WO2017030024A1 - Packaging material for lithium-ion battery - Google Patents

Packaging material for lithium-ion battery Download PDF

Info

Publication number
WO2017030024A1
WO2017030024A1 PCT/JP2016/073141 JP2016073141W WO2017030024A1 WO 2017030024 A1 WO2017030024 A1 WO 2017030024A1 JP 2016073141 W JP2016073141 W JP 2016073141W WO 2017030024 A1 WO2017030024 A1 WO 2017030024A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
packaging material
type epoxy
mass
acid
Prior art date
Application number
PCT/JP2016/073141
Other languages
French (fr)
Japanese (ja)
Inventor
坂田 秀行
健二 柏原
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017535491A priority Critical patent/JP6733674B2/en
Publication of WO2017030024A1 publication Critical patent/WO2017030024A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery packaging material and a battery using the packaging material.
  • lithium batteries that can be made ultra-thin and miniaturized have been actively developed as batteries for use in mobile terminal devices such as personal computers and mobile phones, video cameras, and satellites.
  • This lithium battery packaging material unlike metal cans that have been used in the past, is a laminate having a structure such as a base layer / barrier layer / sealant layer because of its advantage of being lightweight and allowing the battery shape to be freely selected. Has come to be used.
  • Lithium battery is impregnated with electrolyte solution or lithium electrolyte dissolved in aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate together with positive electrode material and negative electrode material as battery contents And an electrolyte layer made of a polymer gel.
  • aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate together with positive electrode material and negative electrode material as battery contents
  • an electrolyte layer made of a polymer gel.
  • Lithium salt which is the battery electrolyte, uses LiPF 6 , LiBF 4, etc., but these salts generate hydrofluoric acid by hydrolysis with water, and the hydrofluoric acid corrodes the aluminum foil. By doing so, the laminate strength is lowered. Thus, the battery packaging material needs to have resistance to the electrolyte.
  • lithium batteries it is necessary for lithium batteries to have more severe resistance, assuming that they are used in various environments.
  • liquid leakage resistance in a high temperature environment of 60 to 70 ° C. such as in a car is required.
  • water resistance is also required to prevent moisture from entering, assuming that it was used in a mobile phone and accidentally dropped into water.
  • the proposed packaging material for lithium batteries is still insufficient in terms of resistance to electrolyte. Moreover, even if the improvement of the electrolytic solution resistance was large, there was a problem.
  • Patent Document 1 it is difficult to ensure pot life after the curing agent is blended with the pot life and the resistance to electrolyte solution (Patent Document 1), and the adhesive layer is an extruded resin.
  • Patent Documents 2, 3 and 5 cause the heat shrinkage of the polyolefin base material to be pasted together, and because the polyolefin base material is aqueous, the drying time is long and the production conditions are limited (Patent Documents 4 and 6). , Etc. were seen.
  • An object of the present invention is to provide a battery packaging material excellent in electrolytic solution resistance and a battery using the packaging material without problems such as pot life and production condition limitations.
  • a battery packaging material comprising a reaction product of an epoxy resin (B1) and a glycidyl ether type epoxy resin (B2).
  • the glycidylamine type epoxy resin (B1) is preferably an epoxy resin having two or more glycidyl groups in one molecule.
  • the glycidylamine type epoxy resin (B1) is preferably a compound represented by the general formula (1).
  • R is an aryl group which may have a substituent
  • A1 and A2 are each independently an alkylene group which may have a substituent having 1 to 5 carbon atoms, m is 1 or 2, and n is 1 or 2.
  • the glycidyl ether type epoxy resin (B2) is preferably an epoxy resin having two or more glycidyl groups in one molecule and containing no nitrogen atom.
  • the adhesive layer comprises 0.01 to 20 parts by mass of glycidylamine type epoxy resin (B1) and 1 to 20 parts by mass of glycidyl ether type epoxy resin (B2) with respect to 100 parts by mass of acid-modified polyolefin (A). It is preferable to contain a reactant.
  • a solution containing acid-modified polyolefin (A), glycidylamine type epoxy resin (B1), glycidyl ether type epoxy resin (B2) and organic solvent (C) is applied to the surface of the barrier layer and dried to form an adhesive layer. Then, the method for producing a battery packaging material according to any one of the above, wherein a sealant layer is laminated on the surface of the adhesive layer.
  • the organic solvent (C) is a mixed liquid of a solvent (C1) and a solvent (C2), and the solvent (C1) is composed of an aromatic hydrocarbon, an aliphatic hydrocarbon, an alicyclic hydrocarbon, and a halogenated hydrocarbon.
  • the battery packaging material of the present invention uses a composition comprising a specific resin and a specific cross-linking agent in the battery packaging material in which a barrier layer, an adhesive layer, and a sealant layer are sequentially laminated. For this reason, when it uses as a packaging material of a battery, the outstanding electrolyte solution resistance is exhibited, As a result, the lifetime of a battery extends, the safety
  • the production method according to the present invention is preferable in that it can easily adjust the basis weight of the adhesive layer, can easily control the thickness, and is a solvent system, so that the drying conditions are not limited and the packaging material can be produced efficiently. .
  • Adhesive layer must contain a reaction product of an acid-modified polyolefin (A) having an acid value of 5 to 50 mgKOH / g-resin, a glycidylamine type epoxy resin (B1), and a glycidyl ether type epoxy resin (B2). is there.
  • the adhesive layer is not particularly limited, but an adhesive composition containing an acid-modified polyolefin (A), a glycidyl amine type epoxy resin (B1), a glycidyl ether type epoxy resin (B2) and an organic solvent (C) is used as a barrier layer.
  • a layer of an adhesive composition obtained by applying and drying on the surface to remove the organic solvent (C) and then aging (curing reaction) is preferable.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, further preferably 3 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less. If the thickness is less than the thickness, adhesiveness may not be expressed. If the thickness exceeds the thickness, the workability may be reduced, and in addition, the efficiency may be reduced in terms of manufacturing cost.
  • the acid-modified polyolefin (A) used in the present invention is not limited, but at least one of polyethylene, polypropylene, and propylene- ⁇ -olefin copolymer includes at least ⁇ , ⁇ -unsaturated carboxylic acid and acid anhydride thereof. What is obtained by grafting 1 type is preferable.
  • the propylene- ⁇ -olefin copolymer is a copolymer in which ⁇ -olefin is copolymerized mainly with propylene.
  • ⁇ -olefin for example, ethylene, 1-butene, 1-heptene, 1-octene, 4-methyl-1-pentene, vinyl acetate or the like can be used. Of these ⁇ -olefins, ethylene and 1-butene are preferred.
  • the ratio of the propylene component to the ⁇ -olefin component of the propylene- ⁇ -olefin copolymer is not limited, but the propylene component is preferably 50 mol% or more, and more preferably 70 mol% or more.
  • Examples of at least one of ⁇ , ⁇ -unsaturated carboxylic acid and acid anhydrides thereof include maleic acid, itaconic acid, citraconic acid, and acid anhydrides thereof.
  • acid anhydrides are preferable, and maleic anhydride is more preferable.
  • Specific examples include maleic anhydride-modified polypropylene, maleic anhydride-modified propylene-ethylene copolymer, maleic anhydride-modified propylene-butene copolymer, maleic anhydride-modified propylene-ethylene-butene copolymer, and the like.
  • These acid-modified polyolefins can be used alone or in combination of two or more.
  • the acid value of the acid-modified polyolefin (A) is required to be 5 mg KOH / g-resin or more, preferably 10 mg KOH / g-resin or more, from the viewpoint of pot life and adhesion between the barrier layer and the sealant layer. More preferably 14 mg KOH / g-resin or more, still more preferably 16 mg KOH / g-resin or more, particularly preferably 18 mg KOH / g-resin or more, most preferably 20 mg KOH / g-resin or more. . If it is less than the above value, the compatibility with the epoxy resin is low, the adhesive strength may not be exhibited, the crosslinking density is low, and the chemical resistance may be poor.
  • the upper limit needs to be 50 mgKOH / g-resin or less, preferably 48 mgKOH / g-resin or less, more preferably 46 mgKOH / g-resin or less, still more preferably 44 mgKOH / g-resin or less.
  • it is 42 mgKOH / g-resin or less, Most preferably, it is 40 mgKOH / g-resin or less.
  • the weight average molecular weight (Mw) of the acid-modified polyolefin (A) is preferably in the range of 40,000 to 180,000. More preferably, it is in the range of 50,000 to 160,000, more preferably in the range of 60,000 to 150,000, particularly preferably in the range of 70,000 to 140,000, and most preferably 80. , 13,000 to 130,000. If it is less than the above value, the cohesive force becomes weak and the adhesiveness may be inferior. On the other hand, when the above value is exceeded, there may be a problem in operability when bonding due to low fluidity. If it is in the said range, since hardening reaction with an epoxy resin is utilized, it is preferable.
  • the acid-modified polypropylene (A) is preferably a crystalline acid-modified polypropylene (A).
  • the crystalline acid-modified polyolefin (A) referred to in the present invention means that the temperature is raised from ⁇ 100 ° C. to 250 ° C. at 20 ° C./min using a differential scanning calorimeter (DSC). It refers to those showing a melting peak.
  • DSC differential scanning calorimeter
  • the melting point (Tm) of the acid-modified polyolefin (A) is preferably in the range of 50 ° C to 120 ° C. More preferably, it is in the range of 60 ° C to 100 ° C, and most preferably in the range of 70 ° C to 90 ° C. If it is less than the above value, the cohesive force derived from crystals becomes weak, and the adhesiveness and chemical resistance may be inferior. On the other hand, when the above value is exceeded, the solution stability and fluidity are low, and there may be a problem in operability when bonding.
  • the heat of fusion ( ⁇ H) of the acid-modified polyolefin (A) is preferably in the range of 5 J / g to 60 J / g.
  • a range of 10 J / g to 50 J / g is more preferable, and a range of 20 J / g to 40 J / g is most preferable. If it is less than the above value, the cohesive force derived from crystals becomes weak, and the adhesiveness and chemical resistance may be inferior. On the other hand, when the above value is exceeded, the solution stability and fluidity are low, and there may be a problem in operability when bonding.
  • the method for producing the acid-modified polyolefin (A) is not particularly limited, and for example, radical graft reaction (that is, generating radical species for the polymer to be the main chain, and using the radical species as a polymerization initiation point, the unsaturated carboxylic acid and Examples include a reaction of graft polymerization of an acid anhydride.
  • organic peroxide is not particularly limited, but di-tert-butyl peroxyphthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxy- Peroxides such as 2-ethylhexanoate, tert-butyl peroxypivalate, methyl ethyl ketone peroxide, di-tert-butyl peroxide, lauroyl peroxide; azobisisobutyronitrile, azobisisopropionitrile, etc. And azonitriles
  • the glycidylamine type epoxy resin (B1) used for this invention will not be specifically limited if it is an epoxy resin which has one glycidyl group in 1 molecule. It is preferable to have two or more glycidyl groups in one epoxy resin molecule, more preferably three or more glycidyl groups in one molecule of epoxy resin, and four or more glycidyl groups in one molecule of epoxy resin. More preferably, it has.
  • the glycidylamine type epoxy resin (B1) is preferable because the chemical resistance is further improved by using a compound represented by the following general formula (1).
  • R is an aryl group which may have a substituent, and preferably a phenyl group which may have a substituent.
  • the substituent of the aryl group is not particularly limited, and examples thereof include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, an amino group, a glycidyl group, a glycidylamino group, and a glycidyl ether group.
  • A1 and A2 are each independently a linear alkylene group which may have a substituent having 1 to 5 carbon atoms, preferably 4 or less, more preferably 3 or less, and still more preferably Is 2 or less.
  • a C1-C5 alkyl group, a C1-C5 alkoxy group, or an amino group is mentioned.
  • m is 1 or 2
  • n is 1 or 2.
  • either m or n is 2, more preferably m and n are both 2.
  • glycidylamine type epoxy resin (B1) are not particularly limited, but include tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, tetraglycidylbisaminomethylcyclohexanone, N, N, N ′, N′-tetraglycidyl-m.
  • -Glycidylamine type such as xylenediamine. Of these, N, N, N ′, N′-tetraglycidyl-m-xylenediamine is preferred.
  • These glycidylamine type epoxy resins (B1) can be used alone or in combination of two or more.
  • the blending amount of the glycidylamine type epoxy resin (B1) is preferably 0.01 parts by mass or more and more preferably 0.05 parts by mass or more with respect to 100 parts by mass of the acid-modified polyolefin (A).
  • the content is more preferably 0.1 parts by mass or more, particularly preferably 1 part by mass or more, and most preferably 2 parts by mass or more. Further, it is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, further preferably 16 parts by mass or less, particularly preferably 14 parts by mass or less, and 12 parts by mass or less. Most preferably it is. If it is less than the above range, the catalytic action is not exhibited, and there are cases where adhesion at 80 ° C.
  • the crosslinking reaction proceeds excessively, the rigidity becomes high, and the adhesiveness tends to be lowered. Further, the crosslinking reaction tends to proceed during storage of the adhesive composition solution, and the pot life tends to be reduced.
  • the glycidyl ether type epoxy resin (B2) used for this invention will not be specifically limited if it is an epoxy resin which has a glycidyl ether group in a molecule
  • it is an epoxy resin having two or more glycidyl groups in one molecule of the epoxy resin, and more preferably an epoxy resin having two or more glycidyl groups in one molecule of the epoxy resin and containing no nitrogen atom. .
  • the blending amount of the glycidyl ether type epoxy resin (B2) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the acid-modified polyolefin (A). More preferably, it is more preferably 4 parts by mass or more, and most preferably 5 parts by mass or more. Further, it is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, further preferably 16 parts by mass or less, particularly preferably 14 parts by mass or less, and 12 parts by mass or less. Most preferably it is. By setting it in the above range, excellent adhesiveness and chemical resistance can be expressed.
  • glycidyl ether type epoxy resin (B2) are not particularly limited, and examples thereof include a phenol novolac type epoxy resin and a cresol novolac type epoxy resin. From the viewpoint of adhesion to the barrier layer and chemical resistance. preferable. These glycidyl ether type epoxy resins (B2) can be used alone or in combination of two or more.
