WO2017028839A1 - Pompe à vide entraînee par moteur électrique - Google Patents

Pompe à vide entraînee par moteur électrique Download PDF

Info

Publication number
WO2017028839A1
WO2017028839A1 PCT/DE2016/000325 DE2016000325W WO2017028839A1 WO 2017028839 A1 WO2017028839 A1 WO 2017028839A1 DE 2016000325 W DE2016000325 W DE 2016000325W WO 2017028839 A1 WO2017028839 A1 WO 2017028839A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
vacuum pump
pump
pump housing
seat
Prior art date
Application number
PCT/DE2016/000325
Other languages
German (de)
English (en)
Inventor
Conrad Nickel
Jens Hoffmann
Franz Pawellek
Original Assignee
Nidec Gpm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Gpm Gmbh filed Critical Nidec Gpm Gmbh
Publication of WO2017028839A1 publication Critical patent/WO2017028839A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/332Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/603Centering; Aligning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof

Definitions

  • the invention relates to an electric motor-driven vacuum pump for land and air vehicles with a cylindrical working chamber in which a slide is arranged between a suction port and an outflow opening, which slides in a guide slot of a Exzentermoskolbens.
  • the electric motors used are mostly asynchronous motors.
  • split pot Since it is often to be avoided that the motor is arranged in the space filled with resources, a structural, hermetic separation is required, which is usually realized by a so-called split pot.
  • This split pot is arranged either directly in the motor gap or in a magnetic coupling and consists of a material in which no or only very small eddy currents are generated by the alternating magnetic fields.
  • a rotary vane vacuum pump with an extended, simultaneously serving as a motor shaft of an asynchronous pump shaft is known.
  • the projecting into the asynchronous pump shaft inevitably causes a large-volume design.
  • the containment shell also requires an enlargement of the motor gap, whereby the efficiency of the asynchronous motor decreases and the power consumption increases.
  • the negative impact of the containment shell on the width of the engine gap is due to several cumulative effects.
  • the one-sided attachment creates a tilting of the pot via a mounting flange. Therefore, the motor gap must be selected to be correspondingly large.
  • the attachment provided in DE 10 2004 024 554 A1 according to FIG over the flange in many of the non-magnetic materials due to the uneven introduction of forces across the flange, the risk of stress cracking, resulting in destruction.
  • DE 10 2006 022 772 A1 and EP 1 857 681 B1 have described a drive arrangement for a rotary vane vacuum pump in which, in addition to the vacuum pump, an asynchronous motor designed as a canned motor is flanged with a hermetically sealed separation between the rotor and stator components.
  • a fuel pump used in aircraft is known from DE 20 10 207 A, which is driven by a brushless DC motor with alternating drive current.
  • DE 10 2004 021 916 A1 also describes a vacuum pump used in aircraft, which is likewise driven by a brushless DC motor with alternating drive current.
  • the drive shaft of the vacuum pump is connected via a clutch device arranged in the shaft direction next to the vacuum pump with the brushless DC motor arranged in series next to the clutch device, such that the clutch device on the motor shaft of the brushless DC motor by means of a Collet is attached.
  • the brushless DC motors used in the latter solutions are particularly suitable for the DC networks in air and land vehicles, and build compared to conventional DC motors also much more compact.
  • the brushless DC motors develop significantly less heat during operation than conventional DC motors with comparable output power and thus have a much higher efficiency.
  • the object of the invention is now an operating by means of an eccentric orbital electric motor driven vacuum pump for land and aircraft, with a cylindrical working chamber in which a slide between a suction and an outflow opening is arranged, which slides in a guide slot of an eccentric rotary piston to develop which does not have the aforementioned disadvantages of the prior art, and in particular so small that they can be arranged in the space of a provided with a pulley, mechanically driven Vakuumpunpe, and at the same time is very simple and robust, with minimal material use and manufacturing technology easy can be manufactured and assembled, ensures high reliability with low friction losses and a long service life and is also characterized by a high mechanical efficiency at high volumetric efficiency.
  • FIG. 2 shows a three-dimensional view of a design of the electric motor-driven vacuum pump according to the orbiter principle with magnetic ring sensor 33 and sensors 32 and integrated ECU / control unit 34 for autonomous operation;
  • FIG. 3 shows a sensorless design of the electric motor-driven vacuum pump according to the orbiter principle in a partial section; shows this sensorless design of the electric motor driven vacuum pump according to the Orbiterkal, according to Figure 3, in a three-dimensional exploded view; shows the juxtaposition of the characteristics of the line recordings and their mean values on the one hand of the electric vacuum pump according to the orbiter principle (curves C and D) with respect to the other hand a modern, currently used in the vehicles mechanical vacuum pump without Orbiter principle (curves A and B) via a "New European Driving Cycle"(NEDC);
  • FIG. 6 shows the average power consumption and the CO 2 savings of the electric vacuum pump according to the orbiter principle with and without brake energy recovery (recuperation) compared to conventional mechanically driven vacuum pumps with and without orbiter principle used in the prior art.
  • electric motor-driven vacuum pump consists of a pump housing 1, a rotatably mounted in the pump housing 1 in the bearing 36 drive shaft 2, and arranged in the pump housing 1, from the pump housing 1 in conjunction with a pump cover 3 formed working chamber 4 with a cylindrical inner wall 5, arranged on the drive shaft 2, eccentric disc 6 with a eccentrically arranged on this bearing pin 7, a rotatably mounted on the bearing pin 7, in the cylindrical inner wall 5 of the working chamber 4 rotating piston drum, the orbiter 8, with a Cylinder jacket 9, arranged in an orbiter 8 guide slot 10, and arranged in the working chamber 4 suction port 11 and disposed in the working chamber 4 outflow 12, with a arranged between the suction port 11 and the discharge port 12 locking slide 13 of the guide slot 10 of the orbiter 8 slidably mounted, and a arranged on the drive shaft 2, the vacuum pump driving electric motor.
  • the drive shaft 2 is mounted in only one bearing 36 by means of rolling elements 16 in the rolling bearing ring 15 so that the drive shaft 2 the roller bearing ring 15 on the pump side with an eccentric 17 and the drive side with a rotor seat 18 surmounted, and that on both sides of the Rolling elements 16 between the drive shaft 2 and the rolling bearing ring 15 seals 19 are arranged.
  • roller bearing ring 15 is arranged in an inner cylindrical bearing seat 21 of a drive side rigidly arranged on the pump housing 1, cylindrical bearing flange 20, that only the rotor seat 18, the pump housing 1 projects beyond.
  • the rotor (35), a brushless DC motor, the BLDC motor 14, is arranged so that this the cylindrical bearing flange 20 spaced so freely surrounding encircling that the permanent magnets 23 radially spaced in the region of the arranged in the bearing seat 21, come equipped with rolling elements 16 rolling bearing ring 15 come to rest.
