JP2013224648A - Buoyant rotating device - Google Patents

Buoyant rotating device Download PDF

Info

Publication number
JP2013224648A
JP2013224648A JP2012110016A JP2012110016A JP2013224648A JP 2013224648 A JP2013224648 A JP 2013224648A JP 2012110016 A JP2012110016 A JP 2012110016A JP 2012110016 A JP2012110016 A JP 2012110016A JP 2013224648 A JP2013224648 A JP 2013224648A
Authority
JP
Japan
Prior art keywords
buoyancy
shape memory
memory alloy
spring
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012110016A
Other languages
Japanese (ja)
Inventor
Kenji Mimura
建治 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIM INTERNAT CO Ltd
MIM INTERNATIONAL CO Ltd
Original Assignee
MIM INTERNAT CO Ltd
MIM INTERNATIONAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIM INTERNAT CO Ltd, MIM INTERNATIONAL CO Ltd filed Critical MIM INTERNAT CO Ltd
Priority to JP2012110016A priority Critical patent/JP2013224648A/en
Publication of JP2013224648A publication Critical patent/JP2013224648A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To need to promote renewable energy utilization, because although electricity is generated in individual large-scale power generation facilities or is generated in a private power generation of plants, or independent household small scale power generation units, atomic energy power generations that are large-scale power generations have problems such that huge casualties may result in case of an accident and challenges of nuclear waste treatments are caused, thermal power generations and natural gas power generations emit carbon dioxide, such recyclable energies as hydraulic, geothermal, solar power and photovoltaic power generation, wind power generation and so on have problems such as sizes and construction cites, house power generations such as factories also have problems such as carbon dioxide emission, fluctuation of fuel prices, renewable energy utilization is unstable as it depends upon weather, and although a scale is also restricted, because the deterioration of global environments in the future and the energy problems in and out of the country have been increasingly serious.SOLUTION: There is provided a device in which in order to promote recyclable energy utilization, a volume variable buoyant body to which a shape memory alloy spring and a bias spring are attached, the shape memory alloy spring are activated using the phase transformation of a shape memory alloy with thermal energy such as low temperature heat sources of ≤100°C such as plant exhaust heat, and hot spring that are hardly used currently as power generation and cooling water, warm liquids, warm air, cool liquids, cool winds, and thermal energy such as warm water and cool water that is produced by a high efficient heat pump, the imbalance of buoyancy is generated by increasing or decreasing the volume of the buoyant body, a plurality of buoyant bodies are disposed around the circumferential section of the rotating body, a part of the rotating bodies are arranged to be sunk under the liquid, and the rotating body is allowed to be rotated with the imbalance of the buoyant body, thereby enabling the device to generate power utilizing the kinetic energy.

Description

本発明は、形状記憶合金スプリング及びバイアススプリングを取り付けた容積可変式の浮力体を回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、その浮力体の容積を増減させるために、形状記憶合金スプリングを、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して作動させ、バイアススプリングとのバネ力の差により生じる浮力体の容積の増減による浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを利用して発電する装置に関するものである。In the present invention, a plurality of variable-volume buoyancy bodies to which shape memory alloy springs and bias springs are attached are arranged on the outer periphery of a rotating body, and a part of the rotating body is installed so as to be submerged in a liquid. In order to increase or decrease the volume of the body, the shape memory alloy spring is operated by utilizing the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc., and the spring force with the bias spring The present invention relates to a device that rotates a rotator by using a buoyancy imbalance caused by increase / decrease in the volume of the buoyancy body caused by the difference between the buoyancy bodies and generates electric power using the kinetic energy.

従来、浮力を運動エネルギーに変換して発電を行う装置の案は、多数存在するが、どれも実現するには問題がある物が多かった。Conventionally, there have been many proposals for power generation by converting buoyancy into kinetic energy, but there have been many problems in realizing all of them.

工場排熱、温泉等の、100℃以下の低温の熱源は多く存在し、その熱源をエネルギーとして利用する取り組みが研究されており、バイナリー発電や熱伝素子、スターリングエンジン等がある。There are many low-temperature heat sources of 100 ° C or less, such as factory exhaust heat and hot springs, and efforts to use such heat sources as energy have been studied, including binary power generation, heat transfer elements, Stirling engines, and the like.

近年、ヒートポンプは技術の進歩により効率が向上しており、省電力で温水を作る事が可能になった。In recent years, the efficiency of heat pumps has improved due to technological advances, and it has become possible to produce hot water with low power consumption.

形状記憶合金を熱エネルギーにより固体(オーステナイト)から固体(マルテンサイト)へ相変態させる事により運動エネルギーを生み出し、それを利用した種々の発電装置はあるが、小規模で実験的な物が多い。
Although kinetic energy is produced by transforming a shape memory alloy from a solid (austenite) to a solid (martensite) by thermal energy, there are various power generators using it, but there are many small-scale and experimental ones.

