WO2017028792A1 - 检测空气中颗粒物的浓度的设备和方法 - Google Patents

检测空气中颗粒物的浓度的设备和方法 Download PDF

Info

Publication number
WO2017028792A1
WO2017028792A1 PCT/CN2016/095734 CN2016095734W WO2017028792A1 WO 2017028792 A1 WO2017028792 A1 WO 2017028792A1 CN 2016095734 W CN2016095734 W CN 2016095734W WO 2017028792 A1 WO2017028792 A1 WO 2017028792A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing device
vibration sensing
vibration
particulate matter
concentration
Prior art date
Application number
PCT/CN2016/095734
Other languages
English (en)
French (fr)
Inventor
聂泳忠
黄元庆
Original Assignee
厦门乃尔电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门乃尔电子有限公司 filed Critical 厦门乃尔电子有限公司
Publication of WO2017028792A1 publication Critical patent/WO2017028792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the present invention relates to the field of atmospheric environment detection and, more particularly, to an apparatus and method for detecting the concentration of particulate matter in the air.
  • the gravimetric method allows a certain volume of air to be sampled to pass through the filter membrane so that the particulate matter is trapped on the filter membrane, and then the concentration of the particulate matter is calculated based on the difference in mass between the filter membranes before and after the sampling.
  • the ⁇ -ray absorption method collects a certain volume of air through the filter paper, whereby the particles are trapped on the filter paper, and then the filter paper carrying the particulate matter is irradiated with the ⁇ -ray, and the concentration of the particulate matter is calculated according to the degree of attenuation of the ⁇ -ray.
  • the micro-oscillation balance method passes a certain volume of air sampled through a filter membrane installed on the oscillating end of the oscillation tube in the mass sensor, so that the particulate matter is trapped on the filter membrane, and then the mass of the filter membrane is changed according to the change of the oscillation frequency, and then according to The difference in mass of the filter is used to calculate the concentration of the particulate matter.
  • the gravimetric method requires manual weighing of the filter before and after sampling, with a low degree of automation.
  • the beta-ray absorption method requires the use of a radioactive source, which is not suitable for mass promotion in modern society that is increasingly concerned about environmental protection.
  • the micro-oscillation balance method not only requires manual weighing of the filter film before and after sampling as in the gravimetric method, so the degree of automation is low and the operation is complicated. In addition, none of the above methods can achieve real-time detection.
  • the present disclosure provides an apparatus for detecting a concentration of particulate matter in the air, the apparatus comprising: a first vibration sensing device that moves according to an excitation signal; a filtering device, The filtering device is disposed on the first vibration sensing device to filter air so that particles and gases in a certain particle size range of the air enter the first vibration sensing device, wherein the dynamics of the first vibration sensing device The characteristic is changed by the influence of the particulate matter, wherein the concentration of the particulate matter is determined according to data output by the first vibration sensing device indicating the dynamic characteristics of the first vibration sensing device.
  • the present disclosure also provides a method of detecting a concentration of particulate matter in the air, the method comprising: acquiring data indicative of a dynamic characteristic of the first vibration sensing device output by the first vibration sensing device, wherein the first vibration sensing device Moving according to the excitation signal, and wherein particles and gases below a certain particle size in the air enter the first vibration sensing device, and the dynamic characteristics of the first vibration sensing device are changed by the particles; The data representing the dynamic characteristics of the first vibration sensing device determines the concentration of the particulate matter.
  • the apparatus and method for detecting the concentration of particulate matter in the air can detect the concentration of particulate matter in the air in real time, and does not require manual weighing, does not contain a radioactive source, and is suitable for mass promotion.
  • FIG. 1 shows a block diagram of an apparatus for detecting the concentration of particulate matter in the air, in accordance with one embodiment of the present invention
  • FIG. 2 shows a schematic diagram of an apparatus for detecting the concentration of particulate matter in the air, in accordance with one embodiment of the present invention
  • FIG. 3 shows a schematic diagram of an apparatus for detecting the concentration of particulate matter in the air according to still another embodiment of the present invention
  • FIG. 4 is a schematic view of an apparatus for detecting a concentration of particulate matter in the air according to still another embodiment of the present invention.
  • Figure 5 is a block diagram showing an apparatus for detecting the concentration of particulate matter in the air according to another embodiment of the present invention.
  • FIG. 6 illustrates an apparatus for detecting a concentration of particulate matter in the air according to another embodiment of the present invention.
  • Figure 7 is a block diagram showing an apparatus for detecting the concentration of particulate matter in the air according to another embodiment of the present invention.
  • Figure 8 is a schematic view showing an apparatus for detecting the concentration of particulate matter in the air of the embodiment shown in Figure 7;
  • Figure 9 shows a flow chart of a method of detecting the concentration of particulate matter in the air, in accordance with one embodiment of the present invention.
  • an apparatus 100 for detecting a concentration of particulate matter in air includes a first vibration sensing device 102 and a filtering device 104.
  • the first vibration sensing device 102 moves in accordance with the excitation signal.
  • the first vibration sensing device 102 may be a MEMS (Micro Electro Mechanical System) vibration sensor.
  • the excitation signal can be generated by an excitation device.
  • the excitation signal may be a vibration signal, the vibration signal being a signal representative of vibration information including, but not limited to, frequency, amplitude, phase of the vibration.
  • the excitation means may be any device capable of generating vibrations having a frequency, amplitude, phase, the vibration frequency of the first vibration sensing device being less than the vibration frequency of the excitation device.
  • the excitation signal may be an impulse signal, and the impulse signal is a signal representative of the oscillation information, including but not limited to the period and amplitude of the oscillation.
  • the energizing means can be any device capable of generating an impulse (pulse) signal having a certain period of oscillation.
  • a filtering device 104 is disposed on the first vibration sensing device 102 to filter air such that particulate matter and gas within a certain particle size range of the air enter the first vibration sensing device 102.
  • the filter device 104 can be a PM2.5 filter device, and accordingly, the particulate matter is PM2.5 particulate matter.
  • the filter device 104 can be a PM10 filter device, and accordingly, the particulate matter is PM10 particulate matter.
  • the filter device 104 can be one or more screens disposed on the first vibration sensing device 102.
  • the filter device 104 can be a filter cover that covers the first vibration sensing device 102. It should be understood that the filtering device 104 can be disposed on the first vibration sensing device by mechanical connection. 102 can also be integrated with the first vibration sensing device 102.
  • the dynamic characteristics (e.g., amplitude-frequency characteristics, phase-frequency characteristics, step response, etc.) of the first vibration sensing device 102 are affected by the influence of particulate matter.
  • the concentration of the particulate matter may be determined based on data output by the first vibration sensing device 102 indicating the dynamic characteristics of the first vibration sensing device 102.
  • the data representing the dynamic characteristics of the first vibration sensing device 102 may include a damping ratio of the first vibration sensing device 102 that is varied by the influence of particulate matter, wherein the concentration of the particulate matter may pass from
  • the damping ratio determined by the data representing the dynamic characteristics of the first vibration sensing device 102 is compared with a predefined table, wherein the predefined table may include a plurality of different concentrations and corresponding damping of the same type of particulate matter measured in advance. Ratio of mapping.
  • the concentration of the particulate matter may be a mass concentration.
  • the particulate matter and gas in a certain particle size range in the air enter the first vibration sensing device 102 that is moving, and then the dynamic characteristics of the first vibration sensing device 102.
  • the (including the damping ratio) is changed by the influence of the particulate matter, and the concentration of the particulate matter is obtained by comparing the determined damping ratio of the first vibration sensing device 102 with a predefined table.
  • an apparatus 200 for detecting the concentration of particulate matter in the air includes a first vibration sensing device 202 and a filtering device 204.
  • the first vibration sensing device 202 and the filtering device 204 are arranged and operated in the same manner as the first vibration sensing device 102 and the filtering device 104 shown in FIG. That is, the first vibration sensing device 202 moves in accordance with the excitation signal.
  • the filtering device 204 disposed on the first vibration sensing device 202 filters the air such that particulate matter and gas within a certain particle size range of the air enter the first vibration sensing device 202.
  • the dynamic characteristics (including the damping ratio) of the first vibration sensing device 202 are changed by the influence of the particulate matter.
  • the concentration of the particulate matter can be obtained by comparing the damping ratio determined from the dynamic characteristic data of the first vibration sensing device 202 with a predefined table.
  • the predefined table includes a plurality of different concentrations of the same type of particulate matter and corresponding damping ratios measured in advance. Mapping. Generally, the damping ratio of the first vibration sensing device 202 in a vacuum environment is scaled to zero, meaning that there is no damping. For a specific kind of particulate matter, a plurality of different concentrations may be set in advance, and data indicating dynamic characteristics when the first vibration sensing device 202 moves under the plurality of different concentrations is measured and corresponding damping is calculated according to the data. Ratio, thereby calibrating a mapping table of multiple concentrations of the particulate matter and corresponding damping ratios. It should be understood that the more entries are included in the predefined table, ie, the finer the pre-calibrated concentration interval, the more accurate the value of the real-time particulate concentration obtained in the actual measurement will be.
  • the damping ratio ⁇ of the first vibration sensing device 202 can be calculated from the following formula (1):
  • x, ⁇ , a are the vibration amplitude, frequency, and acceleration of the first vibration sensing device 202, respectively, and ⁇ n , k are the natural frequencies of the first vibration sensing device 202, respectively, of the system.
  • the intrinsic modulus of elasticity, and the damping ratio of the first vibration sensing device 202 that is, in this embodiment, the damping ratio of the first vibration sensing device 202 can be derived from the vibration frequency, amplitude, acceleration, and natural frequency of the first vibration sensing device 202.