  • a stator 25 is arranged such that it forms inside the pump housing 1 a spaced by the wall thickness of the pump housing 1 eccentric disk receiving space 26 in which on the Exzentersitz 17 of the drive shaft 2 arranged eccentric 6 can rotate freely.
  • stator 27 of the BLDC motor 14 is positioned on the pump side against the rotor cup 24 at the stator seat 25, with the stator 27, like the other components of the BLDC motor 14, like the switching ring 28 also at the same time positionally positioned in an engine cover 29 so arranged that after mounting the motor cover 29 on the pump housing 1, with the help of fasteners 30, all components of the BLDC motor 14 to each other and not only positioned in the exact position relative to the other components of the vacuum pump but at the same time are securely and reliably fixed in their position.
  • the brushless (electronically commutated) DC motor, the BLDC motor 14, is free of mechanical commutation devices. This runs very quietly, is durable and virtually maintenance-free. In regulated operation, the set speed remains constant during load and / or supply voltage fluctuations.
  • FIG. 1 shows in a partial section a design of the electric motor driven vacuum pump according to the invention with sensors 32 fixed to the housing and a rotating magnetic ring sensor 33 arranged on the rotor 35 (without integrated electronics, ie without the ECU / control unit 34 shown in FIG. 2) for position detection of the sensor Rotor 35.
  • the magnetic ring sensor 33 is used in conjunction with the sensors 32 to ensure safe start-up of the vacuum pump operated by an engine control unit in a motor vehicle.
  • FIG. 2 shows in a three-dimensional view a design of the electromotively driven vacuum pump according to the invention with magnetic ring sensor 33 and sensors 32 and integrated ECU / control unit 34 for autonomous operation (control is not effected by means of an external engine control unit arranged in the motor vehicle). Also in this design, the magnetic ring sensor 33 and the sensors 32 are used in conjunction with the integrated ECU / control unit 34 to ensure safe start-up of the vacuum pump according to the invention.
  • FIGS 3 and 4 show a sensorless design of the electric motor driven vacuum pump according to the invention without integrated ECU / control unit 34.
  • This inventive, electric motor driven vacuum pump is controlled by a motor vehicle arranged in the external engine control unit.
  • FIG. 3 shows this sensorless design in a partial section
  • FIG. 4 shows this sensorless design in a three-dimensional exploded view.
  • the rotor position is detected by the induced phase voltage at zero crossing of the non-energized motor windings.
  • the zero crossing is nothing more than information about the current position of the rotor 35 and tells the controller when to switch to the next phase, ie when the next commutation is to take place by means of pulse width modulation.
  • the rotor pot 24 is integrally formed from a soft magnetic material.
  • the one-piece construction of the rotor pot 24 reduces the assembly effort in the manufacture of the electric orbital vacuum pump according to the invention.
  • the rotor pot 24 is inventively designed so that it surrounds the bearing spaced. As a result, the axial length of the entire vacuum pump according to the invention is significantly reduced.
  • the rotor pot 24 is formed by a homogeneous soft magnetic sintered part.
  • the soft magnetic metallurgical powder as the starting material of this sintered part, the rotor pot 24, a soft magnetic output body for producing a dimensionally stable rotor pot 24 for fixing on the rotor seat 18 of the drive shaft 2 and for receiving the permanent magnets 23 is provided.
  • the roller bearing ring 15 of the bearing 36 is only pressed into the cylindrical bearing flange 20, ie that no bearing securing elements against axial displacements are arranged on the front side of the bearing 36 with the roller bearing ring 15.
  • a profile seal 31 is arranged between the pump housing 1 and a pump cover 3 arranged on the pump housing 1 by means of fastening elements 30.
  • the invention also provides that the pump cover 3 and / or the motor cover 29 is provided with coolant channels for cooling and coolant distribution to other consumers.
  • the vacuum pump according to the invention can also be mounted under extreme operating conditions, such as at high temperatures in the region of the exhaust gas tract.
  • an electrically driven vacuum pump for vehicles which is so small that it can be arranged in the space of a provided with a pulley, mechanically driven vacuum pump, while at the same time is very simple and robust , can also be easily manufactured and assembled with minimal use of materials production, a high reliability, with low friction losses and long life guaranteed and also characterized by high volumetric efficiency by a very high mechanical efficiency.
  • a drive characteristic map adapted to the pump mechanism with gentle start-up and low power peaks in combination with the high mechanical efficiency caused by the arrangement according to the invention causes a very low power consumption, whereby the control devices less loaded, so spared, and a long life these components of the solution according to the invention can be effected.
  • the inventively used BLDC motor 14 is free of mechanical commutation. It runs very quietly, is durable and practically maintenance-free. In regulated operation, the set speed remains constant during load and / or supply voltage fluctuations.
  • the characteristic curves of the line receptacles and their mean values of the electric vacuum pump according to the invention are those of a modern mechanical device currently used in vehicles Vacuum pump over a driving cycle of a vehicle, the "New European Driving Cycle” (NEDC), facing each other.
  • NEDC New European Driving Cycle
  • the continuous characteristic curve A which is shown as a solid line and oscillates strongly around the mean value, describes the power consumption of a mechanical vacuum pump over a drive cycle.
  • the vacuum pump During braking or when a too low vacuum is detected in the brake booster, the vacuum pump has to do more work, compared to the evacuated state. This can be recognized by the strong "mean" value of the characteristic curve A with large power fluctuations and associated power peaks.
  • the mechanical vacuum pump is "carried along" during the entire driving cycle, i. even then, even if no negative pressure is needed.
  • characteristic curve B represented as "broken dashed line" of average power consumption of approximately 100 watts over one driving cycle.
  • the characteristic curve C of the power consumption of the electric vacuum pump according to the invention shows only narrow bars, since these are controlled as needed.
  • the resulting characteristic curve D of the average power consumption over a drive cycle is shown as a "dash-dotted line" and lies as an average at about 18 watts and thus significantly below the characteristic curve B with an average power consumption of about 100 watts.
  • the BLDC motor 14 can also guarantee the high lifetime requirements applicable in the automotive industry (from 1800 h to 4000 h). At present, as mentioned above, a brushed motor always had a life of approximately 1000 hours. This could not meet the strict standards of the automotive industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