  • the glycidylamine type epoxy resin (B1) and the glycidyl ether type epoxy resin (B2) are used in combination as essential components.
  • the glycidylamine type epoxy resin (B1) and the glycidyl ether type epoxy resin (B2) are used in combination as essential components.
  • excellent adhesiveness and chemical resistance can be expressed. That is, the glycidylamine type epoxy resin (B1) has a reaction and curing action between the acid-modified polyolefin (A) and the glycidyl ether type epoxy resin (B2).
  • the glycidylamine type epoxy resin (B1) includes acid-modified polyolefin (A) and glycidylamine type epoxy resin (B1), glycidylamine type epoxy resin (B1), glycidyl ether type epoxy resin (B2), and glycidylamine.
  • Type epoxy resin (B1) and glycidyl ether type epoxy resin (B2) have a reaction and curing catalytic action, so that they can be combined to bond at 80 ° C. or lower, adhesion to the barrier layer during aging, and chemical resistance Property can be improved.
  • the total amount of the glycidylamine type epoxy resin (B1) and the glycidyl ether type epoxy resin (B2) is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the acid-modified polyolefin (A).
  • the amount is more preferably 20 parts by mass, and most preferably 10 to 16 parts by mass. If it is less than the above range, a sufficient curing effect may not be obtained and the adhesiveness and chemical resistance may be low, and if it exceeds the above range, it is not preferable from the viewpoint of reduction in adhesiveness between the pot life and the sealant layer and cost.
  • the blending amount of the glycidylamine type epoxy resin (B1) is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and most preferably 3 to 10% by mass of the entire epoxy resin. . If the blending amount is less than the above, the catalytic action does not appear and the adhesion and chemical resistance in low temperature bonding and aging may be low. If it exceeds the above, the crosslinking reaction proceeds excessively and the rigidity becomes high. The adhesiveness tends to decrease. Further, the crosslinking reaction tends to proceed during storage of the adhesive composition solution, and the pot life tends to be reduced.
  • epoxy resins can be used in combination as the epoxy resin used in the present invention.
  • glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl isocyanurate, or 3,4-epoxycyclohexylmethylcarboxylate, epoxidized polybutadiene, epoxidized soybean oil, etc.
  • Group epoxides and the like and may be used alone or in combination of two or more.
  • Organic solvent (C) used in the present invention is not particularly limited as long as it dissolves the acid-modified polyolefin (A), the glycidylamine type epoxy resin (B1), and the glycidyl ether type epoxy resin (B2).
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane, heptane, octane and decane
  • alicyclic carbons such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane
  • Halogenated hydrocarbons such as hydrogen, trichloroethylene, dichloroethylene, chlorobenzene, chloroform, alcohol solvents such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, phenol, acetone, methyl isobutyl ketone, Ketone solvents such as methyl ethyl ketone pentanone, hexanone, cyclohexanone, isophorone, acetophenone, cellsolves such as methyl cellosolve
  • the organic solvent (C) is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and further preferably 100 parts by mass or more with respect to 100 parts by mass of the acid-modified polyolefin (A). Preferably, it is 110 parts by mass or more. Further, it is preferably 1000 parts by mass or less, more preferably 900 parts by mass or less, still more preferably 800 parts by mass or less, and particularly preferably 700 parts by mass or less. If it is less than the said range, liquid state and pot life property may fall, and when it exceeds the said range, it may become disadvantageous from the surface of manufacturing cost and transport cost.
  • the organic solvent (C) is one selected from the group consisting of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons and halogenated hydrocarbons from the viewpoint of the liquidity and pot life properties of the adhesive composition.
  • a mixed liquid of at least one solvent (C2) selected from the group consisting of the above solvent (C1), alcohol solvent, ketone solvent, ester solvent and glycol ether solvent is preferable.
  • the liquid state and pot life of the adhesive composition may be lowered.
  • the solvent (C1) is an aromatic hydrocarbon or an alicyclic hydrocarbon
  • the solvent (C2) is a ketone solvent.
  • the adhesive composition according to the present invention is a mixture of the acid-modified polyolefin (A), the glycidylamine type epoxy resin (B1), the glycidyl ether type epoxy resin (B2) and the organic solvent (C).
  • the acid-modified polyolefin (A), glycidylamine type epoxy resin (B1) and glycidyl ether type epoxy resin (B2) may be dissolved or dispersed in the organic solvent (C). It is preferably dissolved from the viewpoint of pot life.
  • the adhesive composition can be used in various ways as long as the performance of the present invention is not impaired.
  • additives can be blended and used. Although it does not specifically limit as an additive, It is preferable to use a flame retardant, a pigment, an antiblocking agent, etc.
  • the sealant layer used in the present invention is not particularly limited, but it is preferable to use polyolefin from the viewpoints of leakage resistance and heat resistance.
  • the polyolefin may be appropriately selected from conventionally known polyolefin resins.
  • polyethylene, polypropylene, ethylene-propylene copolymer, and the like can be used.
  • polypropylene is preferably used, and polypropylene may be appropriately selected from random propylene, homopropylene, and block propylene.
  • the sealant layer in the present invention may be multilayered by combining the above-mentioned types of polypropylene layers as appropriate.
  • the thickness is not particularly limited, but is preferably 20 to 100 ⁇ m, more preferably 25 to 95 ⁇ m, and even more preferably 30 to 90 ⁇ m.
  • the barrier layer used in the present invention is a layer having a barrier property that prevents entry of oxygen, moisture, or the like into the lithium ion battery.
  • metal foils such as pure aluminum, aluminum-iron alloy, copper, nickel, and stainless steel, and vapor deposition films such as aluminum, nickel, silica, and alumina are preferable. It is preferable to use an aluminum foil from the viewpoint of barrier properties.
  • the barrier layer is preferably subjected to a surface treatment such as chromate treatment. Specifically, chromate chromate treatment, phosphoric acid chromate treatment, and coating type chromate treatment. Or a non-chromium (coating type) chemical conversion treatment using zirconium, titanium, zinc phosphate or the like. These treatments may be carried out alone or appropriately in combination with an organic binder component.
  • a soft aluminum foil with a thickness of 9 to 200 ⁇ m particularly a soft aluminum foil with an iron content of 0.1 to 9.0% by mass, is resistant to pinholes and is easy to stretch during molding. Is preferable.
  • the iron content is less than 0.1% by mass, sufficient pinhole resistance and spreadability cannot be imparted, and when it exceeds 9.0% by mass, flexibility may be impaired.
  • the battery packaging material of the present invention is formed by laminating a barrier layer, an adhesive layer, and a sealant layer in this order.
  • an adhesive layer is first provided on the surface of the barrier layer.
  • the method for providing the adhesive layer is not particularly limited, but includes the acid-modified polypropylene resin (A), the glycidylamine type epoxy resin (B1), the glycidyl ether type epoxy resin (B2), and the organic solvent (C).
  • the adhesive composition to be applied is applied to the surface of the barrier layer, the organic solvent (C) is removed by drying, and then a curing reaction is performed.
  • a method in which an adhesive composition is applied on release paper, the organic solvent (C) is dried and subjected to a curing reaction to once peel the adhesive layer, and then transferred to the barrier layer or sealant layer.
  • the former method is preferable from the viewpoint of easily controlling the thickness of the adhesive layer, and among them, the method of applying the adhesive composition to the surface of the barrier layer is preferable in practice.
  • the adhesive composition As an application method of the adhesive composition, known methods such as gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating method, etc. Uniformly coat the surface of the barrier layer or sealant layer, set it at room temperature as necessary, and then subject it to a drying treatment or a heat treatment for drying to form a uniform adhesive layer in close contact with the coated surface can do.
  • the method of providing the sealant layer is not particularly limited, but a method of bonding the sealant film made of the above-described sealant resin and the adhesive layer by heat (thermal lamination, dry lamination), or extruding and pasting the resin melted in the adhesive layer. A method of matching (extrusion lamination) and the like can be mentioned.
  • the battery packaging material of the present invention can be produced by the above method, and according to such a method, the thickness of the adhesive layer can be easily adjusted, so that the packaging material can be produced efficiently.
  • the battery packaging material of the present invention has a structure in which a barrier layer, an adhesive layer, and a sealant layer are laminated in this order in the thickness direction, and a base layer made of a single-layer or multilayer heat-resistant polymer film is further provided. May be.
  • the base layer may be, for example, a single film such as a stretched or unstretched film such as a polyester film, a polyamide film, or a polypropylene film, or a multilayer film in which the single films are laminated.
  • a single film such as a stretched or unstretched film such as a polyester film, a polyamide film, or a polypropylene film, or a multilayer film in which the single films are laminated.
  • a primer layer can be provided between the base material layer and the barrier layer as necessary.
  • a polyurethane adhesive mainly composed of a silane coupling agent, polyester polyol, polyether polyol, or acrylic polyol can be used.
  • the liquid containing the resin was centrifuged to separate and purify an acid-modified propylene-butene copolymer grafted with maleic anhydride, (poly) maleic anhydride and a low molecular weight product. Thereafter, by drying at 70 ° C. under reduced pressure for 5 hours, a maleic anhydride-modified propylene-butene copolymer (PO-1, acid value 48 mgKOH / g-resin, weight average molecular weight 50,000, Tm 75 ° C., ⁇ H25J / g) was obtained.
  • PO-1 acid value 48 mgKOH / g-resin, weight average molecular weight 50,000, Tm 75 ° C., ⁇ H25J / g
  • Production Example 2 A maleic anhydride-modified propylene-butene copolymer (PO-2, acid value 25 mgKOH / g-resin, weight average) was obtained in the same manner as in Production Example 1 except that the amount of maleic anhydride charged was changed to 20 parts by mass. Molecular weight 80,000, Tm 75 ° C., ⁇ H 30 J / g) was obtained.
  • Production Example 3 A maleic anhydride-modified propylene-butene copolymer (with the same procedure as in Production Example 1 except that the amount of maleic anhydride charged was changed to 3 parts by mass and the amount of di-tert-butyl peroxide was changed to 0.5 parts by mass ( PO-3, acid value 5 mg KOH / g-resin, weight average molecular weight 180,000, Tm 80 ° C., ⁇ H 25 J / g).
  • Production Example 4 A maleic anhydride-modified propylene-butene copolymer (PO-4, acid value 55 mgKOH / g-resin, weight average) was obtained in the same manner as in Production Example 1 except that the amount of maleic anhydride charged was changed to 30 parts by mass. Molecular weight 40,000, Tm 70 ° C., ⁇ H 25 J / g) was obtained.
  • Production Example 5 A maleic anhydride-modified propylene-butene copolymer was prepared in the same manner as in Production Example 1 except that the amount of maleic anhydride charged was changed to 2 parts by mass and the amount of di-tert-butyl peroxide was changed to 0.5 parts by mass.
  • PO-5 acid value 3 mg KOH / g-resin, weight average molecular weight 200,000, Tm 80 ° C., ⁇ H 25 J / g).
  • Example 1 500 parts by mass of main agent 1, 19.8 parts by mass of phenol novolac type epoxy resin as glycidyl ether type epoxy resin (B2) as curing agent, and TETRAD (registered trademark) -X as glycidylamine type epoxy resin (B1) 0.2 mass part was mix
  • Table 2 shows the evaluation results of pot life, adhesiveness and chemical resistance.
  • Examples 2 to 15 and Comparative Examples 1 to 6 The main agents 1 to 12 and the respective curing agents were changed as shown in Tables 2 and 3, and Examples 2 to 15 and Comparative Examples 1 to 6 were performed in the same manner as in Example 1.
  • Tables 2 and 3 show the blending amount, pot life property, adhesiveness and chemical resistance.
  • the curing agents used in Tables 2 and 3 are as follows.
  • the acid value (mgKOH / g-resin) in the present invention was prepared with a chloroform solution of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) using FT-IR (manufactured by Shimadzu Corporation, FT-IR8200PC).
  • FT-IR manufactured by Shimadzu Corporation, FT-IR8200PC.
  • the coefficient (f) obtained from the calibration curve and the absorbance (I) of the stretching peak (1780 cm ⁇ 1 ) of the carbonyl (C ⁇ O) bond of maleic anhydride in the crystalline maleic anhydride-modified polyolefin solution the following formula is used. It is the value.
  • Acid value [absorbance (I) ⁇ (f) ⁇ 2 ⁇ molecular weight of potassium hydroxide ⁇ 1000 (mg) / molecular weight of maleic anhydride] Molecular weight of maleic anhydride: 98.06 Molecular weight of potassium hydroxide: 56.11
  • the melting point and heat of fusion in the present invention are increased at a rate of 20 ° C./minute using a differential scanning calorimeter (hereinafter DSC, manufactured by TA Instruments Japan, Q-2000). It is a value measured from the top temperature and area of the melting peak when heated and melted into a cooled resin and then heated and melted again.
  • DSC differential scanning calorimeter
  • Pot life property refers to the stability of the solution immediately after the compounding or after a certain time has elapsed after the compounding with the acid-modified polyolefin. If the pot life is good, it means that the viscosity of the solution is small and can be stored for a long time. If the pot life is poor, the viscosity of the solution increases (thickens). It means that gelation occurs, application to a substrate becomes difficult, and long-term storage is impossible.
  • the pot life properties of the adhesive compositions obtained in Examples 1 to 15 and Comparative Examples 1 to 6 were stored at 25 ° C. and 40 ° C. for 24 hours, and then the solution viscosity at 25 ° C. using a B-type viscometer. It was evaluated by measuring.
  • packaging material for lithium ion battery Aluminum foil (UACJ, 8079-0 material, thickness 40 ⁇ m) is used for the barrier layer, and unstretched polypropylene film (Toyobo Pyrene (registered trademark) film CT, thickness is used for the sealant) 40 ⁇ m) (hereinafter also referred to as CPP).
  • the adhesive compositions obtained in Examples 1 to 15 and Comparative Examples 1 to 6 were applied on the surface of the barrier layer using a bar coater so that the thickness of the adhesive layer after drying was adjusted to 3 ⁇ m. Subsequently, it was dried for 1 minute in a 100 ° C. atmosphere using a warm air dryer to obtain a 3 ⁇ m thick adhesive layer.
