WO2017030164A1 - Turbo device - Google Patents

Turbo device Download PDF

Info

Publication number
WO2017030164A1
WO2017030164A1 PCT/JP2016/074101 JP2016074101W WO2017030164A1 WO 2017030164 A1 WO2017030164 A1 WO 2017030164A1 JP 2016074101 W JP2016074101 W JP 2016074101W WO 2017030164 A1 WO2017030164 A1 WO 2017030164A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
impeller
peripheral surface
grooves
inner peripheral
Prior art date
Application number
PCT/JP2016/074101
Other languages
French (fr)
Japanese (ja)
Inventor
修作 香川
高幹 櫻井
学 辻村
香織 佐々木
貴司 松村
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2017030164A1 publication Critical patent/WO2017030164A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D11/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present invention relates to a turbomachine.
  • Turbomachine is a general term for machines that use an impeller provided in a casing to realize conversion between mechanical energy of rotation of the impeller and energy of fluid flowing in the casing.
  • a turbo pump is a turbo machine that applies pressure to a liquid flowing in a casing by rotationally driving an impeller.
  • turbomachines eg, blowers and compressors
  • turbomachines eg, water turbines, windmills, and turbines
  • unstable characteristics may occur in the flow of fluid in the machine due to various factors.
  • the head usually decreases with an increase in the flow rate, which makes it possible to operate stably.
  • a so-called right-up characteristic is generated in which the lift is also increased.
  • Operation may become unstable in the flow rate region where the upward-sloping characteristic occurs, and surging may occur in which the fluid mass self-oscillates in the machine.
  • One of the causes of such unstable characteristics is the recirculation flow generated near the inlet of the impeller in the low flow region.
  • Patent Documents 1 to 3 propose techniques for forming a plurality of shallow grooves on the inner peripheral surface of the casing in a region including the inlet of the impeller. According to the techniques described in Patent Documents 1 to 3, by extending the groove to the recirculation flow generation location near the entrance of the impeller, an effect of sufficiently suppressing the generation of the recirculation flow can be obtained even in a shallow groove. it can. In this technique, since the groove is formed shallower than in the conventional casing treatment, the reduction in the maximum efficiency of the turbomachine due to the formation of the groove can be reduced.
  • the above-described technique is such that the outer shape of the blade in the longitudinal section (the section including the rotation shaft of the impeller) is straight or inward. Applicable when Although not explicitly disclosed in Patent Documents 1 to 3, in this case, the blade mounting angle cannot be made variable. On the other hand, when the attachment angle of the blade is variable, the shape of the blade in the longitudinal section is convex outward, and the shape of the inner peripheral surface of the casing is concave inward correspondingly. When the shapes of the blades and the inner peripheral surface change as described above, the state of occurrence of the recirculation flow also changes. Therefore, for example, in a turbo machine in which the blade mounting angle is variable, the unstable characteristics cannot always be effectively improved by conventional techniques as described in Patent Documents 1 to 3.
  • the present invention has been made in view of the above points.
  • One of the objects of the present invention is a new and improved capable of effectively improving the unstable characteristics caused by recirculation flow in a turbomachine having blades with outwardly convex shapes in a longitudinal section. Is to provide an improved turbomachine.
  • a turbomachine including a casing and an impeller provided in the casing and having a plurality of blades.
  • the plurality of blades have an outwardly convex shape in a cross section including the rotation shaft of the impeller, and an inner peripheral surface of the casing is inwardly concave in a section of a section facing the plurality of blades.
  • a plurality of grooves are formed on the inner peripheral surface of the casing in at least a part of the section.
  • the groove suppresses the generation of a recirculation flow in the clearance between the blades and the inner peripheral surface of the casing, and the loss due to the interference of the recirculation flow with the main flow can be reduced.
  • the loss due to the recirculation flow generates an unstable characteristic. Therefore, the unstable characteristic can be effectively improved by reducing the loss. .
  • the above turbo machine may further include an angle variable mechanism that changes the mounting angle of the plurality of blades.
  • the above-described problems are caused by the shapes of the inner peripheral surfaces of the blades and the casing. Therefore, it is not essential that the blade mounting angle is variable in the turbomachine, and the configuration of the turbomachine can be effective even when the blade mounting angle is not variable.
  • the plurality of grooves may not be formed on the inner peripheral surface of the casing except for the section. It is possible to suppress the occurrence of recirculation flow near the inlet of the impeller by extending the groove to the outside of the above section, for example, the outer side of the impeller inlet, but the reduction in the maximum efficiency of the turbomachine is minimized. From the standpoint of achieving this, the groove is formed with a minimum length, and the groove may not be formed on the inner peripheral surface except for the above section.
  • the width of each of the plurality of grooves is 6 mm or more, and the total width is 15% of the peripheral length of the inner peripheral surface of the casing at the end of the plurality of grooves on the inlet side of the impeller. It may be up to 35%.
  • the depth of each of the plurality of grooves may be greater on the exit side of the impeller than on the entrance side of the impeller. Since the maximum efficiency of the turbomachine decreases as the volume of the groove increases, the groove may be shallower than the outlet side on the inlet side of the impeller, for example, where the influence of the groove depth on the suppression of recirculation flow is small. .
  • the plurality of grooves may be formed to be inclined with respect to a plane including the rotating shaft of the impeller.
  • the plurality of grooves may be formed to form an angle corresponding to an angle formed by the plurality of blades with respect to the plane including the rotation axis of the impeller.
  • FIG. 1 is a longitudinal sectional view of a turbo machine according to a first embodiment of the present invention. It is a see-through
  • FIG. 6 is a graph in which a characteristic curve indicating efficiency and shaft power is further superimposed on the graph shown in FIG. 5. It is a graph of the characteristic curve which shows the relationship between the flow volume in the 2nd Example of this invention, a head, efficiency, and shaft power.
  • FIG. 1 is a longitudinal sectional view of a turbo machine according to a first embodiment of the present invention.
  • a turbo pump 1 that is a turbo machine according to the present embodiment includes a casing 2, an impeller 3, and an angle variable mechanism 5.
  • the impeller 3 provided in the casing 2 has a plurality of blades 4.
  • the blade 4 has an outwardly convex shape in the illustrated longitudinal section, that is, a section including the rotation axis RA.
  • the inner peripheral surface 2 s of the casing 2 has a concave shape on the inner side in the section SC facing the blade 4 in the longitudinal section.
  • the convex shape of the blades 4 and the concave shape of the inner peripheral surface 2s correspond to each other.
  • the side closer to the rotation axis RA is referred to as the inner side
  • the side farther from the rotation axis RA is referred to as the outer side.
  • the angle variable mechanism 5 changes the attachment angle of the blade 4.
  • a plurality of grooves 6 are formed in the inner peripheral surface 2s at the center of the section SC.
  • FIG. 2 is a perspective view of the turbo machine shown in FIG. In FIG. 2, the casing 2 is not shown except for the inner peripheral surface 2s of the section SC.
  • FIG. 2 shows the length L, width W, and depth D of the groove 6 formed in the inner peripheral surface 2s.
  • the length L of the groove 6 is defined in a plane including the rotation axis RA, and the width W is defined in a direction perpendicular to the plane.
  • the plurality of grooves 6 are arranged in the circumferential direction of the inner peripheral surface 2s. Therefore, when viewed in the direction along the rotation axis RA, the groove 6 is formed on the radiation centered on the rotation axis RA.
  • the groove 6 has a rectangular cross section.
  • the depth D is constant from the inlet side to the outlet side of the impeller 3.
  • the present embodiment is not necessarily limited to such an example.
  • the depth D may be larger on the outlet side than on the inlet side of the impeller 3.
  • the maximum efficiency of the turbo pump 1 decreases as the volume of the groove 6 increases. Therefore, for example, if the influence of the depth D of the groove 6 on the suppression of the recirculation flow is small on the inlet side of the impeller 3, by making the groove 6 shallower on the inlet side than on the outlet side, The amount of decrease in maximum efficiency may be reduced.
  • FIG. 3 is a graph for explaining the improvement of the right-up characteristic in the first embodiment of the present invention.
  • FIG. 3 shows a characteristic curve showing the relationship between the flow rate Q and the head H of the turbo pump.
  • the actual characteristic curve of the pump head H pump, in low flow rate zone than the flow rate Q is a limit flow rate Q R, right up characteristic lift H pump is increased with an increase of the flow rate Q is observed.
  • the cause of the occurrence of such characteristics will be described using the following formula (1) in which the head H pump is expressed using the theoretical head H th and the head loss H loss .
  • the theoretical head H th can be expressed by the following formula (2).
  • g is the acceleration of gravity
  • u 1 and u 2 are the peripheral speeds at the inlet and outlet of the impeller of the turbo pump (product of impeller radius and rotational angular velocity)
  • v u1 and v u2 are the impellers, respectively. It is the circumferential turning speed of the fluid at the entrance and exit of the car.
  • the head loss H loss is caused by the frictional resistance between the flow path formed by the casing and the impeller and the fluid.
  • the head loss H loss is also caused by interference between the recirculation flow generated in the flow path and the main flow.
  • such a head loss H loss is shown as a difference between the theoretical head H th and the head H pump .
  • a small flow rate region than the flow rate Q is a limit flow rate Q R, if the frictional resistance in addition to the recycle stream and the interference increases lift loss H loss by generation of mainstream, right up characteristic of which is also lifting height H pump Cause.
  • the turbo pump 1 since the blades 4 have an outwardly convex shape in the longitudinal section, they are more than near the entrance of the impeller 3. It has been found that the occurrence of recirculation flow in the clearance between the blade 4 and the inner peripheral surface 2s of the casing 2 is significant. Therefore, in the turbo pump 1, the increase in the head loss H loss due to the recirculation flow interfering with the main flow is a main cause of the upward rising characteristic of the head H pump .