  • the damping ratio ⁇ of the first vibration sensing device 202 can be calculated from the following formula (2):
  • ⁇ and ⁇ are the vibration frequency and phase degree of the first vibration sensing device 202, respectively, and ⁇ n is the natural frequency of the first vibration sensing device 202, and ⁇ is the first vibration sensing device 202.
  • Damping ratio That is, in this embodiment, the damping ratio of the first vibration sensing device 202 can be derived from the vibration frequency, phase, and natural frequency of the first vibration sensing device 202.
  • the damping ratio of the first vibration sensing device 202 can be calculated according to a time domain estimation method of the attenuated second-order system. Specifically, the damping ratio ⁇ of the first vibration sensing device 202 can be calculated according to the following formula (3):
  • is the oscillation reduction coefficient
  • ⁇ n is the natural frequency of the first vibration sensing device
  • T is the oscillation period
  • is the oscillation frequency
  • a 1 and A n are the peaks of the oscillation amplitudes separated by n cycles
  • n may be an integer equal to or greater than 1. That is to say, in this embodiment, the damping ratio of the first vibration sensing device 202 can be derived from the oscillation period of the first vibration sensing device 202 and the peak value of the oscillation amplitude.
  • the apparatus 200 for detecting the concentration of particulate matter in the air further includes an excitation device 206.
  • the excitation device 206 generates an excitation signal that triggers movement of the first vibration sensing device 202.
  • the first vibration sensing device 202 is shown disposed above the excitation device 206 and directly coupled to the excitation device 206.
  • the manner in which the first vibration sensing device 202 and the excitation device 206 are connected is not limited thereto. Rather, the connection of the first vibration sensing device 202 to the excitation device 204 can be a variety of direct or indirect mechanical connections as long as the excitation signal of the excitation device 204 can be communicated to the first sensing device 202.
  • the excitation device 206 is shown in the shape of a cuboid, but it should be understood that the shape of the excitation device 206 is not limited thereto, but the excitation device 206 may be any device capable of generating a vibration signal or a shock signal.
  • the first vibration sensing device 202 has a housing 208.
  • the outer casing 208 does not completely seal the first vibration sensing device 202, but has an opening 210 in the outer casing.
  • the outer casing 208 is shown as having only one opening 210, but the invention is not limited thereto. There may be more than one opening 210 in the outer casing 208, and the openings 210 may be the same size or different.
  • the housing 208 can have two openings 210 therein.
  • the opening sizes of the two openings 210 are shown to be significantly different, however, the size of the opening is not particularly limited as long as the opening can be designed on the outer casing 208.
  • the filter device 204 completely covers the opening 210.
  • “Completely covered” means that there is no gap between the filter device 204 and the opening 210 such that air does not pass directly into the first vibration sensing device 202 from the opening 210 without passing through the filtering device 204.
  • the number of the filtering devices 204 is the same as the number of the openings 210, and the filtering devices 204 are completely covered in the respective openings in a one-to-one correspondence with the openings 210, respectively.
  • two filtering devices 204 are shown to completely cover the respective openings of the two openings 210, respectively.
  • the filter device 204 can be a strainer, a filter, or a filter paper.
  • the filter device 204 can be a filter cover to completely enclose the first vibration sensing device 202.
  • “Completely occluded” means that there is no gap between the filter device 204 and the first vibration sensing device 202 such that air does not pass directly into the first vibration sensing device 202 from the opening 210 without passing through the filtering device 204.
  • the filter device 204 is a filter cover 214 that completely covers the first vibration sensing device 202. It should be understood that the filter cover 214 can also completely enclose both the first vibration sensing device 202 and the energizing device 206.
  • Filtration device 204 can have different pore sizes to allow passage of particulate matter and gases within different particle size ranges.
  • the filtering device 204 may be a filtering device that allows particles and gas having a particle diameter of 2.5 ⁇ m or less to pass therethrough, that is, a PM2.5 filtering device.
  • the filtering device 204 may also be a filtering device that allows passage of particulate matter and gas having a particle diameter of 10 ⁇ m or less, that is, a PM10 filtering device.
  • particle size means the aerodynamic equivalent diameter of the particulate matter in ambient air.
  • the particulate matter and gas in a certain particle size range in the air enter the positive vibration first vibration sensing device 202, and then the dynamic characteristics of the first vibration sensing device 202 (including the damping ratio) is changed by the influence of the particulate matter, for example, when the concentration of the particulate matter in the air changes from high to low, the damping of the first vibration sensing device 202 becomes small, and when the concentration of the particulate matter in the air becomes low from high to high. At this time, the damping ratio of the first vibration sensing device 202 is increased.
  • the first vibration sensing device 202 can derive the concentration of particulate matter by comparing the damping ratio of the first vibration sensing device 202 to a predefined table.
  • FIG. 5 shows a block diagram of an apparatus for detecting the concentration of particulate matter in the air in accordance with another embodiment of the present invention.
  • an apparatus 300 for detecting the concentration of particulate matter in the air includes a first vibration sensing device 302, a filtering device 304, and an excitation device 306.
  • the first vibration sensing device 302, the filtering device 304, and the energizing device 306 are arranged and operated in the same manner as the first vibration sensing device 202, the filtering device 204, and the energizing device 206 shown in FIG.
  • the first vibration sensing device 302 moves according to the excitation signal generated by the excitation device 306, and the filtering device 304 filters the air so that the air is certain Particulate matter and gas within the particle size range enter the first vibration sensing device 302 such that the dynamic characteristics (including the damping ratio) of the first vibration sensing device 302 are affected by the particulate matter.
  • the concentration of particulate matter can be derived by comparing the damping ratio of the first vibration sensing device 302 to a predefined table.
  • apparatus 300 for detecting particulate matter in air in accordance with an embodiment of the present invention further includes determining means 308.
  • the determining device 308 can determine the real-time damping ratio of the first vibration sensing device from the data representing the dynamic characteristics outputted by the first vibration sensing device 302 and compare the determined damping ratio with a predefined table to obtain the particulate matter. concentration.
  • the particulate matter and gas in a certain particle size range in the air enter the first vibration sensing device 302 that is moving, and then the dynamic characteristics of the first vibration sensing device 302.
  • the change (including the damping ratio) is affected by the particulate matter, and the determining means 508 can obtain the concentration of the particulate matter by comparing the damping ratio of the first vibration sensing device 302 with a predefined table.
  • the apparatus 300 for detecting the concentration of particulate matter in the air according to an embodiment of the present invention can be further automated.
  • FIG. 6 shows a block diagram of an apparatus for detecting the concentration of particulate matter in the air in accordance with another embodiment of the present invention.
  • a preparation 400 for detecting the concentration of particulate matter in the air according to an embodiment of the present invention includes a first vibration sensing device 402, a filtering device 404, an excitation device 406, and a determining device 408.
  • the first vibration sensing device 402, the filtering device 404, the excitation device 406, and the determining device 408 in the embodiment of the present invention are determined according to the first vibration sensing device 302, the filtering device 304, the excitation device 306, and the determination device shown in FIG. Device 308 is arranged and operated in the same manner.
  • the first vibration sensing device 402 moves according to the excitation signal generated by the excitation device 606, and the filtering device 404 filters the air so that the particulate matter and gas within a certain particle size range of the air enter the first vibration sensing device.
  • the dynamic characteristics (including the damping ratio) of the first vibration sensing device 402 are thereby changed by the influence of the particulate matter.
  • the concentration of particulate matter can be derived by determining device 408 by comparing the damping ratio of first vibration sensing device 402 to a predefined table.
  • an apparatus 400 for detecting particulate matter in the air further includes a storage device 410.
  • the storage device 410 can store the first vibration obtained at a certain point in time
  • the data of the dynamic characteristics of the sensing device 402 determines that the device 408 derives the damping ratio from the data and compares the damping ratio to a predefined table to derive the value of the concentration of particulate matter at that point in time.
  • the storage device 410 can also store data representing the dynamic characteristics of the first vibration sensing device 402 obtained over a period of time, thereby determining that the device 408 derives damping ratios at a plurality of time points from the motion information and predetermines the damping ratios.
  • the table is compared to obtain the concentration of the particulate matter at a plurality of time points in the time period, thereby obtaining a graph of the value of the concentration of the particulate matter during the period of time.
  • the value of the concentration of particulate matter obtained by the determining device 408 may also be stored in the storage device 410.
  • the predefined table may also be stored in storage device 410.
  • the storage device 410 may include a plurality of storage devices, ie, a storage device for storing motion information of the first vibration sensing device 402, a storage device for storing a predefined table, and a storage determining device. 608 means for obtaining the value of the concentration of particulate matter. It should be understood that the storage device 410 may be located at a local location or at a remote location relative to the vibration sensing device.
  • the particulate matter and gas in a certain particle size range in the air enter the first vibration sensing device 402 that is moving, and then the dynamic characteristics of the first vibration sensing device 402.
  • the (including the damping ratio) is changed by the influence of the particulate matter
  • the storage device 410 can store the dynamic characteristic data of the first vibration sensing device 402 therein
  • the determining device 608 reads the dynamic characteristic data stored in the storage device 410
  • the damping ratio of the first vibration sensing device 402 is derived from the read dynamic characteristic data and the damping ratio is compared with a predefined table to derive the concentration of the particulate matter.