  • a sealant layer is overlaid on the surface of the adhesive layer, and bonded at 80 ° C., 0.3 MPa, 1 m / min using a small desktop test laminator (SA-1010-S) manufactured by Tester Sangyo Co., Ltd., 40 ° C., 50%
  • SA-1010-S small desktop test laminator manufactured by Tester Sangyo Co., Ltd., 40 ° C., 50%
  • the lithium ion battery packaging material was obtained by aging for 120 hours with RH.
  • the lithium ion battery packaging material obtained as described above was evaluated by the following method.
  • the battery packaging material was cut into a size of 100 mm ⁇ 15 mm, and the adhesiveness was evaluated by a T-type peel test. The evaluation results are shown in Tables 2 and 3.
  • ⁇ T-type peel test> Based on the test method of ASTM-D1876-61, the peel strength at a tensile speed of 50 mm / min was measured in a 25 ° C environment using Tensilon RTM-100 manufactured by Orientec Corporation. The peel strength (N / cm) between the barrier layer (aluminum foil) / sealant layer (CPP) was the average of five test values.
  • the battery packaging material of the present invention uses a composition comprising a specific resin and a specific cross-linking agent in the battery packaging material in which a barrier layer, an adhesive layer, and a sealant layer are sequentially laminated. For this reason, it exhibits excellent electrolyte resistance when used as a battery packaging material. As a result, the life of the battery is extended and the safety in handling is increased, and lithium used in personal computers, mobile phones, video cameras, etc. It can be widely used as a battery packaging material (pouch form).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

The objective of the present invention is to provide: a packaging material for a battery, said packaging material having excellent resistance against electrolyte solutions, and having no problems due to limitations of pot life or production conditions; and a battery in which said packaging material is used. Specifically, the present invention provides a packaging material for a battery, said packaging material being formed by laminating, in the following order, a barrier layer, an adhesion layer, and a sealant layer, wherein the packaging material is characterized in that the adhesion layer includes: an acid-modified polyolefin (A) having an acid value of 5-50mg KOH/g resin; and a reaction product of a glycidyl amine type epoxy resin (B1) and a glycidyl ether type epoxy resin (B2).

Description

リチウムイオン電池用包装材料Lithium-ion battery packaging materials
 本発明は、電池用包装材料及びその包装材料を用いた電池に関する。 The present invention relates to a battery packaging material and a battery using the packaging material.
 近年、パソコン、携帯電話等の携帯端末装置、ビデオカメラ、衛星などに用いられる電池として、超薄型化、小型化の可能なリチウム電池が盛んに開発されている。このリチウム電池の包装材料は、従来用いられていた金属製缶とは異なり、軽量で電池の形状を自由に選択できるという利点から、基材層/バリア層/シーラント層のような構成の積層体が用いられるようになってきた。 In recent years, lithium batteries that can be made ultra-thin and miniaturized have been actively developed as batteries for use in mobile terminal devices such as personal computers and mobile phones, video cameras, and satellites. This lithium battery packaging material, unlike metal cans that have been used in the past, is a laminate having a structure such as a base layer / barrier layer / sealant layer because of its advantage of being lightweight and allowing the battery shape to be freely selected. Has come to be used.
 リチウム電池は、電池内容物として正極材及び負極材と共に、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルなどの非プロトン性溶媒にリチウム塩を溶解した電解液若しくはその電解液を含浸させたポリマーゲルからなる電解質層を含んでいる。このような強浸透性の溶媒がシーラント層を通過すると、アルミニウム箔層とシーラント層間のラミネート強度を低下させてデラミネーションを生じさせ、最終的には電解液が漏れ出すといった問題が生じる。また、電池の電解質であるリチウム塩としてはLiPF6、LiBF4等の物質が用いられているが、これらの塩は水分との加水分解反応によりフッ酸を発生し、フッ酸がアルミニウム箔を腐食することによりラミネート強度を低下させる。電池用包装材料は、このように電解質に対する耐性を有していることが必要である。 Lithium battery is impregnated with electrolyte solution or lithium electrolyte dissolved in aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate together with positive electrode material and negative electrode material as battery contents And an electrolyte layer made of a polymer gel. When such a strong permeable solvent passes through the sealant layer, the laminate strength between the aluminum foil layer and the sealant layer is lowered to cause delamination, and finally the electrolyte leaks. Lithium salt, which is the battery electrolyte, uses LiPF 6 , LiBF 4, etc., but these salts generate hydrofluoric acid by hydrolysis with water, and the hydrofluoric acid corrodes the aluminum foil. By doing so, the laminate strength is lowered. Thus, the battery packaging material needs to have resistance to the electrolyte.
 さらに、リチウム電池はさまざまな環境下で使用されることを想定して、より過酷な耐性を備えている必要がある。例えば、モバイル機器に使用される場合には、車内等の60~70℃という高温環境での耐漏液性が要求される。また、携帯電話に使用され誤って水中に落としたことを想定し、水分が浸入しないよう耐水性も必要とされる。 Furthermore, it is necessary for lithium batteries to have more severe resistance, assuming that they are used in various environments. For example, when used in a mobile device, liquid leakage resistance in a high temperature environment of 60 to 70 ° C. such as in a car is required. In addition, water resistance is also required to prevent moisture from entering, assuming that it was used in a mobile phone and accidentally dropped into water.
 このような状況のもと、耐電解液性を向上させたリチウム電池用包装材料が種々提案されている(例えば、特許文献1~6参照)。 Under such circumstances, various packaging materials for lithium batteries with improved electrolyte resistance have been proposed (see, for example, Patent Documents 1 to 6).
特開2001-243928号公報Japanese Patent Laid-Open No. 2001-243928 特開2004-42477号公報JP 2004-42477 A 特開2004-142302号公報JP 2004-142302 A 特開2009-238475号公報JP 2009-238475 A 特開2010-086744号公報JP 2010-086744 A 特許5670803号公報Japanese Patent No. 5670803
 しかしながら、前記提案されているリチウム電池用包装材料は、耐電解液性の点でいまだ不十分であった。また耐電解液性の改善が大きくても、問題がみられるものであった。 However, the proposed packaging material for lithium batteries is still insufficient in terms of resistance to electrolyte. Moreover, even if the improvement of the electrolytic solution resistance was large, there was a problem.
 具体的には、接着剤層が硬化剤配合後のポットライフ確保と耐電解液性両立が困難(特許文献1)、接着剤層が押出樹脂であることからラミネート機台が制約される、高温での貼り合せによってポリオレフィン基材の熱収縮影響を生じる(特許文献2、3、5)、ポリオレフィン主剤が水系であることから乾燥時間が長く、生産条件が限定される(特許文献4、6)、などの問題が見られるものであった。 Specifically, it is difficult to ensure pot life after the curing agent is blended with the pot life and the resistance to electrolyte solution (Patent Document 1), and the adhesive layer is an extruded resin. (2) Patent Documents 2, 3 and 5 cause the heat shrinkage of the polyolefin base material to be pasted together, and because the polyolefin base material is aqueous, the drying time is long and the production conditions are limited (Patent Documents 4 and 6). , Etc. were seen.
 本発明の課題は、ポットライフや生産条件の制限といった問題なく、耐電解液性に優れる電池用包装材料及び前記包装材料を用いた電池を提供することにある。 An object of the present invention is to provide a battery packaging material excellent in electrolytic solution resistance and a battery using the packaging material without problems such as pot life and production condition limitations.
 上記課題を達成するため、本発明者らは鋭意検討し、以下の発明を提案するに至った。 In order to achieve the above-mentioned problems, the present inventors have intensively studied and have come up with the following inventions.
 バリア層、接着層及びシーラント層がこの順に積層されてなる電池用包装材料であって、前記接着層が、酸価が5~50mgKOH/g-resinである酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)およびグリシジルエーテル型エポキシ樹脂(B2)の反応物を含有することを特徴とする電池用包装材料。 A battery packaging material in which a barrier layer, an adhesive layer and a sealant layer are laminated in this order, wherein the adhesive layer is an acid-modified polyolefin (A) having an acid value of 5 to 50 mgKOH / g-resin, a glycidylamine type A battery packaging material comprising a reaction product of an epoxy resin (B1) and a glycidyl ether type epoxy resin (B2).
 前記グリシジルアミン型エポキシ樹脂(B1)が、1分子中2個以上のグリシジル基を有するエポキシ樹脂であることが好ましい。 The glycidylamine type epoxy resin (B1) is preferably an epoxy resin having two or more glycidyl groups in one molecule.
 前記グリシジルアミン型エポキシ樹脂(B1)が、一般式(1)で表される化合物であることが好ましい。 The glycidylamine type epoxy resin (B1) is preferably a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (一般式(1)中、Rは置換基を有してもよいアリール基であり、A1およびA2はそれぞれ独立して炭素数1~5の置換基を有してもよいアルキレン基であり、mは1または2であり、nは1または2である。)
 前記グリシジルエーテル型エポキシ樹脂(B2)が、1分子中に2個以上のグリシジル基を有し、かつ窒素原子を含有しないエポキシ樹脂であることが好ましい。
(In the general formula (1), R is an aryl group which may have a substituent, and A1 and A2 are each independently an alkylene group which may have a substituent having 1 to 5 carbon atoms, m is 1 or 2, and n is 1 or 2.)
The glycidyl ether type epoxy resin (B2) is preferably an epoxy resin having two or more glycidyl groups in one molecule and containing no nitrogen atom.
 前記接着層は、酸変性ポリオレフィン(A)100質量部に対して、グリシジルアミン型エポキシ樹脂(B1)を0.01~20質量部、グリシジルエーテル型エポキシ樹脂(B2)を1~20質量部の反応物を含有することが好ましい。 The adhesive layer comprises 0.01 to 20 parts by mass of glycidylamine type epoxy resin (B1) and 1 to 20 parts by mass of glycidyl ether type epoxy resin (B2) with respect to 100 parts by mass of acid-modified polyolefin (A). It is preferable to contain a reactant.
 バリア層の表面に、酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)および有機溶剤(C)を含有する溶液を塗布、乾燥して接着層を形成し、次いで接着層の表面にシーラント層を積層する前記いずれかに記載の電池用包装材料の製造方法。 A solution containing acid-modified polyolefin (A), glycidylamine type epoxy resin (B1), glycidyl ether type epoxy resin (B2) and organic solvent (C) is applied to the surface of the barrier layer and dried to form an adhesive layer. Then, the method for producing a battery packaging material according to any one of the above, wherein a sealant layer is laminated on the surface of the adhesive layer.
 前記いずれかに記載の電池用包装材料を用いた電池。 A battery using the battery packaging material described above.
 前記有機溶剤(C)が、溶剤(C1)と溶剤(C2)の混合液であって、溶剤(C1)が芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素およびハロゲン化炭化水素からなる群より選択された1種以上の溶剤であり、溶剤(C2)がアルコール系溶媒、ケトン系溶媒、エステル系溶媒、グリコールエーテル系溶剤からなる群より選択された1種または2種以上の溶剤であり、溶剤(C1)/溶剤(C2)=50~97/50~3(質量比)であることが好ましい。 The organic solvent (C) is a mixed liquid of a solvent (C1) and a solvent (C2), and the solvent (C1) is composed of an aromatic hydrocarbon, an aliphatic hydrocarbon, an alicyclic hydrocarbon, and a halogenated hydrocarbon. One or more solvents selected from the group consisting of one or more solvents selected from the group consisting of alcohol solvents, ketone solvents, ester solvents and glycol ether solvents. It is preferable that the solvent (C1) / solvent (C2) = 50 to 97/50 to 3 (mass ratio).
 本発明の電池用包装材料は、バリア層、接着層及びシーラント層が順次積層されてなる電池用包装材料において、接着層に特定の樹脂と特定の架橋剤からなる組成物を用いている。このため、電池の包装材料として用いた場合に優れた耐電解液性を発揮し、結果、電池の寿命が延び、取扱上の安全性も高まり、産業上の利用価値は非常に高い。 The battery packaging material of the present invention uses a composition comprising a specific resin and a specific cross-linking agent in the battery packaging material in which a barrier layer, an adhesive layer, and a sealant layer are sequentially laminated. For this reason, when it uses as a packaging material of a battery, the outstanding electrolyte solution resistance is exhibited, As a result, the lifetime of a battery extends, the safety | security in handling also increases, and industrial utility value is very high.
 また、本発明による製造方法は、接着層の目付量を調整しやすく、厚みも制御し易く溶媒系であることから乾燥条件も限定されず、包装材料を効率よく生産することができる点で好ましい。 Further, the production method according to the present invention is preferable in that it can easily adjust the basis weight of the adhesive layer, can easily control the thickness, and is a solvent system, so that the drying conditions are not limited and the packaging material can be produced efficiently. .
 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<<接着層>>
 接着層は、酸価が5~50mgKOH/g-resinである酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)およびグリシジルエーテル型エポキシ樹脂(B2)の反応物を含有することが必要である。接着層は、特に限定されないが、酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)および有機溶剤(C)を含有する接着剤組成物をバリア層の表面に塗布、乾燥して有機溶剤(C)を除去し、次いでエージング(硬化反応)して得られた接着剤組成物の層であることが好ましい。
<< Adhesive layer >>
The adhesive layer must contain a reaction product of an acid-modified polyolefin (A) having an acid value of 5 to 50 mgKOH / g-resin, a glycidylamine type epoxy resin (B1), and a glycidyl ether type epoxy resin (B2). is there. The adhesive layer is not particularly limited, but an adhesive composition containing an acid-modified polyolefin (A), a glycidyl amine type epoxy resin (B1), a glycidyl ether type epoxy resin (B2) and an organic solvent (C) is used as a barrier layer. A layer of an adhesive composition obtained by applying and drying on the surface to remove the organic solvent (C) and then aging (curing reaction) is preferable.
 接着層の厚みは特に限定されないが、1μm以上が好ましく、2μm以上がより好ましく、3μm以上がさらに好ましく、20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。前記厚み未満であると接着性が発現されないことがあり、前記厚みを超えると加工性が低下することがあることに加えて製造コストという観点で効率が低下する。 The thickness of the adhesive layer is not particularly limited, but is preferably 1 μm or more, more preferably 2 μm or more, further preferably 3 μm or more, preferably 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less. If the thickness is less than the thickness, adhesiveness may not be expressed. If the thickness exceeds the thickness, the workability may be reduced, and in addition, the efficiency may be reduced in terms of manufacturing cost.