  • the turbo pump 1 it is not always effective to suppress the generation of the recirculation flow in the vicinity of the inlet of the impeller 3 in order to improve the right-up characteristic of the head H pump . Rather, by reducing the head loss H loss caused by the recirculation flow generated by the clearance between the blades 4 and the inner peripheral surface 2s interfering with the main flow, the head H pump is effectively raised to the right. It is thought that the characteristics can be improved.
  • the present inventors devised that the groove 6 is formed in the inner peripheral surface 2s of the casing 2 in the section SC facing the blade 4 in the turbo pump 1.
  • the groove 6 suppresses the occurrence of a recirculation flow in the clearance between the blades 4 and the inner peripheral surface 2s, and reduces the head loss H loss that occurs when the recirculation flow interferes with the main flow.
  • the groove 6 It is also possible to extend the groove 6 to the outside of the inlet of the impeller 3 and suppress the occurrence of recirculation flow near the inlet of the impeller 3 as in Japanese Patent No. 3884880.
  • the increase in the head loss H loss is greater than the theoretical head decrease amount ⁇ H th in the upward rising characteristic of the head H pump . Accordingly, if the reduction in the maximum efficiency of the turbo pump 1 is minimized while improving the right-up characteristic of the head H pump , the groove 6 has a minimum length L for suppressing the occurrence of recirculation flow.
  • the groove 6 may not be formed on the inner peripheral surface 2s except for the section SC.
  • FIG. 4 is a perspective view of a turbo machine according to the second embodiment of the present invention.
  • the casing 2 is not illustrated except for the inner peripheral surface 2 s of the section SC.
  • a plurality of grooves 16 are formed on the inner peripheral surface 2 s of the casing 2 at the center of the section SC.
  • the groove 16 extends in a direction inclined with respect to a plane including the rotation axis RA.
  • the angle formed by the groove 16 with respect to the plane including the rotation axis RA may correspond to the attachment angle of the blade 4.
  • the groove 16 may be formed with respect to a plane including the rotation axis RA so as to form an angle corresponding to an angle formed by the blade 4 with respect to the plane.
  • wing 4 can change with the angle variable mechanism 5 (not shown in FIG. 4). Therefore, the angle formed by the groove 16 with respect to the plane including the rotation axis RA is, for example, the attachment angle of the blade 4 is a median value, an average value of the variable range, or an arbitrary reference angle set within the variable range.
  • the blade 4 is determined based on the angle formed with respect to the plane including the rotation axis RA.
  • FIG. 4 also shows the length L, width W, and depth D of the groove 16.
  • the length L is also defined in a direction inclined with respect to the plane.
  • the width W defined in the direction perpendicular to the length L is also inclined with respect to the plane including the rotation axis RA.
  • the plurality of grooves 16 are arranged in the circumferential direction of the inner peripheral surface 2s as in the first embodiment. However, since each groove 16 is inclined, it is different from the first embodiment. The plurality of grooves 16 are not arranged in the direction of the width W.
  • the groove 16 has a rectangular cross section like the groove 6 of the first embodiment, and the depth D is constant from the inlet side to the outlet side of the impeller 3.
  • the present embodiment is not necessarily limited to such an example.
  • the depth D may be larger on the outlet side than on the inlet side of the impeller 3.
  • the groove 16 formed in the turbo pump 11 according to the present embodiment also suppresses the occurrence of a recirculation flow in the clearance between the blade 4 and the inner peripheral surface 2s, similarly to the groove 6 of the first embodiment.
  • the head loss H loss caused by the recirculation flow interfering with the main flow is reduced.
  • the groove 16 is formed with the minimum length L for suppressing the generation of the recirculation flow, and the inner peripheral surface 2s except for the section SC. It is not necessary to form the groove 16 on the surface.
  • turbo pump 1 and the turbo pump 11 described as examples of the turbo machine are both mixed flow pumps.
  • embodiments of the present invention may also include other types of turbo pumps, such as axial flow pumps, and turbomachines other than pumps.
  • turbomachines similarly to the above-described embodiment, by forming a plurality of grooves in a section where the inner peripheral surface of the casing faces the blades, the blade and the inner peripheral surface of the casing are formed. It is possible to suppress the occurrence of a recirculation flow in the clearance between them and to reduce the loss caused by the recirculation flow interfering with the main flow.
  • the angle variable mechanism for changing the blade attachment angle is provided, but in the turbomachine according to another embodiment, the blade attachment angle is not necessarily variable.
  • the problem solved by forming a plurality of grooves on the inner peripheral surface of the casing is that the blade has a convex shape outward in the longitudinal section, and the inner peripheral surface corresponds to the inner side. This is caused by having a concave shape. That is, this problem occurs regardless of whether or not the blade mounting angle is variable. Therefore, in another embodiment of the present invention, the blade mounting angle may not be variable as long as the inner peripheral surfaces of the blade and the casing have the shape as described above.
  • any one of three types of grooves 6 having different widths W is formed on the inner peripheral surface 2s of the casing 2 (implementation).
  • a fluid numerical analysis was performed on Examples 1 to 3) and a comparative example in which the groove 6 was not formed on the inner peripheral surface 2s.
  • the turbo pump 1 is a mixed flow pump having a specific speed of 680, and the number N, the length L, the depth D, and the width W of the grooves 6 are as shown in Table 1 below.
  • W ⁇ / CL shown in Table 1 is the sum of the widths W of the plurality of grooves 6 (that is, W ⁇ N) at the end of the groove 6 on the inlet side of the impeller 3 and the inner peripheral surface of the casing 2. It is a ratio to the circumferential length CL of 2s.
  • the inner radius of the casing 2 in the above portion was 142 mm
  • the peripheral length CL of the inner peripheral surface 2s was 2 ⁇ ⁇ 142 ⁇ 892 mm.
  • FIG. 5 is a characteristic curve graph showing the relationship between the flow rate Q and the head H in the first embodiment of the present invention.
  • the numerical values on the vertical axis and the horizontal axis are expressed as relative values. Therefore, the absolute value of each value is not expressed, but the relative magnitude relationship is expressed accurately.
  • the vertical axis and the horizontal axis are not logarithmic scales but are equally spaced scales. Referring to the graph of FIG. 5, in the comparative example in which the groove 6 is not formed, the flow rate Q is at a small flow rate region than the limit flow rate Q R0, right up characteristic lift H is observed.
  • Example 1 although the upwardly rising characteristic of the head H is still observed, the critical flow rate decreases to QR1 . That is, in the first embodiment, as a result of the improvement in the right-up characteristic of the head H in the flow rate range of Q R1 to Q R0 , the flow rate range where the turbo pump 1 can be stably operated is expanded. Further, in Example 2 and Example 3, almost no upward characteristic of the head H is observed in the entire flow rate range.
  • the characteristic curves of the head H are substantially the same for Example 2 and Example 3, and the right-up characteristic is almost eliminated in both examples. .
  • the maximum efficiency is lower in the third embodiment than in the second embodiment, there is almost no difference in the effect of improving the right-up characteristic of the lift H. Therefore, in the present embodiment, it is sufficient to set W ⁇ / CL to about 35% at most, and from the viewpoint of minimizing the reduction in the maximum efficiency of the turbo pump 1, W ⁇ / CL is larger than that. It can be said that it was shown that it is not necessary to set.
  • any one of the three types of grooves 16 having different widths W is formed on the inner peripheral surface 2s of the casing 2 (implementation).
  • a fluid numerical analysis was performed on Examples 4 to 6) and a comparative example in which no groove was formed on the inner peripheral surface 2s.
  • the turbo pump 11 is a mixed flow pump having a specific speed of 680, and the number N, the length D, and the width W of the grooves 16 are as shown in Table 2 below.
  • FIG. 7 shows a flow rate Q, a head H, and an efficiency Eff. It is a graph of the characteristic curve which shows the relationship with shaft power Ps. Referring to the graph of FIG. 7, in the comparative example in which the groove 16 is not formed, the flow rate Q is at a small flow rate region than the limit flow rate Q R0, right up characteristic lift H is observed. On the other hand, in Examples 4 to 6 in which the grooves 16 having the widths W of 6 mm, 15 mm, and 24 mm are formed, the critical flow rate decreases as the width W increases, and the turbo pump 11 is stably operated. The operable flow range has been expanded. From this result, it can be said that in this embodiment, the right-up characteristic of the head H is improved even when the groove 16 inclined with respect to the plane including the rotation axis RA is formed.
  • the shaft power of the fourth to sixth embodiments is slightly higher in the flow rate range where the flow rate Q is smaller than the limit flow rate QR0, Compared with Examples 1 to 3, the difference from the comparative example is small. Further, the efficiency Eff. In the flow rate region where the flow rate Q is equal to or higher than the limit flow rate QR0, the efficiency Eff. Is lower than that of the comparative example, but the difference from the comparative example is small compared to the above-described Examples 1 to 3. More specifically, before and after the flow rate Q BEP at which the maximum efficiency of the turbo pump 11 is achieved, the efficiency Eff. Is 100%, the efficiency Eff. Exceeds 94%. From this result, it can be said that in the present embodiment, when the inclined groove 16 is formed, the right-up characteristic of the head H is improved, and the reduction in the maximum efficiency of the turbo pump 11 is smaller. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention is a turbo device in which the vanes have an outwardly convex shape as viewed in longitudinal section, wherein unstable characteristics produced due to re-circulating flow are effectively improved. Provided is a turbo machine provided with a casing, and an impeller disposed in the casing and having a plurality of vanes. In the turbo device, the plurality of vanes has an outwardly convex shape as viewed in cross-section that includes the rotating shaft of the impeller, the internal peripheral surface of the casing has an inwardly concave shape as viewed in cross-section of the interval facing the plurality of vanes, and a plurality of grooves is formed on the internal peripheral surface of the casing in at least a portion of the interval.