  • the device 400 for detecting the concentration of particulate matter in the air can not only give the value of the concentration of the particulate matter at a certain point in time, but can also give a certain period of time. The trend of the value of the concentration of the particles, thus automatically obtaining additional useful information.
  • FIG. 7 shows a block diagram of an apparatus for detecting the concentration of particulate matter in the air in accordance with another embodiment of the present invention.
  • an apparatus 500 for detecting the concentration of particulate matter in the air according to an embodiment of the present invention includes a first vibration sensing device 502, a filtering device 504, and an excitation device 506.
  • the first vibration sensing device 502 and the filtering device 504 in the embodiment of the present invention are arranged and operated in the same manner as the first vibration sensing device 202 and the filtering device 204 shown in FIG. 2.
  • the apparatus 500 for detecting particulate matter in the air according to an embodiment of the present invention further includes a second vibration sensing device 508.
  • FIG. 8 shows a schematic diagram of one embodiment of the apparatus 500 of FIG.
  • device 500 includes a first vibration sensing device 502, a filtering device 504, and an excitation device 506. Additionally, device 500 also includes a second vibration sensing device 508. As shown in FIG. 8, the second vibration sensing device 508 is disposed between the excitation device 502 and the first vibration sensing device 504. The second vibration sensing device 508 can move according to the excitation signal generated by the excitation device 506, and transmit the excitation signal generated by the excitation device 506 to the first vibration sensing device 502, and thus the first vibration sensing device 502 is based on the second vibration. The excitation signal transmitted by the sensing device.
  • the second vibration sensing device 508 may be a MEMS (Micro Electro Mechanical System) vibration sensor.
  • MEMS Micro Electro Mechanical System
  • the manner in which the second vibration sensing device 508 is coupled to the first vibration sensing device 502 and the excitation device 506 is not limited thereto, as long as the first vibration sensing device 502 and the second vibration sensing device 508 can The motion signal generated by the excitation device 506 can be moved.
  • the position of the second vibration sensing device 508 can be adjusted to the position of the first vibration sensing device 502.
  • the second vibration sensing device 508 has a housing 510 and is completely sealed by the housing 510.
  • the outer casing 510 can be filled with a vacuum.
  • the second vibration sensing device 508 has a particular damping ratio. Because the second vibration sensing device 508 is completely sealed, air cannot enter therein, and therefore its vibration characteristics are not affected by the particulate matter, and thus in this embodiment, the second vibration sensing device 508 is used as a standard sensor.
  • the first vibration sensing device 502 functions as a measurement sensor. It should be understood that the second vibration sensor 508 can be the same as the first vibration sensor 502 except that it is completely sealed so that air containing particulate matter cannot enter the second vibration sensor 502.
  • the data output by the second vibration sensing device 508 indicating the dynamic characteristics of the second vibration sensing device 508 can be used in conjunction with the output of the first vibration sensing device 502 indicating the dynamic characteristics of the first vibration sensing device 502.
  • Data to determine the concentration of particulate matter More specifically, when the excitation signal is a vibration signal, the concentration of the particulate matter can be determined by combining the data representing the respective vibration characteristics of the outputs of the first vibration sensing device 502 and the second vibration sensing device 508.
  • the concentration of the particulate matter may be determined according to the following equation (4) based on data indicating the vibration characteristics of the first vibration sensing device 502 and data representing the vibration characteristics of the second vibration sensing device 508:
  • PM represents the concentration of particles of a certain particle size in the air
  • E 10 represents the energy of the second vibration sensing device when vibrating to the first peak
  • a 11 and A 12 represent the first vibration transmission, respectively.
  • C 2 represents the inherent damping coefficient of the second vibration sensing device
  • v iner represents the vibration velocity of the second vibration sensing device
  • x acto denotes a vibration displacement of the first vibration sensing device
  • C 1 and S 1 respectively represent a resistance coefficient generated by the wind resistance and an area of the wind resistance
  • v act denotes a vibration speed indicating the first vibration sensing device
  • Indicates the air density.
  • the concentration of the particulate matter is actually determined by determining the air density.
  • the structure of the apparatus for detecting the concentration of particulate matter in the air and the respective constituent members according to the embodiment of the present invention have been described above, and a method of detecting the concentration of particulate matter in the air according to an embodiment of the present invention will be described below with reference to FIG.
  • Figure 9 shows a flow chart of a method of detecting particulate matter in the air, in accordance with one embodiment of the present invention.
  • a method 600 of detecting particulate matter in air in accordance with an embodiment of the present invention includes steps 602 and 604.
  • Step 602 acquiring data indicating the dynamic characteristics of the first vibration sensing device output by the first vibration sensing device, wherein the first vibration sensing device moves according to the excitation signal, and wherein the air has a certain particle size or less
  • the particulate matter and the gas enter the first vibration sensing device, and the dynamic characteristics of the first vibration sensing device are changed by the influence of the particulate matter.
  • the excitation signal can be a vibration signal or an impulse signal.
  • the particulate matter may be PM2.5 particulate matter or PM10 particulate matter.
  • Step 604 determining the concentration of the particulate matter based on the acquired data representing the dynamic characteristics of the first vibration sensing device.
  • the data representing the dynamic characteristics of the first vibration sensing device may include a damping ratio of the first vibration sensing device that is varied by a change in the concentration of the particulate matter.
  • the concentration of the particulate matter can be compared to the predefined table by the damping ratio of the first vibration sensing device
  • the predefined table includes a mapping of a plurality of different concentrations of the same type of particulate matter and a corresponding damping ratio measured in advance.
  • the damping ratio of the first vibration sensing device can be obtained by the vibration frequency, amplitude, acceleration, and natural frequency of the first vibration sensing device according to the following formula:
  • the damping ratio of the first vibration sensing device can also be obtained according to the vibration frequency, phase and natural frequency of the first vibration sensing device according to the following formula:
  • the damping ratio of the first vibration sensing device when the signal is excited when the signal is excited, can be obtained according to the oscillation period of the first vibration sensing device and the peak value of the oscillation amplitude according to the following formula:
  • the concentration of the particulate matter can be determined based on the output of a vibration sensing device, and when the excitation signal is a vibration signal, there are two different methods for determining the damping ratio of the first vibration sensing device. . Moreover, the above method also provides another way of determining the damping of the first vibration sensing device when the excitation signal is an impact signal.
  • the method 600 may further include acquiring data 606 indicating the vibration characteristic of the second vibration sensing device output by the first vibration sensing device, as shown in FIG. The dotted frame is illustrated and the data is coupled to the first vibration sensing device The vibrational characteristic data is combined to determine the particulate matter concentration (indicated by parentheses in step 604).
  • the concentration of the particulate matter may be determined according to the data representing the vibration characteristics of the first vibration sensing device and the data representing the vibration characteristics of the second vibration sensing device according to the following formula:
  • the particulate matter and gas in a certain particle size range in the air enter the first vibration sensing device that is moving, and then the dynamic characteristics of the first vibration sensing device (including The damping ratio is changed by the influence of the particulate matter, and the concentration of the particulate matter is obtained by comparing the damping ratio of the first vibration sensing device with a predefined table.
  • the vibration characteristic data of the second vibration sensing device is utilized in determining the damping ratio of the first vibration sensing device.
  • the concentration of the particulate matter is obtained by determining the air density by utilizing the conservation of energy according to the respective outputs of the two vibration sensing devices.
  • the concentration of particulate matter in the air can be detected in real time without manual weighing, without a radioactive source, and suitable for mass promotion.
  • the apparatus for detecting the concentration of particulate matter in the air described in the present disclosure may include other components in addition to the various components described.
  • the apparatus may further include a display device that displays the acquired information and/or information on the concentration of the resulting particulate matter on a display screen to facilitate viewing by the user.
  • the filtration device is described as being a PM2.5 filtration device or a PM10 filtration device.
  • the filtering device is not limited thereto, but the filtering device may be a filtering device that allows passage of particulate matter and gas in any other particle size range. That is to say, the aperture of the filtering device can be designed according to actual needs.
  • the particulate matter enters the first vibration sensing device via the filtering device without being deposited on the filtering device, so the filtering device does not need to be frequently replaced.
  • the detection of the concentration of particulate matter in the air is described. However, it should be understood that the present invention can also detect the concentration of particulate matter in any single gas or mixed gas.
  • the apparatus for detecting the concentration of particulate matter in the air described in the present disclosure may be implemented by hardware, firmware, software, or any combination thereof.
  • the present disclosure provides a non-transitory computer readable medium containing instructions that, when executed by a processor in a computer, cause the processor to perform the described methods.
  • the computer may be a general purpose computer or a special purpose computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种检测空气中颗粒物的浓度的设备和方法。检测空气中颗粒物的浓度的设备包括:第一振动传感装置(102),该第一振动传感装置(102)根据激励信号而运动;过滤装置(104),该过滤装置(104)设置在所述第一振动传感装置(102)上,对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入第一振动传感装置(102)中,其中,第一振动传感装置(102)的动态特性受到颗粒物的影响而发生变化,根据第一振动传感装置(102)输出的表示该第一振动传感装置(102)的动态特性的数据来确定颗粒物的浓度。

