WO2017029914A1 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
WO2017029914A1
WO2017029914A1 PCT/JP2016/070769 JP2016070769W WO2017029914A1 WO 2017029914 A1 WO2017029914 A1 WO 2017029914A1 JP 2016070769 W JP2016070769 W JP 2016070769W WO 2017029914 A1 WO2017029914 A1 WO 2017029914A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
coil
heat dissipation
reactor
sealing resin
Prior art date
Application number
PCT/JP2016/070769
Other languages
French (fr)
Japanese (ja)
Inventor
尚弥 近藤
坂本 章
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015161179A external-priority patent/JP6398907B2/en
Priority claimed from JP2015161178A external-priority patent/JP2017041497A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017029914A1 publication Critical patent/WO2017029914A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • This disclosure relates to a reactor in which a wound coil is wound around a magnetic core.
  • the bobbin or the like is easily cracked by heat shock, and the occurrence of this crack causes insulation failure, which causes the reactor to burn out.
  • Patent Document 1 a bobbin-less reactor is proposed in Patent Document 1.
  • the difference in linear expansion coefficient is reduced, the generation of cracks is suppressed, and it becomes possible to suppress the insulation failure and the reactor burnout resulting therefrom.
  • a gap between the coil and the magnetic core is sealed by filling a resin sealing material in which a filler is blended in a state where the magnetic core and the coil are arranged in a housing serving as a housing.
  • the resin sealing material has a performance of a thermal conductivity of 0.7 to 4 W / mK, and has a low viscosity so that the gap between the coil and the magnetic core is sealed.
  • the magnetic core is composed of two U-shaped cores and a gap member. Both ends of the two U-shaped cores face each other while being inserted into the coil, and are connected via the gap member to form an annular shape. It is said.
  • the magnetic core is resin-sealed in a state where pressure is applied by the leaf spring, the characteristics of the magnetic core are deteriorated, that is, the loss is increased and the magnetic permeability is decreased.
  • the coil and the magnetic core are all covered with a resin sealing material, the magnetic core characteristics are also deteriorated due to the resin sealing.
  • the magnetic core decreases the permeability and increases the loss when stress is applied due to the magnetostrictive effect.
  • (1) to (3) can be cited as factors for applying stress to the magnetic core. That is, (1) pressure is applied from the peripheral member, (2) the resin sealed around the magnetic core is cured and shrunk, and stress is applied to the magnetic core, and (3) magnetic flux The stress is applied by interfering with the sealed resin due to the expansion of the magnetic core to which is applied. Fixing the magnetic core with a leaf spring generates the factor (1), and sealing the entire magnetic core or coil with a resin sealing material generates the factors (2) and (3). It will be.
  • This disclosure is intended to provide a reactor that can perform good heat dissipation while suppressing deterioration of characteristics of a magnetic core due to resin sealing or pressurization.
  • a reactor includes a magnetic core, a coil wound around the magnetic core, a first cooling member and a second cooling member, a first sealing resin portion, and a second sealing resin portion.
  • the first cooling member and the second cooling member are disposed on both sides of the magnetic core and the coil, include heat radiation surfaces on which the magnetic core and the coil are disposed, and perform heat radiation of the magnetic core and the coil.
  • the first sealing resin portion and the second sealing resin portion are filled between the heat dissipation surface of the first cooling member and the magnetic core, thereby sealing the lower surface on the heat dissipation surface side of the magnetic core.
  • the magnetic core has a cross-sectional shape in a plane perpendicular to the flow of magnetic flux generated when the coil is energized, with respect to the direction in the same direction as the direction in which the first cooling member and the second cooling member are arranged. It is a flat shape with a large vertical dimension.
  • the magnetic core is exposed from the sealing resin portion on both side surfaces. For this reason, it becomes possible to keep the area
  • a reactor includes a magnetic core, a coil wound around the magnetic core, a cooling member, a core support portion, a coil support portion, and a sealing resin portion.
  • the cooling member includes a heat radiating surface on which the magnetic core and the coil are disposed, and radiates heat from the magnetic core and the coil.
  • the core support part is provided so as to protrude from the heat dissipation surface and supports the magnetic core.
  • the coil support portion is provided so as to protrude from the heat dissipation surface and supports the coil.
  • the sealing resin part is filled between the magnetic core from the heat dissipation surface in a state where the magnetic core is supported by the core support part and the coil is supported by the coil support part.
  • the magnetic core is formed so as to expose the surface opposite to the heat radiating surface while sealing the surface side surface.
  • the reactor configured in this manner is filled with the sealing resin portion between the magnetic core and coil and the cooling member, heat from the magnetic core and coil can be efficiently transmitted to the cooling member.
  • the surface opposite to the heat dissipation surface is not covered so that the magnetic core is exposed from the sealing resin portion. Yes.
  • FIG. 1 is a partial cross-sectional top view of a reactor according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the reactor along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view of the reactor along the line III-III in FIG.
  • FIG. 4 is an exploded perspective view of the reactor shown in FIG.
  • FIG. 5 is a diagram showing specifications assuming a case where the reactor is applied as a reactor for a boost converter for a vehicle.
  • FIG. 6 is a diagram showing the relationship between the thermal resistance and heat generation temperature corresponding to the dimension setting of each part when the magnetic core has a cubic shape and when it has a flat shape.
  • FIG. 7 is a cross-sectional view of a reactor according to the second embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of a reactor according to the third embodiment of the present disclosure.
  • FIG. 9A is a cross-sectional view showing the stress applied from the sealing resin portion during curing shrinkage when the bottom surface of the housing is flat.
  • FIG. 9B is a cross-sectional view showing a state in which the housing is damaged by the stress shown in FIG. 9A.
  • FIG. 10 is a partial cross-sectional top view of the reactor according to the fourth embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of the reactor along the line XI-XI in FIG. 12 is an exploded perspective view of the reactor shown in FIG.
  • FIG. 13 is a diagram showing specifications assuming a case where the reactor is applied as a reactor for a boost converter for a vehicle.
  • FIG. 14 is a diagram showing the relationship between the thermal resistance and the heat generation temperature corresponding to the dimension setting of each part when the magnetic core has a cubic shape and when it has a flat shape.
  • the reactor 10 of the present embodiment has a configuration including a magnetic core 20, a coil 30, housings 40 and 41, sealing resin portions 50 and 51, coolers 60 and 61, and the like. Has been.
  • the reactor 10 is applied to generate a high output, such as a boost converter reactor mounted on an electric vehicle, a hybrid vehicle, or the like.
  • the magnetic core 20 is made of a soft magnetic material used as a core material, such as an iron-based alloy or an amorphous metal (eg, an iron-based amorphous material), and has a thermal conductivity of 1 to 50 W / mK, for example.
  • the magnetic core 20 has a rectangular frame shape with two sets of two sides facing each other, but any other shape can be used as long as the magnetic flux flows. Also good.
  • the upper surface shape may be a circular frame shape.
  • the magnetic core 20 does not have to be a single member, and a plurality of divided cores may be integrated, or may be arranged so as to be in contact with each other.
  • the magnetic core 20 has a quadrangular cross-sectional shape in a direction perpendicular to the flow of magnetic flux generated when the coil 30 is energized. More specifically, the magnetic core 20 has a flat shape in which the dimension in the width direction, which is a dimension in the left-right direction on the paper surface, is larger than the dimension in the thickness direction, which is a dimension in the vertical direction on the paper surface. In other words, the magnetic core 20 has a flat shape in which the dimension in the direction perpendicular to the direction is larger than the dimension in the same direction as the direction in which the casings 40 and 41 and the coolers 60 and 61 are arranged. In the case of this embodiment, the cross-sectional shape of the magnetic core 20 is rectangular.
  • the upper surface 20a and the lower surface 20b which comprise a long side are made to oppose the bottom surfaces 40b and 41b which comprise the thermal radiation surface of the housing
  • each surface which connects between the upper surface 20a and the lower surface 20b, that is, the inner peripheral side surface 20c and the outer peripheral side surface 20d constituting the short side are oriented in a direction perpendicular to the bottom surfaces 40b and 41b of the casings 40 and 41.
  • the magnetic core 20 is disposed on the casings 40 and 41.
  • the coil 30 is wound around the magnetic core 20 and is constituted by a conductor wire such as copper coated with an insulating film.
  • the magnetic core 20 has a quadrangular frame shape, but the coil 30 is wound around each of two opposite sides of the magnetic core 20.
  • the coil 30a wound around one side of the magnetic core 20 and the coil 30b wound around the other side are connected.
  • the coil 30a and the coil 30b are connected via the connection part 30c in the downward position of the magnetic core 20, ie, the housing
  • the ends on the opposite side to the connecting portion 30c are drawn wirings 30aa and 30ba drawn at positions not covered with the sealing resin portions 50 and 51.
  • the coil 30 is electrically connected to an external circuit through the lead wires 30aa and 30ba, so that the reactor 10 can be energized.
  • the casings 40 and 41 are cases for housing the magnetic core 20 and the coil 30 and are made of a high material having a thermal conductivity of, for example, 50 W / mK or more, for example, aluminum.
  • the casings 40 and 41 are disposed on one side and the other side of the magnetic core 20 and the coil 30, respectively, and the magnetic core 20 and the coil 30 are held between the casings 40 and 41.
  • the casing 40 and the cooler 60 and the casing 41 and the cooler 61 are configured as separate bodies, but these constitute the first cooling member and the second cooling member, respectively.
  • the 1st cooling member and the 2nd cooling member may be constituted by being united.
  • the casings 40 and 41 are constituted by bottomed members having recesses 40a and 41a for accommodating the magnetic core 20 and the coil 30 as shown in FIGS. 2 to 4, and as shown in FIG.
  • the bottom surface member is a quadrangular bottomed member.
  • the casings 40 and 41 have side surfaces 40c and 41c in addition to the bottom surfaces 40b and 41b constituting the heat radiation surface, and the bottom surfaces 40b and 41b and the side surfaces 40c and 41c constitute the recesses 40a and 41a.
  • the magnetic core 20 and the coil 30 are accommodated so as to be disposed within a range surrounded by the side surfaces 40c and 41c and so that at least a part of the recesses 40a and 41a enter in the depth direction. ing.
  • the recesses 40a and 41a formed in the casings 40 and 41 are set to a depth at which the lower surface 20b of the magnetic core 20 is in close contact with sealing resin portions 50 and 51 described later. That is, when the magnetic core 20 and the coil 30 are housed in the housing 40, the end portions of the side surfaces 40c and 41c opposite to the bottom surfaces 40b and 41b are located farther from the bottom surfaces 40b and 41b than the bottom surface 20b of the magnetic core 20 is. The heights of the side surfaces 40c and 41c are set so as to reach.
  • the bottom surfaces 40b and 41b of the casings 40 and 41 are provided with core support portions 40d and 41d that support the magnetic core 20 and coil support portions 40e and 41e that support the coil 30, respectively.
  • the core support portions 40d and 41d and the coil support portions 40e and 41e are configured by leaf springs or spacers disposed on the bottom surfaces 40b and 41b. As long as the magnetic core 20 and the coil 30 can be supported between the housings 40 and 41 without being displaced, the core support portions 40d and 41d and the coil support portions 40e and 41e may be configured by spacers.
  • the core support portions 40d and 41d and the coil support portions 40e and 41e are configured by leaf springs. Is preferred.
  • the core support portions 40d and 41d and the coil support portions 40e and 41e may be integrated with the casings 40 and 41, or may be configured as separate members.
  • the casings 40 and 41 are made of a conductive material
  • at least a part of the coil support portions 40e and 41e is made of an insulating material so that the casings 40 and 41 and the coil 30 can be insulated. Yes.
  • the insulating material for example, resin or ceramics can be used.
  • the shapes of the core support portions 40d and 41d and the coil support portions 40e and 41e are arbitrary, but a gap between the magnetic core 20 supported by these and the coil 30 is secured, and the housing 40, The dimensions are determined so that the insulation between 41 and the coil 30 is ensured.
  • the core support portions 40d and 41d and the coil support portions 40e and 41e are provided at a plurality of locations so that the magnetic core 20 can be supported with respect to the casings 40 and 41 in a state before resin sealing by the sealing resin portions 50 and 51. It is provided.
  • the formation positions of the core support portions 40d and 41d and the coil support portions 40e and 41e may be anywhere as long as they can support the magnetic core 20 and the coil 30 without inclination.
  • the sealing resin parts 50 and 51 constitute the first resin sealing part and the second resin sealing part, and are binder resins containing a heat radiation filler.
  • alumina or the like is used as the heat dissipating filler, and epoxy resin or silicone resin is used as the resin material.
  • the sealing resin portions 50 and 51 made of such a material have a thermal conductivity of 0.7 to 4 W / mK, for example, 3 W / mK.
  • the sealing resin portions 50 and 51 are filled in the recesses 40a and 41a formed in the casings 40 and 41 and cured.
  • the sealing resin portions 50 and 51 are immersed in portions of the coil 30 that are located closer to the bottom surfaces 40 b and 41 b than the magnetic core 20.
  • the sealing resin portion 50 is formed at least to a position where the lower surface 20b of the magnetic core 20 contacts.
  • the sealing resin portion 51 is formed at least up to a position where the upper surface 20a of the magnetic core 20 contacts.
  • those having a low viscosity in a state before being cured are applied, and there is a gap between the magnetic core 20 and the coil 30 or between these and the housings 40 and 41. It can be filled without any problems.
  • the sealing resin portion 50 is in contact with the lower surface 20b of the magnetic core 20, but is not substantially covered except in the vicinity of the lower surface 20b, and the lower surface 20b of the lower surface 20b of the magnetic core 20 and both side surfaces 20c and 20d. It covers only the vicinity.
  • the sealing resin portion 51 is also in contact with the upper surface 20a of the magnetic core 20, but is not substantially covered except in the vicinity of the upper surface 20a, and the vicinity of the upper surface 20a of the upper surface 20a and both side surfaces 20c and 20d of the magnetic core 20 Only covering. For this reason, both side surfaces 20 c and 20 d of the magnetic core 20 are exposed from the sealing resin portions 50 and 51.
  • the sealing resin portions 50 and 51 are formed up to a position in contact with the lower surface 20 b of the magnetic core 20.
  • the cured sealing resin portions 50 and 51 may be separated from the lower surface 20b or the upper surface 20a.
  • the coolers 60 and 61 constitute part of the first cooling member and the second cooling member.
  • the connectivity is improved by being bonded to the bottom surfaces 40b and 41b of the casings 40 and 41 via the heat radiating gels 70 and 71 having a high thermal conductivity such as a silicone gel.
  • the thermal conductivity is about 1 W / mK, and heat transfer from the casings 40 and 41 to the coolers 60 and 61 can be performed satisfactorily by applying thinly.
  • the coolers 60 and 61 may be air-cooled or water-cooled.
  • the coolers 60 and 61 may be heat sinks composed of, for example, a simple high thermal conductor plate, or the back side opposite to the coil 30, the magnetic core 20, and the casings 40 and 41.
  • a heat sink provided with heat radiating fins may be used.
  • coolant flow in a refrigerant path may be sufficient.
  • the reactor 10 according to the present embodiment is configured.
  • the reactor 10 configured as described above is manufactured as follows.
  • the magnetic core 20, the coil 30, and the casings 40 and 41 are prepared.
  • the coil 30 is disposed around the magnetic core 20.
  • the magnetic core 20 is composed of two U-shaped cores and the like, and the tips of the two U-shaped cores are inserted into the coil 30 from opposite directions, whereby the coil 30 is wound around the magnetic core 20.
  • a rotated structure can be constructed.
  • the magnetic core 20 and the coil 30 are arranged in the recess 40a of the housing 40, and the resin material including the heat radiation filler is filled in the recess 40a in a state where they are pressed from above to the bottom surface 40b side of the housing 40. And after hardening this and comprising the sealing resin part 50, pressing of the magnetic core 20 and the coil 30 is cancelled
  • the magnetic core 20 and the coil 30 fixed to the housing 40 are arranged in the recess 41a of the housing 41, and these are pressed into the bottom surface 41b of the housing 41 from above to enter the recess 41a. Fill with resin material including heat dissipation filler. And after hardening this and comprising the sealing resin part 51, pressing of the magnetic core 20 or the coil 30 is cancelled
  • the reactor 10 according to the present embodiment is completed by attaching the coolers 60 and 61 to the bottom surfaces 40b and 41b of the casings 40 and 41 via the heat radiating gels 70 and 71, respectively.
  • the reactor 10 configured as described above fills the space between the magnetic core 20 and the coil 30 and the casings 40 and 41 with the sealing resin portions 50 and 51, the heat from the magnetic core 20 and the coil 30 is absorbed. Efficiently transmitted to the casings 40 and 41 and the coolers 60 and 61.
  • the sealing resin portions 50 and 51 are in contact with the lower surface 20b or the upper surface 20a of the magnetic core 20, and the sealing resin portions 50 and 51 are filled so as to fill a gap between the magnetic core 20 and the coil 30. I have. In this way, heat dissipation can be promoted by filling the gap between the magnetic core 20 and the coil 30 with the sealing resin portions 50 and 51.
  • the thermal conductivity of air is about 0.03 W / mK.
  • heat radiation can be promoted by providing the sealing resin portions 50 and 51 having a thermal conductivity of about 3 W / mK.
  • the sealing resin portions 50 and 51 are in contact with the lower surface 20b or the upper surface 20a of the magnetic core 20, the magnetic core 20 is exposed from the sealing resin portions 50 and 51 on both side surfaces 20c and 20d. Yes. For this reason, it becomes possible to keep the area
  • the reactor 10 according to the present embodiment has a structure in which there is almost no pressure from the peripheral member against the magnetic core 20, for example, pressing by a leaf spring or the like from the radially outer side of the magnetic core 20. That is, even if the reactor 10 is pressurized by a leaf spring or the like, the reactor 10 is pressurized only in the direction of the central axis of the magnetic core 20, that is, from the side where the housings 40 and 41 are disposed.
  • the magnetic core 20 is not pressed from the outside in the radial direction, and even when pressed, the magnetic core 20 is pressed against the magnetic core 20 in the central axis direction. is there. For this reason, it is possible to reduce the influence of the magnetostrictive effect and to suppress characteristic deterioration.
  • the magnetostriction effect can be suppressed by almost eliminating the pressurization from the outside in the radial direction with respect to the magnetic core 20, and the pressurization from the sealing resin portions 50 and 51 accompanying the thermal deformation can also be suppressed. Furthermore, even if the magnetic core 20 to which the magnetic flux is applied when the reactor 10 is used expands, the contact portions with the sealing resin portions 50 and 51 are only the lower surface 20b and the upper surface 20a. For this reason, the stress applied from the sealing resin portions 50 and 51 due to the magnetostriction of the magnetic core 20 itself can be suppressed.