Description

ターボ機械Turbo machine
 本発明は、ターボ機械に関する。 The present invention relates to a turbomachine.
 ターボ機械は、ケーシング内に設けられた羽根車を用いて、羽根車の回転の機械的なエネルギーとケーシング内を流れる流体のエネルギーとの変換を実現する機械の総称である。例えば、ターボポンプは、羽根車を回転駆動することによってケーシング内を流れる液体に圧力を与えるターボ機械である。他にも、気体に圧力を与えるターボ機械(例えば、送風機および圧縮機)、および流体の圧力を羽根車の回転に変換するターボ機械(例えば、水車、風車およびタービン)が存在する。 Turbomachine is a general term for machines that use an impeller provided in a casing to realize conversion between mechanical energy of rotation of the impeller and energy of fluid flowing in the casing. For example, a turbo pump is a turbo machine that applies pressure to a liquid flowing in a casing by rotationally driving an impeller. There are other turbomachines (eg, blowers and compressors) that apply pressure to the gas, and turbomachines (eg, water turbines, windmills, and turbines) that convert fluid pressure into impeller rotation.
 上記のようなターボ機械では、さまざまな要因で、機械内の流体の流れに不安定な特性が発生する場合がある。例えば、ターボポンプの場合、通常は流量の増加に対して揚程が減少し、これによって安定的な運転が可能になっているが、ある流量域ではこの関係が逆転し、流量の増加に対して揚程も増加する、いわゆる右上がり特性が生じる。右上がり特性が発生する流量域では運転が不安定化し、さらには機械内で流体の塊が自励振動するサージングが発生する可能性もある。このような不安定な特性が生じる原因の一つは、低流領域において羽根車の入口付近で発生する再循環流である。 In the turbo machine as described above, unstable characteristics may occur in the flow of fluid in the machine due to various factors. For example, in the case of a turbo pump, the head usually decreases with an increase in the flow rate, which makes it possible to operate stably. A so-called right-up characteristic is generated in which the lift is also increased. Operation may become unstable in the flow rate region where the upward-sloping characteristic occurs, and surging may occur in which the fluid mass self-oscillates in the machine. One of the causes of such unstable characteristics is the recirculation flow generated near the inlet of the impeller in the low flow region.
 このような現象を抑制する方法として、従来から、羽根の存在領域でケーシングの内周面に複数の深い溝を形成するケーシングトリートメントと呼ばれる方法が知られていた。さらに、例えば特許文献1~3では、羽根車の入口を含む領域でケーシングの内周面に複数の浅い溝を形成する技術が提案されている。特許文献1~3に記載された技術によれば、溝を羽根車の入口付近の再循環流発生場所まで延ばすことによって、浅い溝でも十分に再循環流の発生を抑制する効果を得ることができる。この技術では、従来のケーシングトリートメントに比べて浅く溝が形成されることによって、溝を形成したことによるターボ機械の最高効率の低下幅を小さくすることができる。 As a method for suppressing such a phenomenon, conventionally, a method called a casing treatment in which a plurality of deep grooves are formed on the inner peripheral surface of the casing in the blade existing region has been known. Further, for example, Patent Documents 1 to 3 propose techniques for forming a plurality of shallow grooves on the inner peripheral surface of the casing in a region including the inlet of the impeller. According to the techniques described in Patent Documents 1 to 3, by extending the groove to the recirculation flow generation location near the entrance of the impeller, an effect of sufficiently suppressing the generation of the recirculation flow can be obtained even in a shallow groove. it can. In this technique, since the groove is formed shallower than in the conventional casing treatment, the reduction in the maximum efficiency of the turbomachine due to the formation of the groove can be reduced.
特許第3884880号公報Japanese Patent No. 3888880 特許第3862135号公報Japanese Patent No. 3862135 特許第3841391号公報Japanese Patent No. 3841391
 しかしながら、例えば特許文献1の図5などを参照すれば明らかなように、上記のような技術は、縦断面(羽根車の回転軸を含む断面)における羽根の外側の形状がストレートまたは内側に凸である場合に適用される。特許文献1~3には明示されていないが、この場合、羽根の取付角度を可変にすることはできない。これに対して、羽根の取付角度を可変にする場合には、縦断面における羽根の形状は外側に凸になり、ケーシングの内周面の形状はこれに対応して内側に凹になる。このように羽根および内周面の形状が変化した場合には、再循環流の発生状態も変化する。従って、例えば羽根の取付角度を可変にしたターボ機械において、特許文献1~3に記載されたような従来の技術によって不安定な特性を効果的に改善できるとは限らない。 However, as apparent from, for example, FIG. 5 of Patent Document 1, the above-described technique is such that the outer shape of the blade in the longitudinal section (the section including the rotation shaft of the impeller) is straight or inward. Applicable when Although not explicitly disclosed in Patent Documents 1 to 3, in this case, the blade mounting angle cannot be made variable. On the other hand, when the attachment angle of the blade is variable, the shape of the blade in the longitudinal section is convex outward, and the shape of the inner peripheral surface of the casing is concave inward correspondingly. When the shapes of the blades and the inner peripheral surface change as described above, the state of occurrence of the recirculation flow also changes. Therefore, for example, in a turbo machine in which the blade mounting angle is variable, the unstable characteristics cannot always be effectively improved by conventional techniques as described in Patent Documents 1 to 3.
 本発明は上記の点に鑑みてなされた。本発明の目的の一つは、縦断面において羽根が外側に凸な形状を有するターボ機械において、再循環流のために生じる不安定な特性を効果的に改善することが可能な、新規かつ改良されたターボ機械を提供することにある。 The present invention has been made in view of the above points. One of the objects of the present invention is a new and improved capable of effectively improving the unstable characteristics caused by recirculation flow in a turbomachine having blades with outwardly convex shapes in a longitudinal section. Is to provide an improved turbomachine.
 本発明のある観点によれば、ケーシングと、ケーシング内に設けられ、複数の羽根を有する羽根車とを備えるターボ機械が提供される。上記ターボ機械において、複数の羽根は、羽根車の回転軸を含む断面において外側に凸な形状を有し、ケーシングの内周面は、複数の羽根に対向する区間の断面において内側に凹な形状を有し、複数の溝が、上記区間の少なくとも一部でケーシングの内周面に形成される。 According to an aspect of the present invention, a turbomachine including a casing and an impeller provided in the casing and having a plurality of blades is provided. In the turbomachine, the plurality of blades have an outwardly convex shape in a cross section including the rotation shaft of the impeller, and an inner peripheral surface of the casing is inwardly concave in a section of a section facing the plurality of blades. And a plurality of grooves are formed on the inner peripheral surface of the casing in at least a part of the section.
 上記のターボ機械では、溝が、羽根とケーシングの内周面との間のクリアランスにおける再循環流の発生を抑制し、再循環流が主流と干渉することによる損失を低減することができる。羽根が外側に凸な形状を有するターボ機械では、再循環流による損失が不安定な特性を発生させているため、損失を低減することによって、不安定な特性を効果的に改善することができる。 In the above turbomachine, the groove suppresses the generation of a recirculation flow in the clearance between the blades and the inner peripheral surface of the casing, and the loss due to the interference of the recirculation flow with the main flow can be reduced. In a turbomachine with blades protruding outward, the loss due to the recirculation flow generates an unstable characteristic. Therefore, the unstable characteristic can be effectively improved by reducing the loss. .
 上記のターボ機械は、複数の羽根の取付角度を変化させる角度可変機構をさらに備えてもよい。上述した課題は、羽根およびケーシングの内周面の形状によって生じるものである。従って、上記のターボ機械において羽根の取付角度が可変であることは必須ではなく、羽根の取付角度が可変ではない場合にも、上記のターボ機械の構成は有効でありうる。 The above turbo machine may further include an angle variable mechanism that changes the mounting angle of the plurality of blades. The above-described problems are caused by the shapes of the inner peripheral surfaces of the blades and the casing. Therefore, it is not essential that the blade mounting angle is variable in the turbomachine, and the configuration of the turbomachine can be effective even when the blade mounting angle is not variable.
 上記のターボ機械において、複数の溝は、上記区間以外ではケーシングの内周面に形成されなくてもよい。溝を上記区間の外側、例えば羽根車の入口外側まで延長することで羽根車の入口付近での再循環流の発生を抑制することも可能であるが、ターボ機械の最高効率の低下幅を最小化する観点からは、最小限の長さで溝を形成し、上記区間以外では内周面に溝を形成しなくてもよい。 In the turbo machine, the plurality of grooves may not be formed on the inner peripheral surface of the casing except for the section. It is possible to suppress the occurrence of recirculation flow near the inlet of the impeller by extending the groove to the outside of the above section, for example, the outer side of the impeller inlet, but the reduction in the maximum efficiency of the turbomachine is minimized. From the standpoint of achieving this, the groove is formed with a minimum length, and the groove may not be formed on the inner peripheral surface except for the above section.
 上記のターボ機械において、複数の溝のそれぞれの幅は、6mm以上であり、幅の合計は、羽根車の入口側の複数の溝の端部において、ケーシングの内周面の周長の15%~35%であってもよい。また、複数の溝のそれぞれの深さは、羽根車の入口側よりも羽根車の出口側で大きくてもよい。溝の容積が大きいほどターボ機械の最高効率は低下するため、例えば溝の深さが再循環流の抑制に与える影響が小さい羽根車の入口側では、出口側よりも溝を浅くしてもよい。 In the above turbomachine, the width of each of the plurality of grooves is 6 mm or more, and the total width is 15% of the peripheral length of the inner peripheral surface of the casing at the end of the plurality of grooves on the inlet side of the impeller. It may be up to 35%. The depth of each of the plurality of grooves may be greater on the exit side of the impeller than on the entrance side of the impeller. Since the maximum efficiency of the turbomachine decreases as the volume of the groove increases, the groove may be shallower than the outlet side on the inlet side of the impeller, for example, where the influence of the groove depth on the suppression of recirculation flow is small. .
 上記のターボ機械において、複数の溝は、羽根車の回転軸を含む平面に対して傾いて形成されてもよい。この場合、複数の溝は、羽根車の回転軸を含む平面に対して、複数の羽根が該平面に対してなす角度に対応する角度をなすように形成されてもよい。これによって、ターボ機械において再循環流のために生じる不安定な特性を改善しつつ、最高効率の低下幅を小さくすることができる。 In the above turbomachine, the plurality of grooves may be formed to be inclined with respect to a plane including the rotating shaft of the impeller. In this case, the plurality of grooves may be formed to form an angle corresponding to an angle formed by the plurality of blades with respect to the plane including the rotation axis of the impeller. As a result, it is possible to reduce the maximum efficiency drop while improving the unstable characteristics caused by the recirculation flow in the turbomachine.