Description

检测空气中颗粒物的浓度的设备和方法 技术领域
本发明涉及大气环境检测领域,并且更具体地,涉及检测空气中颗粒物的浓度的设备和方法。
背景技术
随着空气污染变得越来越严重,对空气中颗粒物的浓度的检测变得越来越重要。当前,检测空气中颗粒物的浓度的方法主要有重量法、β射线吸收法和微量振荡天平法。
重量法使得将所采样的一定体积的空气通过滤膜,从而颗粒物被截留在滤膜上,然后根据采样前后滤膜的质量之差来计算颗粒物的浓度。β射线吸收法通过将所采样的一定体积的空气通过滤纸,从而颗粒物被截留在滤纸上,然后使用β射线照射载有颗粒物的滤纸,并根据β射线的衰减程度来计算颗粒物的浓度。微量振荡天平法将所采样的一定体积的空气通过安装于质量传感器内振荡管的振荡端的滤膜,从而颗粒物被截留在滤膜上,然后根据振荡频率的变化得到滤膜的质量变化,进而根据滤膜的质量之差来计算颗粒物的浓度。
然而,重量法需要在采样前后对滤膜进行人工称重,自动化程度低。β射线吸收法需要采用放射性源,对于越来越重视环保的现代社会而言不适合大量推广使用。微量振荡天平法不仅如重量法那样需要在采样前后对滤膜进行人工称重,因而自动化程度低,而且操作复杂。此外,上述方法都无法实现实时检测。
发明内容
本公开提供一种检测空气中颗粒物的浓度的设备,所述设备包括:第一振动传感装置,该第一振动传感装置根据激励信号而运动;过滤装置, 该过滤装置设置在第一振动传感装置上,对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入第一振动传感装置中,其中,第一振动传感装置的动态特性受到所述颗粒物的影响而发生变化,其中,所述颗粒物的浓度根据第一振动传感装置输出的表示该第一振动传感装置的动态特性的数据来确定。
本公开还提供一种检测空气中颗粒物的浓度的方法,所述方法包括:获取第一振动传感装置输出的表示该第一振动传感装置的动态特性的数据,其中第一振动传感装置根据激励信号而运动,并且其中,空气中一定粒径以下的颗粒物及气体进入第一振动传感装置中,第一振动传感装置的动态特性受到所述颗粒物的影响而发生变化;根据所获取的表示第一振动传感装置的动态特性的数据来确定颗粒物的浓度。
通过本公开提供的检测空气中颗粒物的浓度的设备和方法,能够对空气中颗粒物的浓度进行实时检测,而且无需人工称重、不含放射性源并适于大量推广使用。
附图说明
通过参照下面的描述并结合附图可以更好地理解本发明的实施例,其中相同的标号表示相同的或功能相似的元素,其中:
图1示出根据本发明一个实施例的检测空气中颗粒物的浓度的设备的框图;
图2示出根据本发明一个实施例的检测空气中颗粒物的浓度的设备的示意图;
图3示出根据本发明又一个实施例的检测空气中颗粒物的浓度的设备的示意图;
图4示出根据本发明又一个实施例的检测空气中颗粒物的浓度的设备的示意图;
图5示出根据本发明另一个实施例的检测空气中颗粒物的浓度的设备的框图;
图6示出根据本发明另一个实施例的检测空气中颗粒物的浓度的设备 的框图;
图7示出根据本发明另一个实施例的检测空气中颗粒物的浓度的设备的框图;
图8示出图7所示实施例的检测空气中颗粒物的浓度的设备的示意图;以及
图9示出根据本发明一个实施例的检测空气中颗粒物的浓度的方法的流程图。
具体实施方式
图1示出根据本发明一个实施例的检测空气中颗粒物的浓度的设备的框图。如图1所示,根据本发明实施例的检测空气中颗粒物的浓度的设备100包括第一振动传感装置102和过滤装置104。
第一振动传感装置102根据激励信号而运动。第一振动传感装置102可以是MEMS(微机电系统)振动传感器。
激励信号可以由激励装置产生。在一个实施例中,激励信号可以是振动信号,振动信号是表示关于振动信息的信号,振动信息包括但不限于振动的频率、幅值、相位。在该实施例中,激励装置可以是能够产生具有一定频率、幅值、相位的振动的任何设备,第一振动传感装置的振动频率小于激励装置的振动频率。在另一实施例中,激励信号可以是冲击信号,冲击信号是表示关于震荡信息的信号,震荡信息包括但不限于震荡的周期和幅值。在该实施例中,激励装置可以是能够产生具有一定震荡周期的冲击(脉冲)信号的任何设备。
过滤装置104设置到所述第一振动传感装置102上,对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入第一振动传感装置102中。过滤装置104可以是PM2.5过滤装置,并且相应地,颗粒物是PM2.5颗粒物。过滤装置104可以是PM10过滤装置,并且相应地,颗粒物是PM10颗粒物。过滤装置104可以是设置在第一振动传感装置102上的一个或多个滤网。过滤装置104可以是罩住第一振动传感装置102的滤罩。应理解,过滤装置104可以通过机械连接而设置在第一振动传感装置 102上,也可以与第一振动传感装置102集成在一起。
第一振动传感装置102的动态特性(例如幅频特性、相频特性、阶跃响应等)受到颗粒物的影响而发生变化。颗粒物的浓度可以根据第一振动传感装置102输出的表示该第一振动传感装置102的动态特性的数据来确定。
在一个实施例中,表示第一振动传感装置102的动态特性的数据可以包括第一振动传感装置102的阻尼比,该阻尼比受到颗粒物的影响而发生变化,其中颗粒物的浓度可以通过从表示第一振动传感装置102的动态特性的数据确定出的阻尼比与预定义表进行比较而得出,其中,预定义表可以包括预先测得的同种颗粒物的多个不同浓度与相应阻尼比的映射。颗粒物的浓度可以是质量浓度。
根据本发明实施例的检测空气中颗粒物的浓度的设备100,空气中一定粒径范围内的颗粒物及气体进入正运动的第一振动传感装置102,于是第一振动传感装置102的动态特性(包括阻尼比)受到颗粒物的影响而发生变化,通过将确定出的第一振动传感装置102的阻尼比与预定义表进行比较从而得出颗粒物的浓度。
下面将对根据本发明实施例的检测空气中颗粒物的浓度的设备进行更详细的描述。图2示出根据本发明一个实施例的检测空气中颗粒物的浓度的设备的示意图。如图2所示,根据本发明实施例的检测空气中颗粒物的浓度的设备200包括第一振动传感装置202和过滤装置204。第一振动传感装置202和过滤装置204按照与图1中所示的第一振动传感装置102和过滤装置104的方式相同的方式被布置和进行运作。也就是说,第一振动传感装置202根据激励信号而运动。设置在第一振动传感装置202上的过滤装置204对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入第一振动传感装置202中。第一振动传感装置202的动态特性(包括阻尼比)受到颗粒物的影响而发生变化。颗粒物的浓度可以通过从第一振动传感装置202的动态特性数据确定出的阻尼比与预定义表进行比较而得出。
预定义表包括预先测得的同种颗粒物的多个不同浓度与相应阻尼比的 映射。一般地,将第一振动传感装置202在真空环境中的阻尼比标定为0,即表示没有阻尼。对于特定种类的颗粒物,可以预先设定多个不同浓度,测得第一振动传感装置202在这多个不同浓度的情况下运动时的表示动态特性的数据并根据该数据计算得到相应的阻尼比,从而标定出该种颗粒物的多个浓度与相应阻尼比的映射表。应理解,预定义表中包含的条目越多,即,预标定的浓度间隔越细,在实际测量中获得的实时颗粒物浓度的值将越准确。
在一个实施例中,当激励信号为振动信号时,第一振动传感装置202的阻尼比ξ可以从如下公式(1)计算得出:
Figure PCTCN2016095734-appb-000001
在公式(1),x,ω,a分别为第一振动传感装置202的振动幅值、频率、加速度,并且ωn,k分别为第一振动传感装置202的固有频率、该系统的固有弹性系数,以及ξ为第一振动传感装置202的阻尼比。也就是说,在该实施例中,第一振动传感装置202的阻尼比可以通过第一振动传感装置202的振动频率、幅值、加速度以及固有频率来得出。
在另一个实施例中,当激励信号为振动信号时,第一振动传感装置202的阻尼比ξ可以从如下公式(2)计算得出:
Figure PCTCN2016095734-appb-000002
在公式(2),ω和φ分别为第一振动传感装置202的振动频率、相位度,并且ωn为第一振动传感装置202的固有频率,以及ξ为第一振动传感装置202的阻尼比。也就是说,在该实施例中,第一振动传感装置202的阻尼比可以通过第一振动传感装置202的振动频率、相位以及固有频率来得出。
在又一实施例中,当激励信号为冲击信号时,第一振动传感装置202的阻尼比可以根据衰减震荡二阶系统的时间域估计方法计算得出。具体地,第一振动传感装置202的阻尼比ξ可以根据如下公式(3)计算得出:
