов и различного назначения как устройство, кинематически связанное с валами турбин, кроме того, было доказано, что использование генераторов именно на постоянных неодимовых магнитах является целесообразным благодаря наличию эффекта магнитной левитации, который минимизирует потери от трения, а также при подключении нагрузки, например АКБ, использование такого типа генератора значительно уменьшает торможение при возникновении против ЭДС.  The author of the utility model proved the feasibility of using precisely engines and generators of various types and for various purposes as a device kinematically connected with turbine shafts, in addition, it was proved that the use of generators with permanent neodymium magnets is advisable due to the presence of magnetic levitation, which minimizes losses from friction, as well as when connecting a load, such as a battery, the use of this type of generator significantly reduces braking when and against EMF.
Также автором были проведены эксперименты, которые обнаружили целесообразность использования простых эфиров и фреонов в качестве рабочего тела благодаря их низким температурам кипения, преимущественно от 20° С до 60° С. Например, первая окружающая среда - рука человека.  The author also conducted experiments that found the feasibility of using ethers and freons as a working fluid due to their low boiling points, mainly from 20 ° C to 60 ° C. For example, the first environment is the hand of a person.
Благодаря тому, что температура кипения рабочего тела ниже температуры окружающей среды, в которой размещен первый резервуар, и выше температуры окружающей среды, в которой размещен второй резервуар, рабочее тело в процессе кипения превращается в парообразное состояние и вытесняется во второй резервуар, где действует на лопасти турбин сначала в парообразном, а затем в конденсированном состоянии.  Due to the fact that the boiling point of the working fluid is lower than the ambient temperature in which the first tank is located, and above the ambient temperature in which the second tank is located, the working fluid turns into a vapor state during boiling and is forced into the second tank, where it acts on the blades turbines are first in a vapor state and then in a condensed state.
С термодинамики известно, что давление, температура и объем идеального газа взаимосвязаны и следуют закону PV = vRT, где:  It is known from thermodynamics that the pressure, temperature and volume of an ideal gas are interconnected and follow the law PV = vRT, where:
Р - давление газа; V - объем газа; P is the gas pressure; V is the volume of gas;
v - количество молей газа;  v is the number of moles of gas;
R - универсальная газовая константа;  R is the universal gas constant;
Т - температура газа в Кельвинах.  T is the gas temperature in Kelvin.
Это означает, что при нагревании газа его объем увеличивается, а при охлаждении - уменьшается. Это свойство газов и лежит в основе работы заявляемого устройства, но с поправкой на использование жидкостей, имеющих низкую температуру кипения.  This means that when a gas is heated, its volume increases, and when cooled, it decreases. This property of gases lies at the heart of the operation of the inventive device, but adjusted for the use of liquids having a low boiling point.
Цикл заявляемого двигателя состоит из четырех фаз и разделен двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от теплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в резервуарах. При этом изменяется давление, за счет чего можно получить полезную работу. Кроме того, использование штуцеров с входными и выходными диаметрами большой разницы позволяют дополнительно увеличить полезную работу, направленную на лопасти турбин, увеличивая скорость и инерционность их вращения.  The cycle of the inventive engine consists of four phases and is divided into two transition phases: heating, expansion, transition to a cold source, cooling, compression and transition to a heat source. Thus, in the transition from a warm source to a cold source, expansion and contraction of the gas in the tanks occurs. In this case, the pressure changes, due to which you can get useful work. In addition, the use of fittings with input and output diameters of a large difference can further increase the useful work aimed at the turbine blades, increasing the speed and inertia of their rotation.
Основными преимуществами теплового двигателя Брусова являются: - тепловой двигатель Брусова может работать от почти любого перепада температур: например, между различными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. п.;  The main advantages of the Brusov heat engine are: - The Brusov heat engine can operate from almost any temperature difference: for example, between different layers of water in the ocean, from the sun, from a nuclear or isotope heater, a coal or wood stove, etc .;
- простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как, например, газораспределительный механизм. Он запускается самостоятельно и не требует стартера. Его характеристики позволяют избавиться коробки передач;  - simplicity of design - the design of the engine is very simple, it does not require additional systems, such as, for example, a gas distribution mechanism. It starts independently and does not require a starter. Its characteristics allow you to get rid of the gearbox;
- увеличенный ресурс - простота конструкции, отсутствие многих «нежных» узлов позволяет двигателю обеспечить небывалый для других двигателей запас работоспособности в десятки и сотни тысяч часов непрерывной работы; - increased resource - simplicity of design, the absence of many "tender" nodes allows the engine to provide unprecedented for others engines operating capacity of tens and hundreds of thousands of hours of continuous operation;
- экономичность - для утилизации некоторых видов тепловой энергии, особенно при небольшой разнице температур, часто оказываются наиболее эффективными видами двигателей. Например, в случае преобразования в электричество солнечной энергии такой двигатель может иногда дать больший КПД (до 31,25%), чем тепловые машины на пару;  - profitability - for the recovery of certain types of thermal energy, especially with a small temperature difference, they often turn out to be the most efficient types of engines. For example, in the case of conversion of solar energy into electricity, such an engine can sometimes give greater efficiency (up to 31.25%) than steam engines;
- экологичность - двигатель Брусова не имеет выхлопа, а значит уровень его шума гораздо меньше, чем в поршневых двигателях внутреннего сгорания. Имеет предельно низкий уровень вибраций, сам по себе не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не тратит рабочее тело, то есть система замкнута. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания. В ДВС полнота сгорания топлива зависит от соответствия химического состава топлива физическим параметрам ДВС.  - environmental friendliness - the Brusov engine does not have an exhaust, which means its noise level is much less than in piston internal combustion engines. It has an extremely low level of vibration, in itself does not have any parts or processes that can contribute to environmental pollution. He does not spend the working fluid, that is, the system is closed. The environmental friendliness of the engine is primarily due to the environmental friendliness of the heat source. It is also worth noting that it is easier to ensure complete fuel combustion in an external combustion engine than in an internal combustion engine. In an internal combustion engine, the completeness of fuel combustion depends on the correspondence of the chemical composition of the fuel to the physical parameters of the internal combustion engine.
Суть полезной модели объясняется следующим чертежам:  The essence of the utility model is explained by the following drawings:
где: 1 - первый резервуар, 2 - второй резервуар, 3 - среда 1, 4 - среда 2, 5 - рабочее тело, 6 - штуцер, 7 - клапан обратного хода, 8, 8а, 86 - турбины, 9 - устройства, кинематически связанные с валами турбин, 10 теплоизоляционный слой.  where: 1 - the first tank, 2 - the second tank, 3 - medium 1, 4 - medium 2, 5 - the working fluid, 6 - fitting, 7 - backpressure valve, 8, 8a, 86 - turbines, 9 - devices, kinematically associated with turbine shafts; 10 heat-insulating layer.
Жидкостный тепловой двигатель работает следующим образом: При размещении резервуаров (1) и (2) в средах (3) и (4) рабочее тело (5) в первом резервуаре (1) начинает кипеть и переходит в газообразное состояние, при этом при движении вверх действует на лопасти турбин (8), далее через штуцер (6) с повышением давления переходит во второй резервуар (2), где действие вращает лопасти турбин (8а). За счет разницы температур окружающей среды (4) и рабочего тела (5) оно конденсируется, при этом благодаря силе притяжения конденсат падает на лопасти турбин (86). Валы турбин кинематически соединены и передают вращательное движение на устройство (9). The liquid heat engine operates as follows: When the tanks (1) and (2) are placed in the media (3) and (4), the working fluid (5) in the first tank (1) starts to boil and goes into a gaseous state, while moving up acts on the blades of the turbines (8), then through the nozzle (6) with increasing pressure passes to the second tank (2), where the action rotates the blades of the turbines (8a). Due to the difference in ambient temperatures (4) and the working fluid (5), it condenses, while due to the attractive force, condensate falls on the turbine blades (86). Turbine shafts are kinematically connected and transmit rotational motion to device (9).
Таким образом, специальная конструкция заявляемого устройства обеспечивает достижение технического результата, заключающийся в получении более высокого КПД при минимальных затратах, кроме того, устройство не требует использования не возобновляемых источников энергии.  Thus, the special design of the claimed device ensures the achievement of a technical result, which consists in obtaining higher efficiency at minimum cost, in addition, the device does not require the use of non-renewable energy sources.
Заявляемое устройство имеет высокую надежность, удобство, длительный срок службы, экономичность и эксплуатационную безопасность.  The inventive device has high reliability, convenience, long service life, efficiency and operational safety.