<酸変性ポリオレフィン(A)>
 本発明で用いる酸変性ポリオレフィン(A)は限定的ではないが、ポリエチレン、ポリプロピレン及びプロピレン-α-オレフィン共重合体の少なくとも1種に、α,β-不飽和カルボン酸及びその酸無水物の少なくとも1種をグラフトすることにより得られるものが好ましい。
<Acid-modified polyolefin (A)>
The acid-modified polyolefin (A) used in the present invention is not limited, but at least one of polyethylene, polypropylene, and propylene-α-olefin copolymer includes at least α, β-unsaturated carboxylic acid and acid anhydride thereof. What is obtained by grafting 1 type is preferable.
 プロピレン-α-オレフィン共重合体は、プロピレンを主体としてこれにα-オレフィンを共重合したものである。α-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、酢酸ビニルなどを1種又は数種用いるこができる。これらのα-オレフィンの中では、エチレン、1-ブテンが好ましい。プロピレン-α-オレフィン共重合体のプロピレン成分とα-オレフィン成分との比率は限定されないが、プロピレン成分が50モル%以上であることが好ましく、70モル%以上であることがより好ましい。 The propylene-α-olefin copolymer is a copolymer in which α-olefin is copolymerized mainly with propylene. As the α-olefin, for example, ethylene, 1-butene, 1-heptene, 1-octene, 4-methyl-1-pentene, vinyl acetate or the like can be used. Of these α-olefins, ethylene and 1-butene are preferred. The ratio of the propylene component to the α-olefin component of the propylene-α-olefin copolymer is not limited, but the propylene component is preferably 50 mol% or more, and more preferably 70 mol% or more.
 α,β-不飽和カルボン酸及びその酸無水物の少なくとも1種としては、例えば、マレイン酸、イタコン酸、シトラコン酸及びこれらの酸無水物が挙げられる。これらの中でも酸無水物が好ましく、無水マレイン酸がより好ましい。具体的には、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性プロピレン-エチレン共重合体、無水マレイン酸変性プロピレン-ブテン共重合体、無水マレイン酸変性プロピレン-エチレン-ブテン共重合体等が挙げられ、これら酸変性ポリオレフィンを1種類又は2種類以上を組み合わせて使用することができる。 Examples of at least one of α, β-unsaturated carboxylic acid and acid anhydrides thereof include maleic acid, itaconic acid, citraconic acid, and acid anhydrides thereof. Among these, acid anhydrides are preferable, and maleic anhydride is more preferable. Specific examples include maleic anhydride-modified polypropylene, maleic anhydride-modified propylene-ethylene copolymer, maleic anhydride-modified propylene-butene copolymer, maleic anhydride-modified propylene-ethylene-butene copolymer, and the like. These acid-modified polyolefins can be used alone or in combination of two or more.
 酸変性ポリオレフィン(A)の酸価は、ポットライフ性およびバリア層とシーラント層との接着性の観点から、下限は5mgKOH/g-resin以上である必要があり、好ましくは10mgKOH/g-resin以上であり、より好ましくは14mgKOH/g-resin以上であり、さらに好ましくは16mgKOH/g-resin以上であり、特に好ましくは18mgKOH/g-resin以上であり、最も好ましくは20mgKOH/g-resin以上である。前記の値未満であると、エポキシ樹脂との相溶性が低く、接着強度が発現しないことがあり、また架橋密度が低く、耐薬品性が乏しい場合がある。上限は50mgKOH/g-resin以下である必要があり、好ましくは48mgKOH/g-resin以下であり、より好ましくは46mgKOH/g-resin以下であり、さらに好ましくは44mgKOH/g-resin以下であり、特に好ましくは42mgKOH/g-resin以下であり、最も好ましくは40mgKOH/g-resin以下である。前記の値を超えると、溶液の粘度や安定性が低下し、ポットライフ性が低下することがある。さらに製造効率も低下するため好ましくない。 The acid value of the acid-modified polyolefin (A) is required to be 5 mg KOH / g-resin or more, preferably 10 mg KOH / g-resin or more, from the viewpoint of pot life and adhesion between the barrier layer and the sealant layer. More preferably 14 mg KOH / g-resin or more, still more preferably 16 mg KOH / g-resin or more, particularly preferably 18 mg KOH / g-resin or more, most preferably 20 mg KOH / g-resin or more. . If it is less than the above value, the compatibility with the epoxy resin is low, the adhesive strength may not be exhibited, the crosslinking density is low, and the chemical resistance may be poor. The upper limit needs to be 50 mgKOH / g-resin or less, preferably 48 mgKOH / g-resin or less, more preferably 46 mgKOH / g-resin or less, still more preferably 44 mgKOH / g-resin or less. Preferably it is 42 mgKOH / g-resin or less, Most preferably, it is 40 mgKOH / g-resin or less. When the above value is exceeded, the viscosity and stability of the solution may decrease, and the pot life may decrease. Furthermore, it is not preferable because the production efficiency is also lowered.
 酸変性ポリオレフィン(A)の重量平均分子量(Mw)は、40,000~180,000の範囲であることが好ましい。より好ましくは50,000~160,000の範囲であり、さらに好ましくは60,000~150,000の範囲であり、特に好ましくは70,000~140,000の範囲であり、最も好ましくは、80,000~130,000の範囲である。前記の値未満であると、凝集力が弱くなり接着性が劣る場合がある。一方、前記の値を超えると、流動性が低く接着する際の操作性に問題が生じる場合がある。前記範囲内であれば、エポキシ樹脂との硬化反応が活かされるため好ましい。 The weight average molecular weight (Mw) of the acid-modified polyolefin (A) is preferably in the range of 40,000 to 180,000. More preferably, it is in the range of 50,000 to 160,000, more preferably in the range of 60,000 to 150,000, particularly preferably in the range of 70,000 to 140,000, and most preferably 80. , 13,000 to 130,000. If it is less than the above value, the cohesive force becomes weak and the adhesiveness may be inferior. On the other hand, when the above value is exceeded, there may be a problem in operability when bonding due to low fluidity. If it is in the said range, since hardening reaction with an epoxy resin is utilized, it is preferable.
 酸変性ポリプロピレン(A)は、結晶性酸変性ポリプロピレン(A)であることが好ましい。本発明でいう結晶性酸変性ポリオレフィン(A)とは、示差走査型熱量計(DSC)を用いて、-100℃~250℃ まで20℃/分で昇温し、該昇温過程に明確な融解ピークを示すものを指す。 The acid-modified polypropylene (A) is preferably a crystalline acid-modified polypropylene (A). The crystalline acid-modified polyolefin (A) referred to in the present invention means that the temperature is raised from −100 ° C. to 250 ° C. at 20 ° C./min using a differential scanning calorimeter (DSC). It refers to those showing a melting peak.
 酸変性ポリオレフィンを結晶性とすることで、非晶性に比べ、凝集力が強く、接着性や耐薬品性に優れるため有利である。 It is advantageous to make the acid-modified polyolefin crystalline, because it has a stronger cohesive force and superior adhesion and chemical resistance than amorphous.
 酸変性ポリオレフィン(A)の融点(Tm)は、50℃~120℃の範囲であることが好ましい。より好ましくは60℃~100℃の範囲であり、最も好ましくは70℃~90℃の範囲である。前記の値未満であると、結晶由来の凝集力が弱くなり、接着性や耐薬品性が劣る場合がある。一方、前記の値を超えると、溶液安定性、流動性が低く接着する際の操作性に問題が生じる場合がある。 The melting point (Tm) of the acid-modified polyolefin (A) is preferably in the range of 50 ° C to 120 ° C. More preferably, it is in the range of 60 ° C to 100 ° C, and most preferably in the range of 70 ° C to 90 ° C. If it is less than the above value, the cohesive force derived from crystals becomes weak, and the adhesiveness and chemical resistance may be inferior. On the other hand, when the above value is exceeded, the solution stability and fluidity are low, and there may be a problem in operability when bonding.
 酸変性ポリオレフィン(A)の融解熱(ΔH)は、5J/g~60J/gの範囲であることが好ましい。より好ましくは10J/g~50J/gの範囲であり、最も好ましくは20J/g~40J/gの範囲である。前記の値未満であると、結晶由来の凝集力が弱くなり、接着性や耐薬品性が劣る場合がある。一方、前記の値を超えると、溶液安定性、流動性が低く接着する際の操作性に問題が生じる場合がある。 The heat of fusion (ΔH) of the acid-modified polyolefin (A) is preferably in the range of 5 J / g to 60 J / g. A range of 10 J / g to 50 J / g is more preferable, and a range of 20 J / g to 40 J / g is most preferable. If it is less than the above value, the cohesive force derived from crystals becomes weak, and the adhesiveness and chemical resistance may be inferior. On the other hand, when the above value is exceeded, the solution stability and fluidity are low, and there may be a problem in operability when bonding.
 酸変性ポリオレフィン(A)の製造方法としては、特に限定されず、例えばラジカルグラフト反応(すなわち主鎖となるポリマーに対してラジカル種を生成し、そのラジカル種を重合開始点として不飽和カルボン酸および酸無水物をグラフト重合させる反応、などが挙げられる。 The method for producing the acid-modified polyolefin (A) is not particularly limited, and for example, radical graft reaction (that is, generating radical species for the polymer to be the main chain, and using the radical species as a polymerization initiation point, the unsaturated carboxylic acid and Examples include a reaction of graft polymerization of an acid anhydride.
 ラジカル発生剤としては、特に限定されないが、有機過酸化物を使用することが好ましい。有機過酸化物としては、特に限定されないが、ジ-tert-ブチルパーオキシフタレート、tert-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、メチルエチルケトンパーオキサイド、ジ-tert-ブチルパーオキサイド、ラウロイルパーオキサイド等の過酸化物;アゾビスイソブチロニトリル、アゾビスイソプロピオニトリル等のアゾニトリル類等が挙げられる Although it does not specifically limit as a radical generator, It is preferable to use an organic peroxide. The organic peroxide is not particularly limited, but di-tert-butyl peroxyphthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxy- Peroxides such as 2-ethylhexanoate, tert-butyl peroxypivalate, methyl ethyl ketone peroxide, di-tert-butyl peroxide, lauroyl peroxide; azobisisobutyronitrile, azobisisopropionitrile, etc. And azonitriles
<グリシジルアミン型エポキシ樹脂(B1)>
 本発明に用いるグリシジルアミン型エポキシ樹脂(B1)は、1分子中に1個のグリシジル基を有するエポキシ樹脂であれば特に限定されない。エポキシ樹脂1分子中に2個以上のグリシジル基を有することが好ましく、エポキシ樹脂1分子中に3個以上のグリシジル基を有することがより好ましく、エポキシ樹脂1分子中に4個以上のグリシジル基を有することがさらに好ましい。
<Glycidylamine type epoxy resin (B1)>
The glycidylamine type epoxy resin (B1) used for this invention will not be specifically limited if it is an epoxy resin which has one glycidyl group in 1 molecule. It is preferable to have two or more glycidyl groups in one epoxy resin molecule, more preferably three or more glycidyl groups in one molecule of epoxy resin, and four or more glycidyl groups in one molecule of epoxy resin. More preferably, it has.
 また、グリシジルアミン型エポキシ樹脂(B1)は、下記一般式(1)で表される化合物を用いることで、さらに耐薬品性が向上し、好ましい。 Also, the glycidylamine type epoxy resin (B1) is preferable because the chemical resistance is further improved by using a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Rは置換基を有してもよいアリール基であり、好ましくは置換基を有してもよいフェニル基である。前記アリール基の置換基としては、特に限定されないが、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、水酸基、アミノ基、グリシジル基、グリシジルアミノ基、グリシジルエーテル基が挙げられる。A1およびA2はそれぞれ独立して炭素数1以上5以下の置換基を有してもよい直鎖のアルキレン基であり、好ましい炭素数は4以下であり、より好ましくは3以下であり、さらに好ましくは2以下である。前記アルキレン基の置換基としては、特に限定されないが、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、またはアミノ基が挙げられる。mは1または2であり、nは1または2である。好ましくは、mまたはnのいずれかが2であり、より好ましくは、m、nとも2である。 In general formula (1), R is an aryl group which may have a substituent, and preferably a phenyl group which may have a substituent. The substituent of the aryl group is not particularly limited, and examples thereof include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, an amino group, a glycidyl group, a glycidylamino group, and a glycidyl ether group. Can be mentioned. A1 and A2 are each independently a linear alkylene group which may have a substituent having 1 to 5 carbon atoms, preferably 4 or less, more preferably 3 or less, and still more preferably Is 2 or less. Although it does not specifically limit as a substituent of the said alkylene group, A C1-C5 alkyl group, a C1-C5 alkoxy group, or an amino group is mentioned. m is 1 or 2, and n is 1 or 2. Preferably, either m or n is 2, more preferably m and n are both 2.
 グリシジルアミン型エポキシ樹脂(B1)の具体例としては、特に限定されないが、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサノン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等のグリシジルアミン系などが挙げられる。なかでもN,N,N’,N’-テトラグリシジル-m-キシレンジアミンが好ましい。これらグリシジルアミン型エポキシ樹脂(B1)を単独でまたは2種以上を併用することができる。 Specific examples of the glycidylamine type epoxy resin (B1) are not particularly limited, but include tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, tetraglycidylbisaminomethylcyclohexanone, N, N, N ′, N′-tetraglycidyl-m. -Glycidylamine type such as xylenediamine. Of these, N, N, N ′, N′-tetraglycidyl-m-xylenediamine is preferred. These glycidylamine type epoxy resins (B1) can be used alone or in combination of two or more.