Figure PCTCN2016095734-appb-000003
在公式(3)中,α为震荡减幅系数,
Figure PCTCN2016095734-appb-000004
ωn为第一振动传感装置的固有频率,
Figure PCTCN2016095734-appb-000005
其中,T为震荡周期,ω为震荡频率,并且A1和An为相隔n个周期的振荡幅度的峰值,n可以为等于或大于1的整数。也就是说,在该实施例中,第一振动传感装置202的阻尼比可以根据第一振动传感装置202的震荡周期、震荡幅度的峰值来得出。
如图2所示,根据本发明实施例的检测空气中颗粒物的浓度的设备200还包括激励装置206。激励装置206产生触发第一振动传感装置202运动的激励信号。在图2中,第一振动传感装置202被示出为设置在激励装置206上方并与激励装置206直接连接。然而,第一振动传感装置202与激励装置206的连接方式并不限于此。而是,第一振动传感装置202与激励装置204的连接可以是各种直接或间接机械连接,只要激励装置204的激励信号能够传递给第一传感装置202即可。
在图2中,激励装置206被示出为长方体形,但是应理解,激励装置206的形状不限于此,而是激励装置206可以是能够产生振动信号或冲击信号的任何设备。
继续参考图2,第一振动传感装置202具有外壳208。外壳208不是把第一振动传感装置202完全密闭,而是在外壳上有一个开口210。在图2中,外壳208被示出为只有一个开口210,但是本发明并不限于此。外壳208上可以有多余一个的开口210,并且开口210的大小可以相同,也可以不同。
在一个实施例中,如图3所示,外壳208上可以具有两个开口210。在图3中,两个开口210的开口大小被示出为明显不同,然而,开口大小并不特别被限制,只要开口能够在外壳208上设计出即可。
如图2所示,过滤装置204完全地覆盖开口210。“完全地覆盖”表示过滤装置204与开口210之间没有缝隙,使得空气不会不经过过滤装置204而直接从开口210进入第一振动传感装置202内。在外壳208上有多个开口210的情况中,过滤装置204的数量与开口210的数量相同,并且过滤装置204按照与开口210一一对应地方式分别完全地覆盖在相应的开 口210处。在图3所示的实施例中,两个过滤装置204被示出为分别完全地覆盖在两个开口210的相应的开口处。过滤装置204可以是滤网、滤膜、滤纸。
在另一实施例中,过滤装置204可以是滤罩,从而将第一振动传感装置202完全地罩住。“完全地罩住”表示过滤装置204与第一振动传感装置202之间没有缝隙,使得空气不会不经过过滤装置204而直接从开口210进入第一振动传感装置202内。如图4所示,过滤装置204为滤罩214,滤罩214将第一振动传感装置202完全地罩住。应理解,滤罩214也可以把第一振动传感装置202和激励装置206二者都完全地罩住。
过滤装置204可以具有不同孔径以允许不同粒径范围内的颗粒物及气体通过。过滤装置204可以是允许粒径小于等于2.5微米的颗粒物及气体通过的过滤装置,即,PM2.5过滤装置。类似地,过滤装置204也可以是允许粒径小于等于10微米的颗粒物及气体通过的过滤装置,即,PM10过滤装置。在本上下文中,“粒径”表示颗粒物在环境空气中的空气动力学当量直径。
根据本发明实施例的检测空气中颗粒物的浓度的设备200,空气中一定粒径范围内的颗粒物及气体进入正振动的第一振动传感装置202,于是第一振动传感装置202的动态特性(包括阻尼比)受到颗粒物的影响而发生变化,例如,当空气中的颗粒物浓度从高变低时,第一振动传感装置202的阻尼变小,而当空气中的颗粒物浓度从低变高时,第一振动传感装置202的阻尼比增大。从而,第一振动传感装置202可以通过将第一振动传感装置202的阻尼比与预定义表进行比较可以得出颗粒物的浓度。
图5示出根据本发明另一个实施例的检测空气中颗粒物的浓度的设备的框图。如图5所示,根据本发明实施例的检测空气中颗粒物的浓度的设备300包括第一振动传感装置302、过滤装置304和激励装置306。第一振动传感装置302、过滤装置304和激励装置306按照与图2中所示的第一振动传感装置202、过滤装置204、激励装置206的方式相同的方式被布置和进行运作。也就是说,第一振动传感装置302根据激励装置306产生的激励信号而运动,过滤装置304对空气进行过滤,以使得空气中一定 粒径范围内的颗粒物及气体进入第一振动传感装置302中,从而第一振动传感装置302的动态特性(包括阻尼比)受到颗粒物的影响而发生变化。颗粒物的浓度可以通过第一振动传感装置302的阻尼比与预定义表进行比较而得出。
如图5所示,根据本发明实施例的检测空气中颗粒物的设备300还包括确定装置308。确定装置308可以从第一振动传感装置302输出的表示动态特性的数据确定出第一振动传感装置的实时阻尼比并将所确定出的阻尼比与预定义表进行比较以得出颗粒物的浓度。
根据本发明实施例的检测空气中颗粒物的浓度的设备300,空气中一定粒径范围内的颗粒物及气体进入正运动的第一振动传感装置302,于是第一振动传感装置302的动态特性(包括阻尼比)受到颗粒物的影响而发生变化,确定装置508通过将第一振动传感装置302的阻尼比与预定义表进行比较从而可以得出颗粒物的浓度。通过确定装置308的设置,根据本发明实施例的检测空气中颗粒物的浓度的设备300能够进一步实现自动化。
图6示出根据本发明另一个实施例的检测空气中颗粒物的浓度的设备的框图。如图6所示,根据本发明实施例的检测空气中颗粒物的浓度的备400包括第一振动传感装置402、过滤装置404、激励装置406、确定装置408。本发明实施例中的第一振动传感装置402、过滤装置404、激励装置406和确定装置408按照与图5中所示的第一振动传感装置302、过滤装置304、激励装置306、确定装置308的方式相同的方式被布置和进行运作。也就是说,第一振动传感装置402根据激励装置606产生的激励信号而运动,过滤装置404对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入第一振动传感装置402中,从而第一振动传感装置402的动态特性(包括阻尼比)受到颗粒物的影响而发生变化。颗粒物的浓度可以由确定装置408通过对第一振动传感装置402的阻尼比与预定义表进行比较而得出。
如图6所示,根据本发明实施例的检测空气中颗粒物的设备400还包括存储装置410。存储装置410可以存储某一时间点获得的表示第一振动 传感装置402的动态特性的数据,进而确定装置408通过该数据得出阻尼比并将阻尼比与预定义表进行比较,从而得出该时间点的颗粒物的浓度的值。存储装置410也可以存储一段时间内获得的表示第一振动传感装置402的动态特性的数据,进而确定装置408通过这些运动信息得出多个时间点的阻尼比并将这些阻尼比与预定义表进行比较,从而得出该时间段内的多个时间点的颗粒物的浓度,从而获得该段时间内颗粒物的浓度的值的走势图。在一个实施例中,确定装置408所获得的颗粒物的浓度的值也可以被存储在存储装置410中。在一个实施例中,预定义表也可以被存储在存储装置410中。在一个实施例中,存储装置410可以包括多个存储装置,即,用于存储第一振动传感装置402的运动信息的存储装置、用于存储预定义表的存储装置、用于存储确定装置608得出的颗粒物的浓度的值的装置。应理解,相对于振动传感装置,存储装置410可以位于本地位置,也可以位于远程位置。
根据本发明实施例的检测空气中颗粒物的浓度的设备400,空气中一定粒径范围内的颗粒物及气体进入正运动的第一振动传感装置402,于是第一振动传感装置402的动态特性(包括阻尼比)受到颗粒物的影响而发生变化,存储装置410可以将第一振动传感装置402的动态特性数据存储在其中,并且确定装置608读取存储在存储装置410中的动态特性数据,通过所读取的动态特性数据得出第一振动传感装置402的阻尼比并将阻尼比与预定义表进行比较,从而得出颗粒物的浓度。通过存储装置410以及确定装置408的设置,根据本发明实施例的检测空气中颗粒物的浓度的设备400不仅能够给出某一时间点的颗粒物的浓度的值,而且能够给出一定时间段内的颗粒物的浓度的值的走势,从而自动获得额外的有用信息。
图7示出根据本发明另一个实施例的检测空气中颗粒物的浓度的设备的框图。如图7所示,根据本发明实施例的检测空气中颗粒物的浓度的设备500包括第一振动传感装置502、过滤装置504和激励装置506。本发明实施例中的第一振动传感装置502和过滤装置504按照与图2中所示的第一振动传感装置202和过滤装置204的方式相同的方式被布置和进行运作。也就是说,第一振动传感装置502根据激励信号而运动,过滤装置 804对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入第一振动传感装置502中,从而第一振动传感装置502的动态特性(包括阻尼比)受到颗粒物的影响而发生变化。然而,如图7所示,根据本发明实施例的检测空气中颗粒物的设备500还包括第二振动传感装置508。