  • the cross-sectional shape in the direction orthogonal to the flow of magnetic flux in the magnetic core 20 is flattened so that the heat dissipation is good, but the flatness here is as follows. Defined in
  • FIG. 5 shows specifications assuming a case where the reactor 10 is applied as a vehicle boost converter reactor.
  • the core loss indicates a loss during driving at 20 kW.
  • the thermal conductivity of the core is a value that assumes a case where a magnetic core 20 in which iron powder is sandwiched between binder resins including a heat radiation filler and compressed is used.
  • the cooling surface was assumed to radiate heat from both surfaces of the magnetic core 20 and the coil 30. Based on these assumptions, the heat dissipation when heat was generated due to core loss was estimated. Specifically, as shown in FIG. 5, assuming that the center position of the magnetic core 20 is a heat generation surface, all the heat generation of the magnetic core 20 is radiated by the cooling surfaces on both sides, that is, the coolers 60 and 61.
  • the thermal resistance Ra is expressed as Equation 1.
  • the magnetic core 20 is formed into a cubic shape and a flat shape with an increased cooling area, the respective dimensions and the like are defined as shown in FIG. 6 and the respective thermal resistances Ra are estimated.
  • the coil 30 Since the coil 30 has a high thermal conductivity, it is assumed that heat generation occurs at a place farthest from the cooling surface in order to ignore the influence and estimate the worst condition, so that the thermal resistance Ra is as shown in FIG.
  • the thermal resistance Ra is as shown in FIG.
  • the magnetic core 20 when it has a cubic shape, it is calculated as 2.5 ° C./W, and when it has a flat shape, it is calculated as 0.5 ° C./W.
  • heat radiation is promoted by taking the reactor in a flat shape, and the temperature of the magnetic core 20 can be lowered as compared with the case where the magnetic core 20 is in a cubic shape.
  • the allowable heat generation temperature ⁇ T is 100 ° C.
  • the heat generation temperature when the magnetic core 20 is in a cubic shape is 450 ° C.
  • it is 90 ° C. in the case of a flat shape
  • the entire reactor is resin-sealed as in Patent Document 1, whereas heat dissipation is ensured even when heat is released by resin-sealing only two surfaces as in this embodiment. Is possible.
  • the flat dimension range is defined as Equation 2 based on the cooling area of the magnetic core 20, that is, the ratio of the thickness dimension to the vertical and horizontal dimensions. It can be.
  • the corners of the magnetic core 20 are rounded.
  • the magnetic core 20 has an R shape formed by rounding a corner portion constituted by the lower surface 20b and both side surfaces 20c and 20d and a corner portion constituted by the upper surface 20a and both side surfaces 20c and 20d. .
  • the sealing resin portions 50 and 51 may be formed so as to cover part of both side surfaces 20 c and 20 d in the manufacturing process of the reactor 10.
  • concentration of stress received from the sealing resin parts 50 and 51 can be reduced by rounding the corners of the magnetic core 20 as in the present embodiment.
  • the pressurization to the magnetic core 20 accompanying the thermal deformation of the sealing resin parts 50 and 51 can be suppressed. Therefore, the characteristic deterioration of the magnetic core 20 can be further suppressed.
  • the height of the rounded portion of the magnetic core 20, that is, the distance from one surface of the magnetic core 20 that faces the housings 40 and 41 can be arbitrarily set.
  • the corners of the magnetic core 20 are R-shaped by the height embedded in the sealing resin portions 50 and 51.
  • the thickness of the bottom surfaces 40b and 41b in the casings 40 and 41 is made thicker on the outer edge side, that is, on the inner side than the side surfaces 40c and 41c side.
  • the bottom surface 40b, 41b has a convex surface that protrudes toward the magnetic core 20 or the coil 30 on the surface of the recesses 40a, 41a. Thereby, the intervals between the housings 40 and 41 and the magnetic core 20 and the coil 30 are made narrower toward the center of the magnetic core 20.
  • the thickness of the bottom surfaces 40b and 41b of the casings 40 and 41 is made thicker on the inner side than the side surfaces 40c and 41c, so that the stress concentration at the time of curing shrinkage of the sealing resin portions 50 and 51 is achieved. And the rigidity of the casings 40 and 41 can be increased. Thereby, breakage of the reactor 10 can be suppressed, and an increase in loss due to a decrease in the heat dissipation efficiency of the magnetic core 20 can be suppressed.
  • interval of the housings 40 and 41 and the magnetic core 20 or the coil 30 goes to the center part of the magnetic core 20 only by changing the thickness of the bottom surfaces 40b and 41b of the housings 40 and 41. realizable. Therefore, it is not necessary to increase the size of the housings 40 and 41, and the housings 40 and 41 can be reduced in size and cost.
  • the reactor 110 of the present embodiment is configured to include a magnetic core 120, a coil 130, a housing 140, a sealing resin portion 150, a cooler 160, and the like.
  • the reactor 110 is applied to generate a high output, such as a boost converter reactor mounted on an electric vehicle, a hybrid vehicle, or the like.
  • the magnetic core 120 is made of a soft magnetic material used as a core material, such as an iron-based alloy or an amorphous metal (eg, an iron-based amorphous material), and has a thermal conductivity of 1 to 50 W / mK, for example.
  • the magnetic core 120 has a rectangular frame shape having two sets of two opposite sides of the upper surface shape. Also good.
  • the upper surface shape may be a circular frame shape.
  • the magnetic core 120 does not have to be a single member, and a plurality of divided cores may be integrated, or may be disposed so as to contact each other.
  • the magnetic core 120 has a quadrangular cross-sectional shape in a direction orthogonal to the flow of magnetic flux generated when the coil 130 is energized. More specifically, the magnetic core 120 has a flat shape in which a dimension in the width direction, which is a dimension in the left-right direction on the paper surface, is larger than a dimension in the thickness direction, which is a dimension in the vertical direction on the paper surface.
  • the cross-sectional shape of the magnetic core 120 is rectangular.
  • the upper surface 120a and the lower surface 120b which comprise a long side are made to oppose the bottom face 140b which comprises the thermal radiation surface of the housing
  • each of the surfaces connecting the upper surface 120 a and the lower surface 120 b that is, the inner peripheral side surface 120 c and the outer peripheral side surface 120 d constituting the short side, face the vertical direction with respect to the bottom surface of the casing 140. It is arranged on the body 140.
  • the magnetic core 120 has an R shape with rounded corners constituted by the lower surface 120b and the both side surfaces 120c, 120d. In this way, by concentrating the corners of the magnetic core 120, the stress concentration received from the sealing resin portion 150 can be alleviated.
  • the height of the rounded portion of the magnetic core 120 that is, the distance from one surface of the magnetic core 120 facing the housing 140 can be arbitrarily set.
  • the corners of the magnetic core 120 have an R shape corresponding to the height embedded in the sealing resin portion 150.
  • the height of the rounded portion of the magnetic core 120 is about 10 mm so that the influence of stress can be reduced while taking into account thermal deformation of the sealing resin portion 150, variation in the filling amount, positional deviation of the magnetic core 120, and the like. And good.
  • the coil 130 is wound around the magnetic core 120, and is formed of, for example, a conductor wire such as copper with an insulating coating.
  • the magnetic core 120 has a quadrangular frame shape, but the coil 130 is wound around each of the two opposite sides of the magnetic core 120.
  • the coil 130a wound around one side of the magnetic core 120 and the coil 130b wound around the other side are connected.
  • the coil 130a and the coil 130b are connected via the connection part 130c in the downward position of the magnetic core 120, ie, the housing
  • the opposite side of the connecting portion 130 c is drawn wirings 130 aa and 130 ba drawn outside the sealing resin portion 150.
  • the coil 110 is electrically connected to an external circuit through the lead wires 130aa and 130ba, so that the reactor 110 can be energized.
  • the housing 140 is a case that houses the magnetic core 120 and the coil 130, and is made of a material having a high thermal conductivity of, for example, 50 W / mK or more, such as aluminum.
  • the housing 140 is configured as a separate body from the cooler 160, but these together constitute a cooling member, and even if the cooling member is configured by integrating them, good.
  • the housing 140 is constituted by a bottomed member having a recess 140a in which the magnetic core 120 and the coil 130 are accommodated.
  • the bottom surface is a bottomed member having a quadrangular shape.
  • the housing 140 has a side surface 140c in addition to the bottom surface 140b constituting the heat radiating surface, and the bottom surface 140b and the side surface 140c constitute a recess 140a.
  • the magnetic core 120 and the coil 130 are accommodated so as to be disposed within a range surrounded by the side surface 140c and so that at least a part thereof enters the recess 140a in the depth direction.
  • the recess 140a formed in the housing 140 is set to a depth at which the lower surface 120b of the magnetic core 120 is in close contact with a sealing resin portion 150 described later. That is, when the magnetic core 120 and the coil 130 are housed in the housing 140, the side surface 140c has an end opposite to the bottom surface 140b so that the side surface reaches a position farther from the bottom surface 140b than the bottom surface 120b of the magnetic core 120. A height of 140c is set.
  • the bottom surface 140b of the housing 140 is provided with a core support part 140d that supports the magnetic core 120 and a coil support part 140e that supports the coil 130.
  • the core support portion 140d and the coil support portion 140e are configured by protrusions provided so as to protrude from the bottom surface 140b.
  • the core support part 140d and the coil support part 140e are integrated with the housing 140.
  • the housing 140 is made of a conductive material
  • at least a part of the coil support portion 140e is made of an insulating material so that the housing 140 and the coil 130 can be insulated.
  • the insulating material for example, resin or ceramics can be used.
  • the coil support portion 140e can be integrated with the housing 140 by being integrally formed when the housing 140 is manufactured.
  • the core support portion 140d is made of a nonmagnetic material, and is preferably made of a nonmagnetic insulating material, for example, a resin, like the coil support portion 140e, from the viewpoint of insulation.
  • the shape of the core support part 140d and the coil support part 140e is arbitrary, but here it is a cylindrical shape with a flat tip.
  • the protruding amounts of the core support portion 140d and the coil support portion 140e are different depending on the step between the magnetic core 120 and the coil 130 mounted thereon, and the core support portion 140d is more than the coil support portion 140e. The protruding amount is increased. Further, the magnetic core 120 and the coil 130 are supported by the core support part 140d and the coil support part 140e having different protrusion amounts, so that a gap between the magnetic core 120 and the coil 130 is secured, and the housing 140 and Insulation with the coil 130 is ensured.
  • the core support portion 140d is provided at a plurality of locations so that the magnetic core 120 can be supported with respect to the housing 140 in a state before the resin sealing by the sealing resin portion 150.
  • the core support part 140d is provided in four places.
  • the position where the core support portion 140d is formed may be anywhere as long as it can support the magnetic core 120 without tilting. However, here, the position away from the coil 130 and the position where the magnetic flux is small in the magnetic core 120. It is said.
  • the core support portion 140d is disposed at a position closer to the outer peripheral side surface 120d than the inner peripheral side surface 120c in the magnetic core 120.
  • the core support portions 140d are disposed at the four corners of the magnetic core 120. .
  • the number of core support portions 140d is arbitrary, and may be less than four or five or more.
  • the coil support portion 140e is provided at a plurality of locations so that the coil 130 can be supported with respect to the casing 140 in a state before resin sealing by the sealing resin portion 150.
  • the coil support part 140e is provided in two places.
  • the position where the coil support portion 140e is formed may be any position as long as the coil 130 can be supported without being inclined and a desired gap is formed between the coil 130 and the magnetic core 120.
  • the coil 130 is arranged on the outer side where heat is hard to accumulate, that is, on the opposite side of the coil 130 instead of the center side of the magnetic core 120.
  • the outer side in the arrangement direction of the coils 130a and 130b more preferably the outer side of the magnetic core 120.
  • the coil support portion 140e may be disposed at the position.
  • the number of coil support portions 140e is arbitrary, and more stable support is possible if a plurality of, for example two, coils are provided for each of the coils 130a and 130b.
  • the sealing resin part 150 is a binder resin containing a heat radiation filler.
  • alumina or the like is used as the heat dissipating filler, and epoxy resin or silicone is used as the resin material.
  • the sealing resin portion 150 made of such a material has a thermal conductivity of 0.7 to 4 W / mK, for example, 3 W / mK, for example.
  • the sealing resin portion 150 is filled and cured in a recess 140 a formed in the housing 140.
  • the sealing resin portion 150 is formed up to a position where the portion of the coil 130 located below the magnetic core 120 is immersed and at least the lower surface 120b of the magnetic core 120 contacts.
  • a material having a low viscosity in a state before being cured is applied, so that the space between the magnetic core 120 and the coil 130 or between the magnetic core 120 and the housing 140 can be filled without a gap. I have to.
  • the sealing resin portion 150 is in contact with the lower surface 120b of the magnetic core 120, but does not cover more than half of the upper surface 120a and both side surfaces 120c, 120d, preferably 90% or more.
  • the magnetic core 120 is exposed from the sealing resin portion 150.
  • the sealing resin portion 150 is formed up to a position in contact with the lower surface 120 b of the magnetic core 120.
  • the cured sealing resin portion 150 may be separated from the lower surface 120b. Therefore, the sealing resin portion 150 is slightly closer to the upper surface 120a side than the lower surface 120b. Is more preferable. Therefore, the formation position of the sealing resin portion 150 is set to the above position.
  • the cooler 160 constitutes a part of the cooling member.
  • connectivity is improved by being bonded to the bottom surface 140b of the housing 140 via a heat radiating gel 170 having a high thermal conductivity such as a silicone gel.
  • a heat radiating gel 170 having a high thermal conductivity such as a silicone gel.
  • the thermal conductivity is about 1 W / mK, and heat transfer from the housing 140 to the cooler 160 can be favorably performed by thin coating.
  • the cooler 160 may be an air-cooled type or a water-cooled type.
  • the cooler 160 may be a heat sink composed of, for example, a simple high heat conductive plate, or a heat radiating fin is provided on the back side opposite to the coil 130, the magnetic core 120, the housing 140, and the like. It may be a heat sink provided.
  • a structure may be employed in which a refrigerant passage is formed inside the cooler 160 and the refrigerant flows in the refrigerant passage.
  • the reactor 110 according to the present embodiment is configured.
  • the reactor 110 configured as described above is manufactured as follows.
  • the magnetic core 120, the coil 130, and the housing 140 are prepared. It arrange
  • the magnetic core 120 is composed of two U-shaped cores and the like, and the tips of the two U-shaped cores are inserted into the coil 130 from opposite directions so that the coil 130 is wound around the magnetic core 120.
  • a rotated structure can be constructed.
  • the magnetic core 120 and the coil 130 are arranged in the recess 140a of the housing 140, and a resin material including a heat radiation filler is filled in the recess 140a in a state where they are pressed from above to the bottom surface 140b side of the housing 140. And after hardening this and comprising the sealing resin part 150, pressing of the magnetic core 120 and the coil 130 is cancelled
  • the casing 110 efficiently heats the magnetic core 120 and the coil 130. 140 and cooler 160. And the sealing resin part 150 and the lower surface 120b of the magnetic core 120 are contacting, and the sealing resin part 150 is provided so that the clearance gap between the magnetic core 120 and the coil 130 may be filled up. In this way, heat radiation can be promoted by filling the gap between the magnetic core 120 and the coil 130 with the sealing resin portion 150.
  • the thermal conductivity of air is about 0.03 W / mK.
  • heat radiation can be promoted by including the sealing resin portion 150 having a thermal conductivity of about 3 W / mK.
  • the sealing resin portion 150 is in contact with the lower surface 120 b of the magnetic core 120, the upper surface 120 a and both side surfaces 120 c and 120 d are not substantially covered, and the magnetic core 120 is exposed from the sealing resin portion 150. I am doing so. For this reason, it is possible to minimize the region where the stress is applied to the magnetic core 120 due to the curing shrinkage of the sealing resin portion 150. It is also possible to minimize the application of stress due to interference with the sealing resin portion 150 due to the magnetostriction of the magnetic core 120 itself.
  • the cross-sectional shape in the direction orthogonal to the flow of magnetic flux in the magnetic core 120 is flattened to improve heat dissipation, but the flatness here is as follows. Defined in
  • FIG. 13 shows specifications assuming that the reactor 110 is applied as a vehicle boost converter reactor.
  • the core loss indicates a loss during driving at 10 kW.
  • the thermal conductivity of the core is a value that assumes a case where a magnetic core 120 is used in which iron powder is sandwiched between binder resins including a heat radiation filler and compressed.
  • the cooling surface was assumed to radiate heat from only one side of the magnetic core 120 and the coil 130. Based on these assumptions, the heat dissipation when heat was generated due to core loss was estimated. Specifically, assuming that the center position of the magnetic core 120 is a heat generation surface, the heat resistance when all the heat generation of the magnetic core 120 is radiated by the cooling surface on one side, that is, the cooler 160, is expressed as Equation 3. It is.
  • the respective dimensions are defined as shown in FIG. 14 and the respective thermal resistances are estimated.
  • the thermal conductivity of the coil 130 is high, it is assumed that heat is generated at a place farthest from the cooling surface in order to ignore the influence and estimate the worst condition, as shown in FIG.
  • the magnetic core 120 has a cubic shape, it is calculated as 5 ° C./W, and when it has a flat shape, it is calculated as 1 ° C./W.
  • heat radiation is promoted by taking the reactor in a flat shape, and the temperature of the magnetic core 120 can be lowered as compared with the case where the magnetic core 120 is in a cubic shape.
  • the allowable heat generation temperature ⁇ T is 100 ° C.
  • the heat generation temperature when the magnetic core 120 is in a cubic shape is 455 ° C.
  • it is 92 ° C. It can be seen that the allowable heat generation temperature ⁇ T is satisfied.
  • the entire reactor was resin-sealed as in Patent Document 1, whereas heat dissipation can be ensured even when heat is released by resin-sealing only on one side as in this embodiment. It becomes possible.
  • the flat dimension range is defined as Equation 4 based on the cooling area of the magnetic core 120, that is, the ratio of the thickness dimension to the vertical and horizontal dimensions. It can be. That is, when the short side in the flat rectangular shape is taken as the numerator and the value obtained by multiplying the two long sides is taken as the denominator, it is set to 3/100 or less.
  • the core support portion 140d is formed at a position closer to the outer peripheral side surface 120d than the inner peripheral side surface 120c of the magnetic core 120. For this reason, the position with little magnetic flux in the magnetic core 120 can be supported by the core support portion 140d. That is, a large amount of magnetic flux collects in the inner periphery of the magnetic core 120 in the reactor 110. The characteristic deterioration due to the pressurization of the magnetic core 120 has a larger influence as the magnetic flux collects more. Therefore, it is possible to further suppress the characteristic deterioration of the magnetic core 120 by setting the location of the core support portion 140d as in the present embodiment.