L'invention concerne une pompe à vide entraînée par moteur électrique pour véhicules terrestres et aéronefs, comprenant une chambre de travail cylindrique dans laquelle est disposé un tiroir entre un orifice d'aspiration et un orifice de refoulement, lequel tiroir glisse dans une fente de guidage d'un piston rotatif excentrique, l'arbre d'entraînement (2) étant monté dans seulement un palier (36) au moyen de corps de roulement (16) dans la bague (15) de palier à roulement, de telle sorte que l'arbre d'entraînement (2) dépasse au-delà de la bague (15) de palier à roulement par un siège d'excentrique (17) du côté de la pompe et par un siège de rotor (18) du côté de l'entraînement, et des joints d'étanchéité (19) étant disposés des deux côtés des corps de roulement (16) entre l'arbre d'entraînement (2) et la bague (15) de palier à roulement, et la bague (15) de palier à roulement étant disposée dans un siège de palier (21) cylindrique intérieur du flasque de palier du carter de pompe (1) de telle sorte que le siège de rotor (18) dépasse au-delà du carter de pompe (1), un élément cupuliforme (24) de rotor, pourvu d'un logement d'arbre (22) de rotor et garni d'aimants permanents (23) sur la périphérie extérieure, du rotor (35) d'un moteur à courant continu sans balais, du moteur BLDC (14), étant disposé sur le siège de rotor (18) de telle sorte qu'il entoure de manière espacée le flasque de palier (20) cylindrique de manière à pouvoir tourner librement.
PCT/DE2016/000325 2015-08-19 2016-08-19 Pompe à vide entraînee par moteur électrique WO2017028839A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015010846.8A DE102015010846B4 (de) 2015-08-19 2015-08-19 Elektromotorisch angetriebene Vakuumpumpe
DE102015010846.8 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017028839A1 true WO2017028839A1 (fr) 2017-02-23