特開2011−188654JP2011-188654 特開2005−76558JP 2005-76558 A

本発明は、形状記憶合金スプリング及びバイアススプリングを取り付けた容積可変式の浮力体を回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、その浮力体の容積を増減させるために、形状記憶合金スプリングを、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して作動させ、バイアススプリングとのバネ力の差により生じる浮力体の容積の増減による浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを利用して発電する装置である。In the present invention, a plurality of variable-volume buoyancy bodies to which shape memory alloy springs and bias springs are attached are arranged on the outer periphery of a rotating body, and a part of the rotating body is installed so as to be submerged in a liquid. In order to increase or decrease the volume of the body, the shape memory alloy spring is operated by utilizing the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc., and the spring force with the bias spring This is a device that uses the buoyancy imbalance caused by the increase / decrease in the volume of the buoyancy body caused by the difference between the rotation bodies to rotate the rotation body and generate electric power using the kinetic energy.

現在、電気は、大規模な発電施設で発電するか、工場、等での自家発電、各家庭、等での個別の小規模発電で作られているが、大規模発電である原子力は事故時の被害の甚大さや核燃料廃棄物処理の問題、火力や天然ガスはCO2を排出し、水力及び、地熱、太陽熱、太陽光、風力、等の再生可能エネルギーは規模や建設場所、等の問題がある。
工場、等の自家発電も、CO2排出や燃料価格の変動、等の問題があり、各家庭での太陽光、風力、等の再生可能エネルギー利用は、共に気候に左右され不安定であり、また規模も限られる。
At present, electricity is generated by large-scale power generation facilities, or by private power generation at factories, etc., or by individual small-scale power generation at homes, etc. The damage of nuclear power and nuclear fuel waste disposal, thermal power and natural gas emit CO2, and there are problems with hydropower and renewable energy such as geothermal, solar, solar, wind, etc. .
In-house power generation at factories, etc. also has problems such as CO2 emissions and fuel price fluctuations, and the use of renewable energy such as solar and wind power in each household is both unstable and unstable depending on the climate. The scale is also limited.

前記課題を解決するためには、再生可能エネルギーの利用を促進する必要がある。本発明は工場排熱、排温水、排冷却水、温泉、温液、温風、冷液、冷風、等の熱エネルギーを利用してそれを運動エネルギーに変え発電する装置であり、新しい再生可能エネルギーとして有用である。In order to solve the above problems, it is necessary to promote the use of renewable energy. The present invention is a device that generates heat by using heat energy such as factory exhaust heat, exhaust hot water, exhaust cooling water, hot spring, hot liquid, hot air, cold liquid, cold air, etc. Useful as energy.

本発明は浮力による回転エネルギーを利用する為、気候に左右されることなく一年中24時間安定稼働が可能な発電装置であり、なおかつ高効率ヒートポンプと組み合わせ、その温水、冷水を利用すれば、各家庭で使用できる自己完結型の発電機となる可能性がある。Since the present invention uses rotational energy due to buoyancy, it is a power generation device capable of stable operation 24 hours a year without being influenced by the climate, and in combination with a high-efficiency heat pump, using its hot and cold water, This could be a self-contained generator that can be used at home.

以下、本発明による発電装置を 図1、図2、図3、図4、図5、図6、図7、図8、図9、図10、図11に示す実施の形態に基づいて説明する。Hereinafter, the power generator according to the present invention will be described based on the embodiments shown in FIGS. 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, and 11. .

図1、図5において浮力体2,3,4及びOリング11と吸排気口9で容積可変浮力体を構成し、容積可変浮力体に取り付けたバイアススプリング8と、浮力体4とケースA6に取り付けた形状記憶合金スプリング5により浮力体2,3,4の容積を増減させる。1 and 5, the buoyancy bodies 2, 3, 4 and the O-ring 11 and the intake / exhaust port 9 constitute a variable volume buoyancy body. The bias spring 8 attached to the variable volume buoyancy body, the buoyancy body 4 and the case A6 The volume of the buoyancy bodies 2, 3, 4 is increased or decreased by the attached shape memory alloy spring 5.

図1、図6において浮力体2,3,4は、形状記憶合金スプリング5とバイアススプリング8のバネ力の差で容積を増減させる。形状記憶合金の変態温度より低い温度の時は、バイアススプリング8のバネ力が形状記憶合金スプリング5のバネ力に勝るため浮力体2,3,4の容積は減少し、形状記憶合金の変態温度より高い温度の時は、形状記憶合金スプリング5のバネ力がバイアススプリング8のバネ力に勝るため浮力体2,3,4の容積は増加する。In FIGS. 1 and 6, the buoyancy bodies 2, 3, and 4 increase and decrease the volume by the difference in spring force between the shape memory alloy spring 5 and the bias spring 8. When the temperature is lower than the transformation temperature of the shape memory alloy, the spring force of the bias spring 8 exceeds the spring force of the shape memory alloy spring 5, so that the volume of the buoyant bodies 2, 3 and 4 decreases, and the transformation temperature of the shape memory alloy At higher temperatures, the spring force of the shape memory alloy spring 5 exceeds the spring force of the bias spring 8, so that the volume of the buoyancy bodies 2, 3, 4 increases.