 グリシジルアミン型エポキシ樹脂(B1)の配合量は、酸変性ポリオレフィン(A)100質量部に対して、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましく、1質量部以上であることが特に好ましく、2質量部以上であることが最も好ましい。また、20質量部以下であることが好ましく、18質量部以下であることがより好ましく、16質量部以下であることがさらに好ましく、14質量部以下であることが特に好ましく、12質量部以下であることが最も好ましい。前記範囲未満であると触媒作用が発現せず、80℃以下での貼り合わせ、エージングにおける接着性および耐薬品性が低い場合がある。前記範囲超では、過度に架橋反応が進行し剛直性が高くなり、接着性が低下する傾向にある。また、接着剤組成物の溶液保存中に架橋反応が進み易く、ポットライフが低下する傾向にある。 The blending amount of the glycidylamine type epoxy resin (B1) is preferably 0.01 parts by mass or more and more preferably 0.05 parts by mass or more with respect to 100 parts by mass of the acid-modified polyolefin (A). The content is more preferably 0.1 parts by mass or more, particularly preferably 1 part by mass or more, and most preferably 2 parts by mass or more. Further, it is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, further preferably 16 parts by mass or less, particularly preferably 14 parts by mass or less, and 12 parts by mass or less. Most preferably it is. If it is less than the above range, the catalytic action is not exhibited, and there are cases where adhesion at 80 ° C. or lower and aging adhesion and chemical resistance are low. Above the range, the crosslinking reaction proceeds excessively, the rigidity becomes high, and the adhesiveness tends to be lowered. Further, the crosslinking reaction tends to proceed during storage of the adhesive composition solution, and the pot life tends to be reduced.
<グリシジルエーテル型エポキシ樹脂(B2)>
 本発明に用いるグリシジルエーテル型エポキシ樹脂(B2)は、分子内にグリシジルエーテル基を有するエポキシ樹脂であれば特に限定されない。好ましくはエポキシ樹脂1分子中に2個以上のグリシジル基を有するエポキシ樹脂であり、さらに好ましくはエポキシ樹脂1分子中に2個以上のグリシジル基を有し、かつ窒素原子を含有しないエポキシ樹脂である。
<Glycidyl ether type epoxy resin (B2)>
The glycidyl ether type epoxy resin (B2) used for this invention will not be specifically limited if it is an epoxy resin which has a glycidyl ether group in a molecule | numerator. Preferably, it is an epoxy resin having two or more glycidyl groups in one molecule of the epoxy resin, and more preferably an epoxy resin having two or more glycidyl groups in one molecule of the epoxy resin and containing no nitrogen atom. .
 グリシジルエーテル型エポキシ樹脂(B2)の配合量は、酸変性ポリオレフィン(A)100質量部に対して、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることがさらに好ましく、4質量部以上であることが特に好ましく、5質量部以上であることが最も好ましい。また、20質量部以下であることが好ましく、18質量部以下であることがより好ましく、16質量部以下であることがさらに好ましく、14質量部以下であることが特に好ましく、12質量部以下であることが最も好ましい。前記範囲にすることで、優れた接着性および耐薬品性を発現することができる。 The blending amount of the glycidyl ether type epoxy resin (B2) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the acid-modified polyolefin (A). More preferably, it is more preferably 4 parts by mass or more, and most preferably 5 parts by mass or more. Further, it is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, further preferably 16 parts by mass or less, particularly preferably 14 parts by mass or less, and 12 parts by mass or less. Most preferably it is. By setting it in the above range, excellent adhesiveness and chemical resistance can be expressed.
 グリシジルエーテル型エポキシ樹脂(B2)の具体例としては、特に限定されないが、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が挙げられ、こられがバリア層との接着性および耐薬品性という観点から好ましい。これらグリシジルエーテル型エポキシ樹脂(B2)を単独でまたは2種以上を併用することができる。 Specific examples of the glycidyl ether type epoxy resin (B2) are not particularly limited, and examples thereof include a phenol novolac type epoxy resin and a cresol novolac type epoxy resin. From the viewpoint of adhesion to the barrier layer and chemical resistance. preferable. These glycidyl ether type epoxy resins (B2) can be used alone or in combination of two or more.
 本発明では、前記グリシジルアミン型エポキシ樹脂(B1)と前記グリシジルエーテル型エポキシ樹脂(B2)の2種類のエポキシ樹脂を必須成分として併用することを特徴とする。グリシジルアミン型エポキシ樹脂(B1)とグリシジルエーテル型エポキシ樹脂(B2)を併用することによって、優れた接着性、耐薬品性を発現することができる。すなわち、グリシジルアミン型エポキシ樹脂(B1)は、酸変性ポリオレフィン(A)とグリシジルエーテル型エポキシ樹脂(B2)との反応、硬化作用を有する。さらにグリシジルアミン型エポキシ樹脂(B1)は、酸変性ポリオレフィン(A)とグリシジルアミン型エポキシ樹脂(B1)、グリシジルアミン型エポキシ樹脂(B1)同士、グリシジルエーテル型エポキシ樹脂(B2)同士、およびグリシジルアミン型エポキシ樹脂(B1)とグリシジルエーテル型エポキシ樹脂(B2)の反応、硬化触媒作用を有することから、配合することで、80℃以下での貼り合わせ、エージングにおけるバリア層との接着性および耐薬品性が向上することができる。 In the present invention, two types of epoxy resins, the glycidylamine type epoxy resin (B1) and the glycidyl ether type epoxy resin (B2), are used in combination as essential components. By using the glycidylamine type epoxy resin (B1) and the glycidyl ether type epoxy resin (B2) in combination, excellent adhesiveness and chemical resistance can be expressed. That is, the glycidylamine type epoxy resin (B1) has a reaction and curing action between the acid-modified polyolefin (A) and the glycidyl ether type epoxy resin (B2). Furthermore, the glycidylamine type epoxy resin (B1) includes acid-modified polyolefin (A) and glycidylamine type epoxy resin (B1), glycidylamine type epoxy resin (B1), glycidyl ether type epoxy resin (B2), and glycidylamine. Type epoxy resin (B1) and glycidyl ether type epoxy resin (B2) have a reaction and curing catalytic action, so that they can be combined to bond at 80 ° C. or lower, adhesion to the barrier layer during aging, and chemical resistance Property can be improved.
 グリシジルアミン型エポキシ樹脂(B1)とグリシジルエーテル型エポキシ樹脂(B2)の合計の配合量は、酸変性ポリオレフィン(A)100質量部に対して、2~40質量部であることが好ましく、5~20質量部であることがより好ましく、10~16質量部であることが最も好ましい。前記範囲未満では十分な硬化効果が得られず接着性および耐薬品性が低い場合があり、前記範囲超では、ポットライフ性とシーラント層との接着性低下、コスト面の観点から好ましくない。 The total amount of the glycidylamine type epoxy resin (B1) and the glycidyl ether type epoxy resin (B2) is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the acid-modified polyolefin (A). The amount is more preferably 20 parts by mass, and most preferably 10 to 16 parts by mass. If it is less than the above range, a sufficient curing effect may not be obtained and the adhesiveness and chemical resistance may be low, and if it exceeds the above range, it is not preferable from the viewpoint of reduction in adhesiveness between the pot life and the sealant layer and cost.
 グリシジルアミン型エポキシ樹脂(B1)の配合量はエポキシ樹脂全体の1~50質量%であることが好ましく、2~30質量%であることがより好ましく、3~10質量%であることが最も好ましい。配合量が前記未満であると触媒作用が発現せず、低温貼り合わせ、エージングにおける接着性および耐薬品性が低い場合があり、前記超になると、過度に架橋反応が進行し剛直性が高くなり、接着性が低下する傾向にある。また、接着剤組成物の溶液保存中に架橋反応が進み易く、ポットライフが低下する傾向にある。 The blending amount of the glycidylamine type epoxy resin (B1) is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and most preferably 3 to 10% by mass of the entire epoxy resin. . If the blending amount is less than the above, the catalytic action does not appear and the adhesion and chemical resistance in low temperature bonding and aging may be low. If it exceeds the above, the crosslinking reaction proceeds excessively and the rigidity becomes high. The adhesiveness tends to decrease. Further, the crosslinking reaction tends to proceed during storage of the adhesive composition solution, and the pot life tends to be reduced.
 本発明に用いるエポキシ樹脂として、その他のエポキシ樹脂も併用することが出来る。例えば、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ、トリグリシジルイソシアヌレート、あるいは3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族あるいは脂肪族エポキサイド等が挙げられ、一種単独で用いても二種以上を併用しても構わない。 Other epoxy resins can be used in combination as the epoxy resin used in the present invention. For example, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl isocyanurate, or 3,4-epoxycyclohexylmethylcarboxylate, epoxidized polybutadiene, epoxidized soybean oil, etc. Group epoxides and the like, and may be used alone or in combination of two or more.
<有機溶剤(C)>
 本発明で用いる有機溶剤(C)は、酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)およびグリシジルエーテル型エポキシ樹脂(B2)を溶解させるものであれば、特に限定されない。具体的には、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカン等の脂肪族系炭化水素、シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロへキサン等の脂環族炭化水素、トリクロルエチレン、ジクロルエチレン、クロルベンゼン、クロロホルム等のハロゲン化炭化水素、メタノール、エタノール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、プロパンジオール、フェノール等のアルコール系溶剤、アセトン、メチルイソブチルケトン、メチルエチルケトンペンタノン、ヘキサノン、シクロヘキサノン、イソホロン、アセトフェノン等のケトン系溶剤、メチルセルソルブ、エチルセルソルブ等のセルソルブ類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ギ酸ブチル等のエステル系溶剤、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-iso-ブチルエーテル、エチレングリコールモノ-tert-ブチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-iso-ブチルエーテル、トリエチレングリコールモノ-n-ブチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル等のグリコールエーテル系溶剤等を使用することができ、これら1種または2種以上を併用することができる。
<Organic solvent (C)>
The organic solvent (C) used in the present invention is not particularly limited as long as it dissolves the acid-modified polyolefin (A), the glycidylamine type epoxy resin (B1), and the glycidyl ether type epoxy resin (B2). Specifically, for example, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane, octane and decane, and alicyclic carbons such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane Halogenated hydrocarbons such as hydrogen, trichloroethylene, dichloroethylene, chlorobenzene, chloroform, alcohol solvents such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, phenol, acetone, methyl isobutyl ketone, Ketone solvents such as methyl ethyl ketone pentanone, hexanone, cyclohexanone, isophorone, acetophenone, cellsolves such as methyl cellosolve, ethyl cellosolve, methyl acetate, ethyl acetate, acetic acid Ester solvents such as chill, methyl propionate, butyl formate, ethylene glycol mono-n-butyl ether, ethylene glycol mono-iso-butyl ether, ethylene glycol mono-tert-butyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-iso- Glycol ether solvents such as butyl ether, triethylene glycol mono-n-butyl ether, and tetraethylene glycol mono-n-butyl ether can be used, and one or more of these can be used in combination.
 有機溶剤(C)は、酸変性ポリオレフィン(A)100質量部に対して、80質量部以上であることが好ましく、90質量部以上であることがより好ましく、100質量部以上であることがさらに好ましく、110質量部以上であることが特に好ましい。また、1000質量部以下であることが好ましく、900質量部以下であることがより好ましく、800質量部以下であることがさらに好ましく、700質量部以下であることが特に好ましい。前記範囲未満では、液状およびポットライフ性が低下することがあり、前記範囲を超えると製造コスト、輸送コストの面から不利となる場合がある。 The organic solvent (C) is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and further preferably 100 parts by mass or more with respect to 100 parts by mass of the acid-modified polyolefin (A). Preferably, it is 110 parts by mass or more. Further, it is preferably 1000 parts by mass or less, more preferably 900 parts by mass or less, still more preferably 800 parts by mass or less, and particularly preferably 700 parts by mass or less. If it is less than the said range, liquid state and pot life property may fall, and when it exceeds the said range, it may become disadvantageous from the surface of manufacturing cost and transport cost.
 有機溶剤(C)は、接着剤組成物の液状およびポットライフ性の観点から、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素およびハロゲン化炭化水素からなる群より選択された1種以上の溶剤(C1)、アルコール系溶剤、ケトン系溶剤、エステル系溶剤およびグリコールエーテル系溶剤からなる群より選択された1種以上の溶剤(C2)の混合液が好ましい。混合比としては、溶剤(C1)/溶剤(C2)=50~97/50~3(質量比)であることが好ましく、55~95/45~5(質量比)であることがより好ましく、60~90/40~10(質量比)であることがさらに好ましく、70~80/30~20(質量比)であることが特に好ましい。上記範囲を外れると接着剤組成物の液状およびポットライフ性が低下することがある。また、溶剤(C1)が芳香族炭化水素または脂環族炭化水素であり、溶剤(C2)がケトン系溶媒であることが特に好ましい。 The organic solvent (C) is one selected from the group consisting of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons and halogenated hydrocarbons from the viewpoint of the liquidity and pot life properties of the adhesive composition. A mixed liquid of at least one solvent (C2) selected from the group consisting of the above solvent (C1), alcohol solvent, ketone solvent, ester solvent and glycol ether solvent is preferable. The mixing ratio is preferably solvent (C1) / solvent (C2) = 50 to 97/50 to 3 (mass ratio), more preferably 55 to 95/45 to 5 (mass ratio), The ratio is more preferably 60 to 90/40 to 10 (mass ratio), and particularly preferably 70 to 80/30 to 20 (mass ratio). If it is out of the above range, the liquid state and pot life of the adhesive composition may be lowered. Moreover, it is especially preferable that the solvent (C1) is an aromatic hydrocarbon or an alicyclic hydrocarbon, and the solvent (C2) is a ketone solvent.
<接着剤組成物>
 本発明にかかる接着剤組成物は、前記酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)および有機溶剤(C)の混合物である。酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)およびグリシジルエーテル型エポキシ樹脂(B2)は有機溶剤(C)に溶解しても良いし、分散しても良い。ポットライフ性の観点から溶解していることが好ましい。
<Adhesive composition>
The adhesive composition according to the present invention is a mixture of the acid-modified polyolefin (A), the glycidylamine type epoxy resin (B1), the glycidyl ether type epoxy resin (B2) and the organic solvent (C). The acid-modified polyolefin (A), glycidylamine type epoxy resin (B1) and glycidyl ether type epoxy resin (B2) may be dissolved or dispersed in the organic solvent (C). It is preferably dissolved from the viewpoint of pot life.