Family

ID=57042632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/000325 WO2017028839A1 (fr) 2015-08-19 2016-08-19 Pompe à vide entraînee par moteur électrique

Country Status (2)

Country Link
DE (1) DE102015010846B4 (fr)
WO (1) WO2017028839A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217383A (zh) * 2020-01-21 2021-08-06 尼得科Gpm有限公司 摩擦优化的真空轨道飞行器泵
WO2021259461A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259462A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259463A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259466A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259465A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule à moteur et procédé de commande d'une pompe à vide de véhicule à moteur

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353713B (zh) * 2018-12-07 2023-07-28 南通虹波机械有限公司 一种矿用泵站端部真空罐及其制作方法
DE102019133743A1 (de) * 2019-12-10 2021-06-10 Nidec Gpm Gmbh Elektrische Orbiter-Vakuumpumpe mit optimierter Regelung
DE102020133164A1 (de) 2020-12-11 2022-06-15 Nidec Gpm Gmbh Orbiter-Vakuumpumpe mit optimierter Lagerung
DE102020101312B3 (de) * 2020-01-21 2021-03-25 Nidec Gpm Gmbh Trockenlauffähige Orbiter-Vakuumpumpe
DE102020101315B4 (de) 2020-01-21 2022-09-08 Nidec Gpm Gmbh Orbiter-Vakuumpumpe mit optimierter Lagerung
DE102021119564B4 (de) 2021-07-28 2023-03-16 Nidec Gpm Gmbh Fluidpumpe, insbesondere Flüssigfluidpumpe und Kraftfahrzeug aufweisend die Fluidpumpe