図5、図10において浮力体2,3,4は、形状記憶合金スプリング5とバイアススプリング8のバネ力の差で容積を増減させる。形状記憶合金の変態温度より高い温度の時は、形状記憶合金スプリング5のバネ力がバイアススプリング8のバネ力に勝るため浮力体2,3,4の容積は減少し、形状記憶合金の変態温度より低い温度の時は、バイアススプリング8のバネ力が形状記憶合金スプリング5のバネ力に勝るため浮力体2,3,4の容積は増加する。5 and 10, the buoyancy bodies 2, 3, and 4 increase and decrease the volume by the difference in spring force between the shape memory alloy spring 5 and the bias spring 8. When the temperature is higher than the transformation temperature of the shape memory alloy, the volume of the buoyant bodies 2, 3 and 4 decreases because the spring force of the shape memory alloy spring 5 exceeds the spring force of the bias spring 8, and the transformation temperature of the shape memory alloy When the temperature is lower, the volume of the buoyant bodies 2, 3, 4 increases because the spring force of the bias spring 8 exceeds the spring force of the shape memory alloy spring 5.

図1、図4、図5においてケースA6とケースB1及びカム15がボール7を制御し、ボール7は浮力体2,3,4の容積の増減を規制している。回転体13が回転することにより、カム15によってケースB1が回転し、ボール7が図4のA,Bの範囲で解除されると、ボール7は浮力体2,3,4と形状記憶合金スプリング5を解放し容積の増減が可能になる。続いて図4のC,Dの範囲で浮力体2,3,4は、ボール7によりロックされ、容積の変化が不可能になる。In FIGS. 1, 4, and 5, the case A 6, the case B 1, and the cam 15 control the ball 7, and the ball 7 restricts the increase and decrease in the volume of the buoyancy bodies 2, 3, and 4. When the rotating body 13 is rotated, the case B1 is rotated by the cam 15, and when the ball 7 is released in the range of A and B in FIG. 4, the ball 7 is separated from the buoyant bodies 2, 3, 4 and the shape memory alloy spring. 5 can be released to increase or decrease the volume. Subsequently, the buoyancy bodies 2, 3, and 4 are locked by the ball 7 in the range of C and D in FIG. 4, and the volume cannot be changed.

図1、図2、図3、図4において浮力体2,3,4は、容積が減少しロックされた図4のCの範囲の状態で図4のDの範囲の、形状記憶合金の変態温度より高い温度の温液面下に入ると、形状記憶合金スプリング5とバイアススプリング8のバネ力の差により膨張する力が働くが、図4のDの範囲では浮力体2,3,4と形状記憶合金スプリング5が、ケースA6とケースB1とボール7及びカム15によりロックされており浮力体2,3,4の容積が増加しない。しかし図4のAの範囲では浮力体2,3,4と形状記憶合金スプリング5が、ケースA6とケースB1とボール7及びカム15により解放され、浮力体2,3,4の容積は形状記憶合金スプリング5がバイアススプリングのバネ力と液圧に打ち勝って増加し液中での浮力を増大させる。そのため回転体13に浮力の不均衡が生じて回転し、続いて図4のBの範囲で形状記憶合金の変態温度より低い温度の、冷風及び冷液、等で形状記憶合金スプリング5を冷却することによりバネ力が減少して、浮力体2,3,4はバイアススプリングのバネ力により容積は減少し、その後図4のCの範囲でロックされ、液面下の図4のDの範囲に入り回転を続ける。その回転力により発電機16を回転させ発電する。1, 2, 3, and 4, the buoyancy bodies 2, 3, and 4 are transformed in the shape memory alloy in the range of D in FIG. 4 in the state of C in FIG. When the temperature falls below the hot liquid surface, the expansion force is caused by the difference in spring force between the shape memory alloy spring 5 and the bias spring 8, but in the range of D in FIG. The shape memory alloy spring 5 is locked by the case A6, the case B1, the ball 7 and the cam 15, so that the volume of the buoyancy bodies 2, 3 and 4 does not increase. However, in the range of FIG. 4A, the buoyancy bodies 2, 3, 4 and the shape memory alloy spring 5 are released by the case A6, the case B1, the ball 7, and the cam 15, and the volume of the buoyancy bodies 2, 3, 4 is the shape memory. The alloy spring 5 overcomes the spring force and hydraulic pressure of the bias spring and increases to increase the buoyancy in the liquid. Therefore, the rotating body 13 rotates due to an imbalance of buoyancy, and the shape memory alloy spring 5 is subsequently cooled by cold air, cold liquid, etc. at a temperature lower than the transformation temperature of the shape memory alloy in the range of B in FIG. As a result, the spring force is reduced, and the buoyancy bodies 2, 3, and 4 are reduced in volume by the spring force of the bias spring, and then locked in the range of C in FIG. 4, and in the range of D in FIG. 4 below the liquid level. Continue to enter and rotate. The generator 16 is rotated by the rotational force to generate power.