 接着剤組成物は、本発明の性能を損なわない範囲で前記酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)および有機溶剤(C)の他に各種の添加剤を配合して使用することができる。添加剤としては、特に限定されないが、難燃剤、顔料、ブロッキング防止剤等を使用することが好ましい。 In addition to the acid-modified polyolefin (A), glycidylamine-type epoxy resin (B1), glycidyl ether-type epoxy resin (B2), and organic solvent (C), the adhesive composition can be used in various ways as long as the performance of the present invention is not impaired. These additives can be blended and used. Although it does not specifically limit as an additive, It is preferable to use a flame retardant, a pigment, an antiblocking agent, etc.
<<シーラント層>>
 本発明に用いるシーラント層は、特に限定されないが、耐漏液性や耐熱性などの点からポリオレフィンを用いることが好ましい。ポリオレフィンは、従来から公知のポリオレフィン樹脂の中から適宜選択すればよい。例えば、特に限定されないが、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などを用いることができる。中でも、ポリプロピレンの使用が好ましく、ポリプロピレンはランダムプロピレン、ホモプロピレン、ブロックプロピレンの中から適宜選択すればよい。
<< Sealant layer >>
The sealant layer used in the present invention is not particularly limited, but it is preferable to use polyolefin from the viewpoints of leakage resistance and heat resistance. The polyolefin may be appropriately selected from conventionally known polyolefin resins. For example, although not particularly limited, polyethylene, polypropylene, ethylene-propylene copolymer, and the like can be used. Among these, polypropylene is preferably used, and polypropylene may be appropriately selected from random propylene, homopropylene, and block propylene.
 本発明におけるシーラント層には、上記各タイプのポリプロピレン層を適時組み合わせて多層化してもよい。その厚さは、特に限定されないが、20~100μmであることが好ましく、25~95μmであることがより好ましく、30~90μmであることがさらに好ましい。なお、ポリオレフィン樹脂基材には必要に応じて顔料や種々の添加物を配合してもよい。 The sealant layer in the present invention may be multilayered by combining the above-mentioned types of polypropylene layers as appropriate. The thickness is not particularly limited, but is preferably 20 to 100 μm, more preferably 25 to 95 μm, and even more preferably 30 to 90 μm. In addition, you may mix | blend a pigment and various additives with a polyolefin resin base material as needed.
<<バリア層>>
 本発明に用いるバリア層は、酸素や水分等のリチウムイオン電池内部への侵入を阻止するバリア性を有する層である。特に限定されないが、純アルミニウム、アルミニウム-鉄合金、銅、ニッケル、ステンレス等の金属箔やアルミニウム、ニッケル、シリカ、アルミナ等の蒸着フィルムが好ましい。バリア性の点からアルミニウム箔を用いることが好ましい。また、耐腐食性及び密着性を向上させるため、バリア層にはクロメート処理等の表面処理が施されていることが好ましく、具体的にはクロム酸クロメート処理、リン酸クロメート処理、塗布型クロメート処理等のクロム系化成処理、あるいは、ジルコニウム、チタン、リン酸亜鉛等を用いた非クロム系(塗布型)化成処理等が挙げられる。これらの処理は単独で行ってもよいし、適宜、有機バインダー成分を併用して処理してもよい。
<< Barrier layer >>
The barrier layer used in the present invention is a layer having a barrier property that prevents entry of oxygen, moisture, or the like into the lithium ion battery. Although not particularly limited, metal foils such as pure aluminum, aluminum-iron alloy, copper, nickel, and stainless steel, and vapor deposition films such as aluminum, nickel, silica, and alumina are preferable. It is preferable to use an aluminum foil from the viewpoint of barrier properties. In order to improve corrosion resistance and adhesion, the barrier layer is preferably subjected to a surface treatment such as chromate treatment. Specifically, chromate chromate treatment, phosphoric acid chromate treatment, and coating type chromate treatment. Or a non-chromium (coating type) chemical conversion treatment using zirconium, titanium, zinc phosphate or the like. These treatments may be carried out alone or appropriately in combination with an organic binder component.
 アルミニウム箔を使用する場合は、厚みが9~200μmの軟質アルミニウム箔、特に鉄含有率が0.1~9.0質量%の軟質アルミニウム箔が耐ピンホール性、成形加工時の延展性の点で好ましい。鉄含有率が0.1質量%未満であると、耐ピンホール性、延展性を十分に付与させることができず、9.0質量%を超えると柔軟性が損なわれる場合がある。 When aluminum foil is used, a soft aluminum foil with a thickness of 9 to 200 μm, particularly a soft aluminum foil with an iron content of 0.1 to 9.0% by mass, is resistant to pinholes and is easy to stretch during molding. Is preferable. When the iron content is less than 0.1% by mass, sufficient pinhole resistance and spreadability cannot be imparted, and when it exceeds 9.0% by mass, flexibility may be impaired.
 軟質アルミニウム箔を用いる場合、耐腐食性の向上に加えて、接着層との接着性を向上させるために、接着層を積層する面に公知の表面処理を行うことが好ましい。 When using a soft aluminum foil, it is preferable to perform a known surface treatment on the surface on which the adhesive layer is laminated in order to improve the adhesion to the adhesive layer in addition to the improvement in corrosion resistance.
<<電池用包装材料>>
 本発明の電池用包装材料は、以上のように、バリア層、接着層及びシーラント層がこの順に積層されてなるものである。
<< Battery packaging materials >>
As described above, the battery packaging material of the present invention is formed by laminating a barrier layer, an adhesive layer, and a sealant layer in this order.
 次に、本発明の電池用包装材料を製造する方法について、一例を述べる。 Next, an example of the method for producing the battery packaging material of the present invention will be described.
 本発明では、まずバリア層の表面に接着層を設ける。本発明において、接着層を設ける方法は特に限定されないが、前述の酸変性ポリプロピレン樹脂(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)および有機溶剤(C)を含有する接着剤組成物をバリア層の表面に塗布して、有機溶剤(C)を乾燥除去し、次いで硬化反応をさせる方法が挙げられる。また、剥離紙上に接着剤組成物を塗布して有機溶剤(C)を乾燥、硬化反応をさせて一旦接着層を剥離し、後にこれをバリア層またはシーラント層に転写する方法が挙げられる。中でも、性能面の点から、前者の方法が、接着層の厚みを自在に制御しやすい点から好ましく、その中でも、同接着剤組成物をバリア層の表面に塗布する方法が、実用上好ましい。 In the present invention, an adhesive layer is first provided on the surface of the barrier layer. In the present invention, the method for providing the adhesive layer is not particularly limited, but includes the acid-modified polypropylene resin (A), the glycidylamine type epoxy resin (B1), the glycidyl ether type epoxy resin (B2), and the organic solvent (C). The adhesive composition to be applied is applied to the surface of the barrier layer, the organic solvent (C) is removed by drying, and then a curing reaction is performed. Further, there may be mentioned a method in which an adhesive composition is applied on release paper, the organic solvent (C) is dried and subjected to a curing reaction to once peel the adhesive layer, and then transferred to the barrier layer or sealant layer. Among these, from the viewpoint of performance, the former method is preferable from the viewpoint of easily controlling the thickness of the adhesive layer, and among them, the method of applying the adhesive composition to the surface of the barrier layer is preferable in practice.
 接着剤組成物の塗布方法としては、公知の方法、例えばグラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等により、バリア層又はシーラント層の表面に均一にコーティングし、必要に応じて室温付近でセッティングした後、乾燥処理又は乾燥のための加熱処理に供することにより、均一な接着層を塗布面に密着させて形成することができる。 As an application method of the adhesive composition, known methods such as gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating method, etc. Uniformly coat the surface of the barrier layer or sealant layer, set it at room temperature as necessary, and then subject it to a drying treatment or a heat treatment for drying to form a uniform adhesive layer in close contact with the coated surface can do.
 接着層を設けた後は、シーラント層を設ける。シーラント層を設ける方法は特に限定されないが、前述のシーラント樹脂からなるシーラントフィルムと接着層とを熱によって貼り合わせる方法(熱ラミネート、ドライラミネート)や、接着層に溶融させた前記樹脂を押し出して貼り合わせる方法(押出ラミネート)などがあげられる。 ) After providing the adhesive layer, provide the sealant layer. The method of providing the sealant layer is not particularly limited, but a method of bonding the sealant film made of the above-described sealant resin and the adhesive layer by heat (thermal lamination, dry lamination), or extruding and pasting the resin melted in the adhesive layer. A method of matching (extrusion lamination) and the like can be mentioned.
 本発明の電池用包装材料は、以上の方法により製造でき、かかる方法によれば、接着層の厚みの調整が容易であるため、包装材料を効率よく生産することができる。 The battery packaging material of the present invention can be produced by the above method, and according to such a method, the thickness of the adhesive layer can be easily adjusted, so that the packaging material can be produced efficiently.
 本発明の電池用包装材料は、厚み方向に順に、バリア層、接着層及びシーラント層をこの順に積層した構成を有し、さらに単層もしくは多層の耐熱性高分子フィルムからなる基材層を設けてもよい。 The battery packaging material of the present invention has a structure in which a barrier layer, an adhesive layer, and a sealant layer are laminated in this order in the thickness direction, and a base layer made of a single-layer or multilayer heat-resistant polymer film is further provided. May be.
 前記基材層は、例えば、ポリエステルフィルム、ポリアミドフィルム、ポリプロピレンフィルム等の延伸もしくは未延伸フィルムなどの単体フィルム、あるいは前記単体フィルムを積層した多層フィルムなどが使用することができる。 The base layer may be, for example, a single film such as a stretched or unstretched film such as a polyester film, a polyamide film, or a polypropylene film, or a multilayer film in which the single films are laminated.
 基材層とバリア層の間には、必要に応じて、プライマー層を設けることができる。プライマー層は、シランカップリング剤やポリエステルポリオールあるいはポリエーテルポリオール、アクリルポリオールを主剤としたポリウレタン系接着剤を使用することができる。 A primer layer can be provided between the base material layer and the barrier layer as necessary. For the primer layer, a polyurethane adhesive mainly composed of a silane coupling agent, polyester polyol, polyether polyol, or acrylic polyol can be used.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は実施例に限定されない。実施例中および比較例中に単に部とあるのは質量部を示す。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “parts” simply means “parts by mass”.
製造例1
 1Lオートクレーブに、プロピレン-ブテン共重合体(三井化学社製「タフマー(登録商標)XM7080」)100質量部、トルエン150質量部及び無水マレイン酸25質量部、ジ-tert-ブチルパーオキサイド6質量部を加え、140℃まで昇温した後、更に3時間撹拌した。その後、得られた反応液を冷却後、多量のメチルエチルケトンが入った容器に注ぎ、樹脂を析出させた。その後、当該樹脂を含有する液を遠心分離することにより、無水マレイン酸がグラフト重合した酸変性プロピレン-ブテン共重合体と(ポリ)無水マレイン酸および低分子量物とを分離、精製した。その後、減圧下70℃で5時間乾燥させることにより、無水マレイン酸変性プロピレン-ブテン共重合体(PO-1、酸価48mgKOH/g-resin、重量平均分子量50,000、Tm75℃、△H25J/g)を得た。
Production Example 1
In a 1 L autoclave, 100 parts by mass of a propylene-butene copolymer (“Tafmer (registered trademark) XM7080” manufactured by Mitsui Chemicals), 150 parts by mass of toluene and 25 parts by mass of maleic anhydride, 6 parts by mass of di-tert-butyl peroxide Was added, and the temperature was raised to 140 ° C., followed by further stirring for 3 hours. Then, after cooling the obtained reaction liquid, it poured into the container containing a lot of methyl ethyl ketone, and resin was deposited. Thereafter, the liquid containing the resin was centrifuged to separate and purify an acid-modified propylene-butene copolymer grafted with maleic anhydride, (poly) maleic anhydride and a low molecular weight product. Thereafter, by drying at 70 ° C. under reduced pressure for 5 hours, a maleic anhydride-modified propylene-butene copolymer (PO-1, acid value 48 mgKOH / g-resin, weight average molecular weight 50,000, Tm 75 ° C., ΔH25J / g) was obtained.
製造例2
 無水マレイン酸の仕込み量を20質量部に変更した以外は製造例1と同様にすることにより、無水マレイン酸変性プロピレン-ブテン共重合体(PO-2、酸価25mgKOH/g-resin、重量平均分子量80,000、Tm75℃、△H30J/g)を得た。
Production Example 2
A maleic anhydride-modified propylene-butene copolymer (PO-2, acid value 25 mgKOH / g-resin, weight average) was obtained in the same manner as in Production Example 1 except that the amount of maleic anhydride charged was changed to 20 parts by mass. Molecular weight 80,000, Tm 75 ° C., ΔH 30 J / g) was obtained.
製造例3
 無水マレイン酸の仕込み量を3質量部、ジ-tert-ブチルパーオキサイドを0.5質量部に変更した以外は製造例1と同様にすることにより、無水マレイン酸変性プロピレン-ブテン共重合体(PO-3、酸価5mgKOH/g-resin、重量平均分子量180,000、Tm80℃、△H25J/g)を得た。
Production Example 3
A maleic anhydride-modified propylene-butene copolymer (with the same procedure as in Production Example 1 except that the amount of maleic anhydride charged was changed to 3 parts by mass and the amount of di-tert-butyl peroxide was changed to 0.5 parts by mass ( PO-3, acid value 5 mg KOH / g-resin, weight average molecular weight 180,000, Tm 80 ° C., ΔH 25 J / g).
製造例4
 無水マレイン酸の仕込み量を30質量部に変更した以外は製造例1と同様にすることにより、無水マレイン酸変性プロピレン-ブテン共重合体(PO-4、酸価55mgKOH/g-resin、重量平均分子量40,000、Tm70℃、△H25J/g)を得た。
Production Example 4
A maleic anhydride-modified propylene-butene copolymer (PO-4, acid value 55 mgKOH / g-resin, weight average) was obtained in the same manner as in Production Example 1 except that the amount of maleic anhydride charged was changed to 30 parts by mass. Molecular weight 40,000, Tm 70 ° C., ΔH 25 J / g) was obtained.