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE426755C (de) 1926-03-18 Johan Hjalmar Syrjaenen Abdichtung der Treibwelle von Drehkolbenpumpen fuer Fluessigkeiten oder Gase
CH129486A (de) 1927-08-26 1928-12-17 Hermann Weber Umlaufkompressor für hohe Drucke.
DE2010207A1 (de) 1970-03-04 1971-09-16 Hobson Ltd H M Kraftstoffpumpe, insbesondere fur Luftfahrzeuge
DE102004021916A1 (de) 2004-05-04 2005-12-08 Ziegler, Günter Bürstenloser Elektromotor zum Antrieb einer Vakuumpumpe in Luftfahrzeugen
DE102004024554A1 (de) 2004-05-18 2005-12-15 Pfeiffer Vacuum Gmbh Ölgedichtete Drehschiebervakuumpumpe
DE102006022772A1 (de) 2006-05-16 2007-11-22 Pfeiffer Vacuum Gmbh Antriebsanordnung für eine Vakuumpumpe
DE102006016791B4 (de) 2006-04-10 2008-01-31 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Vakuumpumpe
WO2010009603A1 (fr) 2008-07-22 2010-01-28 温岭市鑫磊空压机有限公司 Dispositif de compression rotatif translatif
WO2011033426A2 (fr) * 2009-09-16 2011-03-24 Vhit S.P.A. Mécanisme à déplacement positif fermé, notamment destiné à des machines à fluide, machines à fluides comprenant ce mécanisme et unité rotative destinée à ce mécanisme
DE102012009419B3 (de) 2012-05-11 2013-07-25 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt "Vakuumpumpe"
US20140037472A1 (en) * 2011-01-04 2014-02-06 Jtekt Corporation Electrical pump apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044341B2 (ja) * 2001-09-14 2008-02-06 サンデン株式会社 ハイブリッド圧縮機
DE102006039958A1 (de) * 2006-08-25 2008-02-28 Busch Produktions Gmbh Drehschieber-Vakuumpumpe bzw.-Verdichter in Blockbauweise mit fliegend gelagertem Scheibenläufer-Synchronmotor
WO2009149682A2 (fr) * 2008-06-09 2009-12-17 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Module motopompe
CN102472278B (zh) * 2009-08-10 2015-06-03 Lg电子株式会社 压缩机
WO2012007125A2 (fr) * 2010-07-16 2012-01-19 Magna Powertrain Ag & Co Kg Pompe à palettes
DE102011001394B4 (de) * 2011-03-18 2015-04-16 Halla Visteon Climate Control Corporation 95 Elektrisch angetriebener Kältemittelverdichter
DE112012001476A5 (de) * 2011-03-31 2013-12-24 Ixetic Bad Homburg Gmbh Antriebseinheit für eine Unterölpumpe und Pumpe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE426755C (de) 1926-03-18 Johan Hjalmar Syrjaenen Abdichtung der Treibwelle von Drehkolbenpumpen fuer Fluessigkeiten oder Gase
CH129486A (de) 1927-08-26 1928-12-17 Hermann Weber Umlaufkompressor für hohe Drucke.
DE2010207A1 (de) 1970-03-04 1971-09-16 Hobson Ltd H M Kraftstoffpumpe, insbesondere fur Luftfahrzeuge
DE102004021916A1 (de) 2004-05-04 2005-12-08 Ziegler, Günter Bürstenloser Elektromotor zum Antrieb einer Vakuumpumpe in Luftfahrzeugen
DE102004024554A1 (de) 2004-05-18 2005-12-15 Pfeiffer Vacuum Gmbh Ölgedichtete Drehschiebervakuumpumpe
DE102006016791B4 (de) 2006-04-10 2008-01-31 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Vakuumpumpe
DE102006022772A1 (de) 2006-05-16 2007-11-22 Pfeiffer Vacuum Gmbh Antriebsanordnung für eine Vakuumpumpe
EP1857681B1 (fr) 2006-05-16 2015-07-08 Pfeiffer Vacuum Gmbh Pompe à vide à palettes avec moteur à gaine
WO2010009603A1 (fr) 2008-07-22 2010-01-28 温岭市鑫磊空压机有限公司 Dispositif de compression rotatif translatif
WO2011033426A2 (fr) * 2009-09-16 2011-03-24 Vhit S.P.A. Mécanisme à déplacement positif fermé, notamment destiné à des machines à fluide, machines à fluides comprenant ce mécanisme et unité rotative destinée à ce mécanisme
US20140037472A1 (en) * 2011-01-04 2014-02-06 Jtekt Corporation Electrical pump apparatus
DE102012009419B3 (de) 2012-05-11 2013-07-25 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt "Vakuumpumpe"