图8示出图7中的设备500的一个实施例的示意图。如图8所示,设备500包括第一振动传感装置502、过滤装置504和激励装置506。另外,设备500还包括第二振动传感装置508。如图8所示,第二振动传感装置508被设置于激励装置502和第一振动传感装置504之间。第二振动传感装置508可以根据激励装置506产生的激励信号而运动,将由激励装置506产生的激励信号传递给第一振动传感装置502,进而第一振动传感装置502根据由第二振动传感装置传递来的激励信号运动。第二振动传感装置508可以是MEMS(微机电系统)振动传感器。然而,应理解,第二振动传感装置508与第一振动传感装置502以及激励装置506的连接方式并不限于此,只要第一振动传感装置502和第二振动传感装置508都能够根据激励装置506产生的激励信号运动即可,例如,第二振动传感装置508的位置可以与第一振动传感装置502的位置对调。
在图8中,第二振动传感装置508具有外壳510并被外壳510完全密闭。在一个实施例中,外壳510可以内充入真空。在一个实施例中,第二振动传感装置508具有特定阻尼比。因为,第二振动传感装置508被完全密闭,空气不能进入其中,因此其振动特性不会受到颗粒物的影响,因而在该实施例中,第二振动传感装置508被用作标准传感器,而第一振动传感装置502作为测量传感器。应理解,第二振动传感器508可以与第一振动传感器502相同,只是其被完全密闭,从而含有颗粒物的空气不能进入第二振动传感器502中。
第二振动传感装置508输出的表示该第二振动传感装置508的动态特性的数据可被用来结合第一振动传感装置502输出的表示该第一振动传感装置502的动态特性的数据来确定颗粒物的浓度。更确切地说,当激励信号为振动信号时,可以通过联合第一振动传感装置502和第二振动传感装置508的输出的表示各自的振动特性的数据来确定颗粒物的浓度。
在一个实施例中,具体地,颗粒物的浓度可以根据表示第一振动传感装置502的振动特性的数据和表示第二振动传感装置508的振动特性的数据按照如下公式(4)来确定:
Figure PCTCN2016095734-appb-000006
其中,PM表示空气中一定粒径的颗粒物的浓度,E10表示所述第二振动传感装置振动到第一个波峰时所具有的能量,A11和A12分别表示所述第一振动传感装置振动的第一个波峰的幅值和第二个波峰的振幅,C2表示所述第二振动传感装置的固有阻尼系数,viner表示所述第二振动传感装置的振动速度、xacto表示所述第一振动传感装置的振动位移,C1和S1分别表示风阻产生的阻力系数和风阻的面积,并且vact表示表示所述第一振动传感装置的振动速度,ρ表示空气密度。从上述公式可知,在该实施例中,实际通过确定空气密度来确定颗粒物的浓度。上面对根据本发明实施例的检测空气中颗粒物的浓度的设备的结构以及各个构成部件进行了说明,下面参考图10描述根据本发明实施例的检测空气中颗粒物的浓度的方法。
图9示出根据本发明一个实施例的检测空气中颗粒物的方法的流程图。如;图9所示,根据本发明实施例的检测空气中颗粒物的方法600包括步骤602和步骤604。
步骤602,获取第一振动传感装置输出的表示该第一振动传感装置的动态特性的数据,其中,第一振动传感装置根据激励信号而运动,并且其中,空气中一定粒径以下的颗粒物及气体进入第一振动传感装置中,第一振动传感装置的动态特性受到所述颗粒物的影响而发生变化。激励信号可以是振动信号或冲击信号。颗粒物可以是PM2.5颗粒物或PM10颗粒物。
步骤604,根据所获取的表示第一振动传感装置的动态特性的数据确定颗粒物的浓度。
在一个实施例中,表示第一振动传感装置的动态特性的数据可以包括第一振动传感装置的阻尼比,所述阻尼比受到颗粒物的浓度变化而发生变化。颗粒物的浓度可以通过第一振动传感装置的阻尼比与预定义表进行比 较而得出,其中预定义表包括预先测得的同种颗粒物的多个不同浓度与相应阻尼比的映射。
在一个实施例中,当激励信号是振动信号时,第一振动传感装置的阻尼比可以通过第一振动传感装置的振动频率、幅值、加速度以及固有频率按照如下公式来得出:
Figure PCTCN2016095734-appb-000007
公式(5)中的各个符号的物理量表示与上面针对公式(1)的讨论相同,因此在此不再赘述。
当激励信号是振动信号时,第一振动传感装置的阻尼比也可以根据第一振动传感装置的振动频率、相位以及固有频率按照如下公式来得出:
Figure PCTCN2016095734-appb-000008
公式(6)中的各个符号的物理量表示与上面针对公式(2)的讨论相同,因此在此不再赘述。
在另一实施例中,当激励信号时冲击信号时,第一振动传感装置的阻尼比可以根据第一振动传感装置的震荡周期、震荡幅度的峰值按照如下公式来得出:
Figure PCTCN2016095734-appb-000009
公式(7)中的各个符号的物理量表示与上面针对公式(3)的讨论相同,因此在此不再赘述。
在上述的实施例中,根据一个振动传感装置的输出就能够确定出颗粒物的浓度,并且当激励信号为振动信号时,可以有两种不同的方法来确定第一振动传感装置的阻尼比。而且,上述方法还提供了当激励信号为冲击信号时确定第一振动传感装置的阻尼的另一种途径。
然而,在又一个实施例中,当激励信号为振动信号时,方法600还可以包括获取第一振动传感装置输出的表示该第二振动传感装置的振动特性的数据606,如图6中的虚线框所图示,并将该数据与第一振动传感装置 的振动特性数据相结合来确定颗粒物浓度(在步骤604中用括号表示出)。
具体地,在这种情形下,颗粒物的浓度可以根据表示所述第一振动传感装置的振动特性的数据和表示所述第二振动传感装置的振动特性的数据按照如下公式来确定:
Figure PCTCN2016095734-appb-000010
公式(10)中的各个符号的物理量表示与上面针对公式(4)的讨论相同,因此在此不再赘述。
如上所述,根据本发明的检测空气中颗粒物的方法600,空气中一定粒径范围内的颗粒物及气体进入正运动的第一振动传感装置,于是第一振动传感装置的动态特性(包括阻尼比)受到颗粒物的影响而发生变化,通过将第一振动传感装置的阻尼比与预定义表进行比较从而得出颗粒物的浓度。在确定第一振动传感装置的阻尼比时利用了第二振动传感装置的振动特性数据在另一种方式中,不是利用第一振动传感装置的阻尼比来确定颗粒物的浓度,而是通过根据这两个振动传感装置各自的输出通过利用能量守恒来确定出空气密度,即得出颗粒物的浓度。
如上,描述了根据本发明的检测空气中颗粒物的浓度的设备和方法。根据本发明的设备和方法,能够对空气中颗粒物的浓度进行实时检测,而且无需人工称重、不含放射性源并适于大量推广使用。
应理解,本公开中描述的检测空气中颗粒物的浓度的设备除了包括所描述的各种部件外,还可包括其他的部件。例如,所述设备还可包括显示装置,显示装置将所获取的信息和/或所得出的颗粒物的浓度的信息显示在显示屏上,从而便于用户查看。
在本公开中,过滤装置被描述为可以是PM2.5过滤装置或PM10过滤装置。然而,应理解,过滤装置并不限于此,而是过滤装置可以是允许任何其他粒径范围内的颗粒物及气体通过的过滤装置。也就是说,过滤装置的孔径可以根据实际需要进行设计。根据本公开,颗粒物经由过滤装置进入第一振动传感装置中而不会沉积在过滤装置上,因此过滤装置无需频繁更换。
在本公开中,描述了对空气中颗粒物的浓度的检测。然而,应理解,本发明还可检测任何单一气体或者混合气体中颗粒物的浓度。
本公开中描述的检测空气中颗粒物的浓度的设备可以通过硬件、固件、软件或者他们的任何组合来实现。在软件实现方式中,本公开提供了一种含有指令的非暂态计算机可读介质,这些指令在被计算机中的处理器执行时使得处理器执行所描述的方法。所述计算机可以是通用计算机,也可以是专用计算机。
在本公开中提及“一个实施例”、“另一实施例”,但是应理解,这并不表示该实施例中所描述的部件不能应用在另一实施例中,而是,在该实施例中所描述的部件可以添加到根据本发明的任何实施例中。也就是说,在本公开中描述的实施例中的任何部件可以以任何方式组合。
虽然上面描述了本发明的具体实施例,但是应理解这些实施例仅仅是示例性的,并不意在限制本发明。本领域技术人员可根据本公开的教导做出各种改变、替换,这些改变和替换也都落入本发明的保护范围内。