本発明の第1の実施形態に係るターボ機械の縦断面図である。1 is a longitudinal sectional view of a turbo machine according to a first embodiment of the present invention. 図1に示したターボ機械の透視斜視図である。It is a see-through | perspective perspective view of the turbomachine shown in FIG. 本発明の第1の実施形態における右上がり特性の改善について説明するためのグラフである。It is a graph for demonstrating improvement of the right-up characteristic in the 1st Embodiment of this invention. 本発明の第2の実施形態に係るターボ機械の透視斜視図である。It is a see-through | perspective perspective view of the turbomachine which concerns on the 2nd Embodiment of this invention. 本発明の第1の実施例における流量および揚程の関係を示す特性曲線のグラフである。It is a graph of the characteristic curve which shows the relationship between the flow volume and the head in the 1st Example of this invention. 図5に示したグラフに、さらに効率および軸動力を示す特性曲線を重畳したグラフである。FIG. 6 is a graph in which a characteristic curve indicating efficiency and shaft power is further superimposed on the graph shown in FIG. 5. 本発明の第2の実施例における流量と揚程、効率および軸動力との関係を示す特性曲線のグラフである。It is a graph of the characteristic curve which shows the relationship between the flow volume in the 2nd Example of this invention, a head, efficiency, and shaft power.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係るターボ機械の縦断面図である。図1を参照すると、本実施形態に係るターボ機械であるターボポンプ1は、ケーシング2と、羽根車3と、角度可変機構5とを含む。ケーシング2内に設けられる羽根車3は、複数の羽根4を有する。羽根4は、図示された縦断面、すなわち回転軸RAを含む断面において、外側に凸な形状を有する。一方、ケーシング2の内周面2sは、縦断面において、羽根4に対向する区間SCで内側に凹な形状を有する。図示されているように、区間SCにおいて、羽根4の凸な形状と、内周面2sの凹な形状とは、互いに対応している。なお、本明細書では、回転軸RAに近い側を内側、回転軸RAから遠い側を外側という。角度可変機構5は、羽根4の取付角度を変化させる。さらに、ターボポンプ1では、区間SCの中央部で、内周面2sに複数の溝6が形成される。
(First embodiment)
FIG. 1 is a longitudinal sectional view of a turbo machine according to a first embodiment of the present invention. Referring to FIG. 1, a turbo pump 1 that is a turbo machine according to the present embodiment includes a casing 2, an impeller 3, and an angle variable mechanism 5. The impeller 3 provided in the casing 2 has a plurality of blades 4. The blade 4 has an outwardly convex shape in the illustrated longitudinal section, that is, a section including the rotation axis RA. On the other hand, the inner peripheral surface 2 s of the casing 2 has a concave shape on the inner side in the section SC facing the blade 4 in the longitudinal section. As illustrated, in the section SC, the convex shape of the blades 4 and the concave shape of the inner peripheral surface 2s correspond to each other. In this specification, the side closer to the rotation axis RA is referred to as the inner side, and the side farther from the rotation axis RA is referred to as the outer side. The angle variable mechanism 5 changes the attachment angle of the blade 4. Furthermore, in the turbo pump 1, a plurality of grooves 6 are formed in the inner peripheral surface 2s at the center of the section SC.
 図2は、図1に示したターボ機械の透視斜視図である。なお、図2では、ケーシング2は、区間SCの内周面2sを除いて図示されていない。図2には、内周面2sに形成される溝6の長さL、幅W、および深さDが示されている。溝6の長さLは回転軸RAを含む平面内で定義され、幅Wは当該平面に垂直な方向で定義される。また、複数の溝6は、内周面2sの周方向に配列される。従って、回転軸RAに沿った方向で矢視した場合、溝6は、回転軸RAを中心とする放射線上に形成されている。 FIG. 2 is a perspective view of the turbo machine shown in FIG. In FIG. 2, the casing 2 is not shown except for the inner peripheral surface 2s of the section SC. FIG. 2 shows the length L, width W, and depth D of the groove 6 formed in the inner peripheral surface 2s. The length L of the groove 6 is defined in a plane including the rotation axis RA, and the width W is defined in a direction perpendicular to the plane. The plurality of grooves 6 are arranged in the circumferential direction of the inner peripheral surface 2s. Therefore, when viewed in the direction along the rotation axis RA, the groove 6 is formed on the radiation centered on the rotation axis RA.
 ここで、図示された例において、溝6は矩形断面を有する。また、深さDは、羽根車3の入口側から出口側まで一定である。しかしながら、本実施形態は必ずしもこのような例には限定されない。例えば、深さDは、羽根車3の入口側よりも出口側で大きくなっていてもよい。溝6の容積が大きいほどターボポンプ1の最高効率は低下する。従って、例えば羽根車3の入口側では溝6の深さDが再循環流の抑制に与える影響が小さいのであれば、入口側では出口側よりも溝6を浅くすることによって、ターボポンプ1の最高効率の低下幅を小さくしてもよい。 Here, in the illustrated example, the groove 6 has a rectangular cross section. The depth D is constant from the inlet side to the outlet side of the impeller 3. However, the present embodiment is not necessarily limited to such an example. For example, the depth D may be larger on the outlet side than on the inlet side of the impeller 3. The maximum efficiency of the turbo pump 1 decreases as the volume of the groove 6 increases. Therefore, for example, if the influence of the depth D of the groove 6 on the suppression of the recirculation flow is small on the inlet side of the impeller 3, by making the groove 6 shallower on the inlet side than on the outlet side, The amount of decrease in maximum efficiency may be reduced.
 図3は、本発明の第1の実施形態における右上がり特性の改善について説明するためのグラフである。図3には、ターボポンプの流量Qと揚程Hとの関係を示す特性曲線が示されている。実際の揚程Hpumpの特性曲線では、流量Qが限界流量QRよりも少ない流量域において、流量Qの増加に対して揚程Hpumpが増加する右上がり特性がみられる。ここでは、このような特性が発生する原因を、揚程Hpumpを理論揚程Hthおよび揚程損失Hlossを用いて表現した以下の式(1)を用いて説明する。 FIG. 3 is a graph for explaining the improvement of the right-up characteristic in the first embodiment of the present invention. FIG. 3 shows a characteristic curve showing the relationship between the flow rate Q and the head H of the turbo pump. The actual characteristic curve of the pump head H pump, in low flow rate zone than the flow rate Q is a limit flow rate Q R, right up characteristic lift H pump is increased with an increase of the flow rate Q is observed. Here, the cause of the occurrence of such characteristics will be described using the following formula (1) in which the head H pump is expressed using the theoretical head H th and the head loss H loss .
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)において、理論揚程Hthは、以下の式(2)によって表現できる。なお、gは重力加速度、u1およびu2は、それぞれターボポンプの羽根車の入口および出口での周速度(羽根車の半径と回転角速度との積)、vu1およびvu2は、それぞれ羽根車の入口および出口での流体の周方向旋回速度である。
Figure JPOXMLDOC01-appb-M000001
In the above formula (1), the theoretical head H th can be expressed by the following formula (2). Where g is the acceleration of gravity, u 1 and u 2 are the peripheral speeds at the inlet and outlet of the impeller of the turbo pump (product of impeller radius and rotational angular velocity), and v u1 and v u2 are the impellers, respectively. It is the circumferential turning speed of the fluid at the entrance and exit of the car.
Figure JPOXMLDOC01-appb-M000002
 羽根車の入口付近で再循環流が発生していない場合、上記の式(2)において、vu1=0である。一方、羽根車の入口付近で旋回速度を有する再循環流が発生するとvu1>0となり、理論揚程Hthは再循環流が発生していない場合に比べて減少する。図3のグラフでは、このような原因で発生する可能性がある理論揚程の減少量ΔHthが示されている。流量Qが限界流量QRよりも少ない流量域で発生する再循環流に伴う理論揚程の減少量ΔHthは、揚程Hpumpの右上がり特性の原因になる。
Figure JPOXMLDOC01-appb-M000002
When no recirculation flow is generated near the entrance of the impeller, v u1 = 0 in the above equation (2). On the other hand, when a recirculation flow having a swirl speed is generated near the entrance of the impeller, v u1 > 0, and the theoretical head H th is reduced as compared with the case where no recirculation flow is generated. The graph of FIG. 3 shows the reduction amount ΔH th of the theoretical head that may occur due to such a cause. Reduction [Delta] H th theoretical lift due to the recycle stream flow rate Q is generated in the low flow rate zone than the limit flow rate Q R will cause upward-sloping characteristics of lift H pump.
 一方、揚程損失Hlossは、ケーシングおよび羽根車などによって形成される流路と流体との間の摩擦抵抗によって生じる。また、揚程損失Hlossは、流路で発生する再循環流と主流とが干渉することによっても生じる。図3のグラフでは、このような揚程損失Hlossが、理論揚程Hthと揚程Hpumpとの差分として示されている。流量Qが限界流量QRよりも少ない流量域で、摩擦抵抗に加えて再循環流と主流との干渉が発生することによって揚程損失Hlossが増大すれば、これも揚程Hpumpの右上がり特性の原因になる。 On the other hand, the head loss H loss is caused by the frictional resistance between the flow path formed by the casing and the impeller and the fluid. The head loss H loss is also caused by interference between the recirculation flow generated in the flow path and the main flow. In the graph of FIG. 3, such a head loss H loss is shown as a difference between the theoretical head H th and the head H pump . A small flow rate region than the flow rate Q is a limit flow rate Q R, if the frictional resistance in addition to the recycle stream and the interference increases lift loss H loss by generation of mainstream, right up characteristic of which is also lifting height H pump Cause.
 ここで、本発明者らが実施した流体数値解析の結果、本実施形態に係るターボポンプ1では、縦断面において羽根4が外側に凸な形状を有するために、羽根車3の入口付近よりも、羽根4とケーシング2の内周面2sとの間のクリアランスにおける再循環流の発生が顕著であることがわかった。それゆえ、ターボポンプ1では、再循環流が主流と干渉することによる揚程損失Hlossの増大が、揚程Hpumpの右上がり特性の主な原因になる。 Here, as a result of the fluid numerical analysis performed by the present inventors, in the turbo pump 1 according to the present embodiment, since the blades 4 have an outwardly convex shape in the longitudinal section, they are more than near the entrance of the impeller 3. It has been found that the occurrence of recirculation flow in the clearance between the blade 4 and the inner peripheral surface 2s of the casing 2 is significant. Therefore, in the turbo pump 1, the increase in the head loss H loss due to the recirculation flow interfering with the main flow is a main cause of the upward rising characteristic of the head H pump .
 この知見に従えば、ターボポンプ1では、羽根車3の入口付近における再循環流の発生を抑制することは、揚程Hpumpの右上がり特性を改善するために必ずしも効果的ではない。それよりも、羽根4と内周面2sとの間のクリアランスで発生する再循環流が主流と干渉することによって発生する揚程損失Hlossを低減することによって、効果的に揚程Hpumpの右上がり特性を改善することができると考えられる。 According to this knowledge, in the turbo pump 1, it is not always effective to suppress the generation of the recirculation flow in the vicinity of the inlet of the impeller 3 in order to improve the right-up characteristic of the head H pump . Rather, by reducing the head loss H loss caused by the recirculation flow generated by the clearance between the blades 4 and the inner peripheral surface 2s interfering with the main flow, the head H pump is effectively raised to the right. It is thought that the characteristics can be improved.
 そこで、本発明者らは、ターボポンプ1において、羽根4に対向する区間SCでケーシング2の内周面2sに溝6を形成することを考案した。溝6は、羽根4と内周面2sとの間のクリアランスにおける再循環流の発生を抑制し、再循環流が主流と干渉することによって発生する揚程損失Hlossを低減する。 Therefore, the present inventors devised that the groove 6 is formed in the inner peripheral surface 2s of the casing 2 in the section SC facing the blade 4 in the turbo pump 1. The groove 6 suppresses the occurrence of a recirculation flow in the clearance between the blades 4 and the inner peripheral surface 2s, and reduces the head loss H loss that occurs when the recirculation flow interferes with the main flow.