図2、図3、図4、図5において浮力体2,3,4は、容積が減少しロックされた図4のCの範囲の状態で図4のDの範囲の、形状記憶合金の変態温度より低い温度の冷液面下に入ると、形状記憶合金スプリング5とバイアススプリング8のバネ力の差により膨張する力が働くが、図4のDの範囲では浮力体2,3,4と形状記憶合金スプリング5が、ケースA6とケースB1とボール7及びカム15によりロックされており浮力体2,3,4の容積が増加しない。しかし図4のAの範囲では浮力体2,3,4と形状記憶合金スプリング5が、ケースA6とケースB1とボール7及びカム15により解放され、浮力体2,3,4の容積はバイアススプリング8が形状記憶合金スプリング5のバネ力と液圧に打ち勝って増加し液中での浮力を増大させる。そのため回転体13に浮力の不均衡が生じて回転し、続いて図4のBの範囲で形状記憶合金の変態温度より高い温度の、温風及び温液、等で形状記憶合金スプリング5を加熱することによりバネ力が増加して、浮力体2,3,4は圧縮されて容積は減少し、その後図4のCの範囲でロックされ、液面下の図4のDの範囲に入り回転を続ける。その回転力により発電機16を回転させ発電する。2, 3, 4, and 5, the buoyancy bodies 2, 3, and 4 are transformed in the shape memory alloy in the range of D in FIG. 4 in the state of C in FIG. When entering below the cold liquid surface at a temperature lower than the temperature, a force that expands due to the difference in spring force between the shape memory alloy spring 5 and the bias spring 8 works, but in the range of D in FIG. The shape memory alloy spring 5 is locked by the case A6, the case B1, the ball 7 and the cam 15, so that the volume of the buoyancy bodies 2, 3 and 4 does not increase. However, in the range of FIG. 4A, the buoyancy bodies 2, 3, 4 and the shape memory alloy spring 5 are released by the case A6, the case B1, the ball 7, and the cam 15, and the volume of the buoyancy bodies 2, 3, 4 is 8 overcomes the spring force and hydraulic pressure of the shape memory alloy spring 5 and increases the buoyancy in the liquid. Therefore, the rotator 13 rotates with an imbalance in buoyancy, and subsequently heats the shape memory alloy spring 5 with hot air, hot liquid, etc., at a temperature higher than the transformation temperature of the shape memory alloy in the range of B in FIG. As a result, the spring force is increased and the buoyancy bodies 2, 3 and 4 are compressed and the volume is reduced. Then, the buoyancy bodies 2, 3 and 4 are locked in the range C in FIG. 4 and enter the range D in FIG. Continue. The generator 16 is rotated by the rotational force to generate power.

図6、図10において浮力体2,3,4とOリング11と吸排気口9及びジョイント27で容積可変浮力体を構成し、ジョイント26とジョイント27に取り付けて、配管25の内部に配置された形状記憶合金スプリング5と、浮力体2,3,4に取り付けたバイアススプリング8とのバネ力の差で容積を増減させる。形状記憶合金スプリング5を動作させるのに使用する温液、温風及び冷液、冷風は吸気、吸液管23から入りロータリーバルブ21、バルブケース20、配管25、及びジョイント26、ジョイント27、バルブケース20、ロータリーバルブ21を通り排気、排液管24より排出または、循環される。6 and 10, the buoyancy bodies 2, 3, 4, the O-ring 11, the intake / exhaust port 9, and the joint 27 constitute a variable volume buoyancy body, which is attached to the joint 26 and the joint 27 and disposed inside the pipe 25. The volume is increased or decreased by the difference in spring force between the shape memory alloy spring 5 and the bias spring 8 attached to the buoyancy bodies 2, 3, 4. Hot liquid, hot air and cold liquid used to operate the shape memory alloy spring 5, cold air is taken in from the intake pipe 23, rotary valve 21, valve case 20, pipe 25, joint 26, joint 27, valve The exhaust gas passes through the case 20 and the rotary valve 21 and is discharged or circulated from the drainage pipe 24.

