WO2017029754A1 - Ion beam device and method for analyzing sample elements - Google Patents

Ion beam device and method for analyzing sample elements Download PDF

Info

Publication number
WO2017029754A1
WO2017029754A1 PCT/JP2015/073361 JP2015073361W WO2017029754A1 WO 2017029754 A1 WO2017029754 A1 WO 2017029754A1 JP 2015073361 W JP2015073361 W JP 2015073361W WO 2017029754 A1 WO2017029754 A1 WO 2017029754A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ion beam
gas
alkali metal
ion
Prior art date
Application number
PCT/JP2015/073361
Other languages
French (fr)
Japanese (ja)
Inventor
志知 広康
信一 松原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017535213A priority Critical patent/JP6594983B2/en
Priority to PCT/JP2015/073361 priority patent/WO2017029754A1/en
Publication of WO2017029754A1 publication Critical patent/WO2017029754A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Definitions

  • the present invention relates to an ion beam apparatus and a sample element analysis method.
  • Patent Document 1 discloses a SIMS device equipped with a Dioplasmatron surface ionization type cesium ion source and a side entry type liquid metal ion source as an ion source.
  • Patent Document 2 discloses a technique for detecting a composite ion of sample element M and cesium by irradiating a sample with gallium ions and depositing neutral cesium on the sample with a SIMS apparatus.
  • ion sources In conventional SIMS, three types of ion sources are mainly used. One is an oxygen plasma ion source, which is mainly used to analyze electropositive elements. At this time, positive secondary ions are detected. The other is a cesium surface ionization ion source, which is mainly used for analyzing electronegative elements, hydrogen, oxygen, carbon and the like. At this time, negative secondary ions are detected.
  • a gallium liquid metal ion source or a gas field ion source can be used to analyze a minute portion.
  • the surface ionization type ion source that generates cesium ions has a problem that the performance of the ion source is limited and a fine beam cannot be formed.
  • the present invention has been made in view of such a situation, and in a sample element analysis apparatus using an ion beam, practical elemental analysis capable of detecting extremely small amounts of hydrogen and oxygen in a very small part of the sample, in particular, with extremely high sensitivity.
  • the present invention also provides an elemental analysis technique for examining a three-dimensional distribution of trace amounts of hydrogen and oxygen in a sample, which has been difficult in the past.
  • an ion beam apparatus includes an ion source, an ion beam irradiation system that irradiates a sample with ions emitted from the ion source, a sample chamber that stores the sample, and an ion beam as a sample.
  • a detection system for detecting secondary ions emitted from the sample upon irradiation, an alkali metal supply system for supplying alkali metal to the sample, and hydrogen gas and / or oxygen gas resulting from the alkali metal supplied to the sample A specific gas removing unit to be removed.
  • Embodiments of the present invention provide two types of impurity removal configurations in order to remove trace amounts of hydrogen and oxygen that are supplied as a background from a high-purity alkali metal supply system.
  • One is a first exhaust mechanism for exhausting impurities inside the storage chamber for storing the alkali metal, and the other is hydrogen remaining from the alkali metal after impurities are removed by the first exhaust mechanism and / or Alternatively, the second exhaust mechanism exhausts oxygen.
  • FIG. 1 is a diagram illustrating a configuration example of an ion beam apparatus according to an embodiment of the present invention. Below, the 1st example of an ion beam elemental-analysis apparatus is demonstrated as an ion beam apparatus.
  • the ion beam elemental analyzer of this example includes a gas field ion source 1, an ion beam irradiation system column 2, a sample chamber 3, a cooling mechanism 4, a time-of-flight mass analysis column (mass spectrometer) 6, An alkali metal supply unit 30 and an ion source gas supply unit 26 are provided.
  • the gas field ion source 1, the ion beam irradiation system column 2, the sample chamber 3, the time-of-flight mass spectrometry column 6 and the like are vacuum containers. According to the ion beam elemental analyzer, it is possible to identify an element of a sample, acquire a two-dimensional distribution image of a specific element, and analyze a three-dimensional distribution.
  • the ion beam irradiation system column 2 is, for example, installed upright with respect to the ion beam element analyzer installation surface 20, that is, the floor, and the time-of-flight mass analysis column 6 is inclined.
  • An alkali metal supply unit 30 is attached to the sample chamber 3.
  • the alkali metal supply unit 30 supplies an alkali metal such as lithium, sodium, potassium, rubidium, cesium, and francium to the surface of the sample 9.
  • cesium is used as an alkali metal
  • the gas field ion source 1 includes a needle-like emitter tip 21, an extraction electrode 24 provided facing the emitter tip 21 and having an opening 27 through which ions pass, a thin filament 22, It has a cylindrical filament mount 23 and a cylindrical emitter base mount 64.
  • the gas field ion source 1 is provided with an ion source evacuation pump 12 for evacuating the vacuum vessel 15.
  • the ion source evacuation pump 12 is connected to the vacuum container 15 through a valve 29 that can be evacuated.
  • the gas field ion source 1 includes a tilt mechanism 61 that changes the tilt of the emitter tip 21.
  • the tilt mechanism 61 is fixed to the emitter base mount 64. This tilting mechanism 61 is used to accurately align the direction of the tip of the emitter tip with the ion beam irradiation axis 62.
  • the tilt mechanism 61 is provided when the ion beam irradiation system column 2 stands upright with respect to the ion beam element analyzer installation surface 20 or floor, that is, when the gas field ion source 1 stands upright.
  • the tilt accuracy of the emitter tip 21 can be improved, and there is no drift movement in the tilt direction, so that a suitable ion element analyzer can be realized.
  • the gas field ion source 1 is connected to at least three kinds of gas containers.
  • the first gas container 81 contains at least oxygen gas
  • the second gas container 82 contains at least one of neon, argon, xenon, and krypton
  • the third gas container 83 contains either hydrogen or helium. Contains.
  • the ion beam irradiation system includes a focusing lens 5 that focuses the ion beam emitted from the gas field ion source 1, a pulsed electrode 7, and an objective lens 8.
  • the focusing lens 5 and the objective lens 8 are electrostatic lenses composed of a plurality of electrodes.
  • the pulsed electrode 7 is, for example, an opposing parallel electrode.
  • the ion beam irradiation system includes a movable aperture that limits the ion beam 14 that has passed through the focusing lens 5 and a deflector that scans or aligns the ion beam that has passed through the aperture. Has been. These are used for emission pattern observation from the ion source 1 and scanning ion beam image acquisition.
  • the sample chamber 3 includes a sample stage 10 on which the sample 9 is placed and a charged particle detector (not shown) that detects secondary electrons emitted from the sample when the ion beam collides with the sample. And an electron gun (not shown) for neutralizing the charge-up of the sample 9.
  • the ion element analyzer of this example further includes a sample chamber evacuation pump 13 that evacuates the sample chamber 3.
  • a vacuum exhaust pump 52 that further contains a non-evaporable getter material 51 is provided, and a vacuum shut-off valve 53 and a heating mechanism 54 are disposed between the sample chamber 3 and the vacuum exhaust pump 52. ing.
  • the time-of-flight mass spectrometry column 6 is a vacuum vessel, and includes an ion lens 71 for focusing secondary ions, an ion lens 72 for imaging secondary ions, and the like.
  • the secondary ion detector 55 includes a microchannel plate 56 and a two-dimensional electric detector.
  • the time-of-flight mass spectrometry column 6 further includes a vacuum exhaust pump 74 that contains a non-evaporable getter material 73.
  • This vacuum exhaust pump 74 is provided with a heating mechanism 76 (a recess for inserting the heating mechanism 76 in the vacuum exhaust pump 74) on the atmosphere side, and the heating mechanism 76 is connected to the inside of the vacuum exhaust pump 74. Has an isolated structure).
  • a valve 75 capable of shutting off the vacuum is disposed between the sample chamber 3 and the vacuum exhaust pump 74.
  • a non-evaporable getter material 77 is installed in the vicinity of the sample (inside the sample chamber 3).
  • a heating mechanism 78 for heating the non-evaporable getter material is installed on the atmosphere side of the container of the sample chamber 3.
  • a base plate 18 is disposed on the device mount 17 disposed on the floor 20 via, for example, a vibration isolation mechanism 19.
  • the gas field ion source 1, the ion beam irradiation system column 2, and the sample chamber 3 are supported by a base plate 18.
  • the cooling mechanism 4 cools the inside of the gas field ion source 1 and the emitter tip 21.
  • the cooling mechanism 4 may be a Gifford-McMahon type (GM type) refrigerator, for example.
  • GM type Gifford-McMahon type
  • a Pulrus tube refrigerator can be used, in this case, a compressor unit (compressor) using helium gas as a working gas (not shown) is installed on the floor 20.
  • the vibration of the compressor unit (compressor) is transmitted to the apparatus base 17 via the floor 20. Therefore, as described above, the vibration isolation mechanism 19 is disposed between the apparatus base 17 and the base plate 18.
  • the refrigerator and the compressor have been described as the cause of the vibration of the floor 20, but the cause of the vibration of the floor 20 is not limited to this, and may be a vibration due to the installation environment.
  • the vibration isolation mechanism 19 may be configured by a vibration isolation rubber, a spring, a damper, or a combination thereof.
  • FIG. 2 is a diagram illustrating a detailed configuration of the alkali metal supply unit 30.
  • the alkali metal supply unit 30 includes an alkali metal storage chamber 31 that stores the alkali metal 29 therein, a first heating mechanism 32 that heats the alkali metal storage chamber 31, an alkali metal storage chamber 31, and a first valve 37.
  • the first exhaust section is connected to the purification chamber 34 connected to the alkali metal storage chamber 31 via the second valve 38 and removes impurities by evacuating the alkali metal storage chamber 31 and the purification chamber 34. 33, a second heating mechanism 35 for heating the purification chamber 34, and a second exhaust for removing hydrogen and / or oxygen (hydrogen or oxygen contained in the alkali metal surface or inside) remaining in the purification chamber 34.
  • the purification chamber 34 is provided with an open container 41 for storing alkali metal.
  • the first exhaust unit 33 is configured by a combination of a turbo molecular pump 42 and a dry pump 43. Further, the second exhaust part has a non-evaporable getter material 44 and a heating mechanism 45 thereof, and the hydrogen and oxygen in the purification chamber 34 are removed by heating the non-evaporable getter material 44 by the heating mechanism 45. Remove.
  • the heating mechanism 45 is disposed in the atmosphere outside the vacuum vessel.
  • the alkali metal storage chamber 31 is connected to the purification chamber 34 by a connecting pipe 46.
  • Each valve can be vacuum-blocked, for example.
  • the alkali metal 29 lithium, sodium, potassium, rubidium, cesium, and francium can be used, but cesium is used in this embodiment. Cesium is sealed in a glass ampoule because it reacts with oxygen and water.
  • the tip of the emitter tip 21 of the gas field ion source 1 is formed with, for example, a nanometer-order pyramid structure by atoms. This is called the nano pyramid. Nanopyramids typically have a single atom at the tip, a layer of 3 or 6 atoms below it, and a layer of 10 or more atoms below it.
  • the material of the emitter tip 21 is tungsten, molybdenum fine wire, or the like.
  • a method of forming the nanopyramid at the tip of the emitter tip 21 a method of heating the emitter tip at a high temperature by energizing the filament after coating iridium, platinum, rhenium, osmium, palladium, rhodium, etc.
  • the tip is composed of one or three tungsten atoms or atoms such as iridium.
  • a similar nanopyramid can be formed by etching or remodeling in vacuum at the tip of a thin wire such as platinum, iridium, rhenium, osmium, palladium, and rhodium.
  • the feature of the emitter tip 21 of the gas field ion source 1 is the nanopyramid (triangular pyramid shape).
  • the strength of the electric field formed at the tip of the emitter tip 21 is adjusted (a strong electric field is formed at the tip of the emitter tip 21 by adjusting the value of the applied high voltage of several kV. The higher the voltage, the stronger the electric field. However, if the applied voltage value is equal to or higher than a predetermined value, the electric field becomes weak.)
  • the region from which ions are emitted, that is, the ion light source is a very narrow region, which is less than a nanometer.
  • the beam diameter can be reduced to 1 nm or less (subnanometer). Therefore, the current value per unit area and unit solid angle of the ion source increases. This is an important characteristic for obtaining an ion beam with a fine diameter and a large current on a sample.
  • the current emitted from the unit area / unit solid angle, that is, the ion source is similarly applied.
  • the luminance can be increased, which is suitable for reducing the beam diameter on the sample of the ion element analyzer or increasing the current.
  • the emitter tip is sufficiently cooled and the gas supply is sufficient, it is not always necessary to form a single tip, even if the number of atoms is 3, 6, 7, 10, etc. It can demonstrate sufficient performance.
  • the tip is composed of 4 or more atoms and less than 10 atoms (when the tip of the emitter tip 21 is not sharpened), the ion source brightness can be increased and the tip atoms are not easily evaporated and stabilized. Operation is possible.
  • FIG. 3 is a diagram showing a configuration example in which each control system is attached to the ion element analyzer (FIG. 1) according to the embodiment of the present invention.
  • the control system of this example includes a gas field ion source controller 91 that controls the gas field ion source 1, a cooling mechanism controller 92 that controls the cooling mechanism 4, and a lens that controls the focusing lens 5 and the objective lens 8.
  • Control device 93 pulsed electrode control device 94, time-of-flight mass spectrometer control device 95 for controlling ion lenses 71 and 72 contained in time-of-flight mass analysis column 6, and secondary ion detector control device 96, a sample stage control device 97 for controlling the sample stage 10, a vacuum pump control device 98 for controlling the sample chamber vacuum pump 13, an ionized gas control device 191, and an alkali metal supply controller 192. And a main body control device 99 having a calculation processing capability.
  • the main body control device 99 is configured by a general computer and includes, for example, an arithmetic processing unit, a storage unit, an image display unit, and the like.
  • the image display unit displays an image generated from the detection signal of the charged particle detector 11 and information input by the input unit.
  • the sample stage 10 includes a mechanism for linearly moving the sample 9 in two orthogonal directions within the sample placement surface, a mechanism for linearly moving the sample 9 in a direction perpendicular to the sample placement surface, and the sample 9 on the sample placement surface. It has a mechanism to rotate inside.
  • the sample stage 10 further includes a tilt function that can vary the irradiation angle of the ion beam 14 to the sample 9 by rotating the sample 9 about the tilt axis. These controls are executed by the sample stage control device 97 in accordance with commands from the main body control device (calculation processing device) 99.
  • the operating conditions for each part of the ion element analyzer are input from the main body controller 99.
  • Various conditions such as an acceleration voltage at the time of generating an ion beam, an ion beam deflection width / deflection speed, a stage moving speed, and an image signal capturing timing from the image detection element are input to the main body control device 99 in advance.
  • the main body control device 99 controls the control devices for each element as a whole and serves as an interface with the user.
  • the main body control device 99 may be composed of a plurality of computers that share roles and are connected by communication lines.
  • a positive high voltage is applied to the emitter tip 21 as an ion acceleration voltage.
  • a high voltage is applied to the extraction electrode 24 so as to have a negative potential with respect to the emitter tip 21.
  • a strong electric field is formed at the tip of the emitter tip 21.
  • the ionized gas is supplied from the ionized gas supply unit 26, the ionized gas is pulled to the emitter tip surface by a strong electric field. Further, the ionized gas reaches the vicinity of the tip of the emitter tip 21 having the strongest electric field. Therefore, the ionized gas is field-ionized and an ion beam is generated.
  • the generated ion beam is guided to the ion beam irradiation system column 2 through the hole 27 of the extraction electrode 24.
  • argon gas is introduced as the ionized gas.
  • the ion beam 14 emitted from the gas field ion source 1 is focused by the focusing lens 5 and the objective lens 8 and irradiated onto the sample 9.
  • the diameter of the gas field ion source 1 is as small as a nanometer and the energy width of the ion beam is as small as 1 eV, if these characteristics are utilized, the diameter of the ion beam 14 on the sample 9 can be reduced. It can be as small as a sub-nanometer. In this way, the ion beam 14 can be miniaturized.
  • gas field ion source 1 By using the gas field ion source 1, other ion sources such as a duoplasma ion source, a Penning ion source, an inductively coupled plasma (ICP) plasma ion source, and a microwave plasma (MIP: Microwave (Induced (Plasma)) It has the effect that an ion element analyzer image with higher resolution can be obtained compared to the case of using a plasma ion source.
  • ICP inductively coupled plasma
  • MIP Microwave (Induced (Plasma)
  • FIG. 4 is a diagram showing a procedure for activating the non-evaporable getter material which is the second exhaust part 36 provided in the purification chamber 34.
  • FIG. 5 is a diagram showing a procedure for supplying an alkali metal to the sample surface.
  • Steps 101 and 102 The third valve 39 is closed, and then the first valve 37 and the second valve 38 are opened.
  • Step 103 The purification chamber 34 is evacuated by the first exhaust part 33.
  • Step 104 The purification chamber 34 is heated to about 150 ° C. by the second heating mechanism 35. The heating is continued for about 10 hours.
  • Step 105 When the heating of the purification chamber 34 is continued for about 10 hours, the non-evaporable getter material 44 is heated to about 400 ° C. by the heating mechanism 45. The heating is continued for about 1 hour. The heating of the purification chamber 34 is continued during the heating of the non-evaporable getter material 44.
  • Step 106 After heating the non-evaporable getter material 44 is continued for about 1 hour, heating of the non-evaporable getter material 44 and the purification chamber 34 is stopped.
  • the purification chamber 34 can be brought into an ultra-high vacuum state.
  • Steps 201 and 202 The storage chamber 31 is opened to the atmosphere with the first valve 37 closed.
  • Step 203 A glass ampoule containing cesium which is an alkali metal is placed in the storage chamber 31.
  • Steps 204 and 205 After closing the lid of the storage chamber 31, the storage chamber 31 is evacuated by the first exhaust unit 33.
  • Step 206 The glass ampule is divided in the vacuum storage chamber 31. In order to break the glass ampule, a straight line introduction mechanism or a rotation mechanism may be used.
  • Step 207 The first valve 37 is opened to connect the storage chamber 31 and the purification chamber 34.
  • Step 208 The storage chamber 31 is heated to about 200 ° C. by the first heating mechanism 32. Then, cesium becomes vapor and diffuses in the vacuum. Cesium vapor diffuses through the connecting pipe 46 to the purification chamber 34. An opening container 41 for storing cesium is disposed in the purification chamber 34 in the vicinity of the terminal end of the connection pipe 46. If the open container 41 is cooled to about 20 ° C. in advance, cesium can be efficiently condensed. Similarly, hydrogen gas, oxygen gas, nitrogen gas, water vapor, and the like diffused from the storage chamber 31 are diffused and introduced into the purification chamber 34, but are absorbed by the non-evaporable getter material 44 with high efficiency.
  • Step 209 The first valve 37 is closed.
  • Steps 210 and 211 When the third valve 39 is opened and cesium is heated by the second heating mechanism 35, high-purity cesium is supplied to the surface of the sample 9 through the nozzle 40. Since the purification chamber 34 is maintained in an ultrahigh vacuum, hydrogen gas, oxygen gas, and the like hardly reach the surface of the sample 9.
  • Step 212 In a state where high-purity cesium is supplied to the surface of the sample 9, the sample 9 is irradiated with an argon ion beam 14 focused to a sub-nanometer diameter.
  • Step 213 Mass analysis of the secondary ions 16 emitted from the sample 9 is performed.
  • the time-of-flight mass spectrometer 6 performs mass analysis. Therefore, the ion beam 14 is pulsed by the pulsed electrode 7 and irradiated on the sample 9. The secondary ions 16 emitted from the sample 9 by irradiating the sample 9 with the ion beam 14 are taken into the time-of-flight mass spectrometer 6. At this time, a light element such as hydrogen reaches the two-dimensional electric detector 57 early, and a heavy element such as gold arrives late. This principle (the arrival time varies depending on the element) enables elemental analysis.
  • the intensity of the electric field formed at the tip of the emitter tip 21 is adjusted to reduce the size of the ion beam 14, the ion beam 14 is focused on the sub-nanometer diameter and scanned while irradiating the sample 9 with the sub-nanometer resolution.
  • the two-dimensional elemental distribution image can be obtained.
  • the sample 9 can be shaved in the depth direction of the sample 9 over time. In this way, the three-dimensional element distribution analysis of the elements in the sample 9 can be performed. In particular, it was found that when a neon beam or an argon beam is used, the amount of hydrogen remaining in the background can be reduced to perform highly sensitive analysis.
  • the inventors have a strong electric field when extracting ions, and impurity ions such as hydrogen do not reach the tip of the emitter tip 21 and emit in a direction greatly deviated from the direction of the sample 9. I found out.
  • the hydrogen ion beam is applied to the sample 9 and embedded in the sample 9 to prevent the hydrogen from being detected.
  • the effect of improving the negative secondary ion collection efficiency of hydrogen and oxygen and the effect of reducing the amount of hydrogen gas and oxygen gas to a very small amount By this, ultrasensitive analysis of hydrogen and oxygen is realized.
  • the diameter of the argon ion beam is focused on the bunameter, an extremely fine two-dimensional element distribution image can be obtained, and the three-dimensional element distribution analysis can be performed.
  • a non-evaporable getter material 77 is disposed in the vicinity of the sample 9 (in the sample chamber). For this reason, when hydrogen gas, oxygen gas, etc. were adsorbed by the non-evaporable getter material 77, it was found that the concentration of hydrogen or oxygen existing in the background is lowered and high sensitivity analysis is realized.
  • a heating mechanism 78 for the non-evaporable getter material is installed on the atmosphere side of the sample chamber container so that the non-evaporable getter material 77 can be reactivated. That is, there is an effect that a state in which high sensitivity analysis is possible can be continued for a long time.
  • a vacuum exhaust pump 52 that contains a non-evaporable getter material 51 is connected to the sample chamber 3 via a valve 53 that can be vacuum-blocked.
  • a valve 53 that can be vacuum-blocked.
  • the valve 53 that can be shut off by vacuum is closed.
  • the non-evaporable getter material 51 adsorbs oxygen gas, so the time until the non-evaporable getter material 51 is reactivated is shortened.
  • the valve 53 that can shut off the vacuum can be closed. This is because the time until the non-evaporable getter material 51 is reactivated can be lengthened. That is, there is an effect that a state in which high sensitivity analysis can be performed efficiently can be continued for a long time.
  • the mass spectrometer 6 is connected to a vacuum exhaust pump 74 containing a non-evaporable getter material 73 via a valve 75 that can be shut off by vacuum.
  • a vacuum exhaust pump 74 containing a non-evaporable getter material 73 via a valve 75 that can be shut off by vacuum.
  • hydrogen gas and oxygen gas diffused from the material analyzer 6 and supplied to the surface of the sample 9 have not been considered.
  • the ion beam irradiation system column 2 for supplying the irradiation ion beam stands upright with respect to the ion beam elemental analyzer installation surface 20, that is, the floor, and connects the secondary ion beam.
  • the ion detection system column (time-of-flight mass spectrometry column) 6 to be imaged is installed at an inclination.
  • ⁇ Projection mass spectrometry> In the time-of-flight mass spectrometer 6 according to the present embodiment, projection mass spectrometry is performed. That is, the secondary ions 16 emitted from the sample 9 are imaged on the microchannel plate 56 by the two ion lenses 71 and 72. Then, the two-dimensional signal intensity of the microchannel plate is output as an image signal. However, the ion beam 14 does not necessarily have to scan over the sample 9.
  • a time-of-flight mass spectrometer is used as the mass spectrometer 6. However, a quadrupole mass spectrometer and a sector mass spectrometer can be applied.
  • ⁇ Types of ion gas> Although argon ions are used in this embodiment, similar effects can be obtained by using xenon, krypton, or the like. In addition, when xenon or krypton is used, it is possible to expect an effect that the magnetic field noise is not particularly affected. Further, it may be a mixed gas including a plurality of gas types such as two types of mixed gases and three types of mixed gases.
  • the gas field ion source 1 is connected to at least three gas containers.
  • the first gas container 81 contains at least oxygen gas
  • the second gas container 82 contains at least one of neon, argon, xenon, and krypton
  • the third gas container 83 contains either hydrogen or helium. It is out.
  • the sample 9 is irradiated with an oxygen gas ion beam, and positive secondary ions are detected, thereby realizing highly sensitive analysis of electropositive elements. can do.
  • any one of neon, argon, xenon, and krypton in the second gas container 82 is used. Then, while supplying alkali metal from the alkali metal supply unit 30 to the sample, the sample 9 is irradiated with the gas ion beam 14 to detect negative secondary ions, thereby detecting high sensitivity of hydrogen and oxygen contained in the sample 9. Analysis can be realized.
  • a scanned ion image of the surface of the sample 9 can be obtained without damaging the sample. Obtainable.
  • an elemental analyzer that can obtain structural information and elemental information on the surface of the sample 9 is provided.
  • a mixed gas container containing a plurality of gas types such as two kinds of mixed gases or three kinds of mixed gases may be used. Gas may be used alternately.
  • the ion beam elemental analyzer according to the second embodiment differs from that according to the first embodiment in the configuration of the alkali metal supply unit 30. Other configurations are the same as those of the ion beam element analyzer (FIG. 1) according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of the alkali metal supply unit 30 according to the second embodiment.
  • the alkali metal supply unit 30 includes an alkali metal storage chamber 31 that stores the alkali metal 29 therein, a first heating mechanism 32 that heats the alkali metal storage chamber 31, an alkali metal storage chamber 31, and a first valve 37.
  • a purification chamber 34 that is connected to each other, a first exhaust part 33 that is connected to the alkali metal storage chamber 31 via a second valve 38 and removes impurities by evacuating the alkali metal storage chamber 31, and purification.
  • an alkali metal (for example, rubidium) 29 is placed on the metal net 47.
  • the purification chamber 34 is provided with an open container 41 for storing the alkali metal 29.
  • the first exhaust part 33 is configured by, for example, a combination of a turbo molecular pump 42 and a rotary pump 50.
  • the second exhaust part 36 includes a non-evaporable getter material 44 and a heating mechanism 45 thereof. As described above, the heating mechanism 45 is disposed in the atmosphere outside the vacuum vessel. Each valve can be vacuum shut off.
  • alkali metal lithium, sodium, potassium, rubidium, cesium, and francium can be used. In this embodiment, for example, rubidium is used.
  • the non-evaporable getter material 44 that is the second exhaust part 36 provided in the purification chamber 34 is brought into an ultra-high vacuum state by an activation procedure similar to that of the first embodiment.
  • the purification chamber 34 can be directly evacuated using the third exhaust part 49 connected to the purification chamber 34 via the fourth valve 48.
  • the storage chamber 31 is opened to the atmosphere with the first valve 37 closed. Since rubidium 29, which is an alkali metal, reacts with oxygen, water, and the like, in this embodiment, it is disposed on the metal net 47 in the storage chamber in a nitrogen purged atmosphere.
  • the second valve 38 is opened, and the storage chamber 31 is evacuated by the first exhaust part 33. Then, the storage chamber 31 is heated to about 50 ° C. by the first heating mechanism 32. Then, rubidium 29 melts. When the rubidium 29 is dissolved, the first valve 37 is opened and the storage chamber 31 and the purification chamber 34 are connected. The melted rubidium 29 passes through the connecting pipe 46 and falls to the purification chamber 34.
  • an open container 41 for storing rubidium is disposed in the vicinity of the terminal end of the connecting pipe 46.
  • hydrogen gas, oxygen gas, nitrogen gas, water vapor, and the like are also diffused from the storage chamber 31 and introduced into the purification chamber 34.
  • these gases are absorbed with high efficiency by the non-evaporable getter material 44.
  • the rubidium 29 is highly purified, and the purification chamber 34 is maintained in an ultra-high vacuum.
  • the third valve 39 is opened and the rubidium 29 is heated by the second heating mechanism 35, the high-purity rubidium 29 is supplied to the surface of the sample 9 through the nozzle 40.
  • the hydrogen gas and oxygen gas generated in the purification chamber 34 are absorbed by the non-evaporable getter material 44, so that these gases hardly reach the sample 9.
  • the ion beam 14 is made finer by adjusting the electric field strength formed at the tip of the emitter tip 21, focused with a subnanometer diameter, and scanned while irradiating the sample 9 with the ion beam 14, the subnanometer resolution can be obtained.
  • the two-dimensional elemental distribution image can be obtained.
  • the sample 9 can be shaved in the depth direction as time passes. In this way, the three-dimensional element distribution analysis of the elements in the sample 9 can be performed.
  • the activation of the non-evaporable getter material 44 built in the purification chamber 34 can also be performed using the fourth valve 48 and the third exhaust part 49. That is, the hydrogen generated from the non-evaporable getter material 44 when the non-evaporable getter material 44 is heated by the heating mechanism 45 and the first valve 37 and the third valve 39 are closed and the fourth valve 48 is opened. Gas, oxygen gas, or the like is exhausted by the third exhaust unit 49. After the reactivation, the fourth valve 48 is closed. By doing so, the non-evaporable getter material 44 can be activated.
  • An ion beam apparatus has an alkali metal ion irradiation system column 200 in place of the alkali metal supply unit 30 in the first and second embodiments. Yes.
  • FIG. 7 is a diagram illustrating a configuration example of the ion beam apparatus according to the third embodiment.
  • an ion beam element analyzer will be described as an example of the ion beam apparatus.
  • the ion beam elemental analyzer of this example includes a gas field ion source 1, an ion beam irradiation system column 2, a sample chamber 3, a cooling mechanism 4, a time-of-flight mass spectrometry column 6, and a cesium ion irradiation system column. 200 and an ion source gas supply unit 26.
  • the gas field ion source 1, the ion beam irradiation system column 2, the sample chamber 3, the time-of-flight mass spectrometry column 6, the cesium ion irradiation system column 200, and the like are vacuum containers. According to the ion beam elemental analysis apparatus, it is possible to identify an element of the sample 9, obtain a two-dimensional distribution image of a specific element, and analyze a three-dimensional distribution.
  • the operation of the gas field ion source, the operation of the ion beam irradiation system, the operation of the mass spectrometer, and the like are the same as in the first embodiment.
  • neon is used as the gas ion species with which the sample 9 is irradiated.
  • the ion beam irradiation system column 2 stands upright with respect to the ion beam element analyzer installation surface 20, that is, the floor, and the time-of-flight mass analysis column 6 is inclined.
  • the angle of the irradiation direction from the surface of the sample 9 is preferably 0 degrees or more and at most 10 degrees so that the irradiation direction of the cesium ion beam is substantially parallel to the surface of the sample 9. It is arranged to be as follows.
  • the cesium ion irradiation system column 200 includes a cesium liquid metal ion source 201, an ion potential electrode 202, a focusing lens 203, an objective lens 204, and the like.
  • a positive 0.5 kV is applied to the cesium liquid metal ion source 201
  • a negative 3 kV is applied to the ion potential electrode 202.
  • the sample 9 is irradiated with cesium ions having a low energy of 0.5 kV.
  • the cesium concentration can always be kept in an optimum state, the cesium concentration can be adjusted so that the sensitivity of hydrogen and oxygen does not change. Further, the sample 9 is irradiated with cesium with extremely low energy using an ion potential electrode. For this reason, the effect that the sputter damage by cesium ion can be reduced can be expected. The same effect can be obtained with lithium, sodium, potassium, rubidium, and francium, which are alkali metals other than cesium. It was also found that when argon was used in addition to neon, the ion source generated an ion beam of hydrogen and oxygen with less sensitivity, enabling ultra-high sensitivity analysis.
  • the beam irradiation system and the sample chamber 3 for storing the sample 9 and the alkali metal ion beam can be irradiated to the sample 9 from a substantially parallel direction
  • the gas ion beam 14 is irradiated to the sample 9 from a substantially vertical direction.
  • an ion beam elemental analysis apparatus having a system capable of detecting secondary ions emitted from a sample 9.
  • a non-evaporable getter material 77 is installed in the vicinity of the sample 9 placed in the sample chamber 3.
  • a heating mechanism 78 for heating the non-evaporable getter material 77 is installed on the atmosphere side of the container of the sample chamber 3.
  • the non-evaporable getter material 77 since hydrogen gas, oxygen gas, and the like are adsorbed by the non-evaporable getter material 77, the concentration of hydrogen and oxygen present in the background decreases, and the hydrogen and oxygen contained in the sample 9 are analyzed with high sensitivity. It becomes possible.
  • a heating mechanism 78 for the non-evaporable getter material 77 is installed on the atmosphere side of the container of the sample chamber 3. Thereby, the non-evaporable getter material 77 can be reactivated. That is, there is an effect that a state in which high sensitivity analysis is possible can be continued for a long time.
  • the ion beam apparatus (ion beam elemental analysis apparatus) has a supply unit for supplying an alkali metal to a sample.
  • the supply unit includes a first exhaust unit and a second exhaust unit (specific gas removal unit) that exhausts hydrogen gas or oxygen gas after the operation of the first exhaust unit.
  • the second exhaust part may include a non-evaporable getter material.
  • Impurity gas generated from the atmosphere and alkali metal in the supply unit is exhausted by the first exhaust unit, and further generated from a container or the like when pure alkali metal is heated by the non-evaporable getter material contained in the second exhaust unit
  • the supply unit has a purification chamber and a storage chamber for storing alkali metal.
  • the purification chamber and the sample chamber are connected by a first valve, and the storage chamber and the purification chamber are connected by a second valve, respectively.
  • a material containing an alkali metal is disposed in the storage chamber, and the alkali metal is stored in a vacuum by exhausting the impurity gas generated from the atmosphere and the alkali metal in the storage chamber with the second valve closed.
  • the alkali metal is evaporated by heating with the first valve opened and the second valve closed. Thereby, a part of alkali metal can be moved to the purification chamber.
  • the 2nd exhaust part contains a non-evaporable getter material, when heating a pure alkali metal, hydrogen gas and oxygen gas which generate
  • a non-evaporable getter material and a heating unit may be provided inside the purification chamber.
  • the non-evaporable getter material in the second exhaust part can be heated and activated. That is, it becomes possible to keep the exhaust speed of the non-evaporable getter material with respect to hydrogen gas and oxygen gas at a high level.
  • the ion source may be a gas field ion source.
  • the sample can be irradiated with a gas ion beam emitted from a gas field ion source.
  • two-dimensional and three-dimensional elemental analysis can be performed by irradiating a sample with an extremely fine gas ion beam. That is, it becomes possible to investigate the three-dimensional distribution of extremely small amounts of hydrogen and oxygen.
  • the sample is less damaged than when a conventional gallium metal is used, which is suitable for examining the structure of the sample.
  • the gas field ion source is connected to at least three kinds of gas containers.
  • the first gas container contains at least oxygen gas
  • the second gas container contains at least one of neon, argon, xenon, and krypton
  • the third gas container contains either hydrogen or helium.
  • various types of gas ion beams can be irradiated onto the sample from the gas field ion source.
  • oxygen gas in the first gas container is used, highly sensitive analysis of an electropositive element can be realized by irradiating the sample with an oxygen gas ion beam and detecting positive secondary ions.
  • a non-evaporable getter material for removing a trace amount of hydrogen gas or oxygen gas (specific gas) may be disposed in the supply unit.
  • a container for storing the non-evaporable getter material may be connected to the sample chamber. Even in this case, the hydrogen gas and oxygen gas in the sample chamber can be exhausted at high speed by the non-evaporable getter material, the hydrogen and oxygen gas can be reduced, and the secondary ion background can be lowered. Therefore, a very small amount of hydrogen and oxygen contained in the sample can be detected with extremely high sensitivity.
  • the container for storing the non-evaporable getter material and the sample chamber are connected via a valve. Thus, if the valve is closed during elemental analysis other than hydrogen and oxygen analysis, the activation interval of the non-evaporable getter material can be lengthened. That is, an efficient operation of the apparatus is realized.
  • a non-evaporable getter material for removing a trace amount of hydrogen gas or oxygen gas (specific gas) is disposed in the supply unit, and the non-evaporable getter is disposed in the sample chamber.
  • a container for storing the material may be connected.
  • a non-evaporable getter material may be installed in the sample chamber (near the sample). Even in this case, the hydrogen gas and oxygen gas in the sample chamber can be reduced, and the secondary ion background can be lowered. Then, if the gas ion beam emitted from the gas field ion source is finely bundled and irradiated on the sample, ultra-sensitive two-dimensional and three-dimensional elemental analysis of hydrogen and oxygen becomes possible.
  • the ion beam apparatus is emitted from the sample, the ion beam irradiation system for irradiating the sample with the gas ion beam emitted from the ion source, the ion beam irradiation system for irradiating the sample with alkali metal ions. And a system capable of detecting secondary ions.
  • the alkali metal ion beam can be irradiated from the substantially parallel direction to the sample, and the gas ion beam is irradiated from the substantially vertical direction to the sample.
  • Sample element analysis in the present embodiment is performed by irradiating a sample with a gas ion beam, evaporating an alkali metal raw material, adsorbing hydrogen or oxygen by a non-evaporated getter material, and supplying an alkali metal vapor to the sample. , And irradiating the sample with a gas ion beam to detect secondary ions emitted from the sample.
  • a gas ion beam to detect secondary ions emitted from the sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