Claims (16)

  1. 一种检测空气中颗粒物的浓度的设备,包括:
    第一振动传感装置,该第一振动传感装置根据激励信号而运动;
    过滤装置,该过滤装置设置在所述第一振动传感装置上,对空气进行过滤,以使得空气中一定粒径范围内的颗粒物及气体进入所述第一振动传感装置中,
    其中,所述第一振动传感装置的动态特性受到所述颗粒物的影响而发生变化,
    其中,所述颗粒物的浓度根据所述第一振动传感装置输出的表示该第一振动传感装置的动态特性的数据来确定。
  2. 根据权利要求1所述的设备,其中,表示所述第一振动传感装置的动态特性的数据包括所述第一振动传感装置的阻尼比,所述阻尼比受到所述颗粒物的影响而发生变化,并且其中,所述颗粒物的浓度通过所述第一振动传感装置的阻尼比与预定义表进行比较而得出,其中所述预定义表包括预先测得的同种颗粒物的多个不同浓度与相应阻尼比的映射。
  3. 根据权利要求2所述的设备,其中,所述激励信号为振动信号。
  4. 根据权利要求3所述的设备,其中,所述第一振动传感装置的阻尼比根据所述第一振动传感装置的振动频率、幅值、加速度以及固有频率按照如下公式来确定:
    Figure PCTCN2016095734-appb-100001
    其中,x,ω,a分别为所述第一振动传感装置的振动幅值、频率、加速度,并且ωn,k分别为所述第一振动传感装置的固有频率、该系统的固有弹性系数,以及ξ为所述第一振动传感装置的阻尼比。
  5. 根据权利要求3所述的设备,其中,所述第一振动传感装置的阻尼比根据所述第一振动传感装置的振动频率、相位以及固有频率按照如下公式来确定:
    Figure PCTCN2016095734-appb-100002
    其中,ω和φ分别为所述第一振动传感装置的振动频率、相位,并且 ωn为所述第一振动传感装置的固有频率,以及ξ为所述第一振动传感装置的阻尼比。
  6. 根据权利要求2所述的设备,其中,所述激励信号为冲击信号。
  7. 根据权利要求6所述的设备,其中,所述第一振动传感装置的阻尼比根据所述第一振动传感装置的震荡周期、震荡幅度的峰值按照如下公式来确定:
    Figure PCTCN2016095734-appb-100003
    其中,α为震荡减幅系数,
    Figure PCTCN2016095734-appb-100004
    ωn为所述第一振动传感装置的固有频率,
    Figure PCTCN2016095734-appb-100005
    其中,T为震荡周期,ω为震荡频率,并且A1和An为相隔n个周期的振荡幅度的峰值,n为等于或大于1的整数。
  8. 根据权利要求1所述的设备,还包括第二振动传感装置,所述第二振动传感装置被完全密闭,其中所述激励信号为振动信号,所述第一振动传感装置和所述第二振动传感装置根据所述振动信号而振动,并且其中所述颗粒物的浓度根据表示所述第一振动传感装置的振动特性的数据和表示所述第二振动传感装置的振动特性的数据按照如下公式来确定:
    Figure PCTCN2016095734-appb-100006
    其中,PM表示空气中一定粒径的颗粒物的浓度,E10表示所述第二振动传感装置振动到第一个波峰时所具有的能量,A11和A12分别表示所述第一振动传感装置振动的第一个波峰的幅值和第二个波峰的振幅,C2表示所述第二振动传感装置的固有阻尼系数,viner表示所述第二振动传感装置的振动速度、xacto表示所述第一振动传感装置的振动位移,C1和S1分别表示风阻产生的阻力系数和风阻的面积,并且vact表示表示所述第一振动传感装置的振动速度。
  9. 一种检测空气中颗粒物的浓度的方法,包括:
    获取由第一振动传感装置输出的表示所述第一振动传感装置的动态特性的数据,所述第一振动传感装置根据激励信号而运动,并且其中,空气中一定粒径以下的颗粒物及气体进入所述第一振动传感装置中,所述第一振动传感装置的动态特性受到所述颗粒物的影响而发生变化;
    根据所获取的表示所述第一振动传感装置的动态特性的数据来确定所述颗粒物的浓度。
  10. 根据权利要求9所述的方法,其中,表示所述第一振动传感装置的动态特性的数据包括所述第一振动传感装置的阻尼比,所述阻尼比受到所述颗粒物的浓度变化而发生变化,并且其中,所述颗粒物的浓度通过所述第一振动传感装置的阻尼比与预定义表进行比较而得出,并且其中所述预定义表包括预先测得的同种颗粒物的多个不同浓度与相应阻尼比的映射。
  11. 根据权利要求10所述的方法,其中,所述激励信号为振动信号。
  12. 根据权利要求11所述的方法,其中,所述第一振动传感装置的阻尼比根据所述第一振动传感装置的振动频率、幅值、加速度以及固有频率按照如下公式来确定:
    Figure PCTCN2016095734-appb-100007
    其中,x,ω,a分别为所述第一振动传感装置的振动幅值、频率、加速度,并且ωn,k分别为所述第一振动传感装置的固有频率、该系统的固有弹性系数,以及ξ为所述第一振动传感装置的阻尼比。
  13. 根据权利要求11所述的方法,其中,所述第一振动传感装置的阻尼比根据所述第一振动传感装置的振动频率、相位以及固有频率按照如下公式来确定:
    Figure PCTCN2016095734-appb-100008
    其中,ω和φ分别为所述第一振动传感装置的振动频率、相位度,并且ωn为所述第一振动传感装置的固有频率,以及ξ为所述第一振动传感装置的阻尼比。
  14. 根据权利要求10所述的方法,其中,所述激励信号为冲击信号。
  15. 根据权利要求14所述的方法,其中,所述第一振动传感装置的阻尼比根据第一振动传感装置的震荡周期、震荡幅度峰值按照如下公式来确定:
    Figure PCTCN2016095734-appb-100009
    其中,α为震荡减幅系数,
    Figure PCTCN2016095734-appb-100010
    ωn为所述第一振动传感装置的固有频率,
    Figure PCTCN2016095734-appb-100011
    其中,T为震荡周期,ω为震荡频率,并且A1和An为相隔n个周期的振荡幅度的峰值,n为等于或大于1的整数。
  16. 根据权利要求11所述的方法,所述方还包括:
    获取第二振动传感装置输出的表示所述第二振动传感装置的动态特性的数据,其中,所述第二振动传感装置被完全密闭,所述激励信号为振动信号,所述第一振动传感装置和所述第二振动传感装置根据所述振动信号而振动,并且其中所述颗粒物的浓度根据表示所述第一振动传感装置的振动特性的数据和表示所述第二振动传感装置的振动特性的数据照如下公式来确定:
    Figure PCTCN2016095734-appb-100012
    其中,PM表示空气中一定粒径的颗粒物的浓度,E10表示所述第二振动传感装置振动到第一个波峰时所具有的能量,A11和A12分别表示所述第一振动传感装置振动的第一个波峰的幅值和第二个波峰的振幅,C2表示所述第二振动传感装置的固有阻尼系数,viner表示所述第二振动传感装置的振动速度、xacto表示所述第一振动传感装置的振动位移,C1和S1分别表示风阻产生的阻力系数和风阻的面积,并且vact表示表示所述第一振动传感装置的振动速度。
PCT/CN2016/095734 2015-08-18 2016-08-17 检测空气中颗粒物的浓度的设备和方法 WO2017028792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510506843.3A CN106468647B (zh) 2015-08-18 2015-08-18 检测空气中颗粒物的浓度的设备和方法
CN201510506843.3 2015-08-18