図6、図7、図8、図9においてロータリーバルブ21は吸気、吸液管23及び排気、排液管24と共に支持脚14に固定され、バルブケース22が回転体13と共に回転する。ロータリーバルブ23のAの範囲では形状記憶合金の変態温度より高い温度の、温液、温風が配管25、及びジョイント26、ジョイント27に送られ、配管25内に配置された形状記憶合金スプリング5が加熱されバネ力が増加し、浮力体2,3,4に取り付けられたバイアススプリング8のバネ力と液圧に打ち勝って、浮力体2,3,4の容積は増加し液中での浮力を増大させる。続いてロータリーバルブ21のBの範囲では形状記憶合金の変態温度より低い温度の、冷液、冷風が配管25、及びジョイント26、ジョイント27に送られ、配管内に配置された形状記憶合金スプリング5が冷却されて、バネ力がバイアススプリング8のバネ力より弱くなるため、浮力体2,3,4の容積は減少する。そのため液中での回転体13の浮力の不均衡が生じて回転し、その回転力により発電機16を回転させ発電する。In FIGS. 6, 7, 8, and 9, the rotary valve 21 is fixed to the support leg 14 together with the intake and suction pipes 23 and the exhaust and drainage pipe 24, and the valve case 22 rotates together with the rotating body 13. In the range of A of the rotary valve 23, warm liquid and hot air having a temperature higher than the transformation temperature of the shape memory alloy are sent to the pipe 25, the joint 26, and the joint 27, and the shape memory alloy spring 5 disposed in the pipe 25. Is heated to increase the spring force and overcome the spring force and hydraulic pressure of the bias spring 8 attached to the buoyancy bodies 2, 3, 4, and the volume of the buoyancy bodies 2, 3, 4 increases to increase the buoyancy in the liquid. Increase. Subsequently, in the range B of the rotary valve 21, cold liquid or cold air having a temperature lower than the transformation temperature of the shape memory alloy is sent to the pipe 25, the joint 26, and the joint 27, and the shape memory alloy spring 5 disposed in the pipe. Is cooled, and the spring force becomes weaker than the spring force of the bias spring 8, so that the volume of the buoyancy bodies 2, 3, 4 decreases. Therefore, the buoyancy of the rotator 13 in the liquid is unbalanced and rotates, and the generator 16 is rotated by the rotational force to generate power.

図7、図8、図9、図10においてロータリーバルブ21は吸気、吸液管23及び排気、排液管24と共に支持脚14に固定され、バルブケース20が回転体13と共に回転する。ロータリーバルブ21のAの範囲では形状記憶合金の変態温度より低い温度の、冷液、冷風が配管25及びジョイント26、ジョイント27に送られ、配管25内に配置された形状記憶合金スプリング5が冷却されバネ力が減少し、浮力体2,3,4に取り付けられたバイアススプリング8のバネ力が形状記憶合金スプリング5のバネ力と液圧に打ち勝って、浮力体2,3,4の容積は増加し液中での浮力を増大させる。続いてロータリーバルブ21のBの範囲では形状記憶合金の変態温度より高い温度の、温液、温風が配管25、及びジョイント26、ジョイント27に送られ、配管内に配置された形状記憶合金スプリング5が加熱されて、バネ力がバイアススプリング8のバネ力より強くなるため、浮力体2,3,4は圧縮され容積は減少する。そのため液中での回転体13に浮力の不均衡が生じて回転し、その回転力により発電機 16を回転させ発電する。In FIGS. 7, 8, 9, and 10, the rotary valve 21 is fixed to the support leg 14 together with the intake and suction pipes 23 and the exhaust and drainage pipes 24, and the valve case 20 rotates together with the rotating body 13. In the range of A of the rotary valve 21, cold liquid and cold air having a temperature lower than the transformation temperature of the shape memory alloy are sent to the pipe 25, the joint 26, and the joint 27, and the shape memory alloy spring 5 disposed in the pipe 25 is cooled. The spring force is reduced, and the spring force of the bias spring 8 attached to the buoyancy bodies 2, 3 and 4 overcomes the spring force and hydraulic pressure of the shape memory alloy spring 5, so that the volume of the buoyancy bodies 2, 3 and 4 is Increase and increase buoyancy in liquid. Subsequently, in the range B of the rotary valve 21, hot liquid and hot air having a temperature higher than the transformation temperature of the shape memory alloy are sent to the pipe 25, the joint 26, and the joint 27, and the shape memory alloy spring disposed in the pipe. 5 is heated, and the spring force becomes stronger than the spring force of the bias spring 8, so that the buoyancy bodies 2, 3, and 4 are compressed and the volume is reduced. Therefore, the rotating body 13 in the liquid rotates due to an imbalance of buoyancy, and the generator 16 is rotated by the rotational force to generate electric power.