The present invention provides a practical technique for analyzing sample elements using an ion beam, wherein ultra micro-trace amounts of hydrogen and oxygen, in particular, in a sample can be detected with very high sensitivity. The present invention also provides a technique for conventionally difficult element analysis for investigating the 3D distribution of trace amounts of hydrogen and oxygen in a sample. The ion beam device of the present invention has: an ion source, an ion beam irradiation system for irradiating ions discharged from an ion source to a sample, a sample chamber for accommodating the sample, a detection system for detecting secondary ions discharged from the sample irradiated with the ion beam, an alkali metal feed system for feeding an alkali metal to the sample, and a specified-gas removal unit for removing hydrogen gas and/or oxygen gas originating in the alkali metal fed to the sample.

Description

イオンビーム装置、及び試料元素分析方法Ion beam apparatus and sample element analysis method
 本発明は、イオンビーム装置、及び試料元素分析方法に関する。 The present invention relates to an ion beam apparatus and a sample element analysis method.
 イオンビームを試料に照射して、試料から放出される二次イオンを質量分析すれば、試料表面を元素分析することができる。これは二次イオン質量分析(Secondary Ion Mass Spectrometry以下、SIMSと略記)と呼ばれる。特許文献1には、イオン源としてディオプラズマトロン表面電離型セシウムイオン源およびサイドエントリー形液体金属イオン源を搭載したSIMS装置が開示されている。特許文献2には、SIMS装置でガリウムイオンを試料に照射して中性セシウムを試料に堆積させて試料元素Mとセシウムの複合イオンを検出する手法が開示されている。 If the sample is irradiated with an ion beam and the secondary ions released from the sample are subjected to mass analysis, the sample surface can be subjected to elemental analysis. This is called secondary ion mass spectrometry (Secondary Ion Mass Spectrometry, hereinafter abbreviated as SIMS). Patent Document 1 discloses a SIMS device equipped with a Dioplasmatron surface ionization type cesium ion source and a side entry type liquid metal ion source as an ion source. Patent Document 2 discloses a technique for detecting a composite ion of sample element M and cesium by irradiating a sample with gallium ions and depositing neutral cesium on the sample with a SIMS apparatus.
特開平5-2644825号公報Japanese Unexamined Patent Publication No. 5-264448 特表2006-504090号公報JP 2006-504090 Gazette
 従来SIMSでは、主に3種類のイオン源が使われる。1つは酸素プラズマイオン源であり、主に電気的陽性元素を分析するために用いられる。このときに検出するのは正二次イオンである。またもう1つはセシウム表面電離型イオン源であり、主に電気的陰性元素や水素・酸素・炭素などを分析するために用いられる。このときに検出するのは負二次イオンである。また、ガリウム液体金属イオン源やガス電界電離イオン源は、微小部を分析するために用いることができる。 In conventional SIMS, three types of ion sources are mainly used. One is an oxygen plasma ion source, which is mainly used to analyze electropositive elements. At this time, positive secondary ions are detected. The other is a cesium surface ionization ion source, which is mainly used for analyzing electronegative elements, hydrogen, oxygen, carbon and the like. At this time, negative secondary ions are detected. A gallium liquid metal ion source or a gas field ion source can be used to analyze a minute portion.
 近年、極微細な構造で微量の不純物を元素分析するといったニーズが高まっている。特に極微細なビームを照射して極微量な水素や酸素を検出して三次元の分布を調べることが必要になっている。水素や酸素を高感度で検出するためには、従来は既に述べたようにセシウムイオンを照射する手法を用いる。 In recent years, there has been an increasing need for elemental analysis of trace amounts of impurities with an extremely fine structure. In particular, it is necessary to examine a three-dimensional distribution by detecting a very small amount of hydrogen or oxygen by irradiating a very fine beam. In order to detect hydrogen and oxygen with high sensitivity, conventionally, a method of irradiating cesium ions as described above is used.
 しかし、セシウムイオンを発生させる表面電離型イオン源では、イオン源の性能に限界があって微細なビームを形成できないという課題がある。 However, the surface ionization type ion source that generates cesium ions has a problem that the performance of the ion source is limited and a fine beam cannot be formed.
 また、セシウムを試料に中性の状態で供給するという試みがあったが、このときにセシウムと同時に試料に供給される水素や酸素などについては十分考慮されていなかった。すなわち、セシウムをイオンではなくて中性蒸気にして試料に供給する場合には、セシウムを室温に比べて高い温度に加熱する必要がある。そして、発明者らは、このときに高純度の金属セシウムの表面および内部にわずかに含む水素や酸素、さらに加熱した容器表面および内部に含まれるわずかな水素や酸素などが試料表面に到達するということを見出した。つまり、発明者らは、この場合に、試料中の極微量の水素や酸素などを検出しようと試みると、高純度金属セシウム供給システムから極微量の水素や酸素がバックグランドとして供給されるため試料中の水素や酸素の検出下限が高くなってしまうという課題が生じることを突き止めたのである。よって、試料中の極微量の水素や酸素などの分布が調べられなくなってしまう。従来では、セシウムを供給する場合に、高純度の金属セシウムを用いれば不純物が少ないと考えられていてこの課題は発見されていなかった。なお、上述のガリウム液体金属イオン源やガス電界電離イオン源を用いればビームの微細化は可能ではあるものの、これらを用いても酸素や水素がバックグランドとして供給されてしまうという課題を解決することはできないため、試料中の水素や酸素の検出感度を高めることはできない。 There was also an attempt to supply cesium to the sample in a neutral state, but hydrogen and oxygen supplied to the sample simultaneously with cesium were not sufficiently considered. That is, when supplying cesium to a sample as neutral vapor instead of ions, it is necessary to heat cesium to a temperature higher than room temperature. At this time, the inventors say that hydrogen and oxygen slightly contained in and on the surface and inside of the high-purity metal cesium, and further slight hydrogen and oxygen contained in the heated container surface and inside reach the sample surface. I found out. That is, in this case, the inventors try to detect a very small amount of hydrogen, oxygen, etc. in the sample, because a very small amount of hydrogen or oxygen is supplied as a background from the high-purity metal cesium supply system. It has been found that the problem that the lower limit of detection of hydrogen and oxygen in the inside becomes high arises. Therefore, the distribution of trace amounts of hydrogen, oxygen, etc. in the sample cannot be examined. Conventionally, when high-purity metal cesium is used when supplying cesium, it is considered that there are few impurities, and this problem has not been discovered. Although the beam can be miniaturized by using the above-described gallium liquid metal ion source and gas field ion source, the problem of oxygen and hydrogen being supplied as a background even when these are used is solved. Therefore, the detection sensitivity of hydrogen and oxygen in the sample cannot be increased.
 以上に述べた理由により、従来は試料極微小部の極微量の水素や酸素を超高感度に検出できる実用的な元素分析装置は実現されていなかった。また、試料中の極微量の水素や酸素の三次元分布を調べる元素分析する装置についても実現されていなかった。 For the reasons described above, a practical elemental analyzer that can detect a very small amount of hydrogen and oxygen in a very small portion of the sample with ultrahigh sensitivity has not been realized. Also, an elemental analysis device for examining the three-dimensional distribution of trace amounts of hydrogen and oxygen in a sample has not been realized.
 本発明はこのような状況に鑑みてなされたものであり、イオンビームを用いる試料元素分析装置において、特に試料極微小部の極微量の水素や酸素を超高感度に検出できる実用的な元素分析技術を提供するものである。また、本発明は、従来は困難であった試料中の極微量の水素や酸素の三次元分布を調べるための元素分析技術を提供するものである。 The present invention has been made in view of such a situation, and in a sample element analysis apparatus using an ion beam, practical elemental analysis capable of detecting extremely small amounts of hydrogen and oxygen in a very small part of the sample, in particular, with extremely high sensitivity. Provide technology. The present invention also provides an elemental analysis technique for examining a three-dimensional distribution of trace amounts of hydrogen and oxygen in a sample, which has been difficult in the past.
 上記課題を解決するために、本発明によるイオンビーム装置は、イオン源と、イオン源から放出されるイオンを試料に照射するイオンビーム照射系と、試料を収納する試料室と、イオンビームを試料に照射して試料から放出される二次イオンを検出する検出システムと、アルカリ金属を試料に供給するアルカリ金属供給システムと、試料に供給されるアルカリ金属に起因する水素ガス及び/又は酸素ガスを取り除く特定ガス除去部と、を有する。 In order to solve the above-described problems, an ion beam apparatus according to the present invention includes an ion source, an ion beam irradiation system that irradiates a sample with ions emitted from the ion source, a sample chamber that stores the sample, and an ion beam as a sample. A detection system for detecting secondary ions emitted from the sample upon irradiation, an alkali metal supply system for supplying alkali metal to the sample, and hydrogen gas and / or oxygen gas resulting from the alkali metal supplied to the sample A specific gas removing unit to be removed.
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本発明の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。 Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. The embodiments of the present invention can be achieved and realized by elements and combinations of various elements and the following detailed description and appended claims.
 本明細書の記述は典型的な例示に過ぎず、本発明の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。 It should be understood that the descriptions in this specification are merely exemplary, and are not intended to limit the scope of the claims or the application of the present invention in any way.
 本発明によれば、試料の極微量の水素や酸素を超高感度に検出できる実用的な元素分析を実現することが可能となる。また、従来は困難であった試料中の極微量の水素や酸素の三次元分布を調べることができるようになる。 According to the present invention, it is possible to realize a practical elemental analysis that can detect a very small amount of hydrogen or oxygen in a sample with extremely high sensitivity. Further, it becomes possible to investigate a three-dimensional distribution of a trace amount of hydrogen and oxygen in a sample, which has been difficult in the past.
本発明の実施形態によるイオンビーム元素分析装置の概略構成例を示す図である。It is a figure which shows the schematic structural example of the ion beam elemental analyzer by embodiment of this invention. 本発明の第1の実施形態によるアルカリ金属供給部の概略構成例を示す図である。It is a figure which shows the schematic structural example of the alkali metal supply part by the 1st Embodiment of this invention. 本発明の実施形態によるイオンビーム元素分析装置の制御系の例を示す図である。It is a figure which shows the example of the control system of the ion beam elemental analyzer by embodiment of this invention. 純化室に備えられている非蒸発ゲッタ材料の活性化の手順を示す図である。It is a figure which shows the procedure of activation of the non-evaporable getter material with which the purification chamber is equipped. アルカリ金属を試料表面に供給する手順を示す図である。It is a figure which shows the procedure which supplies an alkali metal to the sample surface. 本発明の第2の実施形態によるアルカリ金属供給部の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the alkali metal supply part by the 2nd Embodiment of this invention. 本発明の第3の実施形態によるイオンビーム元素分析装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the ion beam elemental analyzer by the 3rd Embodiment of this invention.
 本発明の実施形態は、高純度アルカリ金属供給システムからバックグランドとして供給されてしまう極微量の水素や酸素を除去するために、2種類の不純物除去構成を提供する。1つはアルカリ金属を収納する収納室の内部の不純物を排気する第1の排気機構であり、もう1つは第1の排気機構によって不純物が取り除かれた後のアルカリ金属から残存する水素及び/又は酸素を排気する第2の排気機構である。 Embodiments of the present invention provide two types of impurity removal configurations in order to remove trace amounts of hydrogen and oxygen that are supplied as a background from a high-purity alkali metal supply system. One is a first exhaust mechanism for exhausting impurities inside the storage chamber for storing the alkali metal, and the other is hydrogen remaining from the alkali metal after impurities are removed by the first exhaust mechanism and / or Alternatively, the second exhaust mechanism exhausts oxygen.
 以下、添付図面を参照しながら本発明の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本発明の原理に則った具体的な実施形態と実装例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, functionally identical elements may be denoted by the same numbers. The attached drawings show specific embodiments and implementation examples based on the principle of the present invention, but these are for understanding the present invention and are not intended to limit the present invention. Not used.
 本実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 This embodiment has been described in sufficient detail for those skilled in the art to practice the present invention, but other implementations and configurations are possible without departing from the scope and spirit of the technical idea of the present invention. It is necessary to understand that the configuration and structure can be changed and various elements can be replaced. Therefore, the following description should not be interpreted as being limited to this.
(1)第1の実施形態
 <イオンビーム装置の構成>
 図1は、本発明の実施形態によるイオンビーム装置の構成例を示す図である。以下では、イオンビーム装置として、イオンビーム元素分析装置の第1の例を説明する。
(1) First Embodiment <Configuration of Ion Beam Device>
FIG. 1 is a diagram illustrating a configuration example of an ion beam apparatus according to an embodiment of the present invention. Below, the 1st example of an ion beam elemental-analysis apparatus is demonstrated as an ion beam apparatus.
 本例のイオンビーム元素分析装置は、ガス電界電離イオン源1と、イオンビーム照射系カラム2と、試料室3と、冷却機構4と、飛行時間型質量分析カラム(質量分析計)6と、アルカリ金属供給部30と、イオン源ガス供給部26と、を有する。ここで、ガス電界電離イオン源1、イオンビーム照射系カラム2、試料室3、及び飛行時間型質量分析カラム6などは真空容器である。なお、イオンビーム元素分析装置によれば、試料の元素の同定および特定の元素の二次元分布像取得、三次元分布解析陥などが可能である。 The ion beam elemental analyzer of this example includes a gas field ion source 1, an ion beam irradiation system column 2, a sample chamber 3, a cooling mechanism 4, a time-of-flight mass analysis column (mass spectrometer) 6, An alkali metal supply unit 30 and an ion source gas supply unit 26 are provided. Here, the gas field ion source 1, the ion beam irradiation system column 2, the sample chamber 3, the time-of-flight mass spectrometry column 6 and the like are vacuum containers. According to the ion beam elemental analyzer, it is possible to identify an element of a sample, acquire a two-dimensional distribution image of a specific element, and analyze a three-dimensional distribution.
 図1に示すように、イオンビーム照射系カラム2は、例えば、イオンビーム元素分析装置設置面20すなわち床に対して直立して設置され、飛行時間型質量分析カラム6は傾斜する。また、試料室3には、アルカリ金属供給部30が取り付けられている。アルカリ金属供給部30は、試料9の表面に、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムなどのアルカリ金属を供給する。なお、本実施形態では、一例として、アルカリ金属にセシウムを用いた例について説明する。 As shown in FIG. 1, the ion beam irradiation system column 2 is, for example, installed upright with respect to the ion beam element analyzer installation surface 20, that is, the floor, and the time-of-flight mass analysis column 6 is inclined. An alkali metal supply unit 30 is attached to the sample chamber 3. The alkali metal supply unit 30 supplies an alkali metal such as lithium, sodium, potassium, rubidium, cesium, and francium to the surface of the sample 9. In the present embodiment, an example in which cesium is used as an alkali metal will be described as an example.
 まず、ガス電界電離イオン源1は、針状のエミッタティップ21と、当該エミッタティップ21に対向して設けられ、イオンが通過する開口部27を有する引き出し電極24と、細線状のフィラメント22と、円柱状のフィラメントマウント23と、円柱状のエミッタベースマウント64と、を有する。 First, the gas field ion source 1 includes a needle-like emitter tip 21, an extraction electrode 24 provided facing the emitter tip 21 and having an opening 27 through which ions pass, a thin filament 22, It has a cylindrical filament mount 23 and a cylindrical emitter base mount 64.
 また、ガス電界電離イオン源1は、真空容器15を真空排気するイオン源真空排気用ポンプ12を備えている。イオン源真空排気用ポンプ12は、真空遮断可能なバルブ29を介して真空容器15と接続されている。 Further, the gas field ion source 1 is provided with an ion source evacuation pump 12 for evacuating the vacuum vessel 15. The ion source evacuation pump 12 is connected to the vacuum container 15 through a valve 29 that can be evacuated.
 さらに、ガス電界電離イオン源1は、エミッタティップ21の傾斜を変える傾斜機構61を含む。傾斜機構61は、エミッタベースマウント64に固定されている。この傾斜機構61は、エミッタティップ先端の方向をイオンビーム照射軸62に精度良く合わせるために用いる。本実施形態のように、イオンビーム照射系カラム2がイオンビーム元素分析装置設置面20すなわち床に対して直立、すなわちガス電界電離イオン源1が直立する場合には、傾斜機構61を設けることにより、エミッタティップ21の傾斜精度を高められ、かつ傾斜方向のドリフト移動が無く、好適なイオン元素分析装置を実現できるという効果を奏する。 Furthermore, the gas field ion source 1 includes a tilt mechanism 61 that changes the tilt of the emitter tip 21. The tilt mechanism 61 is fixed to the emitter base mount 64. This tilting mechanism 61 is used to accurately align the direction of the tip of the emitter tip with the ion beam irradiation axis 62. As in this embodiment, when the ion beam irradiation system column 2 stands upright with respect to the ion beam element analyzer installation surface 20 or floor, that is, when the gas field ion source 1 stands upright, the tilt mechanism 61 is provided. In addition, the tilt accuracy of the emitter tip 21 can be improved, and there is no drift movement in the tilt direction, so that a suitable ion element analyzer can be realized.
 また、ガス電界電離イオン源1は、少なくとも3種以上のガス容器と接続されている。第1のガス容器81は、少なくとも酸素ガスを含み、第2のガス容器82はネオン、アルゴン、キセノン、クリプトンの内すくなくとも1種を含み、第3のガス容器83は水素、ヘリウムのいずれかを含んでいる。 The gas field ion source 1 is connected to at least three kinds of gas containers. The first gas container 81 contains at least oxygen gas, the second gas container 82 contains at least one of neon, argon, xenon, and krypton, and the third gas container 83 contains either hydrogen or helium. Contains.
 イオンビーム照射系は、ガス電界電離イオン源1から放出されたイオンビームを集束する集束レンズ5と、パルス化電極7と、対物レンズ8と、を有している。なお、集束レンズ5および対物レンズ8は複数の電極からなる静電型レンズである。また、パルス化電極7は、例えば、対向する平行電極である。また、イオンビーム照射系には、図示はしていないが、集束レンズ5を通過したイオンビーム14を制限する可動なアパーチャや、当該アパーチャを通過したイオンビームを走査あるいはアラインメントする偏向器なども内包されている。これらは、イオン源1からのエミッションパターン観察や、走査イオンビーム像取得の場合に使用される。 The ion beam irradiation system includes a focusing lens 5 that focuses the ion beam emitted from the gas field ion source 1, a pulsed electrode 7, and an objective lens 8. The focusing lens 5 and the objective lens 8 are electrostatic lenses composed of a plurality of electrodes. The pulsed electrode 7 is, for example, an opposing parallel electrode. Although not shown, the ion beam irradiation system includes a movable aperture that limits the ion beam 14 that has passed through the focusing lens 5 and a deflector that scans or aligns the ion beam that has passed through the aperture. Has been. These are used for emission pattern observation from the ion source 1 and scanning ion beam image acquisition.