Claims

ФОРМУЛА FORMULA
1. Тепловой двигатель, состоящий из двух резервуаров, расположенных в зонах с различной температурой окружающей среды, содержащие рабочее тело, температура кипения которого ниже, чем температура окружающей среды, в которой размещен первый резервуар, и выше температуры окружающей среды, в которой размещен второй резервуар, кроме того, между резервуарами размещен по меньшей мере один штуцер с различными входным и выходным диаметрами и по меньшей мере один клапан обратного хода, кроме того, в резервуарах размещена по меньшей мере одна турбина, ротор которой кинематически соединен с по меньшей мере одним устройством, расположенным за пределами резервуаров и предназначенным для решения специфической задачи, дополнительно между резервуарами размещен теплоизоляционный слой. 1. A heat engine, consisting of two tanks located in areas with different ambient temperatures, containing a working fluid, the boiling point of which is lower than the ambient temperature in which the first tank is located, and above the ambient temperature in which the second tank is located in addition, between the tanks there is at least one fitting with different inlet and outlet diameters and at least one check valve, in addition, at least one turbine is placed in the tanks a, the rotor of which is kinematically connected with at least one device located outside the tanks and designed to solve a specific problem, in addition, a heat-insulating layer is placed between the tanks.
2. Тепловой двигатель по п. 1, отличающийся тем, что в качестве устройства используют двигатели и/или генераторы.  2. The heat engine according to claim 1, characterized in that the device uses engines and / or generators.
3. Тепловой двигатель по п. 2, отличающийся тем, что используют генераторы на постоянных неодимовых магнитах.  3. The heat engine according to claim 2, characterized in that they use permanent neodymium magnet generators.
4. Тепловой двигатель по п. 1, отличающийся тем, что рабочим телом являются простые эфиры или фреоны с температурами кипения, примерно, до 60° С.  4. The heat engine according to claim 1, characterized in that the working fluid is ethers or freons with boiling points up to about 60 ° C.
PCT/UA2016/000013 2015-08-18 2016-02-02 Heat engine WO2017030518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAU201508173 2015-08-18
UAU201508173U UA103443U (en) 2015-08-18 2015-08-18 Brusov heat engine