  • the coil support portion 140e is disposed outside the arrangement direction of the coils 130a and 130b.
  • heat generation is concentrated from the cooler 160 to the central portion where the thermal resistance is high, and therefore the coil support portion 140e is disposed at a position away from the central portion where heat is accumulated. Thereby, it is possible to further suppress an increase in loss of reactor 110.
  • the shape of the magnetic core 20, the coil 30, and the casings 40 and 41 described in the above embodiments is merely an example, and other shapes may be used.
  • the said embodiment demonstrated the case where the reactors 10 and 110 were applied to the reactor for step-up converters etc. which are mounted in an electric vehicle, a hybrid vehicle, etc., this is only an example of an application example and others. It is also possible to apply to For example, the reactors 10 and 110 can be applied to a PFC step-up reactor or a smoothing choke for a charger.
  • the reactors 10 and 110 are comprised by two U-shaped cores, the reactors 10 and 110 can also be comprised by two E-shaped cores or several I-shaped cores, The said embodiment The same effect can be obtained.
  • the magnetic core 120 has a flat shape, but this is to obtain higher heat dissipation, and the height of the magnetic core 120 may be appropriately changed according to the heat dissipation.
  • the height can be set arbitrarily.
  • the magnetic core 120 may be configured with a square cross-sectional shape.
  • the magnetic core 120 is rectangular, and the corner of the magnetic core 120 is rounded on the sealing resin portion 150 side.
  • the corner may not be rounded.
  • angular part by the side of the sealing resin part 150 among the magnetic cores 120 may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A reactor comprises: a magnetic core (20); a coil (30); a first cooling member (40, 60); a second cooling member (41, 61); a first sealing resin portion (50); and a second sealing resin portion (51). The first sealing resin portion and the second sealing resin portion, by being filled in a gap between a heat radiating surface of the first cooling member and the magnetic core and a gap between a heat radiating surface of the second cooling member and the magnetic core, are formed to expose side surfaces (20c, 20d) of the magnetic core while sealing a lower surface (20b) of the magnetic core and an upper surface (20a) of the magnetic core. A cross sectional shape of the magnetic core in a plane orthogonal to the flow of magnetic fluxes produced upon energization of the coil is a flattened shape of which a dimension in a perpendicular direction with respect to the same direction as a direction in which the first cooling member and the second cooling member are arranged is greater than a dimension in the same dimension.

Description

リアクトルReactor 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年8月18日に出願された日本出願番号2015-161178号および2015年8月18日に出願された日本出願番号2015-161179号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2015-161178 filed on August 18, 2015 and Japanese Application No. 2015-161179 filed on August 18, 2015. Incorporate.
 本開示は、巻線型のコイルを磁性コアの周囲に巻回したリアクトルに関するものである。 This disclosure relates to a reactor in which a wound coil is wound around a magnetic core.
 従来、ハイブリッド車両などに搭載されるリアクトルでは、コイルの銅損や磁性コアの鉄損が発生することから、リアクトルの発熱が生じる。ハイブリッド車両では出力が大きいため、リアクトルの発熱も多くなる。このため、リアクトルの下面に放熱板を設け、ボビンと封止樹脂を介して放熱板からの熱の放出によってリアクトルの冷却が行われている。 Conventionally, in a reactor mounted on a hybrid vehicle or the like, the copper loss of the coil and the iron loss of the magnetic core occur, and thus the reactor generates heat. Since the output of the hybrid vehicle is large, the reactor heat is also increased. For this reason, a heat sink is provided on the lower surface of the reactor, and the reactor is cooled by releasing heat from the heat sink via the bobbin and the sealing resin.
 しかしながら、ボビンとコアの線膨張係数差からヒートショックによりボビンなどにクラックが入り易く、このクラックの発生によって絶縁不良が起こり、リアクトルの焼損の原因となっていた。 However, due to the difference in linear expansion coefficient between the bobbin and the core, the bobbin or the like is easily cracked by heat shock, and the occurrence of this crack causes insulation failure, which causes the reactor to burn out.
 この課題を解決できるものとして、特許文献1にボビンレスによるリアクトルが提案されている。このようにボビンレスでリアクトルを形成することにより、線膨張係数差が低減されてクラックの発生が抑制され、絶縁不良およびそれに起因するリアクトルの焼損を抑制することが可能となる。 As a solution to this problem, a bobbin-less reactor is proposed in Patent Document 1. By forming the reactor in a bobbinless manner as described above, the difference in linear expansion coefficient is reduced, the generation of cracks is suppressed, and it becomes possible to suppress the insulation failure and the reactor burnout resulting therefrom.
 具体的には、筐体となるハウジング内に、磁性コアとコイルを配置した状態でフィラーが配合された樹脂封止材を充填することでコイルと磁性コアの間の隙間を封止している。樹脂封止材は、熱伝導率が0.7~4W/mKの性能を有し、粘度が低いものが適用されることでコイルと磁性コアの間の隙間が封止されるようにしている。また、磁性コアは、2つのU字型コアとギャップ部材とによって構成されており、2つのU字型コアそれぞれの両先端をコイルに挿入しつつ向かい合わせ、ギャップ部材を介して連結させて環状としている。そして、環状とされた磁性コアを径方向外方から板バネによってハウジングの内壁面に押し当てることで位置決めしつつ、コイルを上方から加圧して位置決めし、この状態で樹脂封止材を充填することで、樹脂封止を行っている。 Specifically, a gap between the coil and the magnetic core is sealed by filling a resin sealing material in which a filler is blended in a state where the magnetic core and the coil are arranged in a housing serving as a housing. . The resin sealing material has a performance of a thermal conductivity of 0.7 to 4 W / mK, and has a low viscosity so that the gap between the coil and the magnetic core is sealed. . The magnetic core is composed of two U-shaped cores and a gap member. Both ends of the two U-shaped cores face each other while being inserted into the coil, and are connected via the gap member to form an annular shape. It is said. Then, while positioning the annular magnetic core by pressing it against the inner wall surface of the housing with a leaf spring from the outside in the radial direction, the coil is pressed and positioned from above, and the resin sealing material is filled in this state. Thus, resin sealing is performed.
 しかしながら、板バネによる加圧が為された状態で磁性コアが樹脂封止されることになるため、磁性コアの特性劣化、つまり損失の増大や透磁率の低下を発生させる。また、コイルおよび磁性コアをすべて樹脂封止材で覆った構造であるため、樹脂封止による磁性コアの特性劣化も発生させる。 However, since the magnetic core is resin-sealed in a state where pressure is applied by the leaf spring, the characteristics of the magnetic core are deteriorated, that is, the loss is increased and the magnetic permeability is decreased. In addition, since the coil and the magnetic core are all covered with a resin sealing material, the magnetic core characteristics are also deteriorated due to the resin sealing.
 なお、磁性コアは磁歪効果により、応力を印加すると透磁率低下や損失増加することが知られている。上記特許文献1の構造では、磁性コアに応力が印加される要因として、次の(1)~(3)が挙げられる。すなわち、(1)周辺部材からの加圧があること、(2)磁性コアの周辺に封止された樹脂が硬化収縮されることで、磁性コアに応力が印加されること、(3)磁束が印加された磁性コアの膨張により封止された樹脂と干渉し応力が印加されることである。上記した磁性コアを板バネで固定することは(1)の要因を発生させ、磁性コアやコイルの全体を樹脂封止材で封止することは(2)、(3)の要因を発生させることとなる。 In addition, it is known that the magnetic core decreases the permeability and increases the loss when stress is applied due to the magnetostrictive effect. In the structure of Patent Document 1, the following (1) to (3) can be cited as factors for applying stress to the magnetic core. That is, (1) pressure is applied from the peripheral member, (2) the resin sealed around the magnetic core is cured and shrunk, and stress is applied to the magnetic core, and (3) magnetic flux The stress is applied by interfering with the sealed resin due to the expansion of the magnetic core to which is applied. Fixing the magnetic core with a leaf spring generates the factor (1), and sealing the entire magnetic core or coil with a resin sealing material generates the factors (2) and (3). It will be.
特開2009-94328号公報JP 2009-94328 A
 本開示は、樹脂封止や加圧による磁性コアの特性劣化を抑制しつつ、良好に放熱を行うことが可能なリアクトルを提供することを目的とする。 This disclosure is intended to provide a reactor that can perform good heat dissipation while suppressing deterioration of characteristics of a magnetic core due to resin sealing or pressurization.
 本開示の一態様に係るリアクトルは、磁性コアと、磁性コアに巻回されたコイルと、第1冷却部材および第2冷却部材と、第1封止樹脂部および第2封止樹脂部とを有する。第1冷却部材および第2冷却部材は、磁性コアおよびコイルを挟んだ両側に配置され、磁性コアおよびコイルが配置される放熱面を含み、磁性コアおよびコイルの放熱を行う。、第1封止樹脂部と第2封止樹脂部は、第1冷却部材の放熱面から磁性コアの間に充填されることで、磁性コアのうちの放熱面側となる下面を封止すると共に、第2冷却部材の放熱面から磁性コアの間に充填されることで、磁性コアのうちの放熱面側となる上面を封止しつつ、該磁性コアのうち放熱面に繋がる両側面を露出させるように形成される。磁性コアは、コイルに通電を行ったときに発生する磁束の流れに対して直交する面での断面形状が、第1冷却部材と第2冷却部材が並ぶ方向と同方向の寸法より該方向に対する垂直方向の寸法が大きくされた扁平形状とされている。 A reactor according to an aspect of the present disclosure includes a magnetic core, a coil wound around the magnetic core, a first cooling member and a second cooling member, a first sealing resin portion, and a second sealing resin portion. Have. The first cooling member and the second cooling member are disposed on both sides of the magnetic core and the coil, include heat radiation surfaces on which the magnetic core and the coil are disposed, and perform heat radiation of the magnetic core and the coil. The first sealing resin portion and the second sealing resin portion are filled between the heat dissipation surface of the first cooling member and the magnetic core, thereby sealing the lower surface on the heat dissipation surface side of the magnetic core. In addition, by filling the space between the heat dissipation surface of the second cooling member and the magnetic core, both sides of the magnetic core connected to the heat dissipation surface are sealed while sealing the upper surface on the heat dissipation surface side of the magnetic core. It is formed to be exposed. The magnetic core has a cross-sectional shape in a plane perpendicular to the flow of magnetic flux generated when the coil is energized, with respect to the direction in the same direction as the direction in which the first cooling member and the second cooling member are arranged. It is a flat shape with a large vertical dimension.
 このように、第1封止樹脂部および第2樹脂封止部を磁性コアの下面もしくは上面と接するようにしつつも、両側面において磁性コアが封止樹脂部から露出させられるようにしている。このため、第1封止樹脂部および第2樹脂封止部の硬化収縮によって磁性コアに応力が印加される領域を最小限に留めることが可能となる。また、磁性コア自身の磁歪によって第1封止樹脂部および第2樹脂封止部と干渉して応力が印加されることを最小限に留めることも可能となる。また、磁性コアを断面形状が扁平形状となるようにし、磁性コアの体積に対する冷却面積を増加させている。これにより、放熱性を確保することが可能となる。 Thus, while the first sealing resin portion and the second resin sealing portion are in contact with the lower surface or the upper surface of the magnetic core, the magnetic core is exposed from the sealing resin portion on both side surfaces. For this reason, it becomes possible to keep the area | region where a stress is applied to a magnetic core by hardening shrinkage of a 1st sealing resin part and a 2nd resin sealing part to the minimum. In addition, it is possible to minimize the application of stress by interfering with the first sealing resin portion and the second resin sealing portion due to the magnetostriction of the magnetic core itself. Further, the cross-sectional shape of the magnetic core is flattened to increase the cooling area with respect to the volume of the magnetic core. Thereby, it becomes possible to ensure heat dissipation.
 また、このような構成によれば、磁性コアに対する周辺部材からの加圧、例えば磁性コアの径方向外方からの板バネによる押し付けがほぼ無い構造にでき、熱変形に伴う封止樹脂部からの加圧も抑制できる。さらに、リアクトルの使用時に磁束が印加された磁性コアが膨張したとしても、第1封止樹脂部および第2樹脂封止部との接触部位がほぼ磁性コアのうち放熱面側の下面および上面のみとなることから、磁性コア自身の磁歪に起因して第1封止樹脂部および第2樹脂封止部から印加される応力を抑制できる。したがって、樹脂封止や加圧による磁性コアの特性劣化、つまり損失の増大や透磁率の低下を抑制することが可能となる。 Further, according to such a configuration, it is possible to make a structure in which there is almost no pressure from the peripheral member against the magnetic core, for example, a pressing by a leaf spring from the radially outer side of the magnetic core, and from the sealing resin portion accompanying the thermal deformation Can also be suppressed. Furthermore, even if the magnetic core to which the magnetic flux is applied is expanded when the reactor is used, the contact portions with the first sealing resin portion and the second resin sealing portion are almost only the lower surface and the upper surface on the heat radiation surface side of the magnetic core. Therefore, the stress applied from the first sealing resin portion and the second resin sealing portion due to the magnetostriction of the magnetic core itself can be suppressed. Therefore, it is possible to suppress the deterioration of the characteristics of the magnetic core due to resin sealing or pressurization, that is, increase in loss or decrease in magnetic permeability.
 本開示の別の態様に係るリアクトルは、磁性コアと、磁性コアに巻回されたコイルと、冷却部材と、コア支持部と、コイル支持部と、封止樹脂部とを有する。冷却部材は、磁性コアおよびコイルが配置される放熱面を含み、磁性コアおよびコイルの放熱を行う。コア支持部は、放熱面から突出させられて設けられ、磁性コアを支持する。コイル支持部は、放熱面から突出させられて設けられ、コイルを支持する。封止樹脂部は、コア支持部によって磁性コアが支持され、かつ、コイル支持部によってコイルが支持された状態で、放熱面から磁性コアの間に充填されることで、磁性コアのうちの放熱面側の面を封止しつつ、該磁性コアのうち放熱面と反対側の面を露出させるように形成される。 A reactor according to another aspect of the present disclosure includes a magnetic core, a coil wound around the magnetic core, a cooling member, a core support portion, a coil support portion, and a sealing resin portion. The cooling member includes a heat radiating surface on which the magnetic core and the coil are disposed, and radiates heat from the magnetic core and the coil. The core support part is provided so as to protrude from the heat dissipation surface and supports the magnetic core. The coil support portion is provided so as to protrude from the heat dissipation surface and supports the coil. The sealing resin part is filled between the magnetic core from the heat dissipation surface in a state where the magnetic core is supported by the core support part and the coil is supported by the coil support part. The magnetic core is formed so as to expose the surface opposite to the heat radiating surface while sealing the surface side surface.
 このように構成されるリアクトルは、磁性コアおよびコイルと冷却部材との間を封止樹脂部によって充填しているため、磁性コアおよびコイルからの熱を効率良く冷却部材に伝えられる。また、封止樹脂部にて磁性コアのうち放熱面側の面を封止しつつ、放熱面と反対側の面を覆わないようにし、磁性コアが封止樹脂部から露出させられるようにしている。このため、封止樹脂部の硬化収縮によって磁性コアに応力が印加される領域を最小限に留めることが可能となる。また、磁性コア自身の磁歪によって封止樹脂部と干渉して応力が印加されることを最小限に留めることも可能となる。 Since the reactor configured in this manner is filled with the sealing resin portion between the magnetic core and coil and the cooling member, heat from the magnetic core and coil can be efficiently transmitted to the cooling member. In addition, while sealing the heat dissipation surface side of the magnetic core with the sealing resin portion, the surface opposite to the heat dissipation surface is not covered so that the magnetic core is exposed from the sealing resin portion. Yes. For this reason, it becomes possible to keep the area | region where a stress is applied to a magnetic core by hardening shrinkage | contraction of a sealing resin part to the minimum. In addition, it is possible to minimize the application of stress due to interference with the sealing resin portion due to the magnetostriction of the magnetic core itself.
 また、このような構成によれば、磁性コアに対する周辺部材からの加圧、例えば板バネによる押し付けが無いし、熱変形に伴う封止樹脂部からの加圧も抑制できる。さらに、リアクトルの使用時に磁束が印加された磁性コアが膨張したとしても、封止樹脂部との接触部位がほぼ磁性コアのうち放熱面側の面のみとなることから、磁性コア自身の磁歪に起因して封止樹脂部から印加される応力を抑制できる。したがって、樹脂封止や加圧による磁性コアの特性劣化、つまり損失の増大や透磁率の低下を抑制することが可能となる。 Further, according to such a configuration, there is no pressurization from the peripheral member against the magnetic core, for example, pressing by a leaf spring, and pressurization from the sealing resin portion accompanying thermal deformation can be suppressed. Furthermore, even if the magnetic core to which magnetic flux is applied is expanded when the reactor is used, the contact portion with the sealing resin portion is almost only the surface on the heat radiating surface side of the magnetic core. This can suppress the stress applied from the sealing resin portion. Therefore, it is possible to suppress the deterioration of the characteristics of the magnetic core due to resin sealing or pressurization, that is, increase in loss or decrease in magnetic permeability.