 試料室3は、その内部に、試料9を載置する試料ステージ10と、イオンビームを試料に衝突させた場合に、試料から放出される二次電子などを検出する荷電粒子検出器(図示せず)と、試料9のチャージアップを中和するための電子銃(図示せず)と、を含んでいる。本例のイオン元素分析装置は、更に、試料室3を真空排気する試料室真空排気用ポンプ13を有する。本実施例では、さらに非蒸発ゲッタ材料51を内包する真空排気ポンプ52を有しており、試料室3と真空排気ポンプ52との間には真空遮断可能なバルブ53および加熱機構54が配置されている。 The sample chamber 3 includes a sample stage 10 on which the sample 9 is placed and a charged particle detector (not shown) that detects secondary electrons emitted from the sample when the ion beam collides with the sample. And an electron gun (not shown) for neutralizing the charge-up of the sample 9. The ion element analyzer of this example further includes a sample chamber evacuation pump 13 that evacuates the sample chamber 3. In the present embodiment, a vacuum exhaust pump 52 that further contains a non-evaporable getter material 51 is provided, and a vacuum shut-off valve 53 and a heating mechanism 54 are disposed between the sample chamber 3 and the vacuum exhaust pump 52. ing.
 飛行時間型質量分析カラム6は真空容器であり、二次イオンを集束するためのイオンレンズ71、及び二次イオンを結像するイオンレンズ72などを内包している。また、二次イオン検出部55は、マイクロチャネルプレート56と、二次元電気検出器などによって構成されている。本実施形態では、飛行時間型質量分析カラム6は、さらに、非蒸発ゲッタ材料73を内包する真空排気ポンプ74を有している。この真空排気ポンプ74は、大気側に非蒸発ゲッタ材料の加熱機構76(真空排気ポンプ74に加熱機構76を挿入するための凹部が設けられており、加熱機構76が真空排気ポンプ74の内部とは隔離された構造となっている)を備える。さらに、試料室3と真空排気ポンプ74との間には真空遮断可能なバルブ75が配置されている。 The time-of-flight mass spectrometry column 6 is a vacuum vessel, and includes an ion lens 71 for focusing secondary ions, an ion lens 72 for imaging secondary ions, and the like. The secondary ion detector 55 includes a microchannel plate 56 and a two-dimensional electric detector. In the present embodiment, the time-of-flight mass spectrometry column 6 further includes a vacuum exhaust pump 74 that contains a non-evaporable getter material 73. This vacuum exhaust pump 74 is provided with a heating mechanism 76 (a recess for inserting the heating mechanism 76 in the vacuum exhaust pump 74) on the atmosphere side, and the heating mechanism 76 is connected to the inside of the vacuum exhaust pump 74. Has an isolated structure). Further, a valve 75 capable of shutting off the vacuum is disposed between the sample chamber 3 and the vacuum exhaust pump 74.
 さらに、試料近傍(試料室3の内部)には非蒸発ゲッタ材料77が設置されている。また、試料室3の容器の大気側には、この非蒸発ゲッタ材料を加熱するための加熱機構78が設置されている。さらに、床20の上に配置された装置架台17の上には、例えば防振機構19を介して、ベースプレート18が配置されている。ガス電界電離イオン源1、イオンビーム照射系カラム2、及び試料室3は、ベースプレート18によって支持されている。 Furthermore, a non-evaporable getter material 77 is installed in the vicinity of the sample (inside the sample chamber 3). A heating mechanism 78 for heating the non-evaporable getter material is installed on the atmosphere side of the container of the sample chamber 3. Further, a base plate 18 is disposed on the device mount 17 disposed on the floor 20 via, for example, a vibration isolation mechanism 19. The gas field ion source 1, the ion beam irradiation system column 2, and the sample chamber 3 are supported by a base plate 18.
 次に、ガス電界電離イオン源1に接続された冷却機構4について説明する。冷却機構4は、ガス電界電離イオン源1の内部、及びエミッタティップ21を冷却する。なお、冷却機構4は、例えばギフォード・マクマホン型(GM型)冷凍機を用いることができる。パルルス管冷凍機を用いることもできるが、この場合、床20には、図示してないがヘリウムガスを作業ガスとする圧縮機ユニット(コンプレッサ)が設置される。圧縮機ユニット(コンプレッサ)の振動は、床20を経由して、装置架台17に伝達される。そのため、上述のように装置架台17とベースプレート18との間には除振機構19が配置されている。これにより、電界電離イオン源1、イオンビーム照射系カラム2、及び真空試料室3などに床の高周波数の振動が伝達しにくくなる。ここでは、床20の振動の原因として、冷凍機及びコンプレッサを説明したが、床20の振動の原因はこれに限定されるものではなく、設置環境による振動であっても良い。また、防振機構19は、防振ゴム、バネ、ダンパ、又は、これらの組合せによって構成されてよい。 Next, the cooling mechanism 4 connected to the gas field ion source 1 will be described. The cooling mechanism 4 cools the inside of the gas field ion source 1 and the emitter tip 21. The cooling mechanism 4 may be a Gifford-McMahon type (GM type) refrigerator, for example. Although a Pulrus tube refrigerator can be used, in this case, a compressor unit (compressor) using helium gas as a working gas (not shown) is installed on the floor 20. The vibration of the compressor unit (compressor) is transmitted to the apparatus base 17 via the floor 20. Therefore, as described above, the vibration isolation mechanism 19 is disposed between the apparatus base 17 and the base plate 18. This makes it difficult for high-frequency vibrations of the floor to be transmitted to the field ionization ion source 1, the ion beam irradiation system column 2, the vacuum sample chamber 3, and the like. Here, the refrigerator and the compressor have been described as the cause of the vibration of the floor 20, but the cause of the vibration of the floor 20 is not limited to this, and may be a vibration due to the installation environment. Further, the vibration isolation mechanism 19 may be configured by a vibration isolation rubber, a spring, a damper, or a combination thereof.
 <アルカリ金属供給部の詳細な構成>
 次に、アルカリ金属供給部30について説明する。図2は、アルカリ金属供給部30の詳細構成を示す図である。
<Detailed configuration of alkali metal supply unit>
Next, the alkali metal supply unit 30 will be described. FIG. 2 is a diagram illustrating a detailed configuration of the alkali metal supply unit 30.
 アルカリ金属供給部30は、アルカリ金属29を内部に収めるアルカリ金属収納室31と、アルカリ金属収納室31を加熱する第1の加熱機構32と、アルカリ金属収納室31と第1のバルブ37を介して接続される純化室34と、アルカリ金属収納室31と第2のバルブ38を介して接続され、アルカリ金属収納室31及び純化室34内を真空にすることにより不純物を取り除く第1の排気部33と、純化室34を加熱する第2の加熱機構35と、純化室34内部に残存する水素及び/又は酸素(アルカリ金属表面や内部に含まれていた水素や酸素)を取り除く第2の排気部36と、第3のバルブ39を介して純化室34と接続され、アルカリ金属を試料9の表面に導くノズル40と、を有している。また、純化室34にはアルカリ金属を溜める開口容器41が設けられている。第1の排気部33は、ターボ分子ポンプ42とドライポンプ43との組み合わせで構成される。また、第2の排気部は、非蒸発ゲッタ材料44と、その加熱機構45とを有しており、加熱機構45により非蒸発ゲッタ材料44を加熱することにより純化室34内の水素や酸素を除去する。当該加熱機構45は、真空容器外側の大気中に配置される。 The alkali metal supply unit 30 includes an alkali metal storage chamber 31 that stores the alkali metal 29 therein, a first heating mechanism 32 that heats the alkali metal storage chamber 31, an alkali metal storage chamber 31, and a first valve 37. The first exhaust section is connected to the purification chamber 34 connected to the alkali metal storage chamber 31 via the second valve 38 and removes impurities by evacuating the alkali metal storage chamber 31 and the purification chamber 34. 33, a second heating mechanism 35 for heating the purification chamber 34, and a second exhaust for removing hydrogen and / or oxygen (hydrogen or oxygen contained in the alkali metal surface or inside) remaining in the purification chamber 34. And a nozzle 40 which is connected to the purification chamber 34 via a third valve 39 and guides alkali metal to the surface of the sample 9. The purification chamber 34 is provided with an open container 41 for storing alkali metal. The first exhaust unit 33 is configured by a combination of a turbo molecular pump 42 and a dry pump 43. Further, the second exhaust part has a non-evaporable getter material 44 and a heating mechanism 45 thereof, and the hydrogen and oxygen in the purification chamber 34 are removed by heating the non-evaporable getter material 44 by the heating mechanism 45. Remove. The heating mechanism 45 is disposed in the atmosphere outside the vacuum vessel.
 また、アルカリ金属収納室31は接続管46によって純化室34と繋がっている。各々のバルブは、例えば、真空遮断可能である。また、アルカリ金属29としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが利用可能であるが、本実施形態ではセシウムを用いている。セシウムは酸素や水などと反応するためガラスアンプルに封じられている。 Further, the alkali metal storage chamber 31 is connected to the purification chamber 34 by a connecting pipe 46. Each valve can be vacuum-blocked, for example. Further, as the alkali metal 29, lithium, sodium, potassium, rubidium, cesium, and francium can be used, but cesium is used in this embodiment. Cesium is sealed in a glass ampoule because it reacts with oxygen and water.
 <イオンビームの微細化について>
 ガス電界電離イオン源1のエミッタティップ21先端は、例えば、原子によるナノメートルオーダのピラミッド型構造で形成されている。これをナノピラミッドと呼ぶことにする。ナノピラミッドは、典型的には、先端に1個の原子を有し、その下に3個又は6個の原子の層を有し、さらにその下に10個以上の原子の層を有する。
<Ion beam miniaturization>
The tip of the emitter tip 21 of the gas field ion source 1 is formed with, for example, a nanometer-order pyramid structure by atoms. This is called the nano pyramid. Nanopyramids typically have a single atom at the tip, a layer of 3 or 6 atoms below it, and a layer of 10 or more atoms below it.
 エミッタティップ21の材質としては、タングステン、モリブデン細線などを用いる。また、エミッタティップ21の先端にナノピラミッドを形成する方法としては、イリジウム、白金、レニウム、オスミウム、パラジュウム、ロジュウム等を被覆させた後に、フィラメントに通電してエミッタティップを高温加熱する方法や、他に、真空中での電界蒸発、ガスエッチィング、イオンビーム照射、リモデリング方法等がある。このような方法によれば、タングステン線、モリブデン線先端に原子のナノピラミッドを形成することができる。例えば、<111>のタングステン線を用いた場合、先端が1個または3個のタングステン原子あるいはイリジウムなどの原子で構成される。また、これとは別に、白金、イリジウム、レニウム、オスミウム、パラジュウム、ロジュウムなどの、細線の先端に真空中でのエッチングあるいはリモデリングにより、同様なナノピラミッドを形成することもできる。 The material of the emitter tip 21 is tungsten, molybdenum fine wire, or the like. As a method of forming the nanopyramid at the tip of the emitter tip 21, a method of heating the emitter tip at a high temperature by energizing the filament after coating iridium, platinum, rhenium, osmium, palladium, rhodium, etc. In addition, there are field evaporation in vacuum, gas etching, ion beam irradiation, a remodeling method, and the like. According to such a method, an atomic nanopyramid can be formed at the tip of a tungsten wire or a molybdenum wire. For example, when a <111> tungsten wire is used, the tip is composed of one or three tungsten atoms or atoms such as iridium. In addition to this, a similar nanopyramid can be formed by etching or remodeling in vacuum at the tip of a thin wire such as platinum, iridium, rhenium, osmium, palladium, and rhodium.
 このように、本実施形態によるガス電界電離イオン源1のエミッタティップ21の特徴は、ナノピラミッド(三角錐形状)にある。エミッタティップ21の先端に形成される電界強度を調整する(印加する数kVの高電圧の値を調整するによりエミッタティップ21の先端に強電界を形成する。電圧を高くすればするほど強電界となるわけではなく、所定値以上の印加電圧値だと電界が弱くなってしまう。)ことによって、エミッタティップの先端の1個の原子の近傍でイオンを生成させることができる。従って、イオンが放出される領域、即ち、イオン光源は極めて狭い領域であり、ナノメータ以下である。このように、非常に限定された領域からイオンを発生させることによって、ビーム径を1nm以下(サブナノメータ)とすることができる。そのため、イオン源の単位面積及び単位立体角当たりの電流値は大きくなる。これは試料上で微細径・大電流のイオンビームを得るためには重要な特性である。 Thus, the feature of the emitter tip 21 of the gas field ion source 1 according to the present embodiment is the nanopyramid (triangular pyramid shape). The strength of the electric field formed at the tip of the emitter tip 21 is adjusted (a strong electric field is formed at the tip of the emitter tip 21 by adjusting the value of the applied high voltage of several kV. The higher the voltage, the stronger the electric field. However, if the applied voltage value is equal to or higher than a predetermined value, the electric field becomes weak.) Thus, ions can be generated in the vicinity of one atom at the tip of the emitter tip. Therefore, the region from which ions are emitted, that is, the ion light source is a very narrow region, which is less than a nanometer. Thus, by generating ions from a very limited region, the beam diameter can be reduced to 1 nm or less (subnanometer). Therefore, the current value per unit area and unit solid angle of the ion source increases. This is an important characteristic for obtaining an ion beam with a fine diameter and a large current on a sample.
 なお、白金、レニウム、オスミウム、イリジウム、パラジュウム、ロジュウム、などを用いて、先端原子1個のナノピラミッドが形成された場合には、同様に単位面積・単位立体角から放出される電流すなわちイオン源輝度を大きくすることができ、イオン元素分析装置の試料上のビーム径を小さくしたり、電流を増大したりするのに好適となる。ただし、エミッタティップが十分冷却され、かつガス供給が十分な場合には、必ずしも先端を1個に形成する必要はなく、3個、6個、7個、10個などの原子数であっても十分な性能を発揮できる。特に、4個以上の10個未満の原子で先端を構成する場合(エミッタティップ21の先端を尖らせない構成の場合)には、イオン源輝度を高くでき、かつ先端原子が蒸発しにくく安定した動作が可能である。 When a nanopyramid with one tip atom is formed using platinum, rhenium, osmium, iridium, palladium, rhodium, etc., the current emitted from the unit area / unit solid angle, that is, the ion source is similarly applied. The luminance can be increased, which is suitable for reducing the beam diameter on the sample of the ion element analyzer or increasing the current. However, when the emitter tip is sufficiently cooled and the gas supply is sufficient, it is not always necessary to form a single tip, even if the number of atoms is 3, 6, 7, 10, etc. It can demonstrate sufficient performance. In particular, when the tip is composed of 4 or more atoms and less than 10 atoms (when the tip of the emitter tip 21 is not sharpened), the ion source brightness can be increased and the tip atoms are not easily evaporated and stabilized. Operation is possible.
 <イオン元素分析装置の制御系>
 図3は、本発明の実施形態によるイオン元素分析装置(図1)に各制御系を取り付けた構成例を示す図である。本例の制御系は、ガス電界電離イオン源1を制御するガス電界電離イオン源制御装置91と、冷却機構4を制御する冷却機構制御装置92と、集束レンズ5および対物レンズ8を制御するレンズ制御装置93と、パルス化電極制御装置94と、飛行時間型質量分析カラム6に内包されるイオンレンズ71と72を制御する飛行時間型質量分析計制御装置95と、二次イオン検出器制御装置96と、試料ステージ10を制御する試料ステージ制御装置97と、試料室真空排気用ポンプ13を制御する真空排気用ポンプ制御装置98と、イオン化ガス制御装置191と、アルカリ金属供給部制御装置192と、計算処理能力をもつ本体制御装置99と、を含むものである。
<Control system of ion element analyzer>
FIG. 3 is a diagram showing a configuration example in which each control system is attached to the ion element analyzer (FIG. 1) according to the embodiment of the present invention. The control system of this example includes a gas field ion source controller 91 that controls the gas field ion source 1, a cooling mechanism controller 92 that controls the cooling mechanism 4, and a lens that controls the focusing lens 5 and the objective lens 8. Control device 93, pulsed electrode control device 94, time-of-flight mass spectrometer control device 95 for controlling ion lenses 71 and 72 contained in time-of-flight mass analysis column 6, and secondary ion detector control device 96, a sample stage control device 97 for controlling the sample stage 10, a vacuum pump control device 98 for controlling the sample chamber vacuum pump 13, an ionized gas control device 191, and an alkali metal supply controller 192. And a main body control device 99 having a calculation processing capability.
 本体制御装置99は、一般的なコンピュータで構成され、例えば、演算処理部、記憶部、及び画像表示部等を備える。画像表示部は、荷電粒子検出器11の検出信号から生成された画像、及び、入力手段によって入力した情報を表示する。 The main body control device 99 is configured by a general computer and includes, for example, an arithmetic processing unit, a storage unit, an image display unit, and the like. The image display unit displays an image generated from the detection signal of the charged particle detector 11 and information input by the input unit.
 試料ステージ10は、試料9を試料載置面内にて直交2方向へ直線移動させる機構、試料9を試料載置面に垂直な方向への直線移動させる機構、及び試料9を試料載置面内にて回転させる機構を有する。試料ステージ10は、更に、試料9を傾斜軸周りに回転させることによりイオンビーム14の試料9への照射角度を可変できる傾斜機能を備える。これらの制御は本体制御装置(計算処理装置)99からの指令によって、試料ステージ制御装置97によって実行される。 The sample stage 10 includes a mechanism for linearly moving the sample 9 in two orthogonal directions within the sample placement surface, a mechanism for linearly moving the sample 9 in a direction perpendicular to the sample placement surface, and the sample 9 on the sample placement surface. It has a mechanism to rotate inside. The sample stage 10 further includes a tilt function that can vary the irradiation angle of the ion beam 14 to the sample 9 by rotating the sample 9 about the tilt axis. These controls are executed by the sample stage control device 97 in accordance with commands from the main body control device (calculation processing device) 99.
 また、イオン元素分析装置(図1)の各部に対する動作条件は、本体制御装置99から入力される。本体制御装置99には、予めイオンビーム発生時の加速電圧、イオンビーム偏向幅・偏向速度、ステージ移動速度、画像検出素子からの画像信号取り込みタイミング等々の諸条件が入力されている。そして、本体制御装置99は、各要素の制御装置を総括的に制御し、ユーザーとのインターフェースとなる。なお、本体制御装置99は、役割を分担し通信回線で結合された複数の計算機から構成される場合もある。 Also, the operating conditions for each part of the ion element analyzer (FIG. 1) are input from the main body controller 99. Various conditions such as an acceleration voltage at the time of generating an ion beam, an ion beam deflection width / deflection speed, a stage moving speed, and an image signal capturing timing from the image detection element are input to the main body control device 99 in advance. Then, the main body control device 99 controls the control devices for each element as a whole and serves as an interface with the user. The main body control device 99 may be composed of a plurality of computers that share roles and are connected by communication lines.
 <ガス電界電離イオン源の動作>
 次に、本例のガス電界電離イオン源1の動作について説明する。真空容器15を真空排気し、十分な時間が経過した後、冷却機構(冷凍機)4を運転する。冷却機構4が動作することによってエミッタティップ21が冷却される。
<Operation of gas field ion source>
Next, the operation of the gas field ion source 1 of this example will be described. The vacuum vessel 15 is evacuated, and after a sufficient time has elapsed, the cooling mechanism (refrigerator) 4 is operated. The emitter tip 21 is cooled by the operation of the cooling mechanism 4.
 エミッタティップ21を冷却した後、エミッタティップ21にイオンの加速電圧として、正の高電圧を印加する。次に、エミッタティップ21に対して負電位となるように引き出し電極24に高電圧を印加する。すると、エミッタティップ21の先端に強電界が形成される。そして、イオン化ガスの供給部26からイオン化ガスを供給すると、イオン化ガスは強電界によってエミッタティップ面に引っ張られる。さらに、イオン化ガスは最も電界の強いエミッタティップ21の先端近傍に到達する。そこで、イオン化ガスは電界電離し、イオンビームが生成される。 After the emitter tip 21 is cooled, a positive high voltage is applied to the emitter tip 21 as an ion acceleration voltage. Next, a high voltage is applied to the extraction electrode 24 so as to have a negative potential with respect to the emitter tip 21. Then, a strong electric field is formed at the tip of the emitter tip 21. When the ionized gas is supplied from the ionized gas supply unit 26, the ionized gas is pulled to the emitter tip surface by a strong electric field. Further, the ionized gas reaches the vicinity of the tip of the emitter tip 21 having the strongest electric field. Therefore, the ionized gas is field-ionized and an ion beam is generated.
 生成されたイオンビームは、引き出し電極24の孔27を経由して、イオンビーム照射系カラム2に導かれる。なお、実施形態では、イオン化ガスとしてアルゴンガスを導入している。 The generated ion beam is guided to the ion beam irradiation system column 2 through the hole 27 of the extraction electrode 24. In the embodiment, argon gas is introduced as the ionized gas.