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217383A (zh) * 2020-01-21 2021-08-06 尼得科Gpm有限公司 摩擦优化的真空轨道飞行器泵
WO2021259461A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259462A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259463A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259466A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule automobile
WO2021259465A1 (fr) 2020-06-24 2021-12-30 Pierburg Pump Technology Gmbh Pompe à vide de véhicule à moteur et procédé de commande d'une pompe à vide de véhicule à moteur
DE112020007339T5 (de) 2020-06-24 2023-06-15 Pierburg Pump Technology Gmbh Kraftfahrzeugvakuumpumpe

Also Published As

Publication number Publication date
DE102015010846B4 (de) 2017-04-13
DE102015010846A1 (de) 2017-02-23

Similar Documents

Publication Publication Date Title
DE102015010846B4 (de) Elektromotorisch angetriebene Vakuumpumpe
EP0685122B1 (fr) Machine electrique comportant au moins un embrayage
DE102016204756A1 (de) Elektrischer Kältemittelantrieb
DE4322674C2 (de) Elektrischer Getriebemotor für ein Fahrzeug
DE102011001041A1 (de) Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
WO2001089063A1 (fr) Unite d'entrainement
DE102011001394A1 (de) Elektrisch angetriebener Kältemittelverdichter
DE102013014143A1 (de) Elektromotorische Wasserpumpe
WO2019166333A1 (fr) Moteur électrique
DE19948972A1 (de) Motorpumpe
DE102004014865A1 (de) Elektrischer Nockenwellerversteller mit Scheibenläufermotor
WO2020094510A1 (fr) Machine électrique comprenant un dispositif de refroidissement à fluide
DE102007049209B4 (de) Gleichstrommotor
DE19736907A1 (de) Elektrisch angetriebener Verdichter
DE102012216337A1 (de) Primärbaugruppe für eine Flüssigkeitsreibungskupplung, Flüssigkeitsreibungskupplung, Verfahren und Steuergerät zum Ansteuern einer Flüssigkeitsreibungskupplung
DE10012663B4 (de) Kühlmittelpumpe mit elektronisch kommutiertem Eletromotor
DE102009006521A1 (de) Drehkolbenmaschine
WO2006089835A1 (fr) Entrainement a moteur electrique
EP3084219B1 (fr) Dispositif de pompage
DE102016224898A1 (de) Pumpeneinrichtung für ein Automatikgetriebe
DE2950046C2 (de) Gleichstrommotor
WO2013037540A1 (fr) Pompe, notamment pompe à huile pour moteur a combustion interne
DE19733147C1 (de) Motor-Pumpen-Aggregat, insbesondere für eine Kraftfahrzeug-Antiblockiblockier-Bremsvorrichtung
EP0719939B1 (fr) Moteur piézoélectrique à ondes progressives pour pompe à tube d'entrefer
WO2005031949A1 (fr) Moteur a courant continu comprenant un commutateur monte anti-rotatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16774610

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16774610

Country of ref document: EP

Kind code of ref document: A1