 なお、溝6を羽根車3の入口外側まで延長し、特許第3884880号公報などと同様に羽根車3の入口付近での再循環流の発生を抑制することも可能である。ただし、溝6が長いほどターボポンプ1の最高効率は低下する。また、上記の通り、ターボポンプ1では、揚程Hpumpの右上がり特性について、理論揚程の減少量ΔHthよりも、揚程損失Hlossの増大の影響が大きい。従って、揚程Hpumpの右上がり特性を改善しつつ、ターボポンプ1の最高効率の低下幅を最小化するのであれば、再循環流の発生を抑制するための最小限の長さLで溝6を形成し、区間SC以外では内周面2sに溝6を形成しなくてもよい。 It is also possible to extend the groove 6 to the outside of the inlet of the impeller 3 and suppress the occurrence of recirculation flow near the inlet of the impeller 3 as in Japanese Patent No. 3884880. However, the longer the groove 6, the lower the maximum efficiency of the turbo pump 1. In addition, as described above, in the turbo pump 1, the increase in the head loss H loss is greater than the theoretical head decrease amount ΔH th in the upward rising characteristic of the head H pump . Accordingly, if the reduction in the maximum efficiency of the turbo pump 1 is minimized while improving the right-up characteristic of the head H pump , the groove 6 has a minimum length L for suppressing the occurrence of recirculation flow. The groove 6 may not be formed on the inner peripheral surface 2s except for the section SC.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。なお、本実施形態の構成は、以下で説明する溝の配置を除いては、上記の第1の実施形態と同様である。従って、重複した説明、例えば図1のような縦断面図を参照した説明は、対応する構成要素に共通の符号を付することによって省略されている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The configuration of the present embodiment is the same as that of the first embodiment except for the arrangement of grooves described below. Accordingly, duplicate descriptions, for example, descriptions with reference to longitudinal sectional views as in FIG. 1, are omitted by giving common reference numerals to corresponding components.
 図4は、本発明の第2の実施形態に係るターボ機械の透視斜視図である。なお、図4では、図2と同様に、ケーシング2が、区間SCの内周面2sを除いて図示されていない。図2を参照すると、本実施形態に係るターボポンプ11では、区間SCの中央部で、ケーシング2の内周面2sに複数の溝16が形成される。図示されているように、溝16は、回転軸RAを含む平面に対して傾いた方向に延びる。ここで、溝16が回転軸RAを含む平面に対してなす角度は、羽根4の取付角度に対応していてもよい。より具体的には、溝16は、回転軸RAを含む平面に対して、羽根4が該平面に対してなす角度に対応する角度をなすように形成されてもよい。ここで、本実施形態において、羽根4の取付角度は、角度可変機構5(図4には示されない)によって変化しうる。従って、溝16が回転軸RAを含む平面に対してなす角度は、例えば、羽根4の取付角度が可変範囲の中央値、平均値、または可変範囲内で設定される任意の基準角度である場合に、羽根4が回転軸RAを含む平面に対してなす角度に基づいて決定される。 FIG. 4 is a perspective view of a turbo machine according to the second embodiment of the present invention. In FIG. 4, as in FIG. 2, the casing 2 is not illustrated except for the inner peripheral surface 2 s of the section SC. Referring to FIG. 2, in the turbo pump 11 according to the present embodiment, a plurality of grooves 16 are formed on the inner peripheral surface 2 s of the casing 2 at the center of the section SC. As illustrated, the groove 16 extends in a direction inclined with respect to a plane including the rotation axis RA. Here, the angle formed by the groove 16 with respect to the plane including the rotation axis RA may correspond to the attachment angle of the blade 4. More specifically, the groove 16 may be formed with respect to a plane including the rotation axis RA so as to form an angle corresponding to an angle formed by the blade 4 with respect to the plane. Here, in this embodiment, the attachment angle of the blade | wing 4 can change with the angle variable mechanism 5 (not shown in FIG. 4). Therefore, the angle formed by the groove 16 with respect to the plane including the rotation axis RA is, for example, the attachment angle of the blade 4 is a median value, an average value of the variable range, or an arbitrary reference angle set within the variable range. The blade 4 is determined based on the angle formed with respect to the plane including the rotation axis RA.
 また、図4には、溝16の長さL、幅W、および深さDが示されている。上記の通り、溝16は、回転軸RAを含む平面に対して傾いて形成されるため、長さLも当該平面に対して傾いた方向に定義される。長さLに対して垂直な方向で定義される幅Wも、回転軸RAを含む平面に対して傾いている。本実施形態でも、第1の実施形態と同様に複数の溝16は内周面2sの周方向に配列されるが、それぞれの溝16が傾いているために、第1の実施形態とは異なり複数の溝16は幅Wの方向に配列されるわけではない。なお、図示された例では、溝16が第1の実施形態の溝6と同様に矩形断面を有し、深さDは羽根車3の入口側から出口側まで一定である。しかしながら、本実施形態は必ずしもこのような例には限定されない。本実施形態でも、第1の実施形態と同様に、例えば深さDが羽根車3の入口側よりも出口側で大きくなっていてもよい。 FIG. 4 also shows the length L, width W, and depth D of the groove 16. As described above, since the groove 16 is formed to be inclined with respect to the plane including the rotation axis RA, the length L is also defined in a direction inclined with respect to the plane. The width W defined in the direction perpendicular to the length L is also inclined with respect to the plane including the rotation axis RA. Also in this embodiment, the plurality of grooves 16 are arranged in the circumferential direction of the inner peripheral surface 2s as in the first embodiment. However, since each groove 16 is inclined, it is different from the first embodiment. The plurality of grooves 16 are not arranged in the direction of the width W. In the illustrated example, the groove 16 has a rectangular cross section like the groove 6 of the first embodiment, and the depth D is constant from the inlet side to the outlet side of the impeller 3. However, the present embodiment is not necessarily limited to such an example. Also in the present embodiment, as in the first embodiment, for example, the depth D may be larger on the outlet side than on the inlet side of the impeller 3.
 本実施形態に係るターボポンプ11に形成される溝16も、上記の第1の実施形態の溝6と同様に、羽根4と内周面2sとの間のクリアランスにおける再循環流の発生を抑制し、再循環流が主流と干渉することによって発生する揚程損失Hlossを低減する。本実施形態でも、溝16を羽根車3の入口外側まで延長し、羽根車3の入口付近での再循環流の発生を抑制することが可能である。ただし、ターボポンプ11の最高効率の低下幅を最小化するのであれば、再循環流の発生を抑制するための最小限の長さLで溝16を形成し、区間SC以外では内周面2sに溝16を形成しなくてもよい。 The groove 16 formed in the turbo pump 11 according to the present embodiment also suppresses the occurrence of a recirculation flow in the clearance between the blade 4 and the inner peripheral surface 2s, similarly to the groove 6 of the first embodiment. In addition, the head loss H loss caused by the recirculation flow interfering with the main flow is reduced. Also in this embodiment, it is possible to extend the groove 16 to the outside of the inlet of the impeller 3 and suppress the occurrence of recirculation flow near the inlet of the impeller 3. However, if the reduction in the maximum efficiency of the turbo pump 11 is to be minimized, the groove 16 is formed with the minimum length L for suppressing the generation of the recirculation flow, and the inner peripheral surface 2s except for the section SC. It is not necessary to form the groove 16 on the surface.
 以上、本発明の第1および第2の実施形態について説明した。これらの実施形態において、ターボ機械の例として説明されたターボポンプ1およびターボポンプ11はいずれも斜流ポンプであった。しかしながら、本発明の実施形態は、軸流ポンプなどの他の種類のターボポンプ、およびポンプ以外のターボ機械をも含みうる。このような他の種類のターボ機械においても、上記の実施形態と同様に、ケーシングの内周面が羽根に対向する区間に複数の溝を形成することによって、羽根とケーシングの内周面との間のクリアランスにおける再循環流の発生を抑制し、再循環流が主流と干渉することによって発生する損失を低減することができる。 The first and second embodiments of the present invention have been described above. In these embodiments, the turbo pump 1 and the turbo pump 11 described as examples of the turbo machine are both mixed flow pumps. However, embodiments of the present invention may also include other types of turbo pumps, such as axial flow pumps, and turbomachines other than pumps. In such other types of turbomachines, similarly to the above-described embodiment, by forming a plurality of grooves in a section where the inner peripheral surface of the casing faces the blades, the blade and the inner peripheral surface of the casing are formed. It is possible to suppress the occurrence of a recirculation flow in the clearance between them and to reduce the loss caused by the recirculation flow interfering with the main flow.
 また、上記の実施形態では、羽根の取付角度を変化させる角度可変機構が設けられたが、他の実施形態に係るターボ機械において、羽根の取付角度は必ずしも可変でなくてもよい。上記の実施形態において、ケーシングの内周面に複数の溝を形成することによって解決された課題は、羽根が縦断面において外側に凸な形状を有し、内周面がこれに対応して内側に凹な形状を有することによって発生したものである。つまり、この課題は、羽根の取付角度が可変であるか否かに関わらず発生する。従って、本発明の他の実施形態では、羽根およびケーシングの内周面が上記のような形状を有するのであれば、羽根の取付角度は可変でなくてもよい。 Further, in the above embodiment, the angle variable mechanism for changing the blade attachment angle is provided, but in the turbomachine according to another embodiment, the blade attachment angle is not necessarily variable. In the above embodiment, the problem solved by forming a plurality of grooves on the inner peripheral surface of the casing is that the blade has a convex shape outward in the longitudinal section, and the inner peripheral surface corresponds to the inner side. This is caused by having a concave shape. That is, this problem occurs regardless of whether or not the blade mounting angle is variable. Therefore, in another embodiment of the present invention, the blade mounting angle may not be variable as long as the inner peripheral surfaces of the blade and the casing have the shape as described above.
 (第1の実施例)
 続いて、本発明の第1の実施例について説明する。第1の実施例では、上記の第1の実施形態に係るターボポンプ1において、幅Wが異なる3種類の溝6のいずれかをケーシング2の内周面2sに形成した3つの実施例(実施例1~実施例3)と、内周面2sに溝6が形成されない比較例とについて、流体数値解析を実施した。本実施例において、ターボポンプ1は比速度680の斜流ポンプであり、溝6の数N、長さL、深さD、および幅Wは下記の表1に示す通りであった。また、表1に示されるWΣ/CLは、羽根車3の入口側の溝6の端部における、複数の溝6の幅Wの合計(つまりW×N)と、ケーシング2の内周面2sの周長CLとの比である。なお、本実施例において上記部分におけるケーシング2の内側半径は142mm、内周面2sの周長CLは2π×142≒892mmであった。
(First embodiment)
Subsequently, a first embodiment of the present invention will be described. In the first example, in the turbo pump 1 according to the first embodiment described above, any one of three types of grooves 6 having different widths W is formed on the inner peripheral surface 2s of the casing 2 (implementation). A fluid numerical analysis was performed on Examples 1 to 3) and a comparative example in which the groove 6 was not formed on the inner peripheral surface 2s. In this embodiment, the turbo pump 1 is a mixed flow pump having a specific speed of 680, and the number N, the length L, the depth D, and the width W of the grooves 6 are as shown in Table 1 below. W Σ / CL shown in Table 1 is the sum of the widths W of the plurality of grooves 6 (that is, W × N) at the end of the groove 6 on the inlet side of the impeller 3 and the inner peripheral surface of the casing 2. It is a ratio to the circumferential length CL of 2s. In the present embodiment, the inner radius of the casing 2 in the above portion was 142 mm, and the peripheral length CL of the inner peripheral surface 2s was 2π × 142≈892 mm.