 ガス電界電離イオン源1から放出されたイオンビーム14は、集束レンズ5および対物レンズ8によって集束されて、試料9に照射される。このときに、ガス電界電離イオン源1の径はナノメータ程度に小さく、かつイオンビームの持つエネルギーの幅が1eV程度に小さいため、これらの特性を活かせば、試料9上のイオンビーム14の直径をサブナノメータまで小さくすることができる。このようにしてイオンビーム14の微細化を実現することが可能となる。 The ion beam 14 emitted from the gas field ion source 1 is focused by the focusing lens 5 and the objective lens 8 and irradiated onto the sample 9. At this time, since the diameter of the gas field ion source 1 is as small as a nanometer and the energy width of the ion beam is as small as 1 eV, if these characteristics are utilized, the diameter of the ion beam 14 on the sample 9 can be reduced. It can be as small as a sub-nanometer. In this way, the ion beam 14 can be miniaturized.
 なお、ガス電界電離イオン源1を用いることにより、他のイオン源である、デュオプラズマイオン源、ペニング型イオン源、誘導結合プラズマ(ICP: Inductively Coupled Plasma)プラズマイオン源、マイクロ波プラズマ(MIP:Microwave Induced Plasma)プラズマイオン源を用いた場合と比べて解像度の高いイオン元素分析装置像が得られるという効果を奏する。 By using the gas field ion source 1, other ion sources such as a duoplasma ion source, a Penning ion source, an inductively coupled plasma (ICP) plasma ion source, and a microwave plasma (MIP: Microwave (Induced (Plasma)) It has the effect that an ion element analyzer image with higher resolution can be obtained compared to the case of using a plasma ion source.
 <アルカリ金属供給部の動作>
 図4及び5は、アルカリ金属供給部の動作を説明するため図である。図4は、純化室34に備えられている第2の排気部36である非蒸発ゲッタ材料の活性化の手順を示す図である。図5は、アルカリ金属を試料表面に供給する手順を示す図である。
<Operation of alkali metal supply unit>
4 and 5 are diagrams for explaining the operation of the alkali metal supply unit. FIG. 4 is a diagram showing a procedure for activating the non-evaporable getter material which is the second exhaust part 36 provided in the purification chamber 34. FIG. 5 is a diagram showing a procedure for supplying an alkali metal to the sample surface.
(図4:非蒸発ゲッタ材料の活性化について)
(i)ステップ101及び102
 第3のバルブ39を閉めて、次に第1のバルブ37及び第2のバルブ38を開けた状態にする。
(ii)ステップ103
 純化室34を第1の排気部33によって真空排気する。
(iii)ステップ104
 純化室34を第2の加熱機構35によって約150℃に加熱する。当該加熱は10時間程度継続される。
(iv)ステップ105
 純化室34の加熱を約10時間程度継続したら、非蒸発ゲッタ材料44を加熱機構45により約400℃に加熱する。当該加熱は1時間程度継続される。なお、純化室34の加熱は非蒸発ゲッタ材料44の加熱中も継続される。
(v)ステップ106
 非蒸発ゲッタ材料44の加熱を約1時間程度継続させた後、非蒸発ゲッタ材料44および純化室34の加熱を停止する。
(Figure 4: Activation of non-evaporable getter material)
(I) Steps 101 and 102
The third valve 39 is closed, and then the first valve 37 and the second valve 38 are opened.
(Ii) Step 103
The purification chamber 34 is evacuated by the first exhaust part 33.
(Iii) Step 104
The purification chamber 34 is heated to about 150 ° C. by the second heating mechanism 35. The heating is continued for about 10 hours.
(Iv) Step 105
When the heating of the purification chamber 34 is continued for about 10 hours, the non-evaporable getter material 44 is heated to about 400 ° C. by the heating mechanism 45. The heating is continued for about 1 hour. The heating of the purification chamber 34 is continued during the heating of the non-evaporable getter material 44.
(V) Step 106
After heating the non-evaporable getter material 44 is continued for about 1 hour, heating of the non-evaporable getter material 44 and the purification chamber 34 is stopped.
 以上のような処理を実行することにより、純化室34を超高真空状態にすることができる。 By performing the above processing, the purification chamber 34 can be brought into an ultra-high vacuum state.
(図5:アルカリ金属の試料表面への供給について)
(i)ステップ201及び202
 第1のバルブ37を閉めた状態で収納室31を大気開放する。
(ii)ステップ203
 アルカリ金属であるセシウム入りガラスアンプルを収納室31に入れる。
(iii)ステップ204及び205
 収納室31の蓋を閉じた後に、収納室31を第1の排気部33により真空排気する。
(iv)ステップ206
 ガラスアンプルを真空の収納室31内で割る。なお、ガラスアンプルを割るには直線導入機構あるいは、回転機構などを用いればよい。
(v)ステップ207
 第1のバルブ37を開けて収納室31と純化室34とを接続する。
(vi)ステップ208
 収納室31を第1の加熱機構32により約200℃に加熱する。すると、セシウムは蒸気になって真空中に拡散する。セシウム蒸気は接続管46を通過して純化室34にまで拡散する。純化室34には接続管46の終端近傍にセシウムを溜める開口容器41が配置されている。予めこの開口容器41を20℃程度に冷却しておけば、効率良くセシウムを凝縮させることができる。また、収納室31から拡散された水素ガス、酸素ガス、窒素ガス、水蒸気なども同様に拡散して純化室34に導入されるが、非蒸発ゲッタ材料44によって高効率に吸収される。以上の作用によって、セシウムは高度に純化されるとともに純化室34は超高真空に維持される。
(vii)ステップ209
 第1のバルブ37を閉める。
(viii)ステップ210及び211
 第3のバルブ39を開けて、セシウムを第2の加熱機構35によって加熱するとノズル40を通して高純度のセシウムが試料9の表面に供給される。純化室34は超高真空に維持されているため、水素ガスや酸素ガスなどは、ほとんど試料9の表面には到達しない。
(ix)ステップ212
 高純度のセシウムが試料9の表面に供給されている状態で、サブナノメータ直径に集束されたアルゴンイオンビーム14を試料9に照射する。
(x)ステップ213
 試料9から放出される二次イオン16の質量分析を行う。
(Figure 5: Supply of alkali metal to the sample surface)
(I) Steps 201 and 202
The storage chamber 31 is opened to the atmosphere with the first valve 37 closed.
(Ii) Step 203
A glass ampoule containing cesium which is an alkali metal is placed in the storage chamber 31.
(Iii) Steps 204 and 205
After closing the lid of the storage chamber 31, the storage chamber 31 is evacuated by the first exhaust unit 33.
(Iv) Step 206
The glass ampule is divided in the vacuum storage chamber 31. In order to break the glass ampule, a straight line introduction mechanism or a rotation mechanism may be used.
(V) Step 207
The first valve 37 is opened to connect the storage chamber 31 and the purification chamber 34.
(Vi) Step 208
The storage chamber 31 is heated to about 200 ° C. by the first heating mechanism 32. Then, cesium becomes vapor and diffuses in the vacuum. Cesium vapor diffuses through the connecting pipe 46 to the purification chamber 34. An opening container 41 for storing cesium is disposed in the purification chamber 34 in the vicinity of the terminal end of the connection pipe 46. If the open container 41 is cooled to about 20 ° C. in advance, cesium can be efficiently condensed. Similarly, hydrogen gas, oxygen gas, nitrogen gas, water vapor, and the like diffused from the storage chamber 31 are diffused and introduced into the purification chamber 34, but are absorbed by the non-evaporable getter material 44 with high efficiency. By the above operation, cesium is highly purified and the purification chamber 34 is maintained in an ultrahigh vacuum.
(Vii) Step 209
The first valve 37 is closed.
(Viii) Steps 210 and 211
When the third valve 39 is opened and cesium is heated by the second heating mechanism 35, high-purity cesium is supplied to the surface of the sample 9 through the nozzle 40. Since the purification chamber 34 is maintained in an ultrahigh vacuum, hydrogen gas, oxygen gas, and the like hardly reach the surface of the sample 9.
(Ix) Step 212
In a state where high-purity cesium is supplied to the surface of the sample 9, the sample 9 is irradiated with an argon ion beam 14 focused to a sub-nanometer diameter.
(X) Step 213
Mass analysis of the secondary ions 16 emitted from the sample 9 is performed.
 <二次イオンの質量分析>
 本実施形態では、飛行時間型質量分析計6において質量分析している。そのため、パルス化電極7でイオンビーム14をパルス化して試料9に照射する。イオンビーム14を試料9に照射することによって試料9から放出された二次イオン16は、飛行時間型質量分析計6に取り込まれる。このとき、水素などの軽い元素は二次元電気検出器57に早く到達して、金などの重い元素は遅くに到達する。この原理(元素によって到達時間が異なること)によって元素分析が可能になる。
<Mass spectrometry of secondary ions>
In the present embodiment, the time-of-flight mass spectrometer 6 performs mass analysis. Therefore, the ion beam 14 is pulsed by the pulsed electrode 7 and irradiated on the sample 9. The secondary ions 16 emitted from the sample 9 by irradiating the sample 9 with the ion beam 14 are taken into the time-of-flight mass spectrometer 6. At this time, a light element such as hydrogen reaches the two-dimensional electric detector 57 early, and a heavy element such as gold arrives late. This principle (the arrival time varies depending on the element) enables elemental analysis.
 以上のように、セシウムを試料9の表面に供給することにより、水素や酸素の負の二次イオン収率が増大する効果と水素や酸素のバックグラウンドが低下する効果によって水素および酸素の超高感度の元素分析を実現することが可能となる。 As described above, by supplying cesium to the surface of the sample 9, the high secondary hydrogen and oxygen yields can be increased and the background of hydrogen and oxygen can be reduced. Sensitivity elemental analysis can be realized.
 そして、エミッタティップ21の先端に形成される電界強度を調整してイオンビーム14の微細化を図り、サブナノメータ直径で集束させてイオンビーム14を試料9に照射しながら走査すれば、サブナノメータ分解能の二次元元素分布像を得ることができる。また、ガスイオンビーム14を照射して走査を継続すると時間経過とともに試料9の深さ方向に試料9を削ることができる。このようにすると、試料9中の元素の三次元元素分布解析ができる。特に、ネオンビームやアルゴンビームを用いると、水素のバックグラウンド残存量を減少させて高感度の分析ができることが分かった。つまり、発明者らは、イオンを引き出す時の電界が強く水素などの不純物イオンがエミッタティップ21の先端まで到達せずに試料9の方向とは大きくずれた方向にエミッションすることからであることを突き止めたのである。換言すれば、水素イオンビームが試料9に照射されて試料9中に埋め込まれ、その水素が検出されてしまうのを防ぐのである。このように、高純度のセシウムを試料9の表面に供給していることから水素および酸素の負二次イオン収集効率が向上する効果と、水素ガスおよび酸素ガスを極めて少ない状態にすることの効果によって、水素および酸素の超高感度分析が実現されるのである。さらに、アルゴンイオンビームの直径がブナノメータに集束されていることから、極微細の二次元元素分布像が得られ、三次元元素分布解析が可能になるという効果を奏する。 If the intensity of the electric field formed at the tip of the emitter tip 21 is adjusted to reduce the size of the ion beam 14, the ion beam 14 is focused on the sub-nanometer diameter and scanned while irradiating the sample 9 with the sub-nanometer resolution. The two-dimensional elemental distribution image can be obtained. Further, when scanning is continued by irradiating the gas ion beam 14, the sample 9 can be shaved in the depth direction of the sample 9 over time. In this way, the three-dimensional element distribution analysis of the elements in the sample 9 can be performed. In particular, it was found that when a neon beam or an argon beam is used, the amount of hydrogen remaining in the background can be reduced to perform highly sensitive analysis. That is, the inventors have a strong electric field when extracting ions, and impurity ions such as hydrogen do not reach the tip of the emitter tip 21 and emit in a direction greatly deviated from the direction of the sample 9. I found out. In other words, the hydrogen ion beam is applied to the sample 9 and embedded in the sample 9 to prevent the hydrogen from being detected. Thus, since high purity cesium is supplied to the surface of the sample 9, the effect of improving the negative secondary ion collection efficiency of hydrogen and oxygen and the effect of reducing the amount of hydrogen gas and oxygen gas to a very small amount By this, ultrasensitive analysis of hydrogen and oxygen is realized. Further, since the diameter of the argon ion beam is focused on the bunameter, an extremely fine two-dimensional element distribution image can be obtained, and the three-dimensional element distribution analysis can be performed.
 なお、従来は、セシウム蒸気を発生させるのにクロム酸セシウムを還元させる際の大量の不純物低減が課題とされており、その課題解決に純金属を用いることによって解決されると考えられていた。そして試料室の真空度が劣化しないことを根拠にされていた。ところが、純金属を用いた場合でも、極微量の水素ガス、酸素ガス、水蒸気などが水素や酸素を分析する際には、バックグラウンドを高めるため高感度分析を阻害することを発明者らは突き止めたのである。すなわち、セシウムを蒸発させて試料9の表面に搬送する際に加熱するが、このときに微量の水素ガス、酸素ガス、水蒸気などが容器やセシウムから発生してセシウムと同時に試料9の表面に供給されてしまうのである。試料室3の真空度を計測していてもその課題には想到しない新たに発見された事実であった。 Conventionally, reduction of a large amount of impurities when reducing cesium chromate to generate cesium vapor has been a problem, and it has been considered that the problem can be solved by using pure metal. And it was based on the vacuum degree of a sample chamber not deteriorating. However, even when pure metal is used, the inventors have found that a very small amount of hydrogen gas, oxygen gas, water vapor, etc. impedes high-sensitivity analysis in order to increase the background when analyzing hydrogen or oxygen. It was. That is, heating is performed when cesium is evaporated and transported to the surface of the sample 9. At this time, a small amount of hydrogen gas, oxygen gas, water vapor or the like is generated from the container or cesium and supplied to the surface of the sample 9 simultaneously with cesium. It will be done. It was a newly discovered fact that the subject was not conceived even when the degree of vacuum in the sample chamber 3 was measured.
 <試料近傍の設けられた非蒸発ゲッタ材料の作用効果>
 本実施形態では、図1に示されるように、試料9の近傍(試料室内)に非蒸発ゲッタ材料77が配置されている。このため、非蒸発ゲッタ材料77によって水素ガスおよび酸素ガスなどが吸着されると、バックグラウンドに存在する水素や酸素の濃度が低下して高感度分析が実現することが分かった。なお、試料室容器の大気側には、この非蒸発ゲッタ材料の加熱機構78が設置されており、非蒸発ゲッタ材料77の再活性をすることができる。すなわち、高感度分析可能な状態を長期間継続できるという効果を奏する。
<Operational effect of non-evaporable getter material provided near the sample>
In the present embodiment, as shown in FIG. 1, a non-evaporable getter material 77 is disposed in the vicinity of the sample 9 (in the sample chamber). For this reason, when hydrogen gas, oxygen gas, etc. were adsorbed by the non-evaporable getter material 77, it was found that the concentration of hydrogen or oxygen existing in the background is lowered and high sensitivity analysis is realized. A heating mechanism 78 for the non-evaporable getter material is installed on the atmosphere side of the sample chamber container so that the non-evaporable getter material 77 can be reactivated. That is, there is an effect that a state in which high sensitivity analysis is possible can be continued for a long time.
 <試料室に接続された、非蒸発ゲッタ材料を内包する真空排気ポンプの作用効果>
 本実施形態においては、図1に示されるように、試料室3に、非蒸発ゲッタ材料51を内包する真空排気ポンプ52が真空遮断可能なバルブ53を介して接続されている。このような構成を採る場合、排気コンダクタンスは低くなるものの、非蒸発ゲッタ材料51を試料9の近傍に配置した時と同様な効果を得ることができる。
<Effect of vacuum pump connected to sample chamber and containing non-evaporable getter material>
In the present embodiment, as shown in FIG. 1, a vacuum exhaust pump 52 that contains a non-evaporable getter material 51 is connected to the sample chamber 3 via a valve 53 that can be vacuum-blocked. In the case of adopting such a configuration, although the exhaust conductance becomes low, the same effect as when the non-evaporable getter material 51 is arranged in the vicinity of the sample 9 can be obtained.
 さらに、試料9に照射させるときに一次イオン14として酸素イオンを選択している場合には、真空遮断可能なバルブ53を閉じておく。開けた状態では、非蒸発ゲッタ材料51が酸素ガスを吸着してしまうため、非蒸発ゲッタ材料51の再度活性化するまでの時間が短くなってしまうが、真空遮断可能なバルブ53を閉じておけば、非蒸発ゲッタ材料51の再度活性化するまでの時間を長くすることができるからである。すなわち、効率良く高感度分析可能な状態を長期間継続できるという効果を奏する。 Furthermore, when oxygen ions are selected as the primary ions 14 when the sample 9 is irradiated, the valve 53 that can be shut off by vacuum is closed. In the opened state, the non-evaporable getter material 51 adsorbs oxygen gas, so the time until the non-evaporable getter material 51 is reactivated is shortened. However, the valve 53 that can shut off the vacuum can be closed. This is because the time until the non-evaporable getter material 51 is reactivated can be lengthened. That is, there is an effect that a state in which high sensitivity analysis can be performed efficiently can be continued for a long time.
 <質量分析計に接続された、非蒸発ゲッタ材料を内包する真空排気ポンプの作用効果>
 本実施形態において、質量分析計6には、非蒸発ゲッタ材料73を内包する真空排気ポンプ74が真空遮断可能なバルブ75を介して接続されている。従来、質料分析計6から拡散して試料9の表面に供給される水素ガスや酸素ガスについては考慮されていなかった。
<Effect of vacuum pump connected to mass spectrometer and containing non-evaporable getter material>
In this embodiment, the mass spectrometer 6 is connected to a vacuum exhaust pump 74 containing a non-evaporable getter material 73 via a valve 75 that can be shut off by vacuum. Conventionally, hydrogen gas and oxygen gas diffused from the material analyzer 6 and supplied to the surface of the sample 9 have not been considered.
 しかし、非蒸発ゲッタ材料73を内包する真空排気ポンプ74を動作させると、バックグラウンドに存在する水素や酸素の量が低下し、試料9中に存在する水素や酸素の高感度分析を実現することができるようになる。 However, when the evacuation pump 74 including the non-evaporable getter material 73 is operated, the amount of hydrogen and oxygen present in the background is reduced, and high sensitivity analysis of hydrogen and oxygen present in the sample 9 is realized. Will be able to.
 以上の場合には、図1に示したように照射イオンビームを供給するイオンビーム照射系カラム2は、イオンビーム元素分析装置設置面20すなわち床に対して直立して、二次イオンビームを結像するイオン検出系カラム(飛行時間型質量分析カラム)6は傾斜させて設置されている。このような構造にすると、イオンビーム照射系の構造ひずみが少なく、レンズの収差が少なくなり、極微細なイオンビーム14が試料9に向かうことになる。この結果、二次元元素分布像の解像度が高くなることがわかった。 In the above case, as shown in FIG. 1, the ion beam irradiation system column 2 for supplying the irradiation ion beam stands upright with respect to the ion beam elemental analyzer installation surface 20, that is, the floor, and connects the secondary ion beam. The ion detection system column (time-of-flight mass spectrometry column) 6 to be imaged is installed at an inclination. With such a structure, the structural distortion of the ion beam irradiation system is small, the aberration of the lens is small, and the extremely fine ion beam 14 is directed toward the sample 9. As a result, it was found that the resolution of the two-dimensional element distribution image was increased.
 <投射型質量分析>
 本実施形態による飛行時間型質量分析計6では、投射型質量分析を実施している。つまり、試料9から放出された二次イオン16を2つのイオンレンズ71と72によってマイクロチャネルプレート56上に結像させる。そして、マイクロチャネルプレートの二次元信号強度を画像信号として出力する。ただし、イオンビーム14は必ずしも試料9の上を走査する必要はない。なお、本実施形態では質量分析計6として飛行時間型質量分析計を用いているが、四重極質量分析計およびセクター型質量分析計を適用することは可能である。
<Projection mass spectrometry>
In the time-of-flight mass spectrometer 6 according to the present embodiment, projection mass spectrometry is performed. That is, the secondary ions 16 emitted from the sample 9 are imaged on the microchannel plate 56 by the two ion lenses 71 and 72. Then, the two-dimensional signal intensity of the microchannel plate is output as an image signal. However, the ion beam 14 does not necessarily have to scan over the sample 9. In the present embodiment, a time-of-flight mass spectrometer is used as the mass spectrometer 6. However, a quadrupole mass spectrometer and a sector mass spectrometer can be applied.
 <イオンガスの種類>
 本実施形態ではアルゴンイオンを用いているが、キセノン、クリプトンなどによっても同様な効果を得ることができる。また、キセノン、クリプトンを用いる場合には、特に磁場ノイズに対して影響を受けにくいという効果を期待することができる。さらに、2種類の混合ガスや3種の混合ガスなどの複数のガス種を含む混合ガスであっても良い。
<Types of ion gas>
Although argon ions are used in this embodiment, similar effects can be obtained by using xenon, krypton, or the like. In addition, when xenon or krypton is used, it is possible to expect an effect that the magnetic field noise is not particularly affected. Further, it may be a mixed gas including a plurality of gas types such as two types of mixed gases and three types of mixed gases.
 また、本実施形態では、ガス電界電離イオン源1は、少なくとも3種以上のガス容器と接続されている。第1のガス容器81は少なくとも酸素ガスを含み、第2のガス容器82はネオン、アルゴン、キセノン、及びクリプトンのうち少なくとも一種を含み、第3のガス容器83は水素、ヘリウムのいずれかを含んでいる。 In this embodiment, the gas field ion source 1 is connected to at least three gas containers. The first gas container 81 contains at least oxygen gas, the second gas container 82 contains at least one of neon, argon, xenon, and krypton, and the third gas container 83 contains either hydrogen or helium. It is out.