 本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、本開示の第1実施形態にかかるリアクトルの一部断面上面図である。 図2は、図1のII-II線に沿ったリアクトルの断面図である。 図3は、図2のIII-III線に沿ったリアクトルの断面図である。 図4は、図1に示すリアクトルの斜視分解図である。 図5は、リアクトルを車両用の昇圧コンバータ用リアクトルとして適用する場合を想定した諸元を示した図である。 図6は、磁性コアを立方体形状とした場合と扁平形状とした場合それぞれの場合の各部の寸法設定に対応する熱抵抗や発熱温度の関係を示した図である。 図7は、本開示の第2実施形態にかかるリアクトルの断面図である。 図8は、本開示の第3実施形態にかかるリアクトルの断面図である。 図9Aは、筐体の底面を平板状とした場合に硬化収縮時に封止樹脂部より掛かる応力を示した断面図である。 図9Bは、図9Aに示した応力によって筐体が破損した様子を示す断面図である。 図10は、本開示の第4実施形態にかかるリアクトルの一部断面上面図である。 図11は、図10のXI-XI線に沿ったリアクトルの断面図である。 図12は、図10に示すリアクトルの斜視分解図である。 図13は、リアクトルを車両用の昇圧コンバータ用リアクトルとして適用する場合を想定した諸元を示した図である。 図14は、磁性コアを立方体形状とした場合と扁平形状とした場合それぞれの場合の各部の寸法設定に対応する熱抵抗や発熱温度の関係を示した図である。
The above and other objects, configurations, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the following drawings. In the drawing
FIG. 1 is a partial cross-sectional top view of a reactor according to the first embodiment of the present disclosure. FIG. 2 is a cross-sectional view of the reactor along the line II-II in FIG. FIG. 3 is a cross-sectional view of the reactor along the line III-III in FIG. FIG. 4 is an exploded perspective view of the reactor shown in FIG. FIG. 5 is a diagram showing specifications assuming a case where the reactor is applied as a reactor for a boost converter for a vehicle. FIG. 6 is a diagram showing the relationship between the thermal resistance and heat generation temperature corresponding to the dimension setting of each part when the magnetic core has a cubic shape and when it has a flat shape. FIG. 7 is a cross-sectional view of a reactor according to the second embodiment of the present disclosure. FIG. 8 is a cross-sectional view of a reactor according to the third embodiment of the present disclosure. FIG. 9A is a cross-sectional view showing the stress applied from the sealing resin portion during curing shrinkage when the bottom surface of the housing is flat. FIG. 9B is a cross-sectional view showing a state in which the housing is damaged by the stress shown in FIG. 9A. FIG. 10 is a partial cross-sectional top view of the reactor according to the fourth embodiment of the present disclosure. FIG. 11 is a cross-sectional view of the reactor along the line XI-XI in FIG. 12 is an exploded perspective view of the reactor shown in FIG. FIG. 13 is a diagram showing specifications assuming a case where the reactor is applied as a reactor for a boost converter for a vehicle. FIG. 14 is a diagram showing the relationship between the thermal resistance and the heat generation temperature corresponding to the dimension setting of each part when the magnetic core has a cubic shape and when it has a flat shape.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態について、図1~図4を参照して説明する。図1~図4に示すように、本実施形態のリアクトル10は、磁性コア20、コイル30、筐体40、41、封止樹脂部50、51および冷却器60、61などを有した構成とされている。このリアクトル10は、電気自動車やハイブリッド車両などに搭載される昇圧コンバータ用リアクトル等のように、例えば高出力を発生させるものとして適用される。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. As shown in FIGS. 1 to 4, the reactor 10 of the present embodiment has a configuration including a magnetic core 20, a coil 30, housings 40 and 41, sealing resin portions 50 and 51, coolers 60 and 61, and the like. Has been. The reactor 10 is applied to generate a high output, such as a boost converter reactor mounted on an electric vehicle, a hybrid vehicle, or the like.
 磁性コア20は、鉄系合金、アモルファス金属(例えば鉄系アモルファス材料)など、コア材料として用いられる軟磁性材で構成されており、例えば熱伝導率が1~50W/mKとなっている。本実施形態では、図1に示すように、磁性コア20を上面形状が相対する2辺を2組有した矩形の枠体形状としているが、磁束が流れる構成であれば他の形状であっても良い。例えば上面形状が円形枠状であっても良い。また、磁性コア20については1部材である必要はなく、複数に分割されたものが一体とされたものであっても良いし、互いに接触するように配置されたものであっても良い。 The magnetic core 20 is made of a soft magnetic material used as a core material, such as an iron-based alloy or an amorphous metal (eg, an iron-based amorphous material), and has a thermal conductivity of 1 to 50 W / mK, for example. In this embodiment, as shown in FIG. 1, the magnetic core 20 has a rectangular frame shape with two sets of two sides facing each other, but any other shape can be used as long as the magnetic flux flows. Also good. For example, the upper surface shape may be a circular frame shape. Further, the magnetic core 20 does not have to be a single member, and a plurality of divided cores may be integrated, or may be arranged so as to be in contact with each other.
 また、磁性コア20は、図2に示すように、コイル30に対して通電を行ったときに発生させられる磁束の流れと直交する方向での断面形状が、四角形状とされている。より詳しくは、磁性コア20は、紙面上下方向の寸法である厚み方向寸法よりも紙面左右方向の寸法である幅方向寸法が大きくされた扁平形状とされている。換言すると、磁性コア20のうち、筐体40、41や冷却器60、61が並ぶ方向と同方向の寸法よりも、該方向に対する垂直方向の寸法が大きくされた扁平形状とされている。本実施形態の場合、磁性コア20の断面形状を長方形状としている。そして、長辺を構成する上面20aおよび下面20bが後述する筐体40、41の放熱面を構成する底面40b、41bと対向させられている。そして、上面20aと下面20bとの間を繋ぐ各面、つまり短辺を構成する内周側面20cおよび外周側面20dが筐体40、41の底面40b、41bに対して垂直方向に向くようにして磁性コア20が筐体40、41上に配置されている。 Further, as shown in FIG. 2, the magnetic core 20 has a quadrangular cross-sectional shape in a direction perpendicular to the flow of magnetic flux generated when the coil 30 is energized. More specifically, the magnetic core 20 has a flat shape in which the dimension in the width direction, which is a dimension in the left-right direction on the paper surface, is larger than the dimension in the thickness direction, which is a dimension in the vertical direction on the paper surface. In other words, the magnetic core 20 has a flat shape in which the dimension in the direction perpendicular to the direction is larger than the dimension in the same direction as the direction in which the casings 40 and 41 and the coolers 60 and 61 are arranged. In the case of this embodiment, the cross-sectional shape of the magnetic core 20 is rectangular. And the upper surface 20a and the lower surface 20b which comprise a long side are made to oppose the bottom surfaces 40b and 41b which comprise the thermal radiation surface of the housing | casing 40 and 41 mentioned later. And each surface which connects between the upper surface 20a and the lower surface 20b, that is, the inner peripheral side surface 20c and the outer peripheral side surface 20d constituting the short side are oriented in a direction perpendicular to the bottom surfaces 40b and 41b of the casings 40 and 41. The magnetic core 20 is disposed on the casings 40 and 41.
 コイル30は、磁性コア20に対して巻回されており、例えば銅などの導体線を絶縁被膜したものによって構成されている。上記したように、本実施形態では磁性コア20を四角形枠体形状としているが、この磁性コア20の相対する2辺それぞれにコイル30を巻回してある。磁性コア20のうちの一辺に巻回されたコイル30aともう一辺に巻回されたコイル30bとは繋がっている。本実施形態の場合、磁性コア20の下方位置、つまり筐体40側において、コイル30aとコイル30bとが連結部30cを介して繋がっている。また、各コイル30a、30bを構成する導体線のうち連結部30cと反対側の先端は、封止樹脂部50、51で覆われていない位置において引き出された引出配線30aa、30baとされている。この引出配線30aa、30baを介して、コイル30が外部回路と電気的に接続されることで、リアクトル10への通電が可能とされている。 The coil 30 is wound around the magnetic core 20 and is constituted by a conductor wire such as copper coated with an insulating film. As described above, in the present embodiment, the magnetic core 20 has a quadrangular frame shape, but the coil 30 is wound around each of two opposite sides of the magnetic core 20. The coil 30a wound around one side of the magnetic core 20 and the coil 30b wound around the other side are connected. In the case of this embodiment, the coil 30a and the coil 30b are connected via the connection part 30c in the downward position of the magnetic core 20, ie, the housing | casing 40 side. In addition, of the conductor wires constituting the coils 30a and 30b, the ends on the opposite side to the connecting portion 30c are drawn wirings 30aa and 30ba drawn at positions not covered with the sealing resin portions 50 and 51. . The coil 30 is electrically connected to an external circuit through the lead wires 30aa and 30ba, so that the reactor 10 can be energized.
 筐体40、41は、磁性コア20およびコイル30を収容するケースであり、熱伝導率が例えば50W/mK以上の高い材料、例えばアルミニウムによって構成されている。筐体40、41は、それぞれ、磁性コア20およびコイル30を挟んだ一方と他方に配置され、筐体40、41の間に磁性コア20およびコイル30が保持されている。本実施形態では、筐体40および冷却器60や筐体41および冷却器61を別体として構成しているが、これらはそれぞれ第1冷却部材や第2冷却部材を構成するものであり、それぞれ一体とされることで第1冷却部材や第2冷却部材が構成されていても良い。 The casings 40 and 41 are cases for housing the magnetic core 20 and the coil 30 and are made of a high material having a thermal conductivity of, for example, 50 W / mK or more, for example, aluminum. The casings 40 and 41 are disposed on one side and the other side of the magnetic core 20 and the coil 30, respectively, and the magnetic core 20 and the coil 30 are held between the casings 40 and 41. In the present embodiment, the casing 40 and the cooler 60 and the casing 41 and the cooler 61 are configured as separate bodies, but these constitute the first cooling member and the second cooling member, respectively. The 1st cooling member and the 2nd cooling member may be constituted by being united.
 筐体40、41は、図2~図4に示すように、磁性コア20およびコイル30が収容される凹部40a、41aを有した有底部材によって構成されており、図1に示すように、本実施形態の場合は上面形状が四角形状の有底部材とされている。具体的には、筐体40、41は、放熱面を構成する底面40b、41bに加えて側面40c、41cを有し、これら底面40b、41bと側面40c、41cとによって凹部40a、41aが構成されている。そして、図1に示すように側面40c、41cによって囲まれる範囲内に配置され、かつ、深さ方向において凹部40a、41a内に少なくとも一部が入り込むようにして磁性コア20およびコイル30が収容されている。 The casings 40 and 41 are constituted by bottomed members having recesses 40a and 41a for accommodating the magnetic core 20 and the coil 30 as shown in FIGS. 2 to 4, and as shown in FIG. In the case of this embodiment, the bottom surface member is a quadrangular bottomed member. Specifically, the casings 40 and 41 have side surfaces 40c and 41c in addition to the bottom surfaces 40b and 41b constituting the heat radiation surface, and the bottom surfaces 40b and 41b and the side surfaces 40c and 41c constitute the recesses 40a and 41a. Has been. Then, as shown in FIG. 1, the magnetic core 20 and the coil 30 are accommodated so as to be disposed within a range surrounded by the side surfaces 40c and 41c and so that at least a part of the recesses 40a and 41a enter in the depth direction. ing.
 より詳しくは、筐体40、41に形成される凹部40a、41aは、磁性コア20の下面20bが後述する封止樹脂部50、51と密着する深さに設定されている。すなわち、筐体40に磁性コア20およびコイル30を収容したときに、側面40c、41cにおける底面40b、41bと反対側の端部が磁性コア20の下面20bよりも底面40b、41bから離れた位置に達するように、側面40c、41cの高さが設定されている。 More specifically, the recesses 40a and 41a formed in the casings 40 and 41 are set to a depth at which the lower surface 20b of the magnetic core 20 is in close contact with sealing resin portions 50 and 51 described later. That is, when the magnetic core 20 and the coil 30 are housed in the housing 40, the end portions of the side surfaces 40c and 41c opposite to the bottom surfaces 40b and 41b are located farther from the bottom surfaces 40b and 41b than the bottom surface 20b of the magnetic core 20 is. The heights of the side surfaces 40c and 41c are set so as to reach.
 また、筐体40、41の底面40b、41bには、磁性コア20を支持するコア支持部40d、41dと、コイル30を支持するコイル支持部40e、41eとが備えられている。コア支持部40d、41dおよびコイル支持部40e、41eは底面40b、41bに配置された板バネもしくはスペーサによって構成されている。筐体40、41の間において磁性コア20およびコイル30が位置ズレなく支持可能であればコア支持部40d、41dおよびコイル支持部40e、41eをスペーサによって構成すれば良い。また、位置ズレない支持を行うために、磁性コア20およびコイル30を挟み込む方向に押圧する必要がある場合には、コア支持部40d、41dおよびコイル支持部40e、41eを板バネで構成するのが好ましい。 The bottom surfaces 40b and 41b of the casings 40 and 41 are provided with core support portions 40d and 41d that support the magnetic core 20 and coil support portions 40e and 41e that support the coil 30, respectively. The core support portions 40d and 41d and the coil support portions 40e and 41e are configured by leaf springs or spacers disposed on the bottom surfaces 40b and 41b. As long as the magnetic core 20 and the coil 30 can be supported between the housings 40 and 41 without being displaced, the core support portions 40d and 41d and the coil support portions 40e and 41e may be configured by spacers. Further, when it is necessary to press the magnetic core 20 and the coil 30 in a direction in which the magnetic core 20 and the coil 30 are sandwiched in order to perform support without misalignment, the core support portions 40d and 41d and the coil support portions 40e and 41e are configured by leaf springs. Is preferred.
 これらコア支持部40d、41dおよびコイル支持部40e、41eは、筐体40、41と一体化されていても良いし、別部材で構成されていても良い。筐体40、41を導体材料で構成している場合には、筐体40、41とコイル30との絶縁が図れるように、コイル支持部40e、41eの少なくとも一部を絶縁材料で構成している。絶縁材料としては、例えば樹脂やセラミックスなどを用いることができる。 The core support portions 40d and 41d and the coil support portions 40e and 41e may be integrated with the casings 40 and 41, or may be configured as separate members. When the casings 40 and 41 are made of a conductive material, at least a part of the coil support portions 40e and 41e is made of an insulating material so that the casings 40 and 41 and the coil 30 can be insulated. Yes. As the insulating material, for example, resin or ceramics can be used.
 また、コア支持部40d、41dおよびコイル支持部40e、41eの形状については任意であるが、これらに支持された磁性コア20とコイル30との間の隙間が確保されると共に、筐体40、41とコイル30との絶縁確保が為されるように、寸法が決められている。 Further, the shapes of the core support portions 40d and 41d and the coil support portions 40e and 41e are arbitrary, but a gap between the magnetic core 20 supported by these and the coil 30 is secured, and the housing 40, The dimensions are determined so that the insulation between 41 and the coil 30 is ensured.
 コア支持部40d、41dおよびコイル支持部40e、41eは、封止樹脂部50、51による樹脂封止の前の状態において磁性コア20を筐体40、41に対して支持できるように複数箇所に設けてある。コア支持部40d、41dおよびコイル支持部40e、41eの形成位置については、磁性コア20やコイル30を傾き無く支持できる位置であればどこであっても構わない。 The core support portions 40d and 41d and the coil support portions 40e and 41e are provided at a plurality of locations so that the magnetic core 20 can be supported with respect to the casings 40 and 41 in a state before resin sealing by the sealing resin portions 50 and 51. It is provided. The formation positions of the core support portions 40d and 41d and the coil support portions 40e and 41e may be anywhere as long as they can support the magnetic core 20 and the coil 30 without inclination.
 封止樹脂部50、51は、第1樹脂封止部および第2樹脂封止部を構成するものでり、放熱フィラーを含むバインダー樹脂である。例えば、放熱フィラーとしては、アルミナなどを用いており、樹脂材料としてはエポキシ樹脂やシリコーン樹脂などを用いている。このような材料で構成される封止樹脂部50、51は、例えば熱伝導率が0.7~4W/mK、例えば3W/mKとなる。 The sealing resin parts 50 and 51 constitute the first resin sealing part and the second resin sealing part, and are binder resins containing a heat radiation filler. For example, alumina or the like is used as the heat dissipating filler, and epoxy resin or silicone resin is used as the resin material. The sealing resin portions 50 and 51 made of such a material have a thermal conductivity of 0.7 to 4 W / mK, for example, 3 W / mK.
 封止樹脂部50、51は、筐体40、41に形成された凹部40a、41a内に充填されて硬化させられている。封止樹脂部50、51は、コイル30のうちの磁性コア20よりも底面40b、41b側に位置している部分が浸されている。封止樹脂部50は、少なくとも磁性コア20の下面20bが接する位置まで形成されている。また、封止樹脂部51は、少なくとも磁性コア20の上面20aが接する位置まで形成されている。封止樹脂部50、51としては、硬化される前の状態での粘度が低いものを適用しており、磁性コア20とコイル30との間やこれらと筐体40、41との間を隙間無く充填できるようにしている。 The sealing resin portions 50 and 51 are filled in the recesses 40a and 41a formed in the casings 40 and 41 and cured. The sealing resin portions 50 and 51 are immersed in portions of the coil 30 that are located closer to the bottom surfaces 40 b and 41 b than the magnetic core 20. The sealing resin portion 50 is formed at least to a position where the lower surface 20b of the magnetic core 20 contacts. Further, the sealing resin portion 51 is formed at least up to a position where the upper surface 20a of the magnetic core 20 contacts. As the sealing resin portions 50 and 51, those having a low viscosity in a state before being cured are applied, and there is a gap between the magnetic core 20 and the coil 30 or between these and the housings 40 and 41. It can be filled without any problems.
 ただし、封止樹脂部50は、磁性コア20の下面20bには接しているが、下面20bの近傍以外はほぼ覆っておらず、磁性コア20の下面20bと両側面20c、20dのうち下面20bの近傍のみを覆っている。封止樹脂部51も、磁性コア20の上面20aには接しているが、上面20aの近傍以外はほぼ覆っておらず、磁性コア20の上面20aと両側面20c、20dのうち上面20aの近傍のみを覆っている。このため、磁性コア20の両側面20c、20dが封止樹脂部50、51から露出させられている。封止樹脂部50より磁性コア20が受ける応力を考慮すると、封止樹脂部50、51が磁性コア20の下面20bと接する位置まで形成されているのが好ましい。しかしながら、樹脂の硬化収縮のバラツキを考慮すると、硬化後の封止樹脂部50、51が下面20bもしくは上面20aから離れてしまう可能性も有る。このため、封止樹脂部50については下面20bよりも少し上面20a側の位置まで形成する方が好ましく、封止樹脂部51については上面20aよりも少し下面20b側の位置まで形成する方が好ましい。したがって、封止樹脂部50、51の形成位置を上記位置となるようにしている。 However, the sealing resin portion 50 is in contact with the lower surface 20b of the magnetic core 20, but is not substantially covered except in the vicinity of the lower surface 20b, and the lower surface 20b of the lower surface 20b of the magnetic core 20 and both side surfaces 20c and 20d. It covers only the vicinity. The sealing resin portion 51 is also in contact with the upper surface 20a of the magnetic core 20, but is not substantially covered except in the vicinity of the upper surface 20a, and the vicinity of the upper surface 20a of the upper surface 20a and both side surfaces 20c and 20d of the magnetic core 20 Only covering. For this reason, both side surfaces 20 c and 20 d of the magnetic core 20 are exposed from the sealing resin portions 50 and 51. Considering the stress that the magnetic core 20 receives from the sealing resin portion 50, it is preferable that the sealing resin portions 50 and 51 are formed up to a position in contact with the lower surface 20 b of the magnetic core 20. However, in consideration of variations in the curing shrinkage of the resin, the cured sealing resin portions 50 and 51 may be separated from the lower surface 20b or the upper surface 20a. For this reason, it is preferable to form the sealing resin portion 50 to a position slightly closer to the upper surface 20a than the lower surface 20b, and it is preferable to form the sealing resin portion 51 to a position slightly closer to the lower surface 20b than the upper surface 20a. . Therefore, the sealing resin portions 50 and 51 are formed at the above positions.