製造例5
 無水マレイン酸の仕込み量を2質量部、ジ-tert-ブチルパーオキサイドを0.5質量部に変更した以外は製造例1と同様にすることにより、無水マレイン酸変性プロピレン-ブテン共重合体(PO-5、酸価3mgKOH/g-resin、重量平均分子量200,000、Tm80℃、△H25J/g)を得た。
Production Example 5
A maleic anhydride-modified propylene-butene copolymer was prepared in the same manner as in Production Example 1 except that the amount of maleic anhydride charged was changed to 2 parts by mass and the amount of di-tert-butyl peroxide was changed to 0.5 parts by mass. PO-5, acid value 3 mg KOH / g-resin, weight average molecular weight 200,000, Tm 80 ° C., ΔH 25 J / g).
(主剤1の作製)
 水冷還流凝縮器と撹拌機を備えた500mlの四つ口フラスコに、製造例1で得られた無水マレイン酸変性プロピレン-ブテン共重合体(PO-1)を100質量部、メチルシクロヘキサンを280質量部およびメチルエチルケトンを120質量部仕込み、撹拌しながら80℃まで昇温し、撹拌を1時間続けることで主剤1を得た。溶液状態を表1に示す。
(Preparation of main agent 1)
In a 500 ml four-necked flask equipped with a water-cooled reflux condenser and a stirrer, 100 parts by mass of maleic anhydride-modified propylene-butene copolymer (PO-1) obtained in Production Example 1 and 280 parts by mass of methylcyclohexane 120 parts by mass and methyl ethyl ketone were charged, the temperature was raised to 80 ° C. while stirring, and stirring was continued for 1 hour to obtain main agent 1. The solution state is shown in Table 1.
(主剤2~12の作製)
 酸変性ポリオレフィンおよび有機溶剤を表1に示すとおりに変更し、主剤1と同様な方法で主剤2~12を作製した。配合量、溶液状態を表1に示す。
(Preparation of main ingredients 2-12)
The acid-modified polyolefin and the organic solvent were changed as shown in Table 1, and main agents 2 to 12 were produced in the same manner as main agent 1. Table 1 shows the blending amount and the solution state.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例1
 主剤1を500質量部、硬化剤としてグリシジルエーテル型エポキシ樹脂(B2)であるフェノールノボラック型エポキシ樹脂を19.8質量部、グリシジルアミン型エポキシ樹脂(B1)であるTETRAD(登録商標)-Xを0.2質量部配合し、接着剤組成物を得た。ポットライフ性、接着性および耐薬品性の評価結果を表2に示す。
Example 1
500 parts by mass of main agent 1, 19.8 parts by mass of phenol novolac type epoxy resin as glycidyl ether type epoxy resin (B2) as curing agent, and TETRAD (registered trademark) -X as glycidylamine type epoxy resin (B1) 0.2 mass part was mix | blended and the adhesive composition was obtained. Table 2 shows the evaluation results of pot life, adhesiveness and chemical resistance.
実施例2~15、比較例1~6
 主剤1~12および各硬化剤を表2、3に示すとおりに変更し、実施例1と同様な方法で実施例2~15、比較例1~6を行った。配合量、ポットライフ性、接着性および耐薬品性を表2、3に示す。
Examples 2 to 15 and Comparative Examples 1 to 6
The main agents 1 to 12 and the respective curing agents were changed as shown in Tables 2 and 3, and Examples 2 to 15 and Comparative Examples 1 to 6 were performed in the same manner as in Example 1. Tables 2 and 3 show the blending amount, pot life property, adhesiveness and chemical resistance.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2、3で用いた硬化剤は以下のものである。
<グリシジルアミン型エポキシ樹脂(B1)>
 N,N,N’,N’-テトラグリシジル-m-キシレンジアミン:TETRAD(登録商標)-X(三菱ガス化学社製)
<グリシジルエーテル型エポキシ樹脂(B2)>
 フェノールノボラック型エポキシ樹脂:jER(登録商標)152(三菱化学社製)
 o-クレゾールノボラック型エポキシ樹脂:YDCN-700-3(新日鉄住金化学社製) 
<その他の硬化剤>
 ポリイソシアネート:デュラネート(登録商標)TPA-100(旭化成社製)
 シランカップリング剤:KBM-403(信越シリコーン社製)
The curing agents used in Tables 2 and 3 are as follows.
<Glycidylamine type epoxy resin (B1)>
N, N, N ′, N′-tetraglycidyl-m-xylenediamine: TETRAD (registered trademark) -X (manufactured by Mitsubishi Gas Chemical Company)
<Glycidyl ether type epoxy resin (B2)>
Phenol novolac type epoxy resin: jER (registered trademark) 152 (manufactured by Mitsubishi Chemical Corporation)
o-Cresol novolac type epoxy resin: YDCN-700-3 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
<Other curing agents>
Polyisocyanate: Duranate (registered trademark) TPA-100 (manufactured by Asahi Kasei Corporation)
Silane coupling agent: KBM-403 (manufactured by Shin-Etsu Silicone)
 上記のようにして得られた各酸変性ポリオレフィン、主剤および接着剤組成物に対して下記方法に基づいて分析測定および評価を行った。 Analytical measurement and evaluation were performed on each acid-modified polyolefin, main agent, and adhesive composition obtained as described above based on the following methods.
酸価の測定
 本発明における酸価(mgKOH/g-resin)は、FT-IR(島津製作所社製、FT-IR8200PC)を使用して、無水マレイン酸(東京化成製)のクロロホルム溶液によって作成した検量線から得られる係数(f)、結晶性無水マレイン酸変性ポリオレフィン溶液における無水マレイン酸のカルボニル(C=O)結合の伸縮ピーク(1780cm-1)の吸光度(I)を用いて下記式により算出した値である。
酸価(mgKOH/g-resin)=[吸光度(I)×(f)×2×水酸化カリウムの分子量×1000(mg)/無水マレイン酸の分子量]
無水マレイン酸の分子量:98.06 水酸化カリウムの分子量:56.11
Measurement of Acid Value The acid value (mgKOH / g-resin) in the present invention was prepared with a chloroform solution of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) using FT-IR (manufactured by Shimadzu Corporation, FT-IR8200PC). Using the coefficient (f) obtained from the calibration curve and the absorbance (I) of the stretching peak (1780 cm −1 ) of the carbonyl (C═O) bond of maleic anhydride in the crystalline maleic anhydride-modified polyolefin solution, the following formula is used. It is the value.
Acid value (mgKOH / g-resin) = [absorbance (I) × (f) × 2 × molecular weight of potassium hydroxide × 1000 (mg) / molecular weight of maleic anhydride]
Molecular weight of maleic anhydride: 98.06 Molecular weight of potassium hydroxide: 56.11
重量平均分子量(Mw)の測定
 本発明における重量平均分子量は日本ウォーターズ社製ゲルパーミエーションクロマトグラフAlliance e2695(以下、GPC、標準物質:ポリスチレン樹脂、移動相:テトラヒドロフラン、カラム:Shodex KF-806 + KF-803、カラム温度:40℃、流速:1.0ml/分、検出器:フォトダイオードアレイ検出器(波長254nm = 紫外線))によって測定した値である。
Measurement of weight average molecular weight (Mw) The weight average molecular weight in the present invention is a gel permeation chromatograph Alliance e2695 (hereinafter referred to as GPC, standard substance: polystyrene resin, mobile phase: tetrahydrofuran, column: Shodex KF-806 + KF manufactured by Nippon Waters Co., Ltd.). -803, column temperature: 40 ° C., flow rate: 1.0 ml / min, detector: photodiode array detector (wavelength 254 nm = ultraviolet)).
融点、融解熱量の測定
 本発明における融点、融解熱量は示差走査熱量計(以下、DSC、ティー・エー・インスツルメント・ジャパン製、Q-2000)を用いて、20℃/分の速度で昇温融解、冷却樹脂化して、再度昇温融解した際の融解ピークのトップ温度および面積から測定した値である。
Measurement of melting point and heat of fusion The melting point and heat of fusion in the present invention are increased at a rate of 20 ° C./minute using a differential scanning calorimeter (hereinafter DSC, manufactured by TA Instruments Japan, Q-2000). It is a value measured from the top temperature and area of the melting peak when heated and melted into a cooled resin and then heated and melted again.
主剤溶液状態の評価
 主剤1~12の溶液状態について、東機産業社製のブルックフィールド型粘度計TVB-10M(以下、B型粘度計)を用いて25℃の溶液粘度を測定することで評価した。
<評価基準>
 ○(実用上優れる):500mPa・s未満
 △(実用可能):500mPa・s以上1000mPa・s未満
 ×(実用不可能):1000mPa・s以上またはゲル化により粘度測定不可
Evaluation of the main agent solution state The solution states of the main agents 1 to 12 were evaluated by measuring the solution viscosity at 25 ° C. using a Brookfield viscometer TVB-10M (hereinafter referred to as B type viscometer) manufactured by Toki Sangyo Co., Ltd. did.
<Evaluation criteria>
○ (Excellent in practical use): Less than 500 mPa · s Δ (Practical use): 500 mPa · s or more and less than 1000 mPa · s × (Unusable): 1000 mPa · s or more or viscosity measurement is impossible due to gelation
ポットライフ性の評価
 ポットライフ性とは、酸変性ポリオレフィンに架橋剤または硬化剤を配合し、その配合直後または配合後一定時間経過後の該溶液の安定性を指す。ポットライフ性が良好な場合は、溶液の粘度上昇が少なく長期間保存が可能であることを指し、ポットライフ性が不良な場合は、溶液の粘度が上昇(増粘)し、ひどい場合にはゲル化現象を起こし、基材への塗布が困難となり、長期間保存が不可能であることを指す。 実施例1~15および比較例1~6で得られた接着剤組成物のポットライフ性を、25℃および40℃雰囲気で24時間貯蔵した後に、B型粘度計を用いて25℃の溶液粘度を測定することで評価した。
<評価基準>
 ○(実用上優れる):500mPa・s未満
 △(実用可能):500mPa・s以上1000mPa・s未満
 ×(実用不可能):1000mPa・s以上またはゲル化により粘度測定不可
Evaluation of pot life property Pot life property refers to the stability of the solution immediately after the compounding or after a certain time has elapsed after the compounding with the acid-modified polyolefin. If the pot life is good, it means that the viscosity of the solution is small and can be stored for a long time. If the pot life is poor, the viscosity of the solution increases (thickens). It means that gelation occurs, application to a substrate becomes difficult, and long-term storage is impossible. The pot life properties of the adhesive compositions obtained in Examples 1 to 15 and Comparative Examples 1 to 6 were stored at 25 ° C. and 40 ° C. for 24 hours, and then the solution viscosity at 25 ° C. using a B-type viscometer. It was evaluated by measuring.
<Evaluation criteria>
○ (Excellent in practical use): Less than 500 mPa · s Δ (Practical use): 500 mPa · s or more and less than 1000 mPa · s × (Unusable): 1000 mPa · s or more or viscosity measurement is impossible due to gelation
リチウムイオン電池用包装材料の作製
 バリア層にアルミニウム箔(UACJ社製、8079-0材、厚さ40μm)を使用し、シーラントに無延伸ポリプロピレンフィルム(東洋紡社製パイレン(登録商標)フィルムCT、厚さ40μm)(以下、CPPともいう。)を使用した。 実施例1~15および比較例1~6で得られた接着剤組成物をバリア層表面にバーコータを用いて乾燥後の接着剤層の膜厚が3μmになるように調整して塗布した。次いで温風乾燥機を用いて100℃雰囲気で1分間乾燥させ、膜厚3μmの接着層を得た。前記接着層表面にシーラント層を重ね合わせ、テスター産業社製の小型卓上テストラミネーター(SA-1010-S)を用いて80℃、0.3MPa、1m/分にて貼り合わせ、40℃、50%RHにて120時間養生(エージング)することでリチウムイオン電池用包装材料を得た。
Preparation of packaging material for lithium ion battery Aluminum foil (UACJ, 8079-0 material, thickness 40 μm) is used for the barrier layer, and unstretched polypropylene film (Toyobo Pyrene (registered trademark) film CT, thickness is used for the sealant) 40 μm) (hereinafter also referred to as CPP). The adhesive compositions obtained in Examples 1 to 15 and Comparative Examples 1 to 6 were applied on the surface of the barrier layer using a bar coater so that the thickness of the adhesive layer after drying was adjusted to 3 μm. Subsequently, it was dried for 1 minute in a 100 ° C. atmosphere using a warm air dryer to obtain a 3 μm thick adhesive layer. A sealant layer is overlaid on the surface of the adhesive layer, and bonded at 80 ° C., 0.3 MPa, 1 m / min using a small desktop test laminator (SA-1010-S) manufactured by Tester Sangyo Co., Ltd., 40 ° C., 50% The lithium ion battery packaging material was obtained by aging for 120 hours with RH.
 上記のようにして得られたリチウムイオン電池用包装材料に対して、下記方法にて評価を行った。 The lithium ion battery packaging material obtained as described above was evaluated by the following method.
接着性の評価
 前記電池用包装材料を100mm×15mm大きさに切断し、T型剥離試験により接着性の評価を行った。評価結果を表2、3に示す。
Evaluation of Adhesiveness The battery packaging material was cut into a size of 100 mm × 15 mm, and the adhesiveness was evaluated by a T-type peel test. The evaluation results are shown in Tables 2 and 3.
<T型剥離試験>
 ASTM-D1876-61の試験法に準拠し、オリエンテックコーポレーション社製のテンシロンRTM-100を用いて、25℃環境下で、引張速度50mm/分における剥離強度を測定した。バリア層(アルミニウム箔)/シーラント層(CPP)間の剥離強度(N/cm)は5回の試験値の平均値とした。
<T-type peel test>
Based on the test method of ASTM-D1876-61, the peel strength at a tensile speed of 50 mm / min was measured in a 25 ° C environment using Tensilon RTM-100 manufactured by Orientec Corporation. The peel strength (N / cm) between the barrier layer (aluminum foil) / sealant layer (CPP) was the average of five test values.