 このようにすると、第1のガス容器81の酸素ガスを用いれば、酸素ガスイオンビームを試料9に照射して、正の二次イオンを検出することにより電気的陽性元素の高感度分析が実現することができる。また、第2のガス容器82のネオン、アルゴン、キセノン、及びクリプトンのうち何れかのガスを用いる。そして、アルカリ金属供給部30からアルカリ金属を試料に供給しながら、ガスイオンビーム14を試料9に照射し、負の二次イオンを検出することにより、試料9に含まれる水素および酸素の高感度分析を実現することができる。さらに、第3のガス容器83の水素またはヘリウムいずれかのイオンビーム14を試料9に照射して二次電子を検出すれば、試料に大きなダメージを与えることなく試料9の表面の走査イオン像を得ることができる。すなわち、試料9の表面の構造情報と元素情報が得られる元素分析装置が提供される。 In this way, if the oxygen gas in the first gas container 81 is used, the sample 9 is irradiated with an oxygen gas ion beam, and positive secondary ions are detected, thereby realizing highly sensitive analysis of electropositive elements. can do. In addition, any one of neon, argon, xenon, and krypton in the second gas container 82 is used. Then, while supplying alkali metal from the alkali metal supply unit 30 to the sample, the sample 9 is irradiated with the gas ion beam 14 to detect negative secondary ions, thereby detecting high sensitivity of hydrogen and oxygen contained in the sample 9. Analysis can be realized. Furthermore, if secondary electrons are detected by irradiating the sample 9 with an ion beam 14 of either hydrogen or helium in the third gas container 83, a scanned ion image of the surface of the sample 9 can be obtained without damaging the sample. Obtainable. In other words, an elemental analyzer that can obtain structural information and elemental information on the surface of the sample 9 is provided.
 なお、本実施形態によるイオンビーム装置(イオンビーム元素分析装置)では、2種類の混合ガスや3種の混合ガスなどの複数のガス種を含む混合ガス容器を用いても良いし、3種類のガスを交互に使用できるようにしても良い。 In the ion beam apparatus (ion beam elemental analysis apparatus) according to the present embodiment, a mixed gas container containing a plurality of gas types such as two kinds of mixed gases or three kinds of mixed gases may be used. Gas may be used alternately.
(2)第2の実施形態
 第2の実施形態によるイオンビーム元素分析装置は、第1の実施形態によるそれとはアルカリ金属供給部30の構成が異なっている。その他の構成は第1の実施形態によるイオンビーム元素分析装置(図1)と同じである。
(2) Second Embodiment The ion beam elemental analyzer according to the second embodiment differs from that according to the first embodiment in the configuration of the alkali metal supply unit 30. Other configurations are the same as those of the ion beam element analyzer (FIG. 1) according to the first embodiment.
 <アルカリ金属供給部の構成>
 図6は、第2の実施形態によるアルカリ金属供給部30の構成例を示す図である。
<Configuration of alkali metal supply unit>
FIG. 6 is a diagram illustrating a configuration example of the alkali metal supply unit 30 according to the second embodiment.
 アルカリ金属供給部30は、アルカリ金属29を内部に収めるアルカリ金属収納室31と、アルカリ金属収納室31を加熱する第1の加熱機構32と、アルカリ金属収納室31と第1のバルブ37を介して接続される純化室34と、アルカリ金属収納室31と第2のバルブ38を介して接続され、アルカリ金属収納室31内を真空にすることにより不純物を取り除く第1の排気部33と、純化室34を加熱する第2の加熱機構35と、純化室34内部に残存する水素及び/又は酸素(アルカリ金属表面や内部に含まれていた水素や酸素)を取り除く第2の排気部36と、第3のバルブ39を介して純化室34と接続され、アルカリ金属を試料9の表面に導くノズル40と、純化室34と第4のバルブ48を介して接続される第3の排気部49と、を有している。 The alkali metal supply unit 30 includes an alkali metal storage chamber 31 that stores the alkali metal 29 therein, a first heating mechanism 32 that heats the alkali metal storage chamber 31, an alkali metal storage chamber 31, and a first valve 37. A purification chamber 34 that is connected to each other, a first exhaust part 33 that is connected to the alkali metal storage chamber 31 via a second valve 38 and removes impurities by evacuating the alkali metal storage chamber 31, and purification. A second heating mechanism 35 for heating the chamber 34, a second exhaust part 36 for removing hydrogen and / or oxygen remaining in the purification chamber 34 (hydrogen or oxygen contained in the alkali metal surface or inside), A nozzle 40 that is connected to the purification chamber 34 via a third valve 39 and guides alkali metal to the surface of the sample 9, and a third exhaust unit 4 that is connected to the purification chamber 34 via a fourth valve 48. And, the has.
 アルカリ金属収納室31では、金属網47の上にアルカリ金属(例えばルビジウム)29が載置される。また、純化室34にはアルカリ金属29を溜める開口容器41が設置されている。第1の排気部33は、例えば、ターボ分子ポンプ42とロータリポンプ50との組み合わせで構成される。また、第2の排気部36は、非蒸発ゲッタ材料44と、その加熱機構45によって構成される。なお、上述したように、加熱機構45は真空容器外側の大気中に配置される。各々のバルブは真空遮断可能である。 In the alkali metal storage chamber 31, an alkali metal (for example, rubidium) 29 is placed on the metal net 47. The purification chamber 34 is provided with an open container 41 for storing the alkali metal 29. The first exhaust part 33 is configured by, for example, a combination of a turbo molecular pump 42 and a rotary pump 50. The second exhaust part 36 includes a non-evaporable getter material 44 and a heating mechanism 45 thereof. As described above, the heating mechanism 45 is disposed in the atmosphere outside the vacuum vessel. Each valve can be vacuum shut off.
 アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが利用可能であるが、本実施形態では例えばルビジウムを用いている。 As the alkali metal, lithium, sodium, potassium, rubidium, cesium, and francium can be used. In this embodiment, for example, rubidium is used.
 純化室34に設けられる第2の排気部36である非蒸発ゲッタ材料44は、第1の実施形態と同様の活性化手順によって超高真空状態にされる。また、本実施形態では、純化室34と第4のバルブ48を介して接続された第3の排気部49を使って純化室34を直接真空排気することができるようになっている。 The non-evaporable getter material 44 that is the second exhaust part 36 provided in the purification chamber 34 is brought into an ultra-high vacuum state by an activation procedure similar to that of the first embodiment. In the present embodiment, the purification chamber 34 can be directly evacuated using the third exhaust part 49 connected to the purification chamber 34 via the fourth valve 48.
 <アルカリ金属の純化処理>
 次に、本実施形態によるアルカリ金属供給部30において実行されるアルカリ金属を純化する処理について説明する。
<Purification treatment of alkali metal>
Next, the process for purifying the alkali metal executed in the alkali metal supply unit 30 according to the present embodiment will be described.
 まず、第1のバルブ37を閉めた状態で収納室31を大気開放する。アルカリ金属であるルビジウム29は酸素や水などと反応するため、本実施形態では窒素パージされた雰囲気で収納室の金属網47の上に配置した。 First, the storage chamber 31 is opened to the atmosphere with the first valve 37 closed. Since rubidium 29, which is an alkali metal, reacts with oxygen, water, and the like, in this embodiment, it is disposed on the metal net 47 in the storage chamber in a nitrogen purged atmosphere.
 次に、第2のバルブ38を開け、収納室31を第1の排気部33により真空排気する。そして、収納室31を第1の加熱機構32により約50℃に加熱する。すると、ルビジウム29は溶融する。ルビジウム29が溶解したら、第1のバルブ37を開けて収納室31と純化室34を接続する。溶融したルビジウム29は接続管46を通過して純化室34にまで落下する。 Next, the second valve 38 is opened, and the storage chamber 31 is evacuated by the first exhaust part 33. Then, the storage chamber 31 is heated to about 50 ° C. by the first heating mechanism 32. Then, rubidium 29 melts. When the rubidium 29 is dissolved, the first valve 37 is opened and the storage chamber 31 and the purification chamber 34 are connected. The melted rubidium 29 passes through the connecting pipe 46 and falls to the purification chamber 34.
 純化室34には接続管46の終端近傍にルビジウムを溜める開口容器41が配置されている。また、収納室31から純化室34にルビジウム20が供給されると、水素ガス、酸素ガス、窒素ガス、水蒸気なども収納室31から拡散して純化室34に導入される。しかし、これらのガスは、非蒸発ゲッタ材料44によって高効率に吸収される。 In the purification chamber 34, an open container 41 for storing rubidium is disposed in the vicinity of the terminal end of the connecting pipe 46. When the rubidium 20 is supplied from the storage chamber 31 to the purification chamber 34, hydrogen gas, oxygen gas, nitrogen gas, water vapor, and the like are also diffused from the storage chamber 31 and introduced into the purification chamber 34. However, these gases are absorbed with high efficiency by the non-evaporable getter material 44.
 以上の作用によって、ルビジウム29は高度に純化されるとともに、純化室34は超高真空に維持される。 By the above operation, the rubidium 29 is highly purified, and the purification chamber 34 is maintained in an ultra-high vacuum.
 そして、第3のバルブ39を開けて、ルビジウム29を第2の加熱機構35によって加熱するとノズル40を通して高純度のルビジウム29が試料9の表面に供給される。このときに純化室34で発生する水素ガスおよび酸素ガスは非蒸発ゲッタ材料44に吸収されるため、試料9にはそれらのガスはほとんど到達しない。 Then, when the third valve 39 is opened and the rubidium 29 is heated by the second heating mechanism 35, the high-purity rubidium 29 is supplied to the surface of the sample 9 through the nozzle 40. At this time, the hydrogen gas and oxygen gas generated in the purification chamber 34 are absorbed by the non-evaporable getter material 44, so that these gases hardly reach the sample 9.
 <元素分析について>
 高純度のルビジウム29が試料9の表面に供給されている状態で、アルゴンイオンビーム14を試料9に照射して、試料9から放出される二次イオンを検出する。このようにすると、水素や酸素の負の二次イオン収率が増大する効果と、水素や酸素のバックグラウンドが低下する効果によって、試料9に含まれる水素および酸素の超高感度の元素分析を実現することができる。
<About elemental analysis>
In a state where high-purity rubidium 29 is supplied to the surface of the sample 9, the sample 9 is irradiated with the argon ion beam 14 to detect secondary ions emitted from the sample 9. In this way, ultra-sensitive elemental analysis of hydrogen and oxygen contained in the sample 9 can be performed by the effect of increasing the negative secondary ion yield of hydrogen and oxygen and the effect of reducing the background of hydrogen and oxygen. Can be realized.
 また、エミッタティップ21の先端に形成される電界強度を調整してイオンビーム14の微細化を図り、サブナノメータ直径で集束させてイオンビーム14を試料9に照射しながら走査すれば、サブナノメータ分解能の二次元元素分布像を得ることができる。さらに、ガスイオンビーム14を試料9に照射して走査を継続すると時間経過とともに深さ方向に試料9を削ることができる。このようにすると、試料9中の元素の三次元元素分布解析ができる。 If the ion beam 14 is made finer by adjusting the electric field strength formed at the tip of the emitter tip 21, focused with a subnanometer diameter, and scanned while irradiating the sample 9 with the ion beam 14, the subnanometer resolution can be obtained. The two-dimensional elemental distribution image can be obtained. Furthermore, if the scanning is continued by irradiating the sample 9 with the gas ion beam 14, the sample 9 can be shaved in the depth direction as time passes. In this way, the three-dimensional element distribution analysis of the elements in the sample 9 can be performed.
 なお、純化室34に内蔵される非蒸発ゲッタ材料44の活性化は、第4のバルブ48と第3の排気部49を使って行うこともできる。すなわち、非蒸発ゲッタ材料44を加熱機構45で加熱し、第1のバルブ37と第3のバルブ39は閉めた状態、第4のバルブ48を開けた状態で非蒸発ゲッタ材料44から発生する水素ガスや酸素ガスなどを第3の排気部49によって排気する。そして、再活性化後には第4のバルブ48を閉じる。このようにすることにより、非蒸発ゲッタ材料44を活性化することができる。 It should be noted that the activation of the non-evaporable getter material 44 built in the purification chamber 34 can also be performed using the fourth valve 48 and the third exhaust part 49. That is, the hydrogen generated from the non-evaporable getter material 44 when the non-evaporable getter material 44 is heated by the heating mechanism 45 and the first valve 37 and the third valve 39 are closed and the fourth valve 48 is opened. Gas, oxygen gas, or the like is exhausted by the third exhaust unit 49. After the reactivation, the fourth valve 48 is closed. By doing so, the non-evaporable getter material 44 can be activated.
(3)第3の実施形態
 第3の実施形態によるイオンビーム装置は、第1及び第2の実施形態におけるアルカリ金属供給部30の代わりに、アルカリ金属イオン照射系カラム200を有することを特徴としている。
(3) Third Embodiment An ion beam apparatus according to the third embodiment has an alkali metal ion irradiation system column 200 in place of the alkali metal supply unit 30 in the first and second embodiments. Yes.
 <イオンビーム装置の構成>
 図7は、第3の実施形態によるイオンビーム装置の構成例を示す図である。以下、イオンビーム装置として、イオンビーム元素分析装置を例にして説明する。
<Configuration of ion beam device>
FIG. 7 is a diagram illustrating a configuration example of the ion beam apparatus according to the third embodiment. Hereinafter, an ion beam element analyzer will be described as an example of the ion beam apparatus.
 本例のイオンビーム元素分析装置は、ガス電界電離イオン源1と、イオンビーム照射系カラム2と、試料室3と、冷却機構4と、飛行時間型質量分析カラム6と、セシウムイオン照射系カラム200と、イオン源ガス供給部26と、を有する。ここで、ガス電界電離イオン源1、イオンビーム照射系カラム2、試料室3、飛行時間型質量分析カラム6、及びセシウムイオン照射系カラム200などは真空容器である。当該イオンビーム元素分析装置によれば、試料9の元素の同定および特定の元素の二次元分布像取得、三次元分布解析陥などが可能である。 The ion beam elemental analyzer of this example includes a gas field ion source 1, an ion beam irradiation system column 2, a sample chamber 3, a cooling mechanism 4, a time-of-flight mass spectrometry column 6, and a cesium ion irradiation system column. 200 and an ion source gas supply unit 26. Here, the gas field ion source 1, the ion beam irradiation system column 2, the sample chamber 3, the time-of-flight mass spectrometry column 6, the cesium ion irradiation system column 200, and the like are vacuum containers. According to the ion beam elemental analysis apparatus, it is possible to identify an element of the sample 9, obtain a two-dimensional distribution image of a specific element, and analyze a three-dimensional distribution.
 なお、ガス電界電離イオン源の動作、イオンビーム照射系の動作、質量分析計の動作ななどは第1の実施形態と同じである。また、本実施形態では、試料9に照射するガスイオン種として、ネオンを用いることとする。 The operation of the gas field ion source, the operation of the ion beam irradiation system, the operation of the mass spectrometer, and the like are the same as in the first embodiment. In the present embodiment, neon is used as the gas ion species with which the sample 9 is irradiated.
 図7に示されるように、イオンビーム照射系カラム2はイオンビーム元素分析装置設置面20すなわち床に対して直立しており、飛行時間型質量分析カラム6は傾斜している。また、セシウムイオン照射系カラム200では、セシウムイオンビーム照射方向が試料9の表面にほぼ平行になるように、好適には、試料9表面からの照射方向の角度が0度以上で大きくとも10度以下になるように配置されている。 As shown in FIG. 7, the ion beam irradiation system column 2 stands upright with respect to the ion beam element analyzer installation surface 20, that is, the floor, and the time-of-flight mass analysis column 6 is inclined. In the cesium ion irradiation system column 200, the angle of the irradiation direction from the surface of the sample 9 is preferably 0 degrees or more and at most 10 degrees so that the irradiation direction of the cesium ion beam is substantially parallel to the surface of the sample 9. It is arranged to be as follows.
 セシウムイオン照射系カラム200は、セシウム液体金属イオン源201、イオン電位電極202、集束レンズ203、及び対物レンズ204などを構成として含んでいる。例えば、セシウム液体金属イオン源201には正の0.5kVが印加されており、イオン電位電極202には負の3kVが印加されている。このようにすると0.5kVという低いエネルギーのセシウムイオンが試料9に照射される。本実施形態のように、エネルギーの低いイオンビームが試料9の表面にほぼ平行に照射されると、垂直方向から照射されるネオンイオンビームで形成された試料9の表面の凹凸がなくなり、かつ、試料9の表面に適量のセシウムが供給されることが発明者らによって見いだされた。すなわち、発明者らは、セシウムが試料9に適量供給されるため、水素や酸素の負の二次イオン収率が増大することを突き止めたのである。 The cesium ion irradiation system column 200 includes a cesium liquid metal ion source 201, an ion potential electrode 202, a focusing lens 203, an objective lens 204, and the like. For example, a positive 0.5 kV is applied to the cesium liquid metal ion source 201, and a negative 3 kV is applied to the ion potential electrode 202. In this way, the sample 9 is irradiated with cesium ions having a low energy of 0.5 kV. When the ion beam with low energy is irradiated almost parallel to the surface of the sample 9 as in this embodiment, the unevenness of the surface of the sample 9 formed by the neon ion beam irradiated from the vertical direction is eliminated, and The inventors have found that an appropriate amount of cesium is supplied to the surface of the sample 9. That is, the inventors found that the yield of negative secondary ions of hydrogen and oxygen increases because an appropriate amount of cesium is supplied to the sample 9.
 従来は、セシウムイオンビームを試料9に照射したときに発生する二次イオンを検出していたため、試料9の極微小部の元素分析は困難であった。また、試料9に予めセシウムを照射してガリウムイオンを照射しても表面第一層の感度は高まるものの、その後で感度が低下してしまい、高感度な深さ分析や三次元分析は実現されていなかった。 Conventionally, since secondary ions generated when the sample 9 was irradiated with the cesium ion beam were detected, elemental analysis of a very small portion of the sample 9 was difficult. Even if the sample 9 is irradiated with cesium and gallium ions in advance, the sensitivity of the first surface layer increases, but the sensitivity decreases thereafter, and highly sensitive depth analysis and three-dimensional analysis are realized. It wasn't.
 第3の実施形態によれば、セシウム濃度を常に最適状態に保つことができるため、水素や酸素の感度が変化しないようにセシウム濃度を調整することができる。また、イオン電位電極を用いて、セシウムを極低エネルギーで試料9に照射する。このため、セシウムイオンによるスパッタ損傷を少なくできるとういう効果を期待することができる。なお、セシウム以外のアルカリ金属であるリチウム、ナトリウム、カリウム、ルビジウム、フランシウムでも同様な効果を得ることができる。また、ネオンのほかにアルゴンを用いると、イオン源で水素や酸素のイオンビーム発生が少なく超高感度の分析が可能になることも分かった。 According to the third embodiment, since the cesium concentration can always be kept in an optimum state, the cesium concentration can be adjusted so that the sensitivity of hydrogen and oxygen does not change. Further, the sample 9 is irradiated with cesium with extremely low energy using an ion potential electrode. For this reason, the effect that the sputter damage by cesium ion can be reduced can be expected. The same effect can be obtained with lithium, sodium, potassium, rubidium, and francium, which are alkali metals other than cesium. It was also found that when argon was used in addition to neon, the ion source generated an ion beam of hydrogen and oxygen with less sensitivity, enabling ultra-high sensitivity analysis.
 以上、第3の実施形態は、ガス電界電離イオン源1と、イオン源1から放出されるガスイオンビーム14を試料9に照射するイオンビーム照射系と、アルカリ金属イオンを試料9に照射するイオンビーム照射系と試料9を収納する試料室3と、アルカリ金属イオンビームを試料9に対して略平行方向から照射可能な時に、ガスイオンビーム14を試料9に対して略垂直方向から照射して、試料9から放出される二次イオンを検出できるシステムと、を有するイオンビーム元素分析装置を提供する。このようにすると、ガスイオンビームを試料9に対して略垂直方向から照射して試料9の三次元分析をする際に、試料9の表面にイオンスパッタによって凹凸が生じてしまう。そこで、アルカリ金属イオンビームを試料9に対して略平行方向から照射することにより、試料9の表面の凹凸を少なくすることができる。すなわち、分析結果から三次元再構築する場合にひずみの少なくすることができるという効果を期待することができる。また、水素および酸素の二次イオン収率が増大して、水素および酸素の検出感度が向上するという効果を奏する。 As described above, in the third embodiment, the gas field ion source 1, the ion beam irradiation system that irradiates the sample 9 with the gas ion beam 14 emitted from the ion source 1, and the ions that irradiate the sample 9 with alkali metal ions. When the beam irradiation system and the sample chamber 3 for storing the sample 9 and the alkali metal ion beam can be irradiated to the sample 9 from a substantially parallel direction, the gas ion beam 14 is irradiated to the sample 9 from a substantially vertical direction. And an ion beam elemental analysis apparatus having a system capable of detecting secondary ions emitted from a sample 9. In this way, when the sample 9 is irradiated with a gas ion beam from a substantially vertical direction and the sample 9 is three-dimensionally analyzed, irregularities are generated on the surface of the sample 9 by ion sputtering. Therefore, the unevenness on the surface of the sample 9 can be reduced by irradiating the sample 9 with the alkali metal ion beam from a substantially parallel direction. That is, it is possible to expect an effect that distortion can be reduced when three-dimensional reconstruction is performed from the analysis result. In addition, the secondary ion yield of hydrogen and oxygen is increased, and the detection sensitivity of hydrogen and oxygen is improved.