図11においてヒートポンプと浮力回転装置の関係図を表す。ヒートポンプ内で低温熱媒液は、蒸発器で熱源から熱を奪いながら蒸発し、低温冷媒ガスになり、次に圧縮器で圧縮され、高温高圧ガスになり、続いて凝縮器で温液に熱を放出して冷却され、凝縮液になり、最後に膨張弁で減圧、減温され、低温熱媒液に戻り再び蒸発器に入る。浮力回転体で使用する温液はヒートポンプ内の凝縮器で加熱される。また浮力回転体で使用する冷液はヒートポンプ内の蒸発器で冷却される。  FIG. 11 shows a relationship diagram between the heat pump and the buoyancy rotating device. In the heat pump, the low-temperature heat transfer liquid evaporates while taking heat from the heat source in the evaporator, turns into a low-temperature refrigerant gas, then compresses in the compressor, turns into a high-temperature high-pressure gas, and then heats up to the hot liquid in the condenser. Is cooled to become a condensate, and is finally depressurized and reduced in temperature by an expansion valve, returns to the low-temperature heat transfer medium, and enters the evaporator again. The hot liquid used in the buoyancy rotator is heated by the condenser in the heat pump. Moreover, the cold liquid used with a buoyancy rotary body is cooled with the evaporator in a heat pump.

浮力体の構造を示す分解図AExploded view A showing structure of buoyancy body 乃至Thru 回転体の全体図AOverall view of rotating body A カム構造及び作動範囲図Cam structure and operating range 浮力体の構造を示す分解図BExploded view B showing structure of buoyancy body 浮力体の構造を示す分解図CExploded view C showing structure of buoyancy body 乃至Thru 回転体の全体図BOverall view of rotating body B ロータリーバルブの構造及び作動範囲図Rotary valve structure and operating range diagram 浮力体の構造を示す分解図DExploded view D showing structure of buoyancy body ヒートポンプ構造及び回転体との関係図Relationship diagram between heat pump structure and rotating body

1・・・ケースB、2・・・浮力体A、3・・・浮力体B、4・・・浮力体C、5・・・形状記憶合金スプリング、6・・・ケースA、7・・・ボール、8・・・バイアススプリング、9・・・吸排気管 10・・・カラー、11・・・Oリング、12・・・ネジ、13・・・回転体、14・・・支持脚、15・・・カム、16・・・発電機、17・・・軸、18・・・保持金具、19・・・ロックピン、20・・・バルブケース、21・・・ロータリーバルブ、22・・・オイルシール、23・・・吸気、吸液管、24・・・排気、排液管、25・・・配管、26・・・ジョイントA、27・・・ジョイントB、28・・・ギヤ、DESCRIPTION OF SYMBOLS 1 ... Case B, 2 ... Buoyancy body A, 3 ... Buoyancy body B, 4 ... Buoyancy body C, 5 ... Shape memory alloy spring, 6 ... Case A, 7 ...・ Ball, 8 ... Bias spring, 9 ... Intake / exhaust pipe 10 ... Collar, 11 ... O-ring, 12 ... Screw, 13 ... Rotary body, 14 ... Support leg, 15 ... Cam, 16 ... Generator, 17 ... Shaft, 18 ... Holding bracket, 19 ... Lock pin, 20 ... Valve case, 21 ... Rotary valve, 22 ... Oil seal, 23... Intake, liquid absorption pipe, 24... Exhaust, drainage pipe, 25 .. Pipe, 26... Joint A, 27.

Claims (12)