 冷却器60、61は、第1冷却部材および第2冷却部材の一部を構成するものである。本実施形態の場合、筐体40、41の底面40b、41bに対して例えばシリコーン系ゲルなどの熱伝導率が高い放熱ゲル70、71を介して貼り合わされることで接続性を向上してある。例えば、シリコーン系ゲルの場合、熱伝導率が1W/mK程度であり、薄く塗布することで筐体40、41から冷却器60、61に対して良好に熱伝達を行うことができる。 The coolers 60 and 61 constitute part of the first cooling member and the second cooling member. In the case of the present embodiment, the connectivity is improved by being bonded to the bottom surfaces 40b and 41b of the casings 40 and 41 via the heat radiating gels 70 and 71 having a high thermal conductivity such as a silicone gel. . For example, in the case of silicone gel, the thermal conductivity is about 1 W / mK, and heat transfer from the casings 40 and 41 to the coolers 60 and 61 can be performed satisfactorily by applying thinly.
 冷却器60、61は、空冷式のものであっても水冷式のものであっても良い。空冷式の場合、冷却器60、61は、例えば単なる高熱伝導体板で構成されたヒートシンクであっても良いし、コイル30や磁性コア20および筐体40、41などと反対側となる裏面側に放熱フィンが備えられたヒートシンクであっても良い。また、冷却器60、61の内部に冷媒通路を構成し、冷媒通路内に冷媒が流動させられる構造であっても良い。 The coolers 60 and 61 may be air-cooled or water-cooled. In the case of the air-cooling type, the coolers 60 and 61 may be heat sinks composed of, for example, a simple high thermal conductor plate, or the back side opposite to the coil 30, the magnetic core 20, and the casings 40 and 41. A heat sink provided with heat radiating fins may be used. Moreover, the structure which comprises a refrigerant path inside the coolers 60 and 61, and makes a refrigerant | coolant flow in a refrigerant path may be sufficient.
 以上のようにして、本実施形態にかかるリアクトル10が構成されている。このように構成されるリアクトル10は、次のようにして製造される。 As described above, the reactor 10 according to the present embodiment is configured. The reactor 10 configured as described above is manufactured as follows.
 まず、磁性コア20、コイル30および筐体40、41を用意する。磁性コア20に対してコイル30が巻回されるように配置する。例えば磁性コア20を2つのU字コアなどで構成しておき、2つのU字コアの各先端をコイル30に対して互いに反対方向から挿し込むことで、磁性コア20に対してコイル30が巻回された構造を構成できる。 First, the magnetic core 20, the coil 30, and the casings 40 and 41 are prepared. The coil 30 is disposed around the magnetic core 20. For example, the magnetic core 20 is composed of two U-shaped cores and the like, and the tips of the two U-shaped cores are inserted into the coil 30 from opposite directions, whereby the coil 30 is wound around the magnetic core 20. A rotated structure can be constructed.
 そして、筐体40の凹部40a内に磁性コア20およびコイル30を配置し、これらを上方から筐体40の底面40b側に押し付けた状態で凹部40a内に放熱フィラーを含む樹脂材料を充填する。そして、これを硬化させて封止樹脂部50を構成したのち、磁性コア20やコイル30の押し付けを解除する。 Then, the magnetic core 20 and the coil 30 are arranged in the recess 40a of the housing 40, and the resin material including the heat radiation filler is filled in the recess 40a in a state where they are pressed from above to the bottom surface 40b side of the housing 40. And after hardening this and comprising the sealing resin part 50, pressing of the magnetic core 20 and the coil 30 is cancelled | released.
 次に、筐体41の凹部41a内に筐体40に固定された状態の磁性コア20およびコイル30を配置し、これらを上方から筐体41の底面41b側に押し付けた状態で凹部41a内に放熱フィラーを含む樹脂材料を充填する。そして、これを硬化させて封止樹脂部51を構成したのち、磁性コア20やコイル30の押し付けを解除する。 Next, the magnetic core 20 and the coil 30 fixed to the housing 40 are arranged in the recess 41a of the housing 41, and these are pressed into the bottom surface 41b of the housing 41 from above to enter the recess 41a. Fill with resin material including heat dissipation filler. And after hardening this and comprising the sealing resin part 51, pressing of the magnetic core 20 or the coil 30 is cancelled | released.
 その後、筐体40、41の底面40b、41bに放熱ゲル70、71を介して冷却器60、61を貼り付けることで、本実施形態にかかるリアクトル10が完成する。 Then, the reactor 10 according to the present embodiment is completed by attaching the coolers 60 and 61 to the bottom surfaces 40b and 41b of the casings 40 and 41 via the heat radiating gels 70 and 71, respectively.
 このように構成されるリアクトル10は、磁性コア20およびコイル30と筐体40、41との間を封止樹脂部50、51によって充填しているため、磁性コア20およびコイル30からの熱を効率良く筐体40、41および冷却器60、61に伝えられる。そして、封止樹脂部50、51と磁性コア20の下面20bもしくは上面20aとが接するようにしており、磁性コア20とコイル30との間の隙間を埋めるように封止樹脂部50、51を備えている。このように、磁性コア20とコイル30との間の隙間を封止樹脂部50、51によって埋めることで、放熱促進を図ることができる。 Since the reactor 10 configured as described above fills the space between the magnetic core 20 and the coil 30 and the casings 40 and 41 with the sealing resin portions 50 and 51, the heat from the magnetic core 20 and the coil 30 is absorbed. Efficiently transmitted to the casings 40 and 41 and the coolers 60 and 61. The sealing resin portions 50 and 51 are in contact with the lower surface 20b or the upper surface 20a of the magnetic core 20, and the sealing resin portions 50 and 51 are filled so as to fill a gap between the magnetic core 20 and the coil 30. I have. In this way, heat dissipation can be promoted by filling the gap between the magnetic core 20 and the coil 30 with the sealing resin portions 50 and 51.
 すなわち、空気の熱伝導率は0.03W/mK程度であり、例えば熱伝導率が3W/mK程度の封止樹脂部50、51を備えることで放熱を促進できる。 That is, the thermal conductivity of air is about 0.03 W / mK. For example, heat radiation can be promoted by providing the sealing resin portions 50 and 51 having a thermal conductivity of about 3 W / mK.
 また、封止樹脂部50、51を磁性コア20の下面20bもしくは上面20aと接するようにしつつも、両側面20c、20dにおいて磁性コア20が封止樹脂部50、51から露出させられるようにしている。このため、封止樹脂部50、51の硬化収縮によって磁性コア20に応力が印加される領域を最小限に留めることが可能となる。また、磁性コア20自身の磁歪によって封止樹脂部50、51と干渉して応力が印加されることを最小限に留めることも可能となる。 Further, while the sealing resin portions 50 and 51 are in contact with the lower surface 20b or the upper surface 20a of the magnetic core 20, the magnetic core 20 is exposed from the sealing resin portions 50 and 51 on both side surfaces 20c and 20d. Yes. For this reason, it becomes possible to keep the area | region where stress is applied to the magnetic core 20 by hardening shrinkage | contraction of the sealing resin parts 50 and 51 to the minimum. It is also possible to minimize the application of stress due to interference with the sealing resin portions 50 and 51 due to the magnetostriction of the magnetic core 20 itself.
 さらに、本実施形態のリアクトル10では、磁性コア20に対する周辺部材からの加圧、例えば磁性コア20の径方向外方からの板バネ等による押し付けがほぼ無い構造とされている。つまり、リアクトル10は、板バネ等による加圧があっても、磁性コア20の中心軸方向への加圧、つまり筐体40、41が配置される側からのみとされている。 Furthermore, the reactor 10 according to the present embodiment has a structure in which there is almost no pressure from the peripheral member against the magnetic core 20, for example, pressing by a leaf spring or the like from the radially outer side of the magnetic core 20. That is, even if the reactor 10 is pressurized by a leaf spring or the like, the reactor 10 is pressurized only in the direction of the central axis of the magnetic core 20, that is, from the side where the housings 40 and 41 are disposed.
 上記したように、一般的に、磁性コアに対して応力が加えられることで特性劣化が起こることが知られているが、その程度は応力を加える方向によって大きく異なる。具体的には、磁歪効果は、磁性コアを流れる主磁束と平行に応力を加えた場合に大きく、そのような応力が加えられたときに特に大きく特性劣化が生じる。 As described above, it is generally known that characteristic deterioration occurs when stress is applied to the magnetic core, but the degree of this greatly varies depending on the direction in which the stress is applied. Specifically, the magnetostrictive effect is large when stress is applied in parallel with the main magnetic flux flowing through the magnetic core, and the characteristic deterioration is particularly large when such stress is applied.
 特許文献1に示されたリアクトルのように、磁性コイル全体を樹脂封止したり、磁性コイルを径方向外方から押し付ける場合、磁歪効果による影響が大きく、磁性コアの特性劣化が大きくなる。 When the entire magnetic coil is resin-sealed or the magnetic coil is pressed from the outside in the radial direction as in the reactor shown in Patent Document 1, the influence of the magnetostriction effect is large, and the characteristic deterioration of the magnetic core is increased.
 しかしながら、本実施形態のリアクトル10のように、磁性コア20に対して径方向外方からの押し付けが無く、押し付けられても磁性コア20に対して磁性コア20の中心軸方向への加圧である。このため、磁歪効果の影響を小さくでき、特性劣化を抑制することが可能となる。 However, unlike the reactor 10 of the present embodiment, the magnetic core 20 is not pressed from the outside in the radial direction, and even when pressed, the magnetic core 20 is pressed against the magnetic core 20 in the central axis direction. is there. For this reason, it is possible to reduce the influence of the magnetostrictive effect and to suppress characteristic deterioration.
 このように、磁性コア20に対する径方向外方からの加圧をほぼ無くすことで磁歪効果を抑制できると共に、熱変形に伴う封止樹脂部50、51からの加圧も抑制できる。さらに、リアクトル10の使用時に磁束が印加された磁性コア20が膨張したとしても、封止樹脂部50、51との接触部位がほぼ下面20bおよび上面20aのみである。このため、磁性コア20自身の磁歪に起因して封止樹脂部50、51から印加される応力を抑制できる。 As described above, the magnetostriction effect can be suppressed by almost eliminating the pressurization from the outside in the radial direction with respect to the magnetic core 20, and the pressurization from the sealing resin portions 50 and 51 accompanying the thermal deformation can also be suppressed. Furthermore, even if the magnetic core 20 to which the magnetic flux is applied when the reactor 10 is used expands, the contact portions with the sealing resin portions 50 and 51 are only the lower surface 20b and the upper surface 20a. For this reason, the stress applied from the sealing resin portions 50 and 51 due to the magnetostriction of the magnetic core 20 itself can be suppressed.
 したがって、樹脂封止や加圧による磁性コア20の特性劣化、つまり損失の増大や透磁率の低下を抑制することが可能となる。そして、放熱については、磁性コア20とコイル30が共に封止樹脂部50、51に接していることから、封止樹脂部50、51を介して筐体40、41および冷却器60、61に良好に熱を伝えることができる。よって、良好に放熱を行うことが可能なリアクトル10とすることが可能となる。 Therefore, it is possible to suppress deterioration of the characteristics of the magnetic core 20 due to resin sealing or pressurization, that is, increase in loss or decrease in magnetic permeability. And about heat dissipation, since both the magnetic core 20 and the coil 30 are in contact with the sealing resin portions 50 and 51, the casings 40 and 41 and the coolers 60 and 61 are interposed via the sealing resin portions 50 and 51. Can transfer heat well. Therefore, it becomes possible to set it as the reactor 10 which can thermally radiate favorably.
 また、特許文献1のように、封止樹脂部によって磁性コアやコイルの全体を覆う構造の場合、より放熱が良好に行われることとなる。これと比較すると、本実施形態のリアクトル10のように封止樹脂部50、51によって磁性コア20やコイル30の一部しか覆っていない構造の放熱効果が小さい可能性がある。しかしながら、主に放熱が行われるのは磁性コア20やコイル30のうち筐体40、41からの距離が最も近い部分であることから、本実施形態の構造であっても十分な放熱効果を得ることができる。特に、本実施形態では、磁性コア20を断面形状が扁平形状となるようにしていることから、磁性コア20の体積に対する冷却面積を増加させることが可能となり、放熱性を確保することが可能となる。 Further, as in Patent Document 1, in the case of a structure in which the whole of the magnetic core and the coil is covered with the sealing resin portion, heat dissipation is performed more favorably. Compared with this, there is a possibility that the heat radiation effect of the structure in which only a part of the magnetic core 20 and the coil 30 is covered by the sealing resin portions 50 and 51 like the reactor 10 of the present embodiment may be small. However, heat is mainly radiated from the portion of the magnetic core 20 or the coil 30 that is the closest to the casings 40 and 41, so that a sufficient heat radiating effect can be obtained even with the structure of this embodiment. be able to. In particular, in this embodiment, since the cross-sectional shape of the magnetic core 20 is flat, it is possible to increase the cooling area with respect to the volume of the magnetic core 20 and to ensure heat dissipation. Become.
 ここで、本実施形態では、磁性コア20における磁束の流れと直交する方向での断面形状を扁平形状とすることによって放熱性が良好となるようにしているが、ここでの扁平は次のように定義される。 Here, in the present embodiment, the cross-sectional shape in the direction orthogonal to the flow of magnetic flux in the magnetic core 20 is flattened so that the heat dissipation is good, but the flatness here is as follows. Defined in
 図5に、リアクトル10を車両用昇圧コンバータリアクトルとして適用する場合を想定した諸元を示す。コア損失は、20kWで駆動時の損失を示している。コアの熱導率は、磁性コア20として、鉄粉を放熱フィラーを含むバインダ樹脂で挟み、圧縮したものを使用した場合を想定した値である。冷却面は、磁性コア20およびコイル30の両面から放熱する場合を想定した。
これらを前提として、コア損失により発熱した時の放熱性について試算した。具体的には、図5に示すように、磁性コア20の中心位置を発熱面と想定し、磁性コア20の発熱がすべて両面の冷却面、つまり冷却器60、61で放熱したとした時の熱抵抗Raは数式1のように表わされる。
FIG. 5 shows specifications assuming a case where the reactor 10 is applied as a vehicle boost converter reactor. The core loss indicates a loss during driving at 20 kW. The thermal conductivity of the core is a value that assumes a case where a magnetic core 20 in which iron powder is sandwiched between binder resins including a heat radiation filler and compressed is used. The cooling surface was assumed to radiate heat from both surfaces of the magnetic core 20 and the coil 30.
Based on these assumptions, the heat dissipation when heat was generated due to core loss was estimated. Specifically, as shown in FIG. 5, assuming that the center position of the magnetic core 20 is a heat generation surface, all the heat generation of the magnetic core 20 is radiated by the cooling surfaces on both sides, that is, the coolers 60 and 61. The thermal resistance Ra is expressed as Equation 1.
Figure JPOXMLDOC01-appb-M000001
 また、磁性コア20を立方体状とした場合と冷却面積を増加させた扁平形状とした場合それぞれの寸法などを図6に示すように定義し、それぞれの熱抵抗Raを試算した。
Figure JPOXMLDOC01-appb-M000001
Further, when the magnetic core 20 is formed into a cubic shape and a flat shape with an increased cooling area, the respective dimensions and the like are defined as shown in FIG. 6 and the respective thermal resistances Ra are estimated.
 コイル30の熱伝導率は高いため、影響を無視し、最悪条件を見積もるため発熱が冷却面から一番離れた箇所で発生していると仮定すると、熱抵抗Raは図6中に示したように、磁性コア20を立方体状とした場合には2.5℃/W、扁平形状とした場合には0.5℃/Wと算出される。 Since the coil 30 has a high thermal conductivity, it is assumed that heat generation occurs at a place farthest from the cooling surface in order to ignore the influence and estimate the worst condition, so that the thermal resistance Ra is as shown in FIG. In addition, when the magnetic core 20 has a cubic shape, it is calculated as 2.5 ° C./W, and when it has a flat shape, it is calculated as 0.5 ° C./W.
 このように、リアクトルを扁平形状を取ることで放熱が促進され、磁性コア20を立方体状にする場合に対して、磁性コア20の温度を低くすることができる。そして、例えば許容発熱温度ΔTが100℃であるとすると、磁性コア20を立方体形状とした場合の発熱温度が450℃であったのに対して扁平形状の場合には90℃となっており、許容発熱温度ΔTを満足していることが判る。 Thus, heat radiation is promoted by taking the reactor in a flat shape, and the temperature of the magnetic core 20 can be lowered as compared with the case where the magnetic core 20 is in a cubic shape. For example, if the allowable heat generation temperature ΔT is 100 ° C., the heat generation temperature when the magnetic core 20 is in a cubic shape is 450 ° C., whereas it is 90 ° C. in the case of a flat shape, It can be seen that the allowable heat generation temperature ΔT is satisfied.
 この結果より、特許文献1のようにリアクトル全体を樹脂封止していたのに対し、本実施形態のように2面のみの樹脂封止して放熱を行う場合でも、放熱性を確保することが可能となる。そして、上記の試算に基づけば、扁平形状の寸法範囲については磁性コア20のうちの冷却面積、つまり縦、横の寸法に対する厚さの寸法の比に基づいて数式2のように定義される範囲とすることができる。 From this result, the entire reactor is resin-sealed as in Patent Document 1, whereas heat dissipation is ensured even when heat is released by resin-sealing only two surfaces as in this embodiment. Is possible. Then, based on the above calculation, the flat dimension range is defined as Equation 2 based on the cooling area of the magnetic core 20, that is, the ratio of the thickness dimension to the vertical and horizontal dimensions. It can be.
Figure JPOXMLDOC01-appb-M000002
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して磁性コア20の形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Figure JPOXMLDOC01-appb-M000002
(Second Embodiment)
A second embodiment of the present disclosure will be described. In the present embodiment, the shape of the magnetic core 20 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only different portions from the first embodiment will be described.
 図7に示したように、本実施形態では、磁性コア20の角部を丸めた形状としている。具体的には、磁性コア20のうち下面20bと両側面20c、20dとによって構成される角部、および、上面20aと両側面20c、20dとによって構成される角部を丸めたR形状としてある。 As shown in FIG. 7, in this embodiment, the corners of the magnetic core 20 are rounded. Specifically, the magnetic core 20 has an R shape formed by rounding a corner portion constituted by the lower surface 20b and both side surfaces 20c and 20d and a corner portion constituted by the upper surface 20a and both side surfaces 20c and 20d. .