 <試料室に載置される非蒸発ゲッタ材料の作用効果>
 当該イオンビーム装置においては、試料室3に載置された試料9の近傍に非蒸発ゲッタ材料77が設置されている。また、試料室3の容器の大気側には、この非蒸発ゲッタ材料77を加熱するための加熱機構78が設置されている。
<Effects of non-evaporable getter material placed in sample chamber>
In the ion beam apparatus, a non-evaporable getter material 77 is installed in the vicinity of the sample 9 placed in the sample chamber 3. A heating mechanism 78 for heating the non-evaporable getter material 77 is installed on the atmosphere side of the container of the sample chamber 3.
 当該装置では、この非蒸発ゲッタ材料77によって水素ガス及び酸素ガスなどが吸着されるため、バックグラウンドに存在する水素及び酸素の濃度が低下し、試料9に含まれる水素及び酸素を高感度分析することが可能となる。なお、試料室3の容器の大気側には、この非蒸発ゲッタ材料77の加熱機構78が設置されている。これにより、非蒸発ゲッタ材料77の再活性をすることができる。すなわち、高感度分析可能な状態を長期間継続できるという効果を奏する。 In this apparatus, since hydrogen gas, oxygen gas, and the like are adsorbed by the non-evaporable getter material 77, the concentration of hydrogen and oxygen present in the background decreases, and the hydrogen and oxygen contained in the sample 9 are analyzed with high sensitivity. It becomes possible. A heating mechanism 78 for the non-evaporable getter material 77 is installed on the atmosphere side of the container of the sample chamber 3. Thereby, the non-evaporable getter material 77 can be reactivated. That is, there is an effect that a state in which high sensitivity analysis is possible can be continued for a long time.
(4)実施形態のまとめ
(i)本実施形態によるイオンビーム装置(イオンビーム元素分析装置)は、アルカリ金属を試料に供給する供給部を有する。そして、当該供給部は、第1の排気部と、第1の排気部の作動後に、水素ガスまたは酸素ガスを排気する第2の排気部(特定ガス除去部)と、を有する。このようにすることにより、極微量の水素や酸素を超高感度に検出できる実用的なイオンビーム装置を提供することができる。特に、第1の排気部によって供給部の大気およびアルカリ金属から発生する不純物ガスを排気する。また、第2の排気部によって極微量の水素ガスまたは酸素ガス(特定ガス)を排気する。このため、試料に水素ガスや酸素ガスをほとんど供給することなくアルカリ金属を供給することが可能となる。従って、水素および酸素二次イオンバックグランドが低く、水素および酸素の負の二次イオン収率が大きい状況で分析が可能になる。よって、試料に含まれる極微量の水素や酸素を超高感度に検出できる。
(4) Summary of Embodiment (i) The ion beam apparatus (ion beam elemental analysis apparatus) according to the present embodiment has a supply unit for supplying an alkali metal to a sample. The supply unit includes a first exhaust unit and a second exhaust unit (specific gas removal unit) that exhausts hydrogen gas or oxygen gas after the operation of the first exhaust unit. By doing so, it is possible to provide a practical ion beam apparatus that can detect a very small amount of hydrogen and oxygen with extremely high sensitivity. In particular, impurity gas generated from the atmosphere and alkali metal in the supply unit is exhausted by the first exhaust unit. Further, a very small amount of hydrogen gas or oxygen gas (specific gas) is exhausted by the second exhaust unit. For this reason, it becomes possible to supply an alkali metal, supplying almost no hydrogen gas or oxygen gas to a sample. Therefore, analysis is possible in a situation where the background of hydrogen and oxygen secondary ions is low and the yield of negative secondary ions of hydrogen and oxygen is large. Therefore, a very small amount of hydrogen and oxygen contained in the sample can be detected with extremely high sensitivity.
 第2の排気部は、非蒸発ゲッタ材料を含むようにしても良い。第1の排気部によって供給部の大気およびアルカリ金属から発生する不純物ガスを排気して、さらに第2の排気部に含まれる非蒸発ゲッタ材料によって、純粋アルカリ金属を加熱する際に容器などから発生する水素ガス、酸素ガスを取り除く。非蒸発ゲッタ材料は、水素ガスや酸素ガスの排気(除去)速度が高いため、水素および酸素ガスを少なくでき、二次イオンバックグランドを低くすることができる。よって、試料に含まれる極微量の水素や酸素を超高感度に検出できる。 The second exhaust part may include a non-evaporable getter material. Impurity gas generated from the atmosphere and alkali metal in the supply unit is exhausted by the first exhaust unit, and further generated from a container or the like when pure alkali metal is heated by the non-evaporable getter material contained in the second exhaust unit Remove hydrogen gas and oxygen gas. Since the non-evaporable getter material has a high exhaust rate (removal) of hydrogen gas or oxygen gas, hydrogen and oxygen gas can be reduced, and the secondary ion background can be lowered. Therefore, a very small amount of hydrogen and oxygen contained in the sample can be detected with extremely high sensitivity.
 供給部は、純化室と、アルカリ金属を収納する収納室と、を有する。純化室と試料室は第1のバルブで、収納室と純化室は第2のバルブでそれぞれ接続されている。まず、収納室にアルカリ金属を含む材料を配置し、第2のバルブを閉めた状態で収納室の大気およびアルカリ金属から発生する不純物ガスを排気することによりアルカリ金属を真空中で収納する。次に、第1のバルブを開けた状態、及び第2のバルブを閉じた状態で、アルカリ金属を加熱蒸発させる。これにより純化室にアルカリ金属の一部を移すことができる。そして、第2の排気部が非蒸発ゲッタ材料を含むことから、純粋アルカリ金属を加熱する際に容器などから発生する水素ガス、酸素ガスを取り除くことができる。なお、純化室の内部に、非蒸発ゲッタ材料と加熱部を設けるようにしても良い。これにより、純化室を第1の排気部によって排気した後に、第2の排気部の非蒸発ゲッタ材料を加熱して活性化することができる。すなわち、非蒸発ゲッタ材料の水素ガスおよび酸素ガスに対する排気速度を高い状態に保持することが可能になる。 The supply unit has a purification chamber and a storage chamber for storing alkali metal. The purification chamber and the sample chamber are connected by a first valve, and the storage chamber and the purification chamber are connected by a second valve, respectively. First, a material containing an alkali metal is disposed in the storage chamber, and the alkali metal is stored in a vacuum by exhausting the impurity gas generated from the atmosphere and the alkali metal in the storage chamber with the second valve closed. Next, the alkali metal is evaporated by heating with the first valve opened and the second valve closed. Thereby, a part of alkali metal can be moved to the purification chamber. And since the 2nd exhaust part contains a non-evaporable getter material, when heating a pure alkali metal, hydrogen gas and oxygen gas which generate | occur | produce from a container etc. can be removed. Note that a non-evaporable getter material and a heating unit may be provided inside the purification chamber. Thus, after the purification chamber is exhausted by the first exhaust part, the non-evaporable getter material in the second exhaust part can be heated and activated. That is, it becomes possible to keep the exhaust speed of the non-evaporable getter material with respect to hydrogen gas and oxygen gas at a high level.
 イオン源は、ガス電界電離イオン源であっても良い。ガス電界電離イオン源から放出されたガスイオンビームを試料に照射することができる。特に、ガスイオンビームを極微細に細束化して試料に照射すれば、二次元および三次元元素分析が可能になる。すなわち、極微量の水素や酸素の三次元分布を調べることが可能となる。また、従来のガリウム金属を用いた場合に比べて試料損傷が少なく、試料の構造を調べるのに好適である。 The ion source may be a gas field ion source. The sample can be irradiated with a gas ion beam emitted from a gas field ion source. In particular, two-dimensional and three-dimensional elemental analysis can be performed by irradiating a sample with an extremely fine gas ion beam. That is, it becomes possible to investigate the three-dimensional distribution of extremely small amounts of hydrogen and oxygen. In addition, the sample is less damaged than when a conventional gallium metal is used, which is suitable for examining the structure of the sample.
 当該イオンビーム装置では、ガス電界電離イオン源が少なくとも3種以上のガス容器と接続されている。第1のガス容器は少なくとも酸素ガスを含み、第2のガス容器はネオン、アルゴン、キセノン、クリプトンのうち少なくとも一種を含み、第3のガス容器は水素、ヘリウムのいずれかを含む。これにより、ガス電界電離イオン源から様々な種類のガスイオンビームを試料に照射することができる。例えば、第1のガス容器の酸素ガスを用いれば、酸素ガスイオンビームを試料に照射して、正の二次イオンを検出することにより電気的陽性元素の高感度分析を実現することができる。第2のガス容器のネオン、アルゴン、キセノン、クリプトンの内いずれかのガスを用い、アルカリ金属供給部からアルカリ金属を試料に供給しながら、ガスイオンビームを試料に照射して、負の二次イオンを検出することにより、水素および酸素の高感度分析を実現することができる。さらに、第3のガス容器の水素またはヘリウムいずれかのイオンビームを試料に照射して二次電子を検出すれば、試料に大きなダメージを与えることなく試料表面の走査イオン像を得ることができる。すなわち、試料表面の構造情報と元素情報を得ることができる。 In the ion beam apparatus, the gas field ion source is connected to at least three kinds of gas containers. The first gas container contains at least oxygen gas, the second gas container contains at least one of neon, argon, xenon, and krypton, and the third gas container contains either hydrogen or helium. Thereby, various types of gas ion beams can be irradiated onto the sample from the gas field ion source. For example, if oxygen gas in the first gas container is used, highly sensitive analysis of an electropositive element can be realized by irradiating the sample with an oxygen gas ion beam and detecting positive secondary ions. Using a gas of neon, argon, xenon, or krypton in the second gas container and irradiating the sample with a gas ion beam while supplying alkali metal from the alkali metal supply unit to the sample, negative secondary By detecting ions, a highly sensitive analysis of hydrogen and oxygen can be realized. Furthermore, if a secondary electron is detected by irradiating the sample with either an ion beam of hydrogen or helium in a third gas container, a scanned ion image of the sample surface can be obtained without damaging the sample. That is, structural information and element information on the sample surface can be obtained.
(ii)本実施形態によるイオンビーム装置においては、上述のように供給部内に極微量の水素ガスまたは酸素ガス(特定ガス)を取り除くための非蒸発ゲッタ材料を配置しても良いが、それとは別に、或いはそれに加えて、試料室内に非蒸発ゲッタ材料を収納する容器を接続するようにしても良い。このようにしても、非蒸発ゲッタ材料によって試料室内の水素ガスおよび酸素ガスを高速に排気し、水素および酸素ガスを少なくでき、二次イオンバックグランドを低くできる。よって、試料に含まれる極微量の水素や酸素を超高感度に検出できる。なお、非蒸発ゲッタ材料を収納する容器と試料室とはバルブを介して接続されている。これにより、水素および酸素分析以外の元素分析の際にバルブを閉じておけば非蒸発ゲッタ材料の活性化間隔を長くすることができる。すなわち、装置の効率的な動作が実現される。 (Ii) In the ion beam apparatus according to the present embodiment, as described above, a non-evaporable getter material for removing a trace amount of hydrogen gas or oxygen gas (specific gas) may be disposed in the supply unit. Separately or in addition, a container for storing the non-evaporable getter material may be connected to the sample chamber. Even in this case, the hydrogen gas and oxygen gas in the sample chamber can be exhausted at high speed by the non-evaporable getter material, the hydrogen and oxygen gas can be reduced, and the secondary ion background can be lowered. Therefore, a very small amount of hydrogen and oxygen contained in the sample can be detected with extremely high sensitivity. The container for storing the non-evaporable getter material and the sample chamber are connected via a valve. Thus, if the valve is closed during elemental analysis other than hydrogen and oxygen analysis, the activation interval of the non-evaporable getter material can be lengthened. That is, an efficient operation of the apparatus is realized.
(iii)本実施形態によるイオンビーム装置においては、上述のように供給部内に極微量の水素ガスまたは酸素ガス(特定ガス)を取り除くための非蒸発ゲッタ材料を配置し、試料室内に非蒸発ゲッタ材料を収納する容器を接続するようにしても良いが、それとは別に、或いはそれに加えて、試料室内(試料近傍)に非蒸発ゲッタ材料を設置するようにしてもよい。このようにしても、試料室内の水素ガスおよび酸素ガスを少なくできて、二次イオンバックグランドを低くできる。そして、ガス電界電離イオン源から放出されたガスイオンビームを極微細に細束化して試料に照射すれば、水素および酸素の超高感度の二次元および三次元元素分析が可能になる。 (Iii) In the ion beam apparatus according to the present embodiment, as described above, a non-evaporable getter material for removing a trace amount of hydrogen gas or oxygen gas (specific gas) is disposed in the supply unit, and the non-evaporable getter is disposed in the sample chamber. A container for storing the material may be connected. Alternatively, or in addition thereto, a non-evaporable getter material may be installed in the sample chamber (near the sample). Even in this case, the hydrogen gas and oxygen gas in the sample chamber can be reduced, and the secondary ion background can be lowered. Then, if the gas ion beam emitted from the gas field ion source is finely bundled and irradiated on the sample, ultra-sensitive two-dimensional and three-dimensional elemental analysis of hydrogen and oxygen becomes possible.
(iv)本実施形態によるイオンビーム装置は、イオン源から放出されるガスイオンビームを試料に照射するイオンビーム照射系と、アルカリ金属イオンを試料に照射するイオンビーム照射系と、試料から放出される二次イオンを検出できるシステムと、を有している。アルカリ金属イオンビームは、試料に対して略平行方向から照射可能となっており、ガスイオンビームを試料に対して略垂直方向から照射するように構成されている。ガスイオンビームを試料に対して略垂直方向から照射して試料の三次元分析をする際に、試料表面にイオンスパッタによる凹凸が生じるという課題がある。そこで、アルカリ金属イオンビームを試料に対して略平行方向から照射することにより、試料表面の凹凸が少なくすることができる。すなわち、分析結果から三次元再構築する場合にひずみを少なくすることができるという効果を奏する。 (Iv) The ion beam apparatus according to the present embodiment is emitted from the sample, the ion beam irradiation system for irradiating the sample with the gas ion beam emitted from the ion source, the ion beam irradiation system for irradiating the sample with alkali metal ions. And a system capable of detecting secondary ions. The alkali metal ion beam can be irradiated from the substantially parallel direction to the sample, and the gas ion beam is irradiated from the substantially vertical direction to the sample. When performing a three-dimensional analysis of a sample by irradiating the sample with a gas ion beam from a substantially vertical direction, there is a problem that irregularities due to ion sputtering occur on the sample surface. Therefore, the unevenness of the sample surface can be reduced by irradiating the sample with an alkali metal ion beam from a substantially parallel direction. That is, there is an effect that distortion can be reduced when three-dimensional reconstruction is performed from the analysis result.
(v)本実施形態における試料元素分析は、ガスイオンビームを試料に照射すること、アルカリ金属原料を蒸発させること、非蒸発ゲッタ材料によって水素または酸素を吸着させること、アルカリ金属蒸気を試料に供給すること、ガスイオンビームを試料に照射して試料から放出された二次イオンを検出すること、によって実行される。このようにすることにより、アルカリ金属蒸気を試料に供給する際に、試料に水素および酸素を供給することが極めて少ないため、試料中の水素および酸素を超高感度で分析できるようになる。なお、アルカリ金属としては、セシウム、リチウム、ナトリウムのいずれかを用いることが可能である。 (V) Sample element analysis in the present embodiment is performed by irradiating a sample with a gas ion beam, evaporating an alkali metal raw material, adsorbing hydrogen or oxygen by a non-evaporated getter material, and supplying an alkali metal vapor to the sample. , And irradiating the sample with a gas ion beam to detect secondary ions emitted from the sample. By doing so, when supplying the alkali metal vapor to the sample, hydrogen and oxygen are rarely supplied to the sample, so that hydrogen and oxygen in the sample can be analyzed with ultra-high sensitivity. Note that any one of cesium, lithium, and sodium can be used as the alkali metal.
1 ガス電界電離イオン源,2 イオンビーム照射系カラム,3 試料室,4 冷却機構,5 集束レンズ,6 飛行時間型質量分析カラム,7 パルス化電極,8 対物レンズ,9 試料,10 試料ステージ,11 荷電粒子検出器,12 イオン源真空排気用ポンプ,13 試料室真空排気用ポンプ,14 イオンビーム(ガスイオンビーム),15 真空容器,16 二次イオン,17 装置架台,18 ベースプレート,19 防振機構,20 床(イオンビーム元素分析装置設置面),21 エミッタティップ,22 フィラメント,23 フィラメントマウント,24 引き出し電極,26 イオン源ガス供給部,29 アルカリ金属,30 アルカリ金属供給部,31 アルカリ金属収納室,32 第1の加熱機構,33 第1の排気部,34 純化室,35 第2の加熱機構,36 第2の排気部,37 第1のバルブ,38 第2のバルブ,39 第3のバルブ,40 アルカリ金属を試料表面に導くノズル,41 開口容器,42 ターボ分子ポンプ,43 ドライポンプ,44 非蒸発ゲッタ材料,45 加熱機構,46 接続管,47 金属網,48 第4のバルブ,49 第3の排気部,50 ロータリポンプ,51 非蒸発ゲッタ材料,52 真空排気ポンプ,53 真空遮断可能なバルブ,54 加熱機構,55 二次イオン検出部,56 マイクロチャンルプレート,57 二次元電気検出器,61 傾斜機構,62 イオンビーム照射軸,64 エミッタベースマウント,71 イオンレンズ,72 イオンレンズ,73 非蒸発ゲッタ材料,74 真空排気ポンプ,75 真空遮断可能なバルブ,76 非蒸発ゲッタ材料の加熱機構,77 非蒸発ゲッタ材料,78 非蒸発ゲッタ材料の加熱機構,81 第1のガス容器,82 第2のガス容器,83 第3のガス容器,91 ガス電界電離イオン源制御装置,92 冷却機構制御装置,93 レンズ制御装置,94 パルス化電極制御装置,95 飛行時間型質量分析計制御装置,96 二次イオン検出器制御装置,97 試料ステージ制御装置,98 真空排気用ポンプ制御装置,99 本体制御装置,191 イオン化ガス制御装置,192 アルカリ金属供給部制御装置,200 セシウムイオン照射系カラム,201 セシウム液体金属イオン源,202 イオン電位電極,203 集束レンズ,204 対物レンズ 1 gas field ion source, 2 ion beam irradiation system column, 3 sample chamber, 4 cooling mechanism, 5 focusing lens, 6 time-of-flight mass spectrometry column, 7 pulsed electrode, 8 objective lens, 9 sample, 10 sample stage, 11 charged particle detector, 12 ion source evacuation pump, 13 sample chamber evacuation pump, 14 ion beam (gas ion beam), 15 vacuum vessel, 16 secondary ion, 17 device mount, 18 base plate, 19 vibration isolation Mechanism, 20 floor (ion beam element analyzer installation surface), 21 emitter tip, 22 filament, 23 filament mount, 24 extraction electrode, 26 ion source gas supply section, 29 alkali metal, 30 alkali metal supply section, 31 alkali metal storage Chamber, 32 first heating mechanism, 33 first exhaust section, 34 purification chamber, 35 second chamber Heat mechanism, 36 Second exhaust part, 37 First valve, 38 Second valve, 39 Third valve, 40 Nozzle for introducing alkali metal to sample surface, 41 Open container, 42 Turbo molecular pump, 43 Dry pump , 44 Non-evaporable getter material, 45 Heating mechanism, 46 Connecting pipe, 47 Metal mesh, 48 Fourth valve, 49 Third exhaust part, 50 Rotary pump, 51 Non-evaporable getter material, 52 Vacuum exhaust pump, 53 Vacuum shut-off Possible valve, 54 heating mechanism, 55 secondary ion detector, 56 micro-channel plate, 57 two-dimensional electric detector, 61 tilt mechanism, 62 ion beam irradiation axis, 64 emitter base mount, 71 ion lens, 72 ion lens, 73 Non-evaporable getter material, 74 Vacuum pump, 75 Vacuum shut-off valve, 76 Non-evaporable getter material heating mechanism , 77 Non-evaporable getter material, 78 Heating mechanism of non-evaporable getter material, 81 First gas container, 82 Second gas container, 83 Third gas container, 91 Gas field ionization ion source controller, 92 Cooling mechanism control Equipment, 93 lens control device, 94 pulsed electrode control device, 95 time-of-flight mass spectrometer control device, 96 secondary ion detector control device, 97 sample stage control device, 98 vacuum pump control device, 99 main body control Device, 191 ionization gas control device, 192 alkali metal supply control device, 200 cesium ion irradiation system column, 201 cesium liquid metal ion source, 202 ion potential electrode, 203 focusing lens, 204 objective lens