Figure JPOXMLDOC01-appb-T000003
 図5は、本発明の第1の実施例における流量Qおよび揚程Hの関係を示す特性曲線のグラフである。なお、図5~図7において、縦軸および横軸の数値は相対値で表現されている。従って、それぞれの値の絶対値は表現されないが、相対的な大小関係については正確に表現されている。また、図5~図7において、縦軸および横軸は対数目盛ではなく、等間隔の目盛である。図5のグラフを参照すると、溝6が形成されない比較例では、流量Qが限界流量QR0よりも少ない流量域で、揚程Hに右上がり特性が観察される。これに対して、実施例1では、揚程Hの右上がり特性は依然として観察されるものの、限界流量はQR1へと低下する。つまり、実施例1ではQR1~QR0の流量域において揚程Hの右上がり特性が改善された結果、ターボポンプ1を安定的に運転可能な流量域が拡大されている。さらに、実施例2および実施例3では、流量域の全体において揚程Hの右上がり特性がほとんど観察されていない。
Figure JPOXMLDOC01-appb-T000003
FIG. 5 is a characteristic curve graph showing the relationship between the flow rate Q and the head H in the first embodiment of the present invention. 5 to 7, the numerical values on the vertical axis and the horizontal axis are expressed as relative values. Therefore, the absolute value of each value is not expressed, but the relative magnitude relationship is expressed accurately. In FIGS. 5 to 7, the vertical axis and the horizontal axis are not logarithmic scales but are equally spaced scales. Referring to the graph of FIG. 5, in the comparative example in which the groove 6 is not formed, the flow rate Q is at a small flow rate region than the limit flow rate Q R0, right up characteristic lift H is observed. On the other hand, in Example 1, although the upwardly rising characteristic of the head H is still observed, the critical flow rate decreases to QR1 . That is, in the first embodiment, as a result of the improvement in the right-up characteristic of the head H in the flow rate range of Q R1 to Q R0 , the flow rate range where the turbo pump 1 can be stably operated is expanded. Further, in Example 2 and Example 3, almost no upward characteristic of the head H is observed in the entire flow rate range.
 つまり、図5のグラフに示された本実施例の結果では、実施例1(WΣ/CL=13.4%)の時点で揚程Hの右上がり特性の有意な改善がみられ、WΣ/CLがより大きい実施例2(WΣ/CL=33.6%)および実施例3(WΣ/CL=53.8%)では右上がり特性がさらに改善されている。従って、本実施例では、WΣ/CLが13.4%以上である場合について、揚程Hの右上がり特性について有意な改善がみられることが示されたといえる。 That is, in the result of the present embodiment shown in the graph of FIG. 5, a significant improvement in the right-up characteristic of the head H is observed at the time of Example 1 (W Σ /CL=13.4%), and W Σ In Example 2 (W Σ /CL=33.6%) and Example 3 (W Σ /CL=53.8%) where / CL is larger, the right-up characteristic is further improved. Therefore, in this example, it can be said that significant improvement was seen in the right-up characteristic of the head H when W Σ / CL is 13.4% or more.
 図6は、図5に示したグラフに、さらに効率Eff.および軸動力Psを示す特性曲線を重畳したグラフである。図6のグラフを参照すると、特に流量Qが限界流量QR0よりも少ない流量域では、実施例1~実施例3の軸動力Psが比較例を上回ることが示されている。その一方で、流量Qが限界流量QR0以上の流量域では、実施例1~実施例3の効率Eff.が比較例よりも低下することが示されている。より具体的には、ターボポンプ1の最高効率が達成される流量QBEPの前後において、比較例の効率Eff.を100%とすると、実施例1(WΣ/CL=13.4%)では約97%、実施例2(WΣ/CL=33.6%)では約95%、実施例3(WΣ/CL=53.8%)では約92%である。 FIG. 6 is a graph showing the efficiency Eff. It is the graph which superimposed the characteristic curve which shows shaft power Ps. Referring to the graph of FIG. 6, it is shown that the shaft power Ps of Examples 1 to 3 exceeds the comparative example, particularly in the flow rate region where the flow rate Q is smaller than the limit flow rate Q R0 . On the other hand, in the flow rate region where the flow rate Q is greater than or equal to the limit flow rate Q R0 , the efficiency Eff. Is shown to be lower than that of the comparative example. More specifically, before and after the flow rate Q BEP at which the maximum efficiency of the turbo pump 1 is achieved, the efficiency Eff. Is about 97% in Example 1 (W Σ /CL=13.4%), about 95% in Example 2 (W Σ /CL=33.6%), and Example 3 (W Σ /CL=53.8%) is about 92%.
 ここで、図6のグラフにも示されているように、実施例2および実施例3について、揚程Hの特性曲線はほぼ一致しており、いずれの例でも右上がり特性はほぼ解消されている。換言すれば、実施例3では、実施例2に比べて最高効率が低下しているものの、揚程Hの右上がり特性の改善についての効果にはほとんど差がない。従って、本実施例では、WΣ/CLは大きくても35%程度に設定すれば十分であり、ターボポンプ1の最高効率の低下幅を最小化する観点からはそれ以上に大きいWΣ/CLを設定する必要がないことが示されたといえる。 Here, as shown in the graph of FIG. 6, the characteristic curves of the head H are substantially the same for Example 2 and Example 3, and the right-up characteristic is almost eliminated in both examples. . In other words, although the maximum efficiency is lower in the third embodiment than in the second embodiment, there is almost no difference in the effect of improving the right-up characteristic of the lift H. Therefore, in the present embodiment, it is sufficient to set W Σ / CL to about 35% at most, and from the viewpoint of minimizing the reduction in the maximum efficiency of the turbo pump 1, W Σ / CL is larger than that. It can be said that it was shown that it is not necessary to set.
 (第2の実施例)
 次に、本発明の第2の実施例について説明する。第2の実施例では、上記の第2の実施形態に係るターボポンプ11において、幅Wが異なる3種類の溝16のいずれかをケーシング2の内周面2sに形成した3つの実施例(実施例4~実施例6)と、内周面2sに溝が形成されない比較例とについて、流体数値解析を実施した。本実施例において、ターボポンプ11は比速度680の斜流ポンプであり、溝16の数N、長さD、および幅Wは下記の表2に示す通りであった。
(Second embodiment)
Next, a second embodiment of the present invention will be described. In the second example, in the turbo pump 11 according to the second embodiment described above, any one of the three types of grooves 16 having different widths W is formed on the inner peripheral surface 2s of the casing 2 (implementation). A fluid numerical analysis was performed on Examples 4 to 6) and a comparative example in which no groove was formed on the inner peripheral surface 2s. In this embodiment, the turbo pump 11 is a mixed flow pump having a specific speed of 680, and the number N, the length D, and the width W of the grooves 16 are as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000004
 図7は、本発明の第2の実施例における流量Qと揚程H、効率Eff.および軸動力Psとの関係を示す特性曲線のグラフである。図7のグラフを参照すると、溝16が形成されない比較例では、流量Qが限界流量QR0よりも少ない流量域で、揚程Hに右上がり特性が観察される。これに対して、幅Wが6mm、15mm、および24mmの溝16がそれぞれ形成された実施例4~実施例6では、幅Wが大きくなるにつれて限界流量が低下し、ターボポンプ11を安定的に運転可能な流量域が拡大されている。この結果から、本実施例では、回転軸RAを含む平面に対して傾いた溝16が形成される場合にも揚程Hの右上がり特性が改善されることが示されたといえる。
Figure JPOXMLDOC01-appb-T000004
FIG. 7 shows a flow rate Q, a head H, and an efficiency Eff. It is a graph of the characteristic curve which shows the relationship with shaft power Ps. Referring to the graph of FIG. 7, in the comparative example in which the groove 16 is not formed, the flow rate Q is at a small flow rate region than the limit flow rate Q R0, right up characteristic lift H is observed. On the other hand, in Examples 4 to 6 in which the grooves 16 having the widths W of 6 mm, 15 mm, and 24 mm are formed, the critical flow rate decreases as the width W increases, and the turbo pump 11 is stably operated. The operable flow range has been expanded. From this result, it can be said that in this embodiment, the right-up characteristic of the head H is improved even when the groove 16 inclined with respect to the plane including the rotation axis RA is formed.
 一方、軸動力Psについては、流量Qが限界流量QR0よりも少ない流量域では実施例4~実施例6の軸動力が比較例をわずかに上回ることが示されているものの、上記の実施例1~実施例3に比べると比較例との差は小さい。また、効率Eff.については、流量Qが限界流量QR0以上になる流量域で実施例4~実施例6の効率Eff.が比較例よりも低下することが示されているものの、上記の実施例1~実施例3に比べると比較例との差は小さい。より具体的には、ターボポンプ11の最高効率が達成される流量QBEPの前後において、比較例の効率Eff.を100%とすると、実施例4~実施例6の効率Eff.が94%を超えている。この結果から、本実施例では、傾いた溝16を形成した場合、揚程Hの右上がり特性が改善されるとともに、ターボポンプ11の最高効率の低下幅がより小さくて済むことが示されたといえる。 On the other hand, with respect to the shaft power Ps, although it is shown that the shaft power of the fourth to sixth embodiments is slightly higher in the flow rate range where the flow rate Q is smaller than the limit flow rate QR0, Compared with Examples 1 to 3, the difference from the comparative example is small. Further, the efficiency Eff. In the flow rate region where the flow rate Q is equal to or higher than the limit flow rate QR0, the efficiency Eff. Is lower than that of the comparative example, but the difference from the comparative example is small compared to the above-described Examples 1 to 3. More specifically, before and after the flow rate Q BEP at which the maximum efficiency of the turbo pump 11 is achieved, the efficiency Eff. Is 100%, the efficiency Eff. Exceeds 94%. From this result, it can be said that in the present embodiment, when the inclined groove 16 is formed, the right-up characteristic of the head H is improved, and the reduction in the maximum efficiency of the turbo pump 11 is smaller. .
 以上、いくつかの本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良されうるとともに、本発明にはその等価物が含まれることは勿論である。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または省略が可能である。 Although some embodiments of the present invention have been described above, the above-described embodiments of the present invention are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. In addition, any combination or omission of each component described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. .
 本願は、2015年8月19日出願の日本国特許出願第2015-161769号に基づく優先権を主張する。日本国特許出願第2015-161769号の明細書、特許請求の範囲、図面および要約書を含む全ての開示内容は、参照により全体として本願に援用される。特許第3884880号公報(特許文献1)、特許第3862135号公報(特許文献2)、および特許第3841391号公報(特許文献3)の明細書、特許請求の範囲、図面および要約書を含む全ての開示は、参照により全体として本願に援用される。 This application claims priority based on Japanese Patent Application No. 2015-161769 filed on Aug. 19, 2015. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-161769 is incorporated herein by reference in its entirety. All of the specifications, claims, drawings and abstracts of Japanese Patent No. 3848880 (Patent Document 1), Japanese Patent No. 3862135 (Patent Document 2), and Japanese Patent No. 3841391 (Patent Document 3) The disclosure is incorporated herein by reference in its entirety.
  1,11  ターボポンプ
  2  ケーシング
  2s  内周面
  3  羽根車
  4  羽根
  5  角度可変機構
  6,16  溝
DESCRIPTION OF SYMBOLS 1,11 Turbo pump 2 Casing 2s Inner peripheral surface 3 Impeller 4 Blade 5 Angle variable mechanism 6,16 Groove