容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、浮力体の浮力の不均衡を利用して、回転体を回転させる装置。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A device in which a plurality of the buoyant bodies are arranged on the outer periphery of the rotating body, a part of the rotating body is installed so as to be immersed in the liquid, and the rotating body is rotated by utilizing the buoyancy imbalance of the buoyant body. . 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、浮力体の浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを利用して発電する装置。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A plurality of the buoyancy bodies are arranged on the outer periphery of the rotator, and a part of the rotator is placed so as to be submerged in the liquid. A device that uses the kinetic energy to generate electricity. 回転体が回転時に不均衡な回転力が発生しないようにするために、回転体の重量バランスを考慮して、浮力体を配置し、その浮力を利用して、回転体を回転させ発電する装置。In order to prevent an unbalanced rotational force from being generated when the rotating body rotates, a buoyant body is arranged in consideration of the weight balance of the rotating body, and the rotator is used to generate power by rotating the rotating body. . 容積可変式の浮力体を外周部に複数個配置した回転体の、回転角度の変化で発生する浮力の増減による、回転力の変動を低減するために、回転体と平行に複数列、位相をもって浮力回転体を連結した装置。In order to reduce the fluctuation of the rotational force due to the increase or decrease of the buoyancy generated by the change of the rotation angle of the rotating body with a plurality of variable volume buoyant bodies arranged on the outer periphery, there are multiple rows and phases in parallel with the rotating body. A device that connects buoyancy rotors. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を温液に没する様に設置し、没した形状記憶合金スプリングを、変態温度より高い温度の温液の熱エネルギーにより作動させる。形状記憶合金スプリングの変態温度より低い温度の冷却液及び冷却風で、温液に没していない形状記憶合金スプリングを冷却し作動させ、浮力体の浮力の不均衡を発生させ、回転体を回転させ、その運動エネルギーを利用して発電する装置。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, cold liquid, cold air, etc. Increases or decreases body volume, causing buoyancy imbalance. A plurality of the buoyant bodies are arranged on the outer peripheral portion of the rotating body, and a part of the rotating body is installed so as to be immersed in the warm liquid. Operated by thermal energy. The shape memory alloy spring that is not submerged in the hot liquid is cooled and operated with coolant and cooling air at a temperature lower than the transformation temperature of the shape memory alloy spring, causing an imbalance in the buoyancy of the buoyant body and rotating the rotating body A device that uses the kinetic energy to generate electricity. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を冷液に没する様に設置し、没した形状記憶合金スプリングを、変態温度より低い温度の冷液で冷却し作動させる。形状記憶合金スプリングの変態温度より高い温度の温液及び温風の熱エネルギーで、冷液に没していない形状記憶合金スプリングを作動させ、浮力体の浮力の不均衡を発生させ、回転体を回転させ、その運動エネルギーを利用して発電する装置。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated by using a phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, Increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A plurality of the buoyant bodies are arranged on the outer periphery of the rotating body, and a part of the rotating body is installed so as to be submerged in the cold liquid. Cool and operate. The shape memory alloy spring that is not submerged in the cold liquid is operated with the thermal energy of hot liquid and hot air at a temperature higher than the transformation temperature of the shape memory alloy spring, causing the buoyancy of the buoyancy body to be imbalanced, A device that rotates and generates electricity using its kinetic energy. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置する。形状記憶合金スプリングを容積可変の配管の中に配置し、配管内に切り替え式弁(ロータリーバルブ等)を配置して、浮力体の浮力の不均衡を発生させる様に、温液、温風、冷液、冷風、等を循環式または解放式で流して、形状記憶合金スプリングを伸縮作動させ、回転体を回転させ、その運動エネルギーを利用して発電する装置。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A plurality of the buoyancy bodies are arranged on the outer periphery of the rotating body, and a part of the rotating body is installed so as to be immersed in the liquid. A shape memory alloy spring is placed in a variable volume pipe, and a switchable valve (rotary valve, etc.) is placed in the pipe to generate a buoyancy imbalance in the buoyant body. A device that generates cold power, cool air, or the like in a circulating or open manner, expands and contracts a shape memory alloy spring, rotates a rotating body, and uses its kinetic energy to generate electricity. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を可変させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、浮力体の浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを利用して発電する装置において、使用するバイアススプリングは、ストロークに対して、スプリング力の変化が少ないぜんまいばね、及び定荷重渦巻ばねを使用する。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And the volume of the buoyancy body is varied to cause buoyancy imbalance. A plurality of the buoyancy bodies are arranged on the outer periphery of the rotator, and a part of the rotator is placed so as to be submerged in the liquid, and the rotator is rotated using the buoyancy imbalance of the buoyancy body, In a device that generates electric power using the kinetic energy, a bias spring to be used uses a mainspring spring and a constant-load spiral spring with little change in spring force with respect to a stroke. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、浮力体の浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを利用して発電する装置において、浮力体の吸排気口が各々独立し、吸排気口が常時液面より上になる様に配置した、大気解放式の吸排気機構。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A plurality of the buoyancy bodies are arranged on the outer periphery of the rotator, and a part of the rotator is placed so as to be submerged in the liquid. In an apparatus that generates electric power using the kinetic energy, an air release type intake / exhaust mechanism in which the intake and exhaust ports of the buoyant body are independent from each other and the intake and exhaust ports are always above the liquid level. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、浮力体の浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを利用して発電する装置において、各々の浮力体の吸排気口を連結した、大気解放式及び、密閉循環式の吸排気機構。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A plurality of the buoyancy bodies are arranged on the outer periphery of the rotator, and a part of the rotator is placed so as to be submerged in the liquid, and the rotator is rotated using the buoyancy imbalance of the buoyancy body, In an apparatus that generates electric power using the kinetic energy, an air release type and hermetic circulation type intake / exhaust mechanism in which the intake and exhaust ports of each buoyant body are connected. 容積可変式の浮力体を外周部に複数個配置した回転体の、回転角度の変化で発生する浮力の増減による、回転時の浮力の変動を低減するために、回転体と平行に複数列、位相をもって浮力回転体を連結した装置において、浮力体の容積を可変させるための形状記憶合金スプリングの片方を浮力体の隙間を利用して回転体に固定し、もう片方を対面する位相側の浮力体に固定する事により、スプリングの全長を確保する構造。In order to reduce fluctuations in buoyancy during rotation due to increase or decrease in buoyancy generated by changes in the rotation angle of a rotating body in which a plurality of variable volume buoyancy bodies are arranged on the outer periphery, multiple rows in parallel with the rotating body, In a device that connects buoyancy rotators with phase, one side of the shape memory alloy spring for changing the volume of the buoyancy body is fixed to the rotator using the gap of the buoyancy body, and the buoyancy on the phase side facing the other A structure that secures the entire length of the spring by fixing it to the body. 容積可変式の浮力体に、形状記憶合金スプリング及びバイアススプリングを取り付け、温液、温風、冷液、冷風、等の熱エネルギーによる形状記憶合金の相変態を利用して形状記憶合金スプリングを作動させ、浮力体の容積を増減させて浮力の不均衡を生じさせる。その浮力体を、回転体の外周部に複数個配置し、その回転体の一部を液体に没する様に設置し、浮力体の浮力の不均衡を利用して、回転体を回転させ、その運動エネルギーを使用して発電する装置に、高効率のヒートポンプを組み合わせ、発電した電力の一部を利用して、温液、温風、冷液、冷風、等を作り、利用する複合型の発電装置。A shape memory alloy spring and a bias spring are attached to a variable volume buoyancy body, and the shape memory alloy spring is operated using the phase transformation of the shape memory alloy by thermal energy such as hot liquid, hot air, cold liquid, cold air, etc. And increase or decrease the volume of the buoyancy body to cause buoyancy imbalance. A plurality of the buoyancy bodies are arranged on the outer periphery of the rotator, and a part of the rotator is placed so as to be submerged in the liquid, and the rotator is rotated using the buoyancy imbalance of the buoyancy body, Combined with a device that generates electricity using that kinetic energy, a high-efficiency heat pump is used, and a part of the generated power is used to create and use hot liquid, hot air, cold liquid, cold air, etc. Power generation device.
JP2012110016A 2012-04-20 2012-04-20 Buoyant rotating device Pending JP2013224648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110016A JP2013224648A (en) 2012-04-20 2012-04-20 Buoyant rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110016A JP2013224648A (en) 2012-04-20 2012-04-20 Buoyant rotating device