Claims (15)

  1.  イオン源と、
     前記イオン源から放出されるイオンビームを試料に照射するイオンビーム照射系と、
     前記試料を収納する試料室と、
     前記イオンビームを前記試料に照射して前記試料から放出される二次イオンを検出する検出システムと、
     アルカリ金属を前記試料に供給するアルカリ金属供給システムと、
     前記試料に供給される前記アルカリ金属に起因する水素ガス及び/又は酸素ガスを取り除く特定ガス除去部と、
    を有する、イオンビーム装置。
    An ion source;
    An ion beam irradiation system for irradiating the sample with an ion beam emitted from the ion source;
    A sample chamber for storing the sample;
    A detection system for irradiating the sample with the ion beam to detect secondary ions emitted from the sample;
    An alkali metal supply system for supplying an alkali metal to the sample;
    A specific gas removing unit that removes hydrogen gas and / or oxygen gas caused by the alkali metal supplied to the sample;
    An ion beam apparatus.
  2.  請求項1において、
     前記特定ガス除去部は、前記アルカリ金属供給システムに含まれ、
     前記アルカリ金属供給システムは、さらに、当該アルカリ金属供給システム内を排気する排気部と、を含み、
     前記アルカリ金属供給システムは、前記排気部による排気動作の作動後に、前記特定ガス除去部によって、前記アルカリ金属に起因する水素ガス及び/又は酸素ガスを取り除く、イオンビーム装置。
    In claim 1,
    The specific gas removal unit is included in the alkali metal supply system,
    The alkali metal supply system further includes an exhaust section for exhausting the alkali metal supply system,
    The said alkali metal supply system is an ion beam apparatus which removes the hydrogen gas and / or oxygen gas resulting from the said alkali metal by the said specific gas removal part after the action | operation of the exhaust operation by the said exhaust part.
  3.  請求項1において、
     前記特定ガス除去部は、非蒸発ゲッタ材料を含む、イオンビーム装置。
    In claim 1,
    The specific gas removing unit is an ion beam apparatus including a non-evaporable getter material.
  4.  請求項2において、
     前記アルカリ金属供給システムは、第1のバルブを介して前記排気部と接続され、アルカリ金属を収納するための収納室と、第2のバルブを介して前記収納室と接続され、アルカリ金属を純化するための純化室と、を有する、イオンビーム装置。
    In claim 2,
    The alkali metal supply system is connected to the exhaust unit via a first valve, and is connected to a storage chamber for storing alkali metal and the storage chamber via a second valve, thereby purifying the alkali metal. And an ion beam apparatus.
  5.  請求項4において、
     前記特定ガス除去部は、非蒸発ゲッタ材料と、当該非蒸発ゲッタ材料を加熱する加熱部と、を有し、
     前記非蒸発ゲッタ材料は、前記純化室内部に設置されている、イオンビーム装置。
    In claim 4,
    The specific gas removal unit includes a non-evaporable getter material and a heating unit that heats the non-evaporable getter material,
    The non-evaporable getter material is an ion beam device installed in the purification chamber.
  6.  請求項1において、
     前記イオン源は、ガス電界電離イオン源である、イオンビーム装置。
    In claim 1,
    The ion beam device is a gas field ion source.
  7.  請求項6において、
     前記ガス電界電離イオン源は、少なくとも3種のガス容器と接続されており、
     第1のガス容器は、少なくとも酸素ガスを含み、
     第2のガス容器は、ネオン、アルゴン、キセノン、クリプトンのうち、少なくとも1種のガスを含み、
     第3のガス容器は、水素及びヘリウムのいずれかのガスを含む、イオンビーム装置。
    In claim 6,
    The gas field ion source is connected to at least three gas containers;
    The first gas container contains at least oxygen gas,
    The second gas container contains at least one gas selected from neon, argon, xenon, and krypton,
    The third gas container is an ion beam apparatus including one of hydrogen and helium.
  8.  請求項1において、
     前記特定ガス除去部は、前記試料室に取り付けられている、イオンビーム装置。
    In claim 1,
    The specific gas removing unit is an ion beam apparatus attached to the sample chamber.
  9.  請求項1において、
     前記イオン源は、ガス電界電離イオン源であり、
     前記イオンビーム照射系は、前記イオンビームを前記試料に対して略垂直方向から照射し、
     前記アルカリ金属供給システムは、前記アルカリ金属のイオンビームを前記試料に対して略平行方向から照射する、イオンビーム装置。
    In claim 1,
    The ion source is a gas field ion source;
    The ion beam irradiation system irradiates the sample with the ion beam from a substantially vertical direction,
    The said alkali metal supply system is an ion beam apparatus which irradiates the said alkali metal ion beam with respect to the said sample from a substantially parallel direction.
  10.  請求項9において、
     前記特定ガス除去部は、非蒸発ゲッタ材料を含み、かつ前記試料室の内側に設置されている、イオンビーム装置。
    In claim 9,
    The specific gas removing unit includes an non-evaporable getter material and is installed inside the sample chamber.
  11.  請求項9において、
     前記試料にイオンビーム照射することにより前記試料から放出された二次イオンの質量を分析する質量分析計カラムを有し、
     前記質量分析計カラムは、前記イオンビーム装置設置面に対して傾斜している、イオンビーム装置。
    In claim 9,
    A mass spectrometer column that analyzes the mass of secondary ions emitted from the sample by irradiating the sample with an ion beam;
    The ion beam apparatus, wherein the mass spectrometer column is inclined with respect to the ion beam apparatus installation surface.
  12.  ガス電界電離イオン源と、
     前記ガス電界電離イオン源から放出されるイオンビームを試料に照射するイオンビーム照射系と、
     前記試料を収納する試料室と、
     前記イオンビームを照射して前記試料から放出される二次イオンを検出できるシステムと、
     前記試料近傍に設置された非蒸発ゲッタ材と有することを特徴とするイオンビーム装置。
    A gas field ion source;
    An ion beam irradiation system for irradiating a sample with an ion beam emitted from the gas field ion source;
    A sample chamber for storing the sample;
    A system capable of detecting secondary ions emitted from the sample by irradiating the ion beam;
    An ion beam apparatus comprising a non-evaporable getter material installed in the vicinity of the sample.
  13.  請求項12において、
     非蒸発ゲッタ材は容器に納められており、前記容器はバルブを介して前記試料室に接続さているイオンビーム装置。
    In claim 12,
    A non-evaporable getter material is contained in a container, and the container is connected to the sample chamber via a valve.
  14.  ガスイオンビームを試料に照射することと、
     アルカリ金属を蒸発させてアルカリ金属蒸気を生成することと、
     非蒸発ゲッタ材料によって水素または酸素を吸着させることと、
     前記アルカリ金属蒸気を前記試料に供給することと、
     前記ガスイオンビームを前記試料に照射して前記試料から放出された二次イオンを検出することと、
    を含む試料元素分析方法。
    Irradiating the sample with a gas ion beam;
    Evaporating alkali metal to produce alkali metal vapor;
    Adsorbing hydrogen or oxygen with a non-evaporable getter material;
    Supplying the alkali metal vapor to the sample;
    Irradiating the sample with the gas ion beam to detect secondary ions emitted from the sample;
    A sample elemental analysis method including:
  15.  請求項14において、
     前記アルカリ金属は、セシウム、リチウム、ナトリウム、カリウムのいずれかである、試料元素分析方法。
    In claim 14,
    The sample elemental analysis method, wherein the alkali metal is any one of cesium, lithium, sodium, and potassium.
PCT/JP2015/073361 2015-08-20 2015-08-20 Ion beam device and method for analyzing sample elements WO2017029754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017535213A JP6594983B2 (en) 2015-08-20 2015-08-20 Ion beam apparatus and sample element analysis method
PCT/JP2015/073361 WO2017029754A1 (en) 2015-08-20 2015-08-20 Ion beam device and method for analyzing sample elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073361 WO2017029754A1 (en) 2015-08-20 2015-08-20 Ion beam device and method for analyzing sample elements