 理想的には、封止樹脂部50、51によって磁性コア20の下面20bや上面20aのみが封止され、両側面20c、20dについてはすべて露出させられていることが好ましい。しかしながら、実際には、リアクトル10の製造工程上、両側面20c、20dの一部が覆われるように封止樹脂部50、51が形成される可能性がある。 Ideally, it is preferable that only the lower surface 20b and the upper surface 20a of the magnetic core 20 are sealed by the sealing resin portions 50 and 51, and the both side surfaces 20c and 20d are all exposed. However, actually, the sealing resin portions 50 and 51 may be formed so as to cover part of both side surfaces 20 c and 20 d in the manufacturing process of the reactor 10.
 したがって、本実施形態のように、磁性コア20の角部を丸めることによって、封止樹脂部50、51から受ける応力の集中を緩和できる。これにより、封止樹脂部50、51の熱変形に伴う磁性コア20への加圧を抑制できる。よって、より磁性コア20の特性劣化を抑制することができる。 Therefore, concentration of stress received from the sealing resin parts 50 and 51 can be reduced by rounding the corners of the magnetic core 20 as in the present embodiment. Thereby, the pressurization to the magnetic core 20 accompanying the thermal deformation of the sealing resin parts 50 and 51 can be suppressed. Therefore, the characteristic deterioration of the magnetic core 20 can be further suppressed.
 なお、磁性コア20のうち丸められた部分の高さ、つまり磁性コア20のうち筐体40、41と対向する一面からの距離については任意に設定できる。好ましくは、封止樹脂部50、51に埋まる高さ分、磁性コア20の角部をR形状にすると良い。 It should be noted that the height of the rounded portion of the magnetic core 20, that is, the distance from one surface of the magnetic core 20 that faces the housings 40 and 41 can be arbitrarily set. Preferably, the corners of the magnetic core 20 are R-shaped by the height embedded in the sealing resin portions 50 and 51.
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第1、第2実施形態に対して筐体40、41の形状を変更したものであり、その他については第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。なお、ここでは第1実施形態の構造に対して本実施形態を適用する場合について説明するが、第2実施形態の構造に対しても同様に本実施形態を適用できる。
(Third embodiment)
A third embodiment of the present disclosure will be described. In the present embodiment, the shapes of the casings 40 and 41 are changed with respect to the first and second embodiments. The other aspects are the same as those in the first and second embodiments. Only portions different from the embodiment will be described. In addition, although the case where this embodiment is applied with respect to the structure of 1st Embodiment is demonstrated here, this embodiment is applicable similarly to the structure of 2nd Embodiment.
 図8に示したように、本実施形態では、筐体40、41における底面40b、41bの厚みを外縁側、つまり側面40c、41c側よりも内側において厚くしている。具体的には、底面40b、41bのうち凹部40a、41a側の表面を磁性コア20やコイル30側に突き出した凸面状としている。これにより、筐体40、41と磁性コア20やコイル30との間隔が磁性コア20の中心部に向かうに連れて狭くなるようにしている。 As shown in FIG. 8, in this embodiment, the thickness of the bottom surfaces 40b and 41b in the casings 40 and 41 is made thicker on the outer edge side, that is, on the inner side than the side surfaces 40c and 41c side. Specifically, the bottom surface 40b, 41b has a convex surface that protrudes toward the magnetic core 20 or the coil 30 on the surface of the recesses 40a, 41a. Thereby, the intervals between the housings 40 and 41 and the magnetic core 20 and the coil 30 are made narrower toward the center of the magnetic core 20.
 図9Aに示すように、筐体40、41に対して封止樹脂を充填して封止樹脂部50、51を形成する際に、図中矢印で示したように充填後の硬化収縮による応力が筐体40、41に加わることになる。この応力が筐体40、41の中心側向かうように作用し、応力集中によって図9Bに示すように筐体40、41が破損、変形することが懸念される。 As shown in FIG. 9A, when the sealing resin portions 50 and 51 are formed by filling the casings 40 and 41 with the sealing resin, stress due to curing shrinkage after filling as shown by arrows in the figure. Is added to the casings 40 and 41. This stress acts toward the center of the casings 40 and 41, and there is a concern that the casings 40 and 41 are damaged and deformed as shown in FIG. 9B due to the stress concentration.
 したがって、本実施形態のように、筐体40、41の底面40b、41bの厚みを側面40c、41c側よりも内側において厚くすることで、封止樹脂部50、51の硬化収縮時の応力集中を緩和できると共に、筐体40、41の剛性を高めることができる。これにより、リアクトル10の破損を抑制できると共に、磁性コア20の放熱効率の低下に起因する損失増大を抑制することが可能となる。 Therefore, as in the present embodiment, the thickness of the bottom surfaces 40b and 41b of the casings 40 and 41 is made thicker on the inner side than the side surfaces 40c and 41c, so that the stress concentration at the time of curing shrinkage of the sealing resin portions 50 and 51 is achieved. And the rigidity of the casings 40 and 41 can be increased. Thereby, breakage of the reactor 10 can be suppressed, and an increase in loss due to a decrease in the heat dissipation efficiency of the magnetic core 20 can be suppressed.
 また、筐体40、41の底面40b、41bの厚みを変えるだけで、筐体40、41と磁性コア20やコイル30との間隔を磁性コア20の中心部に向かうに連れて狭くなる構造を実現できる。したがって、筐体40、41の体格を大きくするなどを行う必要が無く、筐体40、41の小型化、低コスト化を図ることが可能となる。 Moreover, the structure which becomes narrow as the space | interval of the housings 40 and 41 and the magnetic core 20 or the coil 30 goes to the center part of the magnetic core 20 only by changing the thickness of the bottom surfaces 40b and 41b of the housings 40 and 41. realizable. Therefore, it is not necessary to increase the size of the housings 40 and 41, and the housings 40 and 41 can be reduced in size and cost.
 (第4実施形態)
 本開示の第4実施形態について、図10~図12を参照して説明する。図10~図12に示すように、本実施形態のリアクトル110は、磁性コア120、コイル130、筐体140、封止樹脂部150および冷却器160などを有した構成とされている。このリアクトル110は、電気自動車やハイブリッド車両などに搭載される昇圧コンバータ用リアクトル等のように、例えば高出力を発生させるものとして適用される。
(Fourth embodiment)
A fourth embodiment of the present disclosure will be described with reference to FIGS. As shown in FIGS. 10 to 12, the reactor 110 of the present embodiment is configured to include a magnetic core 120, a coil 130, a housing 140, a sealing resin portion 150, a cooler 160, and the like. The reactor 110 is applied to generate a high output, such as a boost converter reactor mounted on an electric vehicle, a hybrid vehicle, or the like.
 磁性コア120は、鉄系合金、アモルファス金属(例えば鉄系アモルファス材料)など、コア材料として用いられる軟磁性材で構成されており、例えば熱伝導率が1~50W/mKに設定される。本実施形態では、図10に示すように、磁性コア120を上面形状が相対する2辺を2組有した矩形の枠体形状としているが、磁束が流れる構成であれば他の形状であっても良い。例えば上面形状が円形枠状であっても良い。また、磁性コア120については1部材である必要はなく、複数に分割されたものが一体とされたものであっても良いし、互いに接触するように配置されたものであっても良い。 The magnetic core 120 is made of a soft magnetic material used as a core material, such as an iron-based alloy or an amorphous metal (eg, an iron-based amorphous material), and has a thermal conductivity of 1 to 50 W / mK, for example. In this embodiment, as shown in FIG. 10, the magnetic core 120 has a rectangular frame shape having two sets of two opposite sides of the upper surface shape. Also good. For example, the upper surface shape may be a circular frame shape. Further, the magnetic core 120 does not have to be a single member, and a plurality of divided cores may be integrated, or may be disposed so as to contact each other.
 また、磁性コア120は、図11に示すように、コイル130に対して通電を行ったときに発生させられる磁束の流れと直交する方向での断面形状が、四角形状とされている。より詳しくは、磁性コア120は、紙面上下方向の寸法である厚み方向寸法よりも紙面左右方向の寸法である幅方向寸法が大きくされた扁平形状とされている。本実施形態の場合、磁性コア120の断面形状を長方形状としている。そして、長辺を構成する上面120aおよび下面120bが後述する筐体140の放熱面を構成する底面140bと対向させられている。そして、上面120aと下面120bとの間を繋ぐ各面、つまり短辺を構成する内周側面120cおよび外周側面120dが筐体140の底面に対して垂直方向に向くようにして磁性コア120が筐体140上に配置されている。 Further, as shown in FIG. 11, the magnetic core 120 has a quadrangular cross-sectional shape in a direction orthogonal to the flow of magnetic flux generated when the coil 130 is energized. More specifically, the magnetic core 120 has a flat shape in which a dimension in the width direction, which is a dimension in the left-right direction on the paper surface, is larger than a dimension in the thickness direction, which is a dimension in the vertical direction on the paper surface. In the present embodiment, the cross-sectional shape of the magnetic core 120 is rectangular. And the upper surface 120a and the lower surface 120b which comprise a long side are made to oppose the bottom face 140b which comprises the thermal radiation surface of the housing | casing 140 mentioned later. Then, each of the surfaces connecting the upper surface 120 a and the lower surface 120 b, that is, the inner peripheral side surface 120 c and the outer peripheral side surface 120 d constituting the short side, face the vertical direction with respect to the bottom surface of the casing 140. It is arranged on the body 140.
 さらに、本実施形態では、磁性コア120のうち下面120bと両側面120c、120dとによって構成される角部を丸めたR形状としてある。このように、磁性コア120の角部を丸めることによって、封止樹脂部150から受ける応力の集中を緩和できるようにしている。磁性コア120のうち丸められた部分の高さ、つまり磁性コア120のうち筐体140と対向する一面からの距離については任意に設定できる。好ましくは、封止樹脂部150に埋まる高さ分、磁性コア120の角部をR形状にすると良い。封止樹脂部150の熱変形や充填量のバラツキおよび磁性コア120の位置ズレなどを加味しつつ、応力による影響を少なくできるように、磁性コア120のうち丸められた部分の高さを10mm程度とすると良い。 Further, in the present embodiment, the magnetic core 120 has an R shape with rounded corners constituted by the lower surface 120b and the both side surfaces 120c, 120d. In this way, by concentrating the corners of the magnetic core 120, the stress concentration received from the sealing resin portion 150 can be alleviated. The height of the rounded portion of the magnetic core 120, that is, the distance from one surface of the magnetic core 120 facing the housing 140 can be arbitrarily set. Preferably, the corners of the magnetic core 120 have an R shape corresponding to the height embedded in the sealing resin portion 150. The height of the rounded portion of the magnetic core 120 is about 10 mm so that the influence of stress can be reduced while taking into account thermal deformation of the sealing resin portion 150, variation in the filling amount, positional deviation of the magnetic core 120, and the like. And good.
 コイル130は、磁性コア120に対して巻回されており、例えば銅などの導体線を絶縁被膜したものによって構成されている。上記したように、本実施形態では磁性コア120を四角形枠体形状としているが、この磁性コア120の相対する2辺それぞれにコイル130を巻回してある。磁性コア120のうちの一辺に巻回されたコイル130aともう一辺に巻回されたコイル130bとは繋がっている。本実施形態の場合、磁性コア120の下方位置、つまり筐体140側において、コイル130aとコイル130bとが連結部130cを介して繋がっている。また、各コイル130a、130bを構成する導体線のうち連結部130cと反対側は封止樹脂部150の外側において引き出された引出配線130aa、130baとされている。この引出配線130aa、130baを介して、コイル130が外部回路と電気的に接続されることで、リアクトル110への通電が可能とされている。 The coil 130 is wound around the magnetic core 120, and is formed of, for example, a conductor wire such as copper with an insulating coating. As described above, in this embodiment, the magnetic core 120 has a quadrangular frame shape, but the coil 130 is wound around each of the two opposite sides of the magnetic core 120. The coil 130a wound around one side of the magnetic core 120 and the coil 130b wound around the other side are connected. In the case of this embodiment, the coil 130a and the coil 130b are connected via the connection part 130c in the downward position of the magnetic core 120, ie, the housing | casing 140 side. In addition, among the conductor wires constituting the coils 130 a and 130 b, the opposite side of the connecting portion 130 c is drawn wirings 130 aa and 130 ba drawn outside the sealing resin portion 150. The coil 110 is electrically connected to an external circuit through the lead wires 130aa and 130ba, so that the reactor 110 can be energized.
 筐体140は、磁性コア120およびコイル130を収容するケースであり、熱伝導率が例えば50W/mK以上の高い材料、例えばアルミニウムによって構成されている。本実施形態では、筐体140を冷却器160と別体として構成しているが、これらは共に冷却部材を構成するものであり、これらが一体とされることで冷却部材が構成されていても良い。 The housing 140 is a case that houses the magnetic core 120 and the coil 130, and is made of a material having a high thermal conductivity of, for example, 50 W / mK or more, such as aluminum. In the present embodiment, the housing 140 is configured as a separate body from the cooler 160, but these together constitute a cooling member, and even if the cooling member is configured by integrating them, good.
 筐体140は、図11および図12に示すように、磁性コア120およびコイル130が収容される凹部140aを有した有底部材によって構成されており、図10に示すように、本実施形態の場合は上面形状が四角形状の有底部材とされている。具体的には、筐体140は、放熱面を構成する底面140bに加えて側面140cを有し、これら底面140bと側面140cとによって凹部140aが構成されている。そして、図10に示すように側面140cによって囲まれる範囲内に配置され、かつ、深さ方向において凹部140a内に少なくとも一部が入り込むようにして磁性コア120およびコイル130が収容されている。 As shown in FIGS. 11 and 12, the housing 140 is constituted by a bottomed member having a recess 140a in which the magnetic core 120 and the coil 130 are accommodated. As shown in FIG. In this case, the bottom surface is a bottomed member having a quadrangular shape. Specifically, the housing 140 has a side surface 140c in addition to the bottom surface 140b constituting the heat radiating surface, and the bottom surface 140b and the side surface 140c constitute a recess 140a. As shown in FIG. 10, the magnetic core 120 and the coil 130 are accommodated so as to be disposed within a range surrounded by the side surface 140c and so that at least a part thereof enters the recess 140a in the depth direction.
 より詳しくは、筐体140に形成される凹部140aは、磁性コア120の下面120bが後述する封止樹脂部150と密着する深さに設定されている。すなわち、筐体140に磁性コア120およびコイル130を収容したときに、側面140cにおける底面140bと反対側の端部が磁性コア120の下面120bよりも底面140bから離れた位置に達するように、側面140cの高さが設定されている。 More specifically, the recess 140a formed in the housing 140 is set to a depth at which the lower surface 120b of the magnetic core 120 is in close contact with a sealing resin portion 150 described later. That is, when the magnetic core 120 and the coil 130 are housed in the housing 140, the side surface 140c has an end opposite to the bottom surface 140b so that the side surface reaches a position farther from the bottom surface 140b than the bottom surface 120b of the magnetic core 120. A height of 140c is set.
 また、筐体140の底面140bには、磁性コア120を支持するコア支持部140dと、コイル130を支持するコイル支持部140eとが備えられている。コア支持部140dおよびコイル支持部140eは底面140bより突き出すように設けられた突起部によって構成されている。 Further, the bottom surface 140b of the housing 140 is provided with a core support part 140d that supports the magnetic core 120 and a coil support part 140e that supports the coil 130. The core support portion 140d and the coil support portion 140e are configured by protrusions provided so as to protrude from the bottom surface 140b.
 コア支持部140dおよびコイル支持部140eは、筐体140と一体化されている。ただし、筐体140を導体材料で構成している場合には、筐体140とコイル130との絶縁が図れるように、コイル支持部140eの少なくとも一部を絶縁材料で構成している。絶縁材料としては、例えば樹脂やセラミックスなどを用いることができる。コイル支持部140eについては、筐体140を製造する際に一体成形することで筐体140と一体化することができる。また、コア支持部140dについては非磁性材料によって構成してあり、絶縁の観点からコイル支持部140eと同様に非磁性の絶縁材料、例えば樹脂によって構成されていると好ましい。 The core support part 140d and the coil support part 140e are integrated with the housing 140. However, when the housing 140 is made of a conductive material, at least a part of the coil support portion 140e is made of an insulating material so that the housing 140 and the coil 130 can be insulated. As the insulating material, for example, resin or ceramics can be used. The coil support portion 140e can be integrated with the housing 140 by being integrally formed when the housing 140 is manufactured. Further, the core support portion 140d is made of a nonmagnetic material, and is preferably made of a nonmagnetic insulating material, for example, a resin, like the coil support portion 140e, from the viewpoint of insulation.
 コア支持部140dおよびコイル支持部140eの形状については任意であるが、ここでは先端が平面とされた円柱形状としている。コア支持部140dとコイル支持部140eの突き出し量については、その上に搭載される磁性コア120とコイル130の段差に応じて異ならせてあり、コア支持部140dの方がコイル支持部140eよりも突き出し量を大きくしてある。そして、突き出し量の異なるコア支持部140dおよびコイル支持部140eによって磁性コア120およびコイル130が支持されることで、磁性コア120とコイル130との間の隙間が確保されると共に、筐体140とコイル130との絶縁確保が為される。 The shape of the core support part 140d and the coil support part 140e is arbitrary, but here it is a cylindrical shape with a flat tip. The protruding amounts of the core support portion 140d and the coil support portion 140e are different depending on the step between the magnetic core 120 and the coil 130 mounted thereon, and the core support portion 140d is more than the coil support portion 140e. The protruding amount is increased. Further, the magnetic core 120 and the coil 130 are supported by the core support part 140d and the coil support part 140e having different protrusion amounts, so that a gap between the magnetic core 120 and the coil 130 is secured, and the housing 140 and Insulation with the coil 130 is ensured.
 コア支持部140dは、封止樹脂部150による樹脂封止の前の状態において磁性コア120を筐体140に対して支持できるように複数箇所に設けてある。本実施形態の場合、コア支持部140dを4箇所に備えてある。コア支持部140dの形成位置については、磁性コア120を傾き無く支持できる位置であればどこであっても構わないが、ここではコイル130から離れた位置、かつ、磁性コア120のうち磁束が少ない位置としている。具体的には、磁性コア120のうち内周側面120cよりも外周側面120d側の位置にコア支持部140dを配置してあり、本実施形態の場合には磁性コア120の四隅に配置してある。なお、コア支持部140dの個数については任意であり、4個未満もしくは5個以上であっても構わない。 The core support portion 140d is provided at a plurality of locations so that the magnetic core 120 can be supported with respect to the housing 140 in a state before the resin sealing by the sealing resin portion 150. In the case of this embodiment, the core support part 140d is provided in four places. The position where the core support portion 140d is formed may be anywhere as long as it can support the magnetic core 120 without tilting. However, here, the position away from the coil 130 and the position where the magnetic flux is small in the magnetic core 120. It is said. Specifically, the core support portion 140d is disposed at a position closer to the outer peripheral side surface 120d than the inner peripheral side surface 120c in the magnetic core 120. In the present embodiment, the core support portions 140d are disposed at the four corners of the magnetic core 120. . The number of core support portions 140d is arbitrary, and may be less than four or five or more.
