WO2017028586A9 - 一种业务报文的组播方法及装置 - Google Patents

一种业务报文的组播方法及装置 Download PDF

Info

Publication number
WO2017028586A9
WO2017028586A9 PCT/CN2016/083312 CN2016083312W WO2017028586A9 WO 2017028586 A9 WO2017028586 A9 WO 2017028586A9 CN 2016083312 W CN2016083312 W CN 2016083312W WO 2017028586 A9 WO2017028586 A9 WO 2017028586A9
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
multicast
service
service packet
Prior art date
Application number
PCT/CN2016/083312
Other languages
English (en)
French (fr)
Other versions
WO2017028586A1 (zh
Inventor
程伟强
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to US15/752,249 priority Critical patent/US20190028285A1/en
Priority to EP16836450.3A priority patent/EP3340550B1/en
Publication of WO2017028586A1 publication Critical patent/WO2017028586A1/zh
Publication of WO2017028586A9 publication Critical patent/WO2017028586A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5069Address allocation for group communication, multicast communication or broadcast communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a multicast method and apparatus for service packets.
  • LTE Long Term Evolution
  • the LTE-enhanced Multimedia Broadcast Multicast Service can fully utilize LTE's existing network resources to fully utilize LTE's high bandwidth, low latency, and all-IP advantages to implement between the service system and user equipment. Multiple users share a bandwidth resource, and the network load and user experience do not change as the number of users increases. Therefore, the LTE enhanced multimedia broadcast multicast service can greatly save the wireless air interface and network transmission resources and improve the user video service experience compared to the unicast technology.
  • the Multimedia Broadcast Multicast Service (MBMS) in the 3rd Generation of the 3rd Generation (3G) era is mainly attached to the existing 3G network architecture and introduced into the Broadcast Multicast Service Center (Broadcast Multicast- Service Center, BM-SC) to provide and manage MBMS services.
  • the network architecture of eMBMS is different from the network architecture of MBMS in the 3G era.
  • the network architecture of eMBMS is shown in Figure 1. As can be seen from FIG.
  • MCE Muti-cell/Multicast Coordination Entity
  • MBMS GW MBMS Gate Way
  • M2 Evolved Packet Core
  • M3 control plane interface between E-UTRAN and EPC
  • M1 user plane interface
  • Layer 2 multicast As shown in Figure 2, the Internet Group Management Protocol (IGMP) + Snooping standard is adopted.
  • the protocol runs mainly between the Internet Protocol (IP) host and the router, and the functions implemented are two-way.
  • the unicast service of the eNB and the multicast service adopt independent logical interfaces (one sub-interface of the eNB is for the unicast service, and the other sub-interface is for the multicast service), and each interface carries different services.
  • IP Internet Protocol
  • Snooping is adopted.
  • the Layer 2 multicast technology adopts the IGMP+Snooping standard to avoid large-scale broadcast replication of IP multicast packets in Ethernet.
  • IGMP+Snooping standard for mobile backhaul networks, the number of nodes is large. If IGMP is used, the efficiency is better. low.
  • pure IGMP cannot solve the protection capability required by the network, that is, when the network fails, the network has the ability to automatically recover.
  • Layer 3 multicast As shown in Figure 3, the Protocol Independent Multicast-Sparse Mode (PIM-SM) standard is adopted. Layer 3/IP multicast in IP networks enables point-to-multipoint efficient data transfer. The Layer 3/IP multicast technology needs to establish a multicast group. The source host sends only one multicast address as the destination address. All the ports in the multicast domain can receive the data. Then it will not be received. IP multicast technology dynamically controls the joining of ports and the evacuation of multicast domains.
  • PIM-SM Protocol Independent Multicast-Sparse Mode
  • the Layer 3 multicast technology adopts the PIM-SM standard to dynamically control the port joining and withdrawing from the multicast domain, and realizes the point-to-multipoint data transmission of the IP network.
  • the dynamic protocol needs to be started, the protocol is complicated, and the network protection capability is also limited.
  • MPLS-TP Multi-Protocol Label Switching Transport Profile
  • MPLS-TP is based on tunnel technology and can implement point-to-point pseudo-of-war (PW) and Label Switching Path (LSP) transmission.
  • PW point-to-point pseudo-of-war
  • LSP Label Switching Path
  • OFAM Operation Administration and Maintenance
  • MPLS-TP technology does not have a mature point-to-multi-point technology solution.
  • Standardization organizations such as the Internet Engineering Task Force (IETF) have mentioned P2MP PW and LSP.
  • P2MP services are supported, but the implementation technology is complex, and fast fault detection and protection switching cannot be guaranteed.
  • the MPLS-TP-based devices that have been deployed cannot be upgraded.
  • the multicast implementation technology of the point-to-multipoint P2MP service packet based on the MPLS-TP technology in the prior art is complicated, and cannot quickly ensure fault detection and protection switching, and is also applicable to the deployed MPLS-TP-based device. Unable to upgrade.
  • the purpose of the embodiments of the present disclosure is to provide a method and a device for multicasting service packets, which are used to implement service packet multicasting through a P2P path, ensuring fast fault detection and protection switching, and is applicable to deployed Based on MPLS-TP devices.
  • the method for multicasting service packets includes: receiving a service packet sent by a multicast source server and a destination IP address of the service packet, where the destination IP address includes multiple The IP address of the multicast client; the P2P path between the nodes in the PTN network of the packet transport network is used to copy and forward the service packet to the destination IP address according to the destination IP address of the service packet. Multiple multicast clients corresponding to the address.