Claims (7)

  1.  ケーシングと、前記ケーシング内に設けられ、複数の羽根を有する羽根車とを備えるターボ機械であって、
     前記複数の羽根は、前記羽根車の回転軸を含む断面において外側に凸な形状を有し、
     前記ケーシングの内周面は、前記複数の羽根に対向する区間の前記断面において内側に凹な形状を有し、
     複数の溝が、前記区間の少なくとも一部で前記ケーシングの内周面に形成される、ターボ機械。
    A turbomachine comprising a casing and an impeller provided in the casing and having a plurality of blades,
    The plurality of blades have an outwardly convex shape in a cross section including a rotation axis of the impeller,
    The inner peripheral surface of the casing has a concave shape inward in the cross section of the section facing the plurality of blades,
    The turbomachine in which a plurality of grooves are formed on the inner peripheral surface of the casing in at least a part of the section.
  2.  前記複数の羽根の取付角度を変化させる角度可変機構をさらに備える、請求項1に記載のターボ機械。 The turbomachine according to claim 1, further comprising an angle variable mechanism that changes an attachment angle of the plurality of blades.
  3.  前記複数の溝は、前記区間以外では前記ケーシングの内周面に形成されない、請求項1または2に記載のターボ機械。 The turbo machine according to claim 1 or 2, wherein the plurality of grooves are not formed on an inner peripheral surface of the casing except in the section.
  4.  前記複数の溝のそれぞれの幅は、6mm以上であり、
     前記幅の合計は、前記羽根車の入口側の前記複数の溝の端部において、前記ケーシングの内周面の周長の13.4%~35%である、請求項1~3のいずれか1項に記載のターボ機械。
    Each of the plurality of grooves has a width of 6 mm or more,
    The total of the widths is 13.4% to 35% of the circumferential length of the inner peripheral surface of the casing at the ends of the plurality of grooves on the inlet side of the impeller. The turbo machine according to item 1.
  5.  前記複数の溝のそれぞれの深さは、前記羽根車の入口側よりも前記羽根車の出口側で大きい、請求項1~4のいずれか1項に記載のターボ機械。 The turbomachine according to any one of claims 1 to 4, wherein a depth of each of the plurality of grooves is larger on an outlet side of the impeller than on an inlet side of the impeller.
  6.  前記複数の溝は、前記羽根車の回転軸を含む平面に対して傾いて形成される、請求項1~5のいずれか1項に記載のターボ機械。 The turbo machine according to any one of claims 1 to 5, wherein the plurality of grooves are formed to be inclined with respect to a plane including a rotation axis of the impeller.
  7.  前記複数の溝は、前記羽根車の回転軸を含む平面に対して、前記複数の羽根が該平面に対してなす角度に対応する角度をなすように形成される、請求項6に記載のターボ機械。 The turbo according to claim 6, wherein the plurality of grooves are formed so as to form an angle corresponding to an angle formed by the plurality of blades with respect to a plane including a rotation axis of the impeller. machine.
PCT/JP2016/074101 2015-08-19 2016-08-18 Turbo device WO2017030164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161769A JP6624846B2 (en) 2015-08-19 2015-08-19 Turbo machinery
JP2015-161769 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017030164A1 true WO2017030164A1 (en) 2017-02-23