Publications (1)

Publication Number Publication Date
WO2017029754A1 true WO2017029754A1 (en) 2017-02-23

Family

ID=58051536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073361 WO2017029754A1 (en) 2015-08-20 2015-08-20 Ion beam device and method for analyzing sample elements

Country Status (2)

Country Link
JP (1) JP6594983B2 (en)
WO (1) WO2017029754A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387691A (en) * 2018-04-02 2018-08-10 杭州赛威斯真空技术有限公司 A kind of material air-breathing deflation rate test device
JP2021525945A (en) * 2018-05-30 2021-09-27 ルクセンブルク インスティトゥート オブ サイエンス アンド テクノロジー(リスト) Collaborative nanoscale 3D imaging and chemical analysis
CN114156158A (en) * 2021-11-19 2022-03-08 中国地质科学院地质研究所 High-efficient stable secondary ion extraction element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133740A (en) * 1979-04-03 1980-10-17 Matsushita Electric Ind Co Ltd Secondary ion mass spectrometer
JPS59149644A (en) * 1983-01-31 1984-08-27 Toshiba Corp Apparatus for surface analysis
JPH06342638A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Inspection and device therefor
JP2000162163A (en) * 1998-11-30 2000-06-16 Nippon Steel Corp Precise secondary ion mass spectrometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133740A (en) * 1979-04-03 1980-10-17 Matsushita Electric Ind Co Ltd Secondary ion mass spectrometer
JPS59149644A (en) * 1983-01-31 1984-08-27 Toshiba Corp Apparatus for surface analysis
JPH06342638A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Inspection and device therefor
JP2000162163A (en) * 1998-11-30 2000-06-16 Nippon Steel Corp Precise secondary ion mass spectrometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387691A (en) * 2018-04-02 2018-08-10 杭州赛威斯真空技术有限公司 A kind of material air-breathing deflation rate test device
CN108387691B (en) * 2018-04-02 2023-08-22 杭州赛威斯真空技术有限公司 Material gassing rate testing arrangement that breathes in
JP2021525945A (en) * 2018-05-30 2021-09-27 ルクセンブルク インスティトゥート オブ サイエンス アンド テクノロジー(リスト) Collaborative nanoscale 3D imaging and chemical analysis
CN114156158A (en) * 2021-11-19 2022-03-08 中国地质科学院地质研究所 High-efficient stable secondary ion extraction element

Also Published As

Publication number Publication date
JP6594983B2 (en) 2019-10-23
JPWO2017029754A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP5178926B2 (en) Charged particle microscope and ion microscope
JP5086105B2 (en) Gas field ion source
JP6093752B2 (en) Ion beam equipment
US10304658B2 (en) Electron beam-induced etching
JP4863593B2 (en) Method and apparatus for increasing secondary ion yield
JP2007172862A (en) Cleaning device for charged particle beam source, and charged particle beam device using same
JP2010010125A (en) Charged particle beam apparatus
JP6594983B2 (en) Ion beam apparatus and sample element analysis method
JP6433515B2 (en) Mirror ion microscope and ion beam control method
JP2011171009A (en) Focused ion beam device
JP5989959B2 (en) Focused ion beam device
JP5432028B2 (en) Focused ion beam device, tip end structure inspection method, and tip end structure regeneration method
JP6758755B2 (en) Charged particle beam system with improved imaging gas and how to use it
WO2017134817A1 (en) Gas field ionization source, ion beam device, and beam irradiation method
JP6696019B2 (en) Ion beam device and method of operating the same
EP2182542A1 (en) Dual mode gas field ion source
JP6568501B2 (en) Ion beam equipment
JP2020129547A (en) Combined gallium focused ion beam and ion microscope
JP5969586B2 (en) Ion beam equipment
JP5677365B2 (en) Charged particle microscope
WO2020044429A1 (en) Ion beam device
JP6174054B2 (en) Orbitron pump and electron beam apparatus equipped with orbitron pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901736

Country of ref document: EP

Kind code of ref document: A1