 コイル支持部140eは、封止樹脂部150による樹脂封止の前の状態においてコイル130を筐体140に対して支持できるように複数箇所に設けてある。本実施形態の場合、コイル支持部140eを2箇所に備えてある。コイル支持部140eの形成位置については、コイル130を傾き無く、かつ、コイル130と磁性コア120との間に所望の隙間が形成されるように支持できる位置であればどこであっても構わない。ここでは、コイル130のうち熱がこもり難い外側、つまりコイル130のうち磁性コア120の中心側ではなくその反対側に配置されている。本実施形態のように、コイル130がコイル130a、130bの2つに分けて設けられた構造とされている場合、コイル130aとコイル130bの配列方向の外側、より好ましくは磁性コア120よりも外側の位置にコイル支持部140eを配置すると良い。なお、コイル支持部140eの個数については任意であり、各コイル130a、130bに対して複数個ずつ、例えば2個ずつ備えるとより安定した支持が可能となる。 The coil support portion 140e is provided at a plurality of locations so that the coil 130 can be supported with respect to the casing 140 in a state before resin sealing by the sealing resin portion 150. In the case of this embodiment, the coil support part 140e is provided in two places. The position where the coil support portion 140e is formed may be any position as long as the coil 130 can be supported without being inclined and a desired gap is formed between the coil 130 and the magnetic core 120. Here, the coil 130 is arranged on the outer side where heat is hard to accumulate, that is, on the opposite side of the coil 130 instead of the center side of the magnetic core 120. When the coil 130 is divided into two coils 130a and 130b as in the present embodiment, the outer side in the arrangement direction of the coils 130a and 130b, more preferably the outer side of the magnetic core 120. The coil support portion 140e may be disposed at the position. The number of coil support portions 140e is arbitrary, and more stable support is possible if a plurality of, for example two, coils are provided for each of the coils 130a and 130b.
 封止樹脂部150は、放熱フィラーを含むバインダー樹脂である。例えば、放熱フィラーとしては、アルミナなどを用いており、樹脂材料としてはエポキシ樹脂やシリコーンなどを用いている。このような材料で構成される封止樹脂部150は、例えば熱伝導率が0.7~4W/mK、例えば3W/mKとなる。 The sealing resin part 150 is a binder resin containing a heat radiation filler. For example, alumina or the like is used as the heat dissipating filler, and epoxy resin or silicone is used as the resin material. The sealing resin portion 150 made of such a material has a thermal conductivity of 0.7 to 4 W / mK, for example, 3 W / mK, for example.
 封止樹脂部150は、筐体140に形成された凹部140a内に充填されて硬化させられている。封止樹脂部150は、コイル130のうちの磁性コア120よりも下方に位置している部分が浸され、かつ、少なくとも磁性コア120の下面120bが接する位置まで形成されている。封止樹脂部150としては、硬化される前の状態での粘度が低いものを適用しており、磁性コア120とコイル130との間やこれらと筐体140との間を隙間無く充填できるようにしている。 The sealing resin portion 150 is filled and cured in a recess 140 a formed in the housing 140. The sealing resin portion 150 is formed up to a position where the portion of the coil 130 located below the magnetic core 120 is immersed and at least the lower surface 120b of the magnetic core 120 contacts. As the sealing resin portion 150, a material having a low viscosity in a state before being cured is applied, so that the space between the magnetic core 120 and the coil 130 or between the magnetic core 120 and the housing 140 can be filled without a gap. I have to.
 ただし、封止樹脂部150は、磁性コア120の下面120bには接しているが、上面120aおよび両側面120c、120dのうちの半分以上、好ましくは9割以上の厚み分は覆っておらず、磁性コア120が封止樹脂部150から露出させられている。封止樹脂部150より磁性コア120が受ける応力を考慮すると、封止樹脂部150が磁性コア120の下面120bと接する位置まで形成されているのが好ましい。しかしながら、樹脂の硬化収縮のバラツキを考慮すると、硬化後の封止樹脂部150が下面120bから離れてしまう可能性も有ることから、下面120bよりも少し上面120a側の位置まで封止樹脂部150を形成する方が好ましい。したがって、封止樹脂部150の形成位置を上記位置となるようにしている。 However, the sealing resin portion 150 is in contact with the lower surface 120b of the magnetic core 120, but does not cover more than half of the upper surface 120a and both side surfaces 120c, 120d, preferably 90% or more. The magnetic core 120 is exposed from the sealing resin portion 150. Considering the stress received by the magnetic core 120 from the sealing resin portion 150, it is preferable that the sealing resin portion 150 is formed up to a position in contact with the lower surface 120 b of the magnetic core 120. However, in consideration of variation in the curing shrinkage of the resin, the cured sealing resin portion 150 may be separated from the lower surface 120b. Therefore, the sealing resin portion 150 is slightly closer to the upper surface 120a side than the lower surface 120b. Is more preferable. Therefore, the formation position of the sealing resin portion 150 is set to the above position.
 冷却器160は、冷却部材の一部を構成するものである。本実施形態の場合、筐体140の底面140bに対して例えばシリコーン系ゲルなどの熱伝導率が高い放熱ゲル170を介して貼り合わされることで接続性を向上してある。例えば、シリコーン系ゲルの場合、熱伝導率が1W/mK程度であり、薄く塗布することで筐体140から冷却器160に対して良好に熱伝達を行うことができる。 The cooler 160 constitutes a part of the cooling member. In the case of the present embodiment, connectivity is improved by being bonded to the bottom surface 140b of the housing 140 via a heat radiating gel 170 having a high thermal conductivity such as a silicone gel. For example, in the case of silicone-based gel, the thermal conductivity is about 1 W / mK, and heat transfer from the housing 140 to the cooler 160 can be favorably performed by thin coating.
 冷却器160は、空冷式のものであっても水冷式のものであっても良い。空冷式の場合、冷却器160は、例えば単なる高熱伝導体板で構成されたヒートシンクであっても良いし、コイル130や磁性コア120および筐体140などと反対側となる裏面側に放熱フィンが備えられたヒートシンクであっても良い。また、冷却器160の内部に冷媒通路を構成し、冷媒通路内に冷媒が流動させられる構造であっても良い。 The cooler 160 may be an air-cooled type or a water-cooled type. In the case of the air cooling type, the cooler 160 may be a heat sink composed of, for example, a simple high heat conductive plate, or a heat radiating fin is provided on the back side opposite to the coil 130, the magnetic core 120, the housing 140, and the like. It may be a heat sink provided. Further, a structure may be employed in which a refrigerant passage is formed inside the cooler 160 and the refrigerant flows in the refrigerant passage.
 以上のようにして、本実施形態にかかるリアクトル110が構成されている。このように構成されるリアクトル110は、次のようにして製造される。 As described above, the reactor 110 according to the present embodiment is configured. The reactor 110 configured as described above is manufactured as follows.
 まず、磁性コア120、コイル130および筐体140を用意する。磁性コア120に対してコイル130が巻回されるように配置する。例えば磁性コア120を2つのU字コアなどで構成しておき、2つのU字コアの各先端をコイル130に対して互いに反対方向から挿し込むことで、磁性コア120に対してコイル130が巻回された構造を構成できる。 First, the magnetic core 120, the coil 130, and the housing 140 are prepared. It arrange | positions so that the coil 130 may be wound with respect to the magnetic core 120. FIG. For example, the magnetic core 120 is composed of two U-shaped cores and the like, and the tips of the two U-shaped cores are inserted into the coil 130 from opposite directions so that the coil 130 is wound around the magnetic core 120. A rotated structure can be constructed.
 そして、筐体140の凹部140a内に磁性コア120およびコイル130を配置し、これらを上方から筐体140の底面140b側に押し付けた状態で凹部140a内に放熱フィラーを含む樹脂材料を充填する。そして、これを硬化させて封止樹脂部150を構成したのち、磁性コア120やコイル130の押し付けを解除する。その後、筐体140の底面140bに放熱ゲル170を介して冷却器160を貼り付けることで、本実施形態にかかるリアクトル110が完成する。 Then, the magnetic core 120 and the coil 130 are arranged in the recess 140a of the housing 140, and a resin material including a heat radiation filler is filled in the recess 140a in a state where they are pressed from above to the bottom surface 140b side of the housing 140. And after hardening this and comprising the sealing resin part 150, pressing of the magnetic core 120 and the coil 130 is cancelled | released. Then, the reactor 110 concerning this embodiment is completed by sticking the cooler 160 to the bottom face 140b of the housing | casing 140 via the thermal radiation gel 170. FIG.
 このように構成されるリアクトル110は、磁性コア120およびコイル130と筐体140との間を封止樹脂部150によって充填しているため、磁性コア120およびコイル130からの熱を効率良く筐体140および冷却器160に伝えられる。そして、封止樹脂部150と磁性コア120の下面120bとが接するようにしており、磁性コア120とコイル130との間の隙間を埋めるように封止樹脂部150を備えている。このように、磁性コア120とコイル130との間の隙間を封止樹脂部150によって埋めることで、放熱促進を図ることができる。 Since the reactor 110 configured as described above fills the space between the magnetic core 120 and the coil 130 and the casing 140 with the sealing resin portion 150, the casing 110 efficiently heats the magnetic core 120 and the coil 130. 140 and cooler 160. And the sealing resin part 150 and the lower surface 120b of the magnetic core 120 are contacting, and the sealing resin part 150 is provided so that the clearance gap between the magnetic core 120 and the coil 130 may be filled up. In this way, heat radiation can be promoted by filling the gap between the magnetic core 120 and the coil 130 with the sealing resin portion 150.
 すなわち、空気の熱伝導率は0.03W/mK程度であり、例えば熱伝導率が3W/mK程度の封止樹脂部150を備えることで放熱を促進できる。 That is, the thermal conductivity of air is about 0.03 W / mK. For example, heat radiation can be promoted by including the sealing resin portion 150 having a thermal conductivity of about 3 W / mK.
 また、封止樹脂部150を磁性コア120の下面120bと接するようにしつつも、上面120aおよび両側面120c、120dがほぼ覆われないようにし、磁性コア120が封止樹脂部150から露出させられるようにしている。このため、封止樹脂部150の硬化収縮によって磁性コア120に応力が印加される領域を最小限に留めることが可能となる。また、磁性コア120自身の磁歪によって封止樹脂部150と干渉して応力が印加されることを最小限に留めることも可能となる。 In addition, while the sealing resin portion 150 is in contact with the lower surface 120 b of the magnetic core 120, the upper surface 120 a and both side surfaces 120 c and 120 d are not substantially covered, and the magnetic core 120 is exposed from the sealing resin portion 150. I am doing so. For this reason, it is possible to minimize the region where the stress is applied to the magnetic core 120 due to the curing shrinkage of the sealing resin portion 150. It is also possible to minimize the application of stress due to interference with the sealing resin portion 150 due to the magnetostriction of the magnetic core 120 itself.
 このように、磁性コア120に対する周辺部材からの加圧、例えば板バネによる押し付けが無いし、熱変形に伴う封止樹脂部150からの加圧も抑制できる。さらに、リアクトル110の使用時に磁束が印加された磁性コア120が膨張したとしても、封止樹脂部150との接触部位がほぼ下面120bのみであることから、磁性コア120自身の磁歪に起因して封止樹脂部150から印加される応力を抑制できる。 Thus, there is no pressurization from the peripheral member against the magnetic core 120, for example, pressing by a leaf spring, and pressurization from the sealing resin portion 150 accompanying thermal deformation can be suppressed. Further, even if the magnetic core 120 to which magnetic flux is applied during the use of the reactor 110 is expanded, the contact portion with the sealing resin portion 150 is almost only the lower surface 120b, which is caused by the magnetostriction of the magnetic core 120 itself. The stress applied from the sealing resin part 150 can be suppressed.
 したがって、樹脂封止や加圧による磁性コア120の特性劣化、つまり損失の増大や透磁率の低下を抑制することが可能となる。そして、放熱については、磁性コア120とコイル130が共に封止樹脂部150に接していることから、封止樹脂部150を介して筐体140および冷却器160に良好に熱を伝えることができる。よって、良好に放熱を行うことが可能なリアクトル110とすることが可能となる。 Therefore, it is possible to suppress the deterioration of the characteristics of the magnetic core 120 due to resin sealing or pressurization, that is, increase in loss or decrease in magnetic permeability. As for heat radiation, since both the magnetic core 120 and the coil 130 are in contact with the sealing resin portion 150, heat can be transferred well to the casing 140 and the cooler 160 via the sealing resin portion 150. . Therefore, it becomes possible to make the reactor 110 capable of radiating heat well.
 なお、特許文献1のように、封止樹脂部によって磁性コアやコイルの全体を覆う構造の場合、より放熱が良好に行われることとなる。これと比較すると、本実施形態のリアクトル110のように封止樹脂部150によって磁性コア120やコイル130の一部しか覆っていない構造の放熱効果が小さい可能性がある。しかしながら、主に放熱が行われるのは磁性コア120やコイル130のうち筐体140からの距離が最も近い部分であることから、本実施形態の構造であっても十分な放熱効果を得ることができる。特に、本実施形態では、磁性コア120を断面形状が扁平形状となるようにしていることから、磁性コア120の体積に対する冷却面積を増加させることが可能となり、放熱性を確保することが可能となる。 In addition, like patent document 1, in the case of the structure which covers the whole of a magnetic core and a coil by a sealing resin part, heat radiation will be performed more favorably. Compared with this, there is a possibility that the heat radiation effect of a structure in which only a part of the magnetic core 120 and the coil 130 is covered by the sealing resin portion 150 as in the reactor 110 of the present embodiment may be small. However, heat is mainly radiated from the portion of the magnetic core 120 or coil 130 that is the closest to the housing 140, so that a sufficient heat radiating effect can be obtained even with the structure of this embodiment. it can. In particular, in the present embodiment, since the cross-sectional shape of the magnetic core 120 is flat, it is possible to increase the cooling area with respect to the volume of the magnetic core 120 and to ensure heat dissipation. Become.
 ここで、本実施形態では、磁性コア120における磁束の流れと直交する方向での断面形状を扁平形状とすることによって放熱性が良好となるようにしているが、ここでの扁平は次のように定義される。 Here, in this embodiment, the cross-sectional shape in the direction orthogonal to the flow of magnetic flux in the magnetic core 120 is flattened to improve heat dissipation, but the flatness here is as follows. Defined in
 図13に、リアクトル110を車両用昇圧コンバータリアクトルとして適用する場合を想定した諸元を示す。コア損失は、10kWで駆動時の損失を示している。コアの熱導率は、磁性コア120として、鉄粉を放熱フィラーを含むバインダ樹脂で挟み、圧縮したものを使用した場合を想定した値である。冷却面は、磁性コア120およびコイル130の片面のみから放熱する場合を想定した。
これらを前提として、コア損失により発熱した時の放熱性について試算した。具体的には、磁性コア120の中心位置を発熱面と想定し、磁性コア120の発熱がすべて片面の冷却面、つまり冷却器160で放熱したとした時の熱抵抗は数式3のように表わされる。
FIG. 13 shows specifications assuming that the reactor 110 is applied as a vehicle boost converter reactor. The core loss indicates a loss during driving at 10 kW. The thermal conductivity of the core is a value that assumes a case where a magnetic core 120 is used in which iron powder is sandwiched between binder resins including a heat radiation filler and compressed. The cooling surface was assumed to radiate heat from only one side of the magnetic core 120 and the coil 130.
Based on these assumptions, the heat dissipation when heat was generated due to core loss was estimated. Specifically, assuming that the center position of the magnetic core 120 is a heat generation surface, the heat resistance when all the heat generation of the magnetic core 120 is radiated by the cooling surface on one side, that is, the cooler 160, is expressed as Equation 3. It is.
Figure JPOXMLDOC01-appb-M000003
 また、磁性コア120を立方体状とした場合と冷却面積を増加させた扁平形状とした場合それぞれの寸法などを図14に示すように定義し、それぞれの熱抵抗を試算した。
Figure JPOXMLDOC01-appb-M000003
Further, when the magnetic core 120 is in a cubic shape and in a flat shape with an increased cooling area, the respective dimensions are defined as shown in FIG. 14 and the respective thermal resistances are estimated.
 コイル130の熱伝導率は高いため、影響を無視し、最悪条件を見積もるため発熱が冷却面から一番離れた箇所で発生していると仮定すると、熱抵抗は図14中に示したように、磁性コア120を立方体状とした場合には5℃/W、扁平形状とした場合には1℃/Wと算出される。 Since the thermal conductivity of the coil 130 is high, it is assumed that heat is generated at a place farthest from the cooling surface in order to ignore the influence and estimate the worst condition, as shown in FIG. When the magnetic core 120 has a cubic shape, it is calculated as 5 ° C./W, and when it has a flat shape, it is calculated as 1 ° C./W.
 このように、リアクトルを扁平形状を取ることで放熱が促進され、磁性コア120を立方体状にする場合に対して、磁性コア120の温度を低くすることができる。そして、例えば許容発熱温度ΔTが100℃であるとすると、磁性コア120を立方体形状とした場合の発熱温度が455℃であったのに対して扁平形状の場合には92℃となっており、許容発熱温度ΔTを満足していることが判る。 Thus, heat radiation is promoted by taking the reactor in a flat shape, and the temperature of the magnetic core 120 can be lowered as compared with the case where the magnetic core 120 is in a cubic shape. For example, when the allowable heat generation temperature ΔT is 100 ° C., the heat generation temperature when the magnetic core 120 is in a cubic shape is 455 ° C., whereas in the case of a flat shape, it is 92 ° C. It can be seen that the allowable heat generation temperature ΔT is satisfied.
 この結果より、特許文献1のようにリアクトル全体を樹脂封止していたのに対し、本実施形態のように片面のみの樹脂封止して放熱を行う場合でも、放熱性を確保することが可能となる。そして、上記の試算に基づけば、扁平形状の寸法範囲については磁性コア120のうちの冷却面積、つまり縦、横の寸法に対する厚さの寸法の比に基づいて数式4のように定義される範囲とすることができる。すなわち、扁平形状の長方形状における短辺を分子にとり、2つの長辺を乗算した値を分母にとったときに、3/100以下となるようにしている。 From this result, the entire reactor was resin-sealed as in Patent Document 1, whereas heat dissipation can be ensured even when heat is released by resin-sealing only on one side as in this embodiment. It becomes possible. Then, based on the above calculation, the flat dimension range is defined as Equation 4 based on the cooling area of the magnetic core 120, that is, the ratio of the thickness dimension to the vertical and horizontal dimensions. It can be. That is, when the short side in the flat rectangular shape is taken as the numerator and the value obtained by multiplying the two long sides is taken as the denominator, it is set to 3/100 or less.