Family

ID=58052224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074101 WO2017030164A1 (en) 2015-08-19 2016-08-18 Turbo device

Country Status (2)

Country Link
JP (1) JP6624846B2 (en)
WO (1) WO2017030164A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210213034A1 (en) * 2018-05-25 2021-07-15 Neuralia Synergestic combination composition comprising a steroidal saponin, a first polyphenolic compound and a second polyphenolic compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156631B1 (en) * 2019-11-18 2020-09-16 (주)신광 Pump structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795500U (en) * 1980-12-02 1982-06-11
JPS60124599U (en) * 1984-01-30 1985-08-22 三菱重工業株式会社 Rotary fluid machine with casing treatment
JP2015514906A (en) * 2012-04-19 2015-05-21 スネクマ Compressor casing with optimized cavities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795500U (en) * 1980-12-02 1982-06-11
JPS60124599U (en) * 1984-01-30 1985-08-22 三菱重工業株式会社 Rotary fluid machine with casing treatment
JP2015514906A (en) * 2012-04-19 2015-05-21 スネクマ Compressor casing with optimized cavities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210213034A1 (en) * 2018-05-25 2021-07-15 Neuralia Synergestic combination composition comprising a steroidal saponin, a first polyphenolic compound and a second polyphenolic compound
US11951113B2 (en) * 2018-05-25 2024-04-09 Neuralia Synergestic combination composition comprising a steroidal saponin, a first polyphenolic compound and a second polyphenolic compound

Also Published As

Publication number Publication date
JP2017040188A (en) 2017-02-23
JP6624846B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5988994B2 (en) Turbine engine blades with improved stacking rules
JP6421091B2 (en) Axial flow compressor, gas turbine including the same, and stationary blade of axial flow compressor
JP5946707B2 (en) Axial turbine blade
US11085461B2 (en) Centrifugal compressor and turbocharger
US9638040B2 (en) Blade of a row of rotor blades or stator blades for use in a turbomachine
KR101252984B1 (en) Flow vector control for high speed centrifugal pumps
JP2008088951A (en) Steam turbine rotor blade
JP5583701B2 (en) Centrifugal compressor having an asymmetric self-circulating casing treatment and method of providing an asymmetric self-circulating casing treatment in a centrifugal compressor
US20130315745A1 (en) Airfoil mateface sealing
JP2013505385A (en) Turbomachine rotor
JP2014047775A (en) Diffuser, and centrifugal compressor and blower including the diffuser
WO2017030164A1 (en) Turbo device
EP3236007B1 (en) Turbine rotor blade and variable capacity turbine
US10309413B2 (en) Impeller and rotating machine provided with same
US20180266442A1 (en) Compressor impeller and method for manufacturing same
CN112412883B (en) Vane diffuser and centrifugal compressor
JP5984133B2 (en) Centrifugal pump
JP3187468U (en) Multistage centrifugal compressor
CN110939603A (en) Blade and axial flow impeller using same
US8118555B2 (en) Fluid-flow machine and rotor blade thereof
US9540937B2 (en) Stator for torque converter
JP2022130751A (en) Impeller and centrifugal compressor using the same
WO2021215471A1 (en) Impeller and centrifugal compressor
JP6532215B2 (en) Impeller and centrifugal compressor
WO2017090713A1 (en) Stationary vane and centrifugal compressor provided with stationary vane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837153

Country of ref document: EP

Kind code of ref document: A1