Publications (1)

Publication Number Publication Date
JP2013224648A true JP2013224648A (en) 2013-10-31

Family

ID=49594860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110016A Pending JP2013224648A (en) 2012-04-20 2012-04-20 Buoyant rotating device

Country Status (1)

Country Link
JP (1) JP2013224648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322808A (en) * 2018-10-24 2019-02-12 浙江大学 A kind of high energy efficiency, the memorial alloy drive system of high frequency sound
CN109973342A (en) * 2019-03-12 2019-07-05 中国人民解放军军事科学院国防科技创新研究院 Shape memory drive-type software driver and its control method, production method
CN110566421A (en) * 2019-09-27 2019-12-13 大连大学 Heat engine device for realizing heat energy-mechanical energy conversion by utilizing solid working medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322808A (en) * 2018-10-24 2019-02-12 浙江大学 A kind of high energy efficiency, the memorial alloy drive system of high frequency sound
CN109973342A (en) * 2019-03-12 2019-07-05 中国人民解放军军事科学院国防科技创新研究院 Shape memory drive-type software driver and its control method, production method
CN110566421A (en) * 2019-09-27 2019-12-13 大连大学 Heat engine device for realizing heat energy-mechanical energy conversion by utilizing solid working medium

Similar Documents

Publication Publication Date Title
Saitoh et al. Solar Rankine cycle system using scroll expander
US20120001436A1 (en) Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive
US20120291433A1 (en) Low temperature rankine cycle solar power system with low critical temperature hfc or hc working fluid
WO2022166384A1 (en) Carbon dioxide gas-liquid phase change-based energy storage apparatus capable of converting heat energy into mechanical energy
JP2015502482A (en) A cold engine that uses air thermal energy to output work, cooling, and water
CN1673527A (en) Ocean temperature difference energy and solar energy reheat circulating electric generating method
CA2778101A1 (en) Power generation by pressure differential
KR101579004B1 (en) The power generation system using solar energy
US11480160B1 (en) Hybrid solar-geothermal power generation system
CN106104082B (en) Power conversion system is directly driven for the wind turbine suitable for energy stores
CN203476624U (en) Low-temperature organic Rankine cycle solar heat power generation system
Poredos et al. District heating and cooling for efficient energy supply
KR20150022311A (en) Heat pump electricity generation system
JP2013224648A (en) Buoyant rotating device
CN100404800C (en) Thermodynamic device with low-temperature heat source and working method thereof
KR101500489B1 (en) Ocean Thermal Energy Conversion System Using Discharge of Seawater Heat Pump
JP2013040606A (en) Method and device for highly-efficiently recovering ordinary temperature heat energy
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
CN102383882A (en) Novel air energy refrigerating generating device
WO2015077235A1 (en) Concentrated solar power systems and methods utilizing cold thermal energy storage
KR20150109102A (en) Organic Rankine Cycle electricity generation system
CA2744404A1 (en) Air power system
Wang et al. Flexible PVT-ORC hybrid solar-biomass cogeneration systems: The case study of the University Sports Centre in Bari, Italy
Todorovic et al. Parametric analysis and thermodynamic limits of solar assisted geothermal co-and tri-generation systems
WO2020107915A1 (en) Machine with costless consumable but capable of outputting energy