Figure JPOXMLDOC01-appb-M000004
 また、本実施形態では、コア支持部140dを磁性コア120のうちの内周側面120cよりも外周側面120d側の位置に形成している。このため、磁性コア120のうちの磁束が少ない位置をコア支持部140dによって支持することができる。すなわち、リアクトル110において磁束は磁性コア120の内周部に多く集まる。磁性コア120の加圧による特性劣化は磁束が多く集まる部位ほど影響が大きい。したがって、本実施形態のようにコア支持部140dの配置場所を設定することで、磁性コア120の特性劣化をさらに抑制することが可能となる。
Figure JPOXMLDOC01-appb-M000004
In the present embodiment, the core support portion 140d is formed at a position closer to the outer peripheral side surface 120d than the inner peripheral side surface 120c of the magnetic core 120. For this reason, the position with little magnetic flux in the magnetic core 120 can be supported by the core support portion 140d. That is, a large amount of magnetic flux collects in the inner periphery of the magnetic core 120 in the reactor 110. The characteristic deterioration due to the pressurization of the magnetic core 120 has a larger influence as the magnetic flux collects more. Therefore, it is possible to further suppress the characteristic deterioration of the magnetic core 120 by setting the location of the core support portion 140d as in the present embodiment.
 また、本実施形態では、コイル支持部140eをコイル130aとコイル130bの配列方向の外側に配置している。リアクトル110において、発熱は冷却器160から熱抵抗が高い中心部に集中することから、熱がこもる中心部から離れた位置にコイル支持部140eを配置している。これにより、さらにリアクトル110の損失増加を抑制することが可能となる。 Further, in this embodiment, the coil support portion 140e is disposed outside the arrangement direction of the coils 130a and 130b. In the reactor 110, heat generation is concentrated from the cooler 160 to the central portion where the thermal resistance is high, and therefore the coil support portion 140e is disposed at a position away from the central portion where heat is accumulated. Thereby, it is possible to further suppress an increase in loss of reactor 110.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims.
 例えば、上記各実施形態で説明した磁性コア20、コイル30、筐体40、41などの形状などについては一例を示したに過ぎず、他の形状であっても良い。 For example, the shape of the magnetic core 20, the coil 30, and the casings 40 and 41 described in the above embodiments is merely an example, and other shapes may be used.
 なお、上記実施形態では、リアクトル10、110を電気自動車やハイブリッド車両などに搭載される昇圧コンバータ用リアクトル等に適用する場合について説明したが、これは適用例の一例を挙げたに過ぎず、他のものへの適用も可能である。例えば、リアクトル10、110を充電器のPFC用昇圧リアクトルや平滑チョークなどに適用することも可能である。 In addition, although the said embodiment demonstrated the case where the reactors 10 and 110 were applied to the reactor for step-up converters etc. which are mounted in an electric vehicle, a hybrid vehicle, etc., this is only an example of an application example and others. It is also possible to apply to For example, the reactors 10 and 110 can be applied to a PFC step-up reactor or a smoothing choke for a charger.
 また、上記実施形態では、2つのU字コアでリアクトル10、110を構成しているが、2つのE字コアや複数のI字コアによってリアクトル10、110を構成することもでき、上記実施形態と同様の効果を得ることができる。 Moreover, in the said embodiment, although the reactors 10 and 110 are comprised by two U-shaped cores, the reactors 10 and 110 can also be comprised by two E-shaped cores or several I-shaped cores, The said embodiment The same effect can be obtained.
 上記実施形態では、磁性コア120を扁平形状としたが、これはより高い放熱性を得るためであり、放熱性に応じて磁性コア120の高さを適宜変更すれば良いため、磁性コア120の高さについては任意に設定可能である。例えば、磁性コア120を断面形状が正方形状のもので構成しても良い。 In the above embodiment, the magnetic core 120 has a flat shape, but this is to obtain higher heat dissipation, and the height of the magnetic core 120 may be appropriately changed according to the heat dissipation. The height can be set arbitrarily. For example, the magnetic core 120 may be configured with a square cross-sectional shape.
 また、上記実施形態では、磁性コア120を長方形状としつつ、封止樹脂部150側において磁性コア120の角部を丸めたR形状としたが、角部が丸められていなくても良い。また、磁性コア120のうちの封止樹脂部150側の角部を面取りした構造であっても良い。 In the above-described embodiment, the magnetic core 120 is rectangular, and the corner of the magnetic core 120 is rounded on the sealing resin portion 150 side. However, the corner may not be rounded. Moreover, the structure which chamfered the corner | angular part by the side of the sealing resin part 150 among the magnetic cores 120 may be sufficient.

Claims (15)

  1.  磁性コア(20)と、
     前記磁性コアに巻回されたコイル(30)と、
     前記磁性コアおよび前記コイルを挟んだ両側に配置され、前記磁性コアおよび前記コイルが配置される放熱面(40b、41b)を含み、前記磁性コアおよび前記コイルの放熱を行う第1冷却部材(40、60)および第2冷却部材(41、61)と、
     前記第1冷却部材の前記放熱面から前記磁性コアの間に充填されることで、前記磁性コアのうちの前記放熱面側となる下面(20b)を封止すると共に、前記第2冷却部材の前記放熱面から前記磁性コアの間に充填されることで、前記磁性コアのうちの前記放熱面側となる上面(20a)を封止しつつ、該磁性コアのうち前記放熱面に繋がる両側面(20c、20d)を露出させるように形成された第1封止樹脂部(50)および第2封止樹脂部(51)と、を有し、
     前記磁性コアは、前記コイルに通電を行ったときに発生する磁束の流れに対して直交する面での断面形状が、前記第1冷却部材と前記第2冷却部材が並ぶ方向と同方向の寸法より該方向に対する垂直方向の寸法が大きくされた扁平形状とされているリアクトル。
    A magnetic core (20);
    A coil (30) wound around the magnetic core;
    A first cooling member (40) that is disposed on both sides of the magnetic core and the coil and includes a heat radiation surface (40b, 41b) on which the magnetic core and the coil are disposed, and that radiates heat from the magnetic core and the coil. 60) and the second cooling member (41, 61);
    Filling the space between the heat dissipation surface of the first cooling member and the magnetic core seals the lower surface (20b) of the magnetic core that is on the heat dissipation surface side and the second cooling member. Both side surfaces connected to the heat dissipation surface of the magnetic core while sealing the upper surface (20a) on the heat dissipation surface side of the magnetic core by being filled between the heat dissipation surface and the magnetic core. A first sealing resin portion (50) and a second sealing resin portion (51) formed to expose (20c, 20d),
    The magnetic core has a cross-sectional shape on a plane orthogonal to the flow of magnetic flux generated when the coil is energized, and a dimension in the same direction as the direction in which the first cooling member and the second cooling member are arranged. A reactor having a flat shape in which a dimension in a direction perpendicular to the direction is further increased.
  2.  前記磁性コアは、前記コイルに通電を行ったときに発生する磁束の流れに対して垂直な面での断面形状が四角形状であって、該四角形状のうち前記上面および前記下面を構成する辺が長辺、前記両側面を構成する辺が短辺とされる扁平形状の長方形状とされている請求項1に記載のリアクトル。 The magnetic core has a quadrangular cross-sectional shape in a plane perpendicular to the flow of magnetic flux generated when the coil is energized, and the sides constituting the upper surface and the lower surface of the quadrilateral shape The reactor according to claim 1, wherein is a flat rectangular shape having a long side and a side constituting the both side surfaces being a short side.
  3.  前記磁性コアのうち、前記下面と前記両側面とによる角部が丸められている請求項2に記載のリアクトル。 The reactor according to claim 2, wherein a corner portion of the magnetic core is rounded by the lower surface and the both side surfaces.
  4.  前記第1冷却部材および前記第2冷却部材は、共に、前記放熱面を構成する底面(40b、41b)を含む筐体(40、41)と、該筐体に貼り合わされた冷却器(60、61)とを備えた構成とされ、
     前記第1冷却部材および前記第2冷却部材それぞれに備えられた前記筐体の前記底面は、前記磁性コアおよび前記コイル側に突き出した凸面状とされ、該底面の厚みが該底面の外縁側よりも内側の方が厚くされることで、該底面の中央位置に向かうに連れて該底面と前記磁性コアおよび前記コイルとの間隔が狭くされている請求項1ないし3のいずれか1つに記載のリアクトル。
    Both the first cooling member and the second cooling member include a housing (40, 41) including a bottom surface (40b, 41b) that constitutes the heat dissipation surface, and a cooler (60, 60) bonded to the housing. 61), and
    The bottom surface of the casing provided in each of the first cooling member and the second cooling member has a convex shape protruding toward the magnetic core and the coil, and the thickness of the bottom surface is larger than the outer edge side of the bottom surface. 4. The distance between the bottom surface and the magnetic core and the coil is narrowed toward the center of the bottom surface by increasing the thickness of the inner side. Reactor.
  5.  磁性コア(120)と、
     前記磁性コアに巻回されたコイル(130)と、
     前記磁性コアおよび前記コイルが配置される放熱面(140b)を含み、前記磁性コアおよび前記コイルの放熱を行う冷却部材(140、160)と、
     前記放熱面から突出させられて設けられ、前記磁性コアを支持するコア支持部(140d)と、
     前記放熱面から突出させられて設けられ、前記コイルを支持するコイル支持部(140e)と、
     前記コア支持部によって前記磁性コアが支持され、かつ、前記コイル支持部によって前記コイルが支持された状態で前記放熱面から前記磁性コアの間に充填されることで、前記磁性コアのうちの前記放熱面側の面を封止しつつ、該磁性コアのうち前記放熱面と反対側の面を露出させるように形成された封止樹脂部(150)と、を有しているリアクトル。
    A magnetic core (120);
    A coil (130) wound around the magnetic core;
    A cooling member (140, 160) including a heat radiating surface (140b) on which the magnetic core and the coil are disposed, and radiating heat from the magnetic core and the coil;
    A core support part (140d) provided to protrude from the heat dissipation surface and supporting the magnetic core;
    A coil support part (140e) provided to protrude from the heat dissipation surface and supporting the coil;
    The magnetic core is supported by the core support portion, and is filled between the magnetic cores from the heat dissipation surface in a state where the coil is supported by the coil support portion. A reactor having a sealing resin portion (150) formed so as to expose a surface opposite to the heat dissipation surface of the magnetic core while sealing a surface on the heat dissipation surface side.
  6.  前記磁性コアは、前記放熱面と対向する一面を下面(120b)、該一面の反対側の一面を上面(120a)、前記上面および前記下面とを繋ぐ側面(120c、120d)を有し、前記コイルに対して通電を行ったときに発生させられる磁束の流れと直交する方向での断面形状が四角形状とされている請求項5に記載のリアクトル。 The magnetic core has a lower surface (120b) that faces the heat dissipation surface, an upper surface (120a) that is opposite to the first surface, and side surfaces (120c and 120d) that connect the upper surface and the lower surface, The reactor according to claim 5, wherein a cross-sectional shape in a direction orthogonal to a flow of magnetic flux generated when energizing the coil is a quadrangular shape.
  7.  前記磁性コアは、前記断面形状が、前記四角形状のうち前記上面および前記下面を構成する辺が長辺、前記側面を構成する辺が短辺とされる扁平形状の長方形状とされている請求項6に記載のリアクトル。 The cross-sectional shape of the magnetic core is a flat rectangular shape in which the sides constituting the upper surface and the lower surface are long sides and the sides constituting the side surfaces are short sides in the quadrangular shape. Item 7. The reactor according to Item 6.
  8.  前記扁平形状の長方形状における前記短辺を分子にとり、前記2つの長辺を乗算した値を分母にとったときに3/100以下となっている請求項7に記載のリアクトル。 The reactor according to claim 7, wherein the short side of the flat rectangular shape is taken as a numerator and a value obtained by multiplying the two long sides as a denominator is 3/100 or less.
  9.  前記磁性コアのうち、前記下面と前記側面とによる角部が丸められている請求項6ないし8のいずれか1つに記載のリアクトル。 The reactor according to any one of claims 6 to 8, wherein a corner portion of the magnetic core is rounded by the lower surface and the side surface.
  10.  前記磁性コアは、前記コイルに対して通電を行ったときに発生させられる磁束の流れと直交する方向での断面形状が、前記放熱面に対する法線方向の寸法より前記放熱面に対する平行な方向の寸法が大きくされた扁平形状とされていることを特徴とする請求項5に記載のリアクトル。 The magnetic core has a cross-sectional shape in a direction perpendicular to the flow of magnetic flux generated when the coil is energized in a direction parallel to the heat dissipation surface from a dimension in a normal direction to the heat dissipation surface. The reactor according to claim 5, wherein the reactor has a flat shape with increased dimensions.
  11.  前記磁性コアは、前記放熱面の法線方向から見た形状が枠体形状とされ、該枠状の内周側を構成する内周側面(120c)と外周側を構成する外周側面(120d)とを有し、
     前記コア支持部は、前記コイルから離れた位置、かつ、前記磁性コアのうち前記内周側面よりも前記外周側面側の位置において前記磁性コアを支持している請求項5ないし10のいずれか1つに記載のリアクトル。
    The magnetic core has a frame shape when viewed from the normal direction of the heat dissipation surface, and an inner peripheral side surface (120c) constituting the inner peripheral side of the frame shape and an outer peripheral side surface (120d) constituting the outer peripheral side. And
    The said core support part is supporting the said magnetic core in the position away from the said coil, and the position of the said outer peripheral side surface rather than the said inner peripheral side surface among the said magnetic cores. Reactor described in 1.
  12.  前記磁性コアは、前記放熱面の法線方向から見た形状が矩形の枠体形状とされ、
     前記コア支持部は、前記磁性コアの四隅に配置されている請求項11に記載のリアクトル。
    The magnetic core has a rectangular frame shape when viewed from the normal direction of the heat dissipation surface,
    The reactor according to claim 11, wherein the core support portion is disposed at four corners of the magnetic core.
  13.  前記コイルは、前記枠体形状とされた前記磁性コアに対して巻回されており、
     前記コイル支持部は、前記コイルのうち前記磁性コアの中心側よりもその反対側となる外側に配置されている請求項5ないし12のいずれか1つに記載のリアクトル。
    The coil is wound around the magnetic core having the frame shape,
    The reactor according to any one of claims 5 to 12, wherein the coil support portion is disposed on an outer side of the coil that is opposite to a center side of the magnetic core.
  14.  前記コイル支持部は、前記磁性コアよりも外側において前記コイルを支持している請求項13に記載のリアクトル。 The reactor according to claim 13, wherein the coil support part supports the coil outside the magnetic core.
  15.  前記コア支持部は、少なくとも一部が前記磁性コアと前記放熱面とを絶縁する絶縁材料で構成され、
     前記コイル支持部は、少なくとも一部が前記コイルと前記放熱面とを絶縁する絶縁材料で構成されている請求項5ないし14のいずれか1つに記載のリアクトル。
    The core support portion is made of an insulating material that at least partially insulates the magnetic core and the heat dissipation surface,
    The reactor according to any one of claims 5 to 14, wherein at least a part of the coil support portion is made of an insulating material that insulates the coil and the heat dissipation surface.
PCT/JP2016/070769 2015-08-18 2016-07-14 Reactor WO2017029914A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-161179 2015-08-18
JP2015-161178 2015-08-18
JP2015161179A JP6398907B2 (en) 2015-08-18 2015-08-18 Reactor
JP2015161178A JP2017041497A (en) 2015-08-18 2015-08-18 Reactor

Publications (1)

Publication Number Publication Date
WO2017029914A1 true WO2017029914A1 (en) 2017-02-23

Family

ID=58050781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070769 WO2017029914A1 (en) 2015-08-18 2016-07-14 Reactor

Country Status (1)

Country Link
WO (1) WO2017029914A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7536600B2 (en) 2020-11-02 2024-08-20 株式会社タムラ製作所 Reactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292904A (en) * 1985-06-20 1986-12-23 Mitsubishi Electric Corp Ballast for discharge lamp
JP2010272584A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Reactor
JP2011199151A (en) * 2010-03-23 2011-10-06 Toyota Industries Corp Reactor
WO2013018381A1 (en) * 2011-08-01 2013-02-07 住友電気工業株式会社 Choke coil
WO2013051425A1 (en) * 2011-10-06 2013-04-11 住友電気工業株式会社 Reactor, coil component for reactor, converter, and power conversion device
JP2015012272A (en) * 2013-07-02 2015-01-19 トヨタ自動車株式会社 Reactor
JP2015043377A (en) * 2013-08-26 2015-03-05 トヨタ自動車株式会社 Reactor with cooler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292904A (en) * 1985-06-20 1986-12-23 Mitsubishi Electric Corp Ballast for discharge lamp
JP2010272584A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Reactor
JP2011199151A (en) * 2010-03-23 2011-10-06 Toyota Industries Corp Reactor
WO2013018381A1 (en) * 2011-08-01 2013-02-07 住友電気工業株式会社 Choke coil
WO2013051425A1 (en) * 2011-10-06 2013-04-11 住友電気工業株式会社 Reactor, coil component for reactor, converter, and power conversion device
JP2015012272A (en) * 2013-07-02 2015-01-19 トヨタ自動車株式会社 Reactor
JP2015043377A (en) * 2013-08-26 2015-03-05 トヨタ自動車株式会社 Reactor with cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7536600B2 (en) 2020-11-02 2024-08-20 株式会社タムラ製作所 Reactor

Similar Documents

Publication Publication Date Title
JPWO2013001591A1 (en) Reactor and manufacturing method thereof
JP5012066B2 (en) Power module
JP6234537B1 (en) Power converter
CN111344821B (en) power conversion device
JP6331495B2 (en) Reactor
JP2009094328A (en) Reactor
JP5246601B2 (en) Reactor
JP2010140969A (en) Stacked module structure
JP2013118208A (en) Reactor
JP4872693B2 (en) Power module
JP2016025137A (en) Reactor device
JP2009259985A (en) Electronic component
JP6516910B1 (en) Step-down converter
WO2017029914A1 (en) Reactor
JP2017041497A (en) Reactor
JP2016096271A (en) Reactor
JP7130188B2 (en) Reactor
JP2012023267A (en) Reactor
JP2015103690A (en) Coil component
JP6398907B2 (en) Reactor
US11848137B2 (en) Power conversion device
JP6651592B1 (en) Reactor cooling structure and power converter
US11908613B2 (en) Reactor
WO2020085098A1 (en) Reactor
JP6619195B2 (en) Reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836905

Country of ref document: EP

Kind code of ref document: A1