  • the packet after receiving the service packet sent by the multicast source server and the destination IP address of the service packet, the packet is transmitted in the PTN network according to the destination IP address of the service packet.
  • the point-to-point P2P path between the nodes copies and forwards the service packets to multiple multicast clients corresponding to the destination IP address.
  • the P2P path between the nodes in the PTN network is used to copy and forward the service packets to multiple packets.
  • Multicast client compared with the multicast implementation technology of point-to-multipoint P2MP service packets based on MPLS-TP technology in the prior art, P2P
  • the method of multicasting P2MP service packets can be used in the P2P mode for fault detection and protection switching. Therefore, fast fault detection and protection switching can be ensured, and it is applicable to deployed MPLS-TP-based devices.
  • a node in the PTN network includes at least one root node and at least one leaf node, where the multicast source server is connected to the root node.
  • the multicast client is connected to the leaf node.
  • the current node determines that the service packet needs to be sent to multiple lower-level nodes by using the path of the P2P, select any node as the primary node in the network layer where the node is located, and select another node as the standby node, where The current node is a root node or a leaf node; the primary node and the standby node copy and forward the service packet to multiple lower-level nodes.
  • the path that the primary node copies and forwards the service packet to multiple lower-level nodes is a working path
  • the standby node The path for copying and forwarding the service packet to multiple lower-level nodes is a protection path.
  • the path that the primary node copies and forwards the service packet to the multiple lower-level nodes is a protection path
  • the standby node copies the service packet and The path forwarded to multiple lower levels is the working path.
  • the active node forwards the service packet to a path of any next-level node, and the standby node performs the service The path forwarded by the message to the next-level node is different.
  • the method further includes: when any node in the PTN network fails or the path of the P2P between the nodes fails, The connected next-level node or the next-level node connected to the path reselects the path for receiving the service packet.
  • the multicast device of the service packet includes: a receiving unit, configured to receive a service packet sent by the multicast source server and a destination IP address of the service packet, where The destination IP address includes an IP address of a plurality of multicast clients, and the processing unit is connected to the receiving unit, and is configured to use a point in the PTN network of the packet transport network according to the destination IP address of the service packet.
  • the P2P path is used to copy and forward the service packet to multiple multicast clients corresponding to the destination IP address.
  • the packet after receiving the service packet sent by the multicast source server and the destination IP address of the service packet, the packet is transmitted in the PTN network according to the destination IP address of the service packet.
  • the point-to-point P2P path between the nodes copies and forwards the service packets to multiple multicast clients corresponding to the destination IP address.
  • the P2P path between the nodes in the PTN network is used to copy and forward the service packets to multiple packets.
  • the multicast client can implement the multicast of the P2MP service packet in the P2P mode and can use the P2P mode. Fault detection and protection switching, thus ensuring fast fault detection and protection switching, and is applicable to already deployed MPLS-TP based devices.
  • a node in the PTN network includes at least one root node and at least one leaf node, and the multicast source server is connected to the root node.
  • the multicast client is connected to the leaf node.
  • the processing unit is specifically configured to: the processing unit copies and forwards the service packet to a destination corresponding to the destination IP address.
  • the processing unit copies and forwards the service packet to a destination corresponding to the destination IP address.
  • the processing unit copies, by the active node, the service message to a path of multiple lower-level nodes as a working path. And the path that the processing unit copies and forwards the service packet to the multiple lower-level nodes by using the standby node is a protection path.
  • the processing unit by using the primary node, copies and forwards the service packet to a path of multiple lower-level nodes. To protect the path, the processing unit The path for copying and forwarding the service packet to the next lower level by the standby node is a working path.
  • the processing unit forwards the service packet to a path of any one of the next-level nodes by using the primary node, and the processing The path that the unit forwards the service packet to the next-level node by using the standby node is different.
  • the processing unit is further configured to: when any node in the PTN network fails or a path of P2P between nodes fails, The processing unit reselects the next-level node connected to the node or the next-level node connected to the path to receive the path of the service packet.
  • a multicast method and apparatus for service packets can implement multicasting of service packets through a P2P path, thereby ensuring fast fault detection