Publications (1)

Publication Number Publication Date
WO2017030518A1 true WO2017030518A1 (en) 2017-02-23

Family

ID=55171891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2016/000013 WO2017030518A1 (en) 2015-08-18 2016-02-02 Heat engine

Country Status (2)

Country Link
UA (1) UA103443U (en)
WO (1) WO2017030518A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845628A (en) * 1972-09-20 1974-11-05 Ormot Turbines 1965 Ltd Heat transfer apparatus
US4471621A (en) * 1980-12-16 1984-09-18 Ormat Turbines, Ltd. Method and apparatus for draining liquid working fluid from turbine cannister of a closed cycle power plant
SU1765484A1 (en) * 1989-06-05 1992-09-30 Э.П.Коваленко Device for converting heat to mechanical work
RU2339845C1 (en) * 2007-07-16 2008-11-27 Игорь Джавад оглы Джавадов Space power generator
WO2012004738A1 (en) * 2010-07-06 2012-01-12 Fondazione Istituto Italiano Di Tecnologia Device for generating electric power from a source of air or other gas or fluid under pressure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845628A (en) * 1972-09-20 1974-11-05 Ormot Turbines 1965 Ltd Heat transfer apparatus
US4471621A (en) * 1980-12-16 1984-09-18 Ormat Turbines, Ltd. Method and apparatus for draining liquid working fluid from turbine cannister of a closed cycle power plant
SU1765484A1 (en) * 1989-06-05 1992-09-30 Э.П.Коваленко Device for converting heat to mechanical work
RU2339845C1 (en) * 2007-07-16 2008-11-27 Игорь Джавад оглы Джавадов Space power generator
WO2012004738A1 (en) * 2010-07-06 2012-01-12 Fondazione Istituto Italiano Di Tecnologia Device for generating electric power from a source of air or other gas or fluid under pressure

Also Published As

Publication number Publication date
UA103443U (en) 2015-12-10

Similar Documents

Publication Publication Date Title
Kang Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine
Pei et al. Construction and dynamic test of a small-scale organic rankine cycle
RU2660716C2 (en) Improved organic rankine cycle decompression heat engine
Peris et al. Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources
US20150135714A1 (en) Pressure power unit
Parvez et al. Thermodynamic performance assessment of solar-based combined power and absorption refrigeration cycle
KR20140015422A (en) Organic rankine cycle for concentrated solar power system
KR20140027945A (en) Organic rankine cycle for concentrated solar power system with saturated liquid storage and method
Gaia 30 years of organic rankine cycle development
Koroneos et al. Exergy analysis of geothermal electricity using the Kalina cycle
Alshammari et al. Development of an automated design and off-design radial turbine model for solar organic Rankine cycle coupled to a parabolic trough solar collector
Kaczmarczyk et al. The experimental investigation of the biomass-fired ORC system with a radial microturbine
Susanto et al. Turbine design for low heat organic rankine cycle power generation using renewable energy sources
WO2017030518A1 (en) Heat engine
CN102865112A (en) Back thermal cycle power generation, multi-level back thermal cycle power generation and poly-generation system
Lloyd A low temperature differential Stirling engine for power generation
Saifaoui et al. A study of organic working fluids of an organic Rankine cycle for solar concentrating power plant
WO2020107915A1 (en) Machine with costless consumable but capable of outputting energy
JP2013224648A (en) Buoyant rotating device
Martin et al. Design and manufacturing of organic Rankine cycle (ORC) system using R-134a as working fluid with solar collector as source energy
Hijriawan et al. Organic Rankine Cycle (ORC) system in renewable and sustainable energy development: A review of the utilization and current conditions for small-scale application
Cho et al. A Study on the Organic Rankine Cycle for the Fluctuating Heat Source
Sung et al. Development of a 200-kW organic Rankine cycle power system for low-grade waste heat recovery
WO2017082775A1 (en) Plant for generating electrical energy
Ihuoma et al. Optimal evaporating and condensing temperatures of organic Rankine cycle in a hot and humid environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837411

Country of ref document: EP

Kind code of ref document: A1