<評価基準>
 ☆(実用上特に優れる):8.0N/cm以上またはCPPが材破する(以下、単に「材破」ともいう。)材破とは、アルミニウム箔/CPPの界面で剥離が生じず、アルミニウム箔またはCPPが破壊されることをいう。
 ◎(実用上優れる):7.5N/cm以上8.0N/cm未満
 ○(実用可能):7.0N/cm以上7.5N/cm未満
 ×(実用不可能):7.0N/cm未満
<Evaluation criteria>
☆ (Particularly excellent in practical use): 8.0 N / cm or more or CPP breaks material (hereinafter also simply referred to as “material breakage”). Material breakage is aluminum that does not peel at the aluminum foil / CPP interface. Foil or CPP is destroyed.
◎ (Excellent in practical use): 7.5 N / cm or more and less than 8.0 N / cm ○ (Practical use): 7.0 N / cm or more and less than 7.5 N / cm × (Not practical): Less than 7.0 N / cm
耐電解液性の評価
 前記電池用包装材料を、100mm×15mm大きさに切断し、電解液[エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(容積比)に6フッ化リン酸リチウムを添加したもの]に85℃で3日間浸漬させた。その後、積層体を取り出しイオン交換水で洗浄、ペーパーワイパーで水を拭き取り、T型剥離試験により耐電解液性の評価を行った。
Evaluation of Electrolytic Solution Resistance The battery packaging material was cut into a size of 100 mm × 15 mm, and the electrolyte [ethylene carbonate / diethyl carbonate / dimethyl carbonate = 1/1/1 (volume ratio) lithium hexafluorophosphate Were added at 85 ° C. for 3 days. Thereafter, the laminate was taken out, washed with ion-exchanged water, wiped off with water with a paper wiper, and evaluated for electrolyte resistance by a T-type peel test.
<評価基準>
 ☆(実用上特に優れる):8.0N/cm以上または材破
 ◎(実用上優れる):7.5N/cm以上8.0N/cm未満
 ○(実用可能):7.0N/cm以上7.5N/cm未満
 ×(実用不可能):7.0N/cm未満
<Evaluation criteria>
☆ (Particularly excellent in practical use): 8.0 N / cm or more or material breakage ◎ (Excellent in practical use): 7.5 N / cm or more and less than 8.0 N / cm ○ (Practical use): 7.0 N / cm or more Less than 5 N / cm x (impractical): less than 7.0 N / cm
 本発明の電池用包装材料は、バリア層、接着層及びシーラント層が順次積層されてなる電池用包装材料において、接着層に特定の樹脂と特定の架橋剤からなる組成物を用いている。このため、電池の包装材料として用いた場合に優れた耐電解液性を発揮し、結果、電池の寿命が延び、取扱上の安全性も高まり、パソコン、携帯電話、ビデオカメラなどに用いられるリチウム電池の包装材(パウチ形態)として幅広く利用し得るものである。 The battery packaging material of the present invention uses a composition comprising a specific resin and a specific cross-linking agent in the battery packaging material in which a barrier layer, an adhesive layer, and a sealant layer are sequentially laminated. For this reason, it exhibits excellent electrolyte resistance when used as a battery packaging material. As a result, the life of the battery is extended and the safety in handling is increased, and lithium used in personal computers, mobile phones, video cameras, etc. It can be widely used as a battery packaging material (pouch form).

Claims (8)

  1.  バリア層、接着層及びシーラント層がこの順に積層されてなる電池用包装材料であって、前記接着層が、酸価が5~50mgKOH/g-resinである酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)およびグリシジルエーテル型エポキシ樹脂(B2)の反応物を含有することを特徴とする電池用包装材料。 A battery packaging material in which a barrier layer, an adhesive layer and a sealant layer are laminated in this order, wherein the adhesive layer is an acid-modified polyolefin (A) having an acid value of 5 to 50 mgKOH / g-resin, a glycidylamine type A battery packaging material comprising a reaction product of an epoxy resin (B1) and a glycidyl ether type epoxy resin (B2).
  2.  前記グリシジルアミン型エポキシ樹脂(B1)が、1分子中2個以上のグリシジル基を有するエポキシ樹脂である請求項1に記載の電池用包装材料。 The battery packaging material according to claim 1, wherein the glycidylamine type epoxy resin (B1) is an epoxy resin having two or more glycidyl groups in one molecule.
  3.  前記グリシジルアミン型エポキシ樹脂(B1)が、一般式(1)で表される化合物である請求項1または2に記載の電池用包装材料。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)中、Rは置換基を有してもよいアリール基であり、A1およびA2はそれぞれ独立して置換基を有してもよい炭素数1~5のアルキレン基であり、mは1または2であり、nは1または2である。)
    The battery packaging material according to claim 1 or 2, wherein the glycidylamine type epoxy resin (B1) is a compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R is an aryl group which may have a substituent, and A1 and A2 are each independently an alkylene group having 1 to 5 carbon atoms which may have a substituent, m is 1 or 2, and n is 1 or 2.)
  4.  前記グリシジルエーテル型エポキシ樹脂(B2)が、1分子中に2個以上のグリシジル基を有し、かつ窒素原子を含有しないエポキシ樹脂である請求項1~3のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 3, wherein the glycidyl ether type epoxy resin (B2) is an epoxy resin having two or more glycidyl groups in one molecule and containing no nitrogen atom. .
  5.  前記接着層が、酸変性ポリオレフィン(A)100質量部に対して、グリシジルアミン型エポキシ樹脂(B1)を0.01~20質量部、グリシジルエーテル型エポキシ樹脂(B2)を1~20質量部の反応物を含有する請求項1~4のいずれかに記載の電池用包装材料。 The adhesive layer comprises 0.01 to 20 parts by mass of glycidylamine type epoxy resin (B1) and 1 to 20 parts by mass of glycidyl ether type epoxy resin (B2) with respect to 100 parts by mass of acid-modified polyolefin (A). The battery packaging material according to any one of claims 1 to 4, comprising a reactant.
  6.  請求項1~5のいずれかに記載の電池用包装材料を用いた電池。 A battery using the battery packaging material according to any one of claims 1 to 5.
  7.  バリア層の表面に、酸変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)および有機溶剤(C)を含有する接着剤組成物を塗布、乾燥して接着層を形成し、次いで接着層の表面にシーラント層を積層する請求項1~5のいずれかに記載の電池用包装材料の製造方法。 An adhesive composition containing acid-modified polyolefin (A), glycidylamine type epoxy resin (B1), glycidyl ether type epoxy resin (B2) and organic solvent (C) is applied to the surface of the barrier layer, dried and bonded. 6. The method for producing a battery packaging material according to claim 1, wherein a layer is formed, and then a sealant layer is laminated on the surface of the adhesive layer.
  8.  前記有機溶剤(C)が、溶剤(C1)と溶剤(C2)の混合液であって、溶剤(C1)が芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素およびハロゲン化炭化水素からなる群より選択された1種以上の溶剤であり、溶剤(C2)がアルコール系溶媒、ケトン系溶媒、エステル系溶媒、グリコールエーテル系溶剤からなる群より選択された1種または2種以上の溶剤であり、溶剤(C1)/溶剤(C2)=50~97/50~3(質量比)である請求項7に記載の電池用包装材料の製造方法。 The organic solvent (C) is a mixed liquid of a solvent (C1) and a solvent (C2), and the solvent (C1) is composed of an aromatic hydrocarbon, an aliphatic hydrocarbon, an alicyclic hydrocarbon, and a halogenated hydrocarbon. One or more solvents selected from the group consisting of one or more solvents selected from the group consisting of alcohol solvents, ketone solvents, ester solvents and glycol ether solvents. The method for producing a battery packaging material according to claim 7, wherein solvent (C1) / solvent (C2) = 50 to 97/50 to 3 (mass ratio).
PCT/JP2016/073141 2015-08-19 2016-08-05 Packaging material for lithium-ion battery WO2017030024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017535491A JP6733674B2 (en) 2015-08-19 2016-08-05 Lithium-ion battery packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-162079 2015-08-19
JP2015162079 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017030024A1 true WO2017030024A1 (en) 2017-02-23

Family

ID=58051828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073141 WO2017030024A1 (en) 2015-08-19 2016-08-05 Packaging material for lithium-ion battery

Country Status (3)

Country Link
JP (1) JP6733674B2 (en)
TW (1) TW201710074A (en)
WO (1) WO2017030024A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030050A1 (en) * 2016-08-10 2018-02-15 東洋紡株式会社 Polyolefin adhesive composition
JP2019112611A (en) * 2017-12-22 2019-07-11 東洋紡株式会社 Polyolefin adhesive composition
JPWO2018221037A1 (en) * 2017-05-29 2020-04-02 東洋紡株式会社 Polyolefin adhesive composition
JPWO2019188283A1 (en) * 2018-03-30 2021-04-22 東洋紡株式会社 Polyolefin-based adhesive composition
CN114132036A (en) * 2020-09-04 2022-03-04 栗村化学株式会社 Primer layer composition, secondary battery pouch film using the same, and method for preparing the same
US20220332980A1 (en) * 2019-09-26 2022-10-20 Toyobo Co., Ltd. Laminated body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158362A1 (en) * 2010-06-17 2011-12-22 リケンテクノス株式会社 Two-component curable epoxy resin composition and laminate
JP2014175216A (en) * 2013-03-11 2014-09-22 Fujimori Kogyo Co Ltd Laminate for battery cover
JP5700166B1 (en) * 2014-08-01 2015-04-15 東洋インキScホールディングス株式会社 Adhesive composition, laminate, storage device packaging, storage device container, and storage device
WO2015190411A1 (en) * 2014-06-11 2015-12-17 東洋紡株式会社 Polyolefin-based adhesive composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267386A (en) * 1988-09-02 1990-03-07 Mitsui Petrochem Ind Ltd Adhesive composition for bonding metal to polyolefin
JPH09176609A (en) * 1995-12-27 1997-07-08 Kawasaki Steel Corp Adhesive composition for heavy-duty corrosionproof coated steel product and heavy-duty corrosionproof coated steel product prepared using the same
JP4087468B2 (en) * 1996-08-02 2008-05-21 三井化学株式会社 Adhesive composition
JP4067144B2 (en) * 1996-08-20 2008-03-26 三井化学株式会社 Adhesive composition
JP4333829B2 (en) * 2002-03-07 2009-09-16 日立化成ポリマー株式会社 Adhesive composition
JP4810878B2 (en) * 2005-05-02 2011-11-09 横浜ゴム株式会社 Adhesive composition
JPWO2015033703A1 (en) * 2013-09-03 2017-03-02 東洋紡株式会社 Polyolefin adhesive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158362A1 (en) * 2010-06-17 2011-12-22 リケンテクノス株式会社 Two-component curable epoxy resin composition and laminate
JP2014175216A (en) * 2013-03-11 2014-09-22 Fujimori Kogyo Co Ltd Laminate for battery cover
WO2015190411A1 (en) * 2014-06-11 2015-12-17 東洋紡株式会社 Polyolefin-based adhesive composition
JP5700166B1 (en) * 2014-08-01 2015-04-15 東洋インキScホールディングス株式会社 Adhesive composition, laminate, storage device packaging, storage device container, and storage device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030050A1 (en) * 2016-08-10 2018-02-15 東洋紡株式会社 Polyolefin adhesive composition
JP2023041857A (en) * 2017-05-29 2023-03-24 東洋紡株式会社 Polyolefin-based adhesive agent composition
JP7287276B2 (en) 2017-05-29 2023-06-06 東洋紡株式会社 Polyolefin adhesive composition
JPWO2018221037A1 (en) * 2017-05-29 2020-04-02 東洋紡株式会社 Polyolefin adhesive composition
KR102518707B1 (en) 2017-12-22 2023-04-05 도요보 가부시키가이샤 Polyolefin adhesive composition
CN112955516A (en) * 2017-12-22 2021-06-11 东洋纺株式会社 Polyolefin adhesive composition
KR20210090221A (en) * 2017-12-22 2021-07-19 도요보 가부시키가이샤 Polyolefin-based adhesive composition
CN112955516B (en) * 2017-12-22 2022-09-02 东洋纺株式会社 Polyolefin adhesive composition
JP7215091B2 (en) 2017-12-22 2023-01-31 東洋紡株式会社 Polyolefin adhesive composition
WO2020095461A1 (en) * 2017-12-22 2020-05-14 東洋紡株式会社 Polyolefin-based adhesive composition
JP2019112611A (en) * 2017-12-22 2019-07-11 東洋紡株式会社 Polyolefin adhesive composition
JPWO2019188283A1 (en) * 2018-03-30 2021-04-22 東洋紡株式会社 Polyolefin-based adhesive composition
JP7420067B2 (en) 2018-03-30 2024-01-23 東洋紡エムシー株式会社 Polyolefin adhesive composition
US20220332980A1 (en) * 2019-09-26 2022-10-20 Toyobo Co., Ltd. Laminated body
CN114132036A (en) * 2020-09-04 2022-03-04 栗村化学株式会社 Primer layer composition, secondary battery pouch film using the same, and method for preparing the same
US11916241B2 (en) 2020-09-04 2024-02-27 Youlchon Chemical Co., Ltd. Primer layer composition, secondary battery pouch film using the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2017030024A1 (en) 2018-05-31
TW201710074A (en) 2017-03-16
JP6733674B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6226070B2 (en) Polyolefin adhesive composition
JP6278167B1 (en) Polyolefin adhesive composition
JP6733674B2 (en) Lithium-ion battery packaging material
JP2024063150A (en) Polyolefin-based adhesive composition
EP3878918B1 (en) Polyolefin-based adhesive composition
JP2015059200A (en) Adhesive composition for laminated product and laminate and secondary cell using the same
JP7375364B2 (en) Adhesive compositions, laminates, and packaging materials for lithium-ion batteries
WO2015033703A1 (en) Polyolefin-type adhesive agent composition
CN114761508B (en) Polyolefin adhesive composition
WO2019188284A1 (en) Polyolefin-based adhesive composition
EP3778819B1 (en) Polyolefin-based adhesive composition
WO2018030086A1 (en) Polyolefin adhesive composition
JP6435092B2 (en) Modified polyolefin resin
JP6264518B1 (en) Polyolefin adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837014

Country of ref document: EP

Kind code of ref document: A1