Publications (1)

Publication Number Publication Date
WO2017028792A1 true WO2017028792A1 (zh) 2017-02-23

Family

ID=58050804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095734 WO2017028792A1 (zh) 2015-08-18 2016-08-17 检测空气中颗粒物的浓度的设备和方法

Country Status (2)

Country Link
CN (1) CN106468647B (zh)
WO (1) WO2017028792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933211A (zh) * 2021-10-14 2022-01-14 国网安徽省电力有限公司电力科学研究院 基于气体替代法的三元混合气体混气比测量方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008143B (zh) * 2022-12-15 2023-07-07 中国矿业大学 一种基于二级振荡天平总尘和呼尘同步监测仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601464B1 (en) * 2000-10-20 2003-08-05 John P. Downing, Jr. Particle momentum sensor
CN1715864A (zh) * 2005-06-28 2006-01-04 上海理工大学 一种在线检测大气颗粒物浓度的方法及其装置
CN2809630Y (zh) * 2005-07-04 2006-08-23 上海理工大学 一种在线检测大气颗粒物浓度的装置
CN103411864A (zh) * 2013-08-05 2013-11-27 深迪半导体(上海)有限公司 基于结构共振测量气体悬浮颗粒浓度的mems传感器
CN203490153U (zh) * 2013-08-05 2014-03-19 深迪半导体(上海)有限公司 基于结构共振测量气体悬浮颗粒浓度的mems传感器
CN103940711A (zh) * 2014-04-14 2014-07-23 北京理工大学 一种基于圆盘微机械谐振器的pm2.5颗粒物检测装置
WO2014153142A1 (en) * 2013-03-14 2014-09-25 Colorado Seminary, Which Owns And Operates The University Of Denver Mems aerosol impactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218014B2 (ja) * 2003-03-10 2009-02-04 学校法人日本大学 微粒子濃度測定装置
CN101231228A (zh) * 2007-01-23 2008-07-30 上海理工大学 一种利用压电晶体在线监测大气颗粒物浓度的方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601464B1 (en) * 2000-10-20 2003-08-05 John P. Downing, Jr. Particle momentum sensor
CN1715864A (zh) * 2005-06-28 2006-01-04 上海理工大学 一种在线检测大气颗粒物浓度的方法及其装置
CN2809630Y (zh) * 2005-07-04 2006-08-23 上海理工大学 一种在线检测大气颗粒物浓度的装置
WO2014153142A1 (en) * 2013-03-14 2014-09-25 Colorado Seminary, Which Owns And Operates The University Of Denver Mems aerosol impactor
CN103411864A (zh) * 2013-08-05 2013-11-27 深迪半导体(上海)有限公司 基于结构共振测量气体悬浮颗粒浓度的mems传感器
CN203490153U (zh) * 2013-08-05 2014-03-19 深迪半导体(上海)有限公司 基于结构共振测量气体悬浮颗粒浓度的mems传感器
CN103940711A (zh) * 2014-04-14 2014-07-23 北京理工大学 一种基于圆盘微机械谐振器的pm2.5颗粒物检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933211A (zh) * 2021-10-14 2022-01-14 国网安徽省电力有限公司电力科学研究院 基于气体替代法的三元混合气体混气比测量方法及装置
CN113933211B (zh) * 2021-10-14 2024-03-15 国网安徽省电力有限公司电力科学研究院 基于气体替代法的三元混合气体混气比测量方法及装置

Also Published As

Publication number Publication date
CN106468647A (zh) 2017-03-01
CN106468647B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
Feldbusch et al. Vibration analysis using mobile devices (smartphones or tablets)
TWI470227B (zh) 液體密度量測裝置
CN105426644B (zh) 模态阻尼识别方法、装置和系统
US10935521B2 (en) Aerosol particle mass sensor and sensing method
US9176165B2 (en) Vibrating micro-system with automatic gain control loop, with integrated control of the quality factor
CN104677483B (zh) 一种数字化的磁电式低频振动传感器系统
WO2017028792A1 (zh) 检测空气中颗粒物的浓度的设备和方法
Grangeon et al. A robust, low-cost and well-calibrated infrasound sensor for volcano monitoring
Mentink et al. Frequency response and design parameters for differential microbarometers
CN104090126B (zh) 一种加速度计带宽的测试方法
CN103217358B (zh) 一种同时获取储层岩石低频弹性性质与密度的方法及系统
SE437428B (sv) Forfarande for bestemning av masskoncentrationen av suspenderade partiklar i ett gasformigt medium samt anordning for genomforande av forfarandet
CN109477748A (zh) 临床分析仪中的短抽吸检测
US20180259359A1 (en) Gyroscope in-field prognostics
CN109521100A (zh) 集成的声发射换能器装置和方法
Wisniewiski Second generation shock tube calibration system
JP2816992B2 (ja) 音響式密度計
Hurst Advanced Transducers
RU114148U1 (ru) Устройство для измерения параметров движения на основе микромеханического и молекулярно-электронного чувствительных элементов
JP2533306B2 (ja) 体積計
US11255718B2 (en) Systems and methods for extending frequency response of resonant transducers
JPH03108614A (ja) 体積計
RU2526508C1 (ru) Способ оценки динамических характеристик датчиков угловой скорости
CN103728657A (zh) 用于地震检波器假频检测的方法
Saneev On the selection of the digital filter at the laser gyrometer output in the mode of measuring small constant angular velocity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16836656

Country of ref document: EP

Kind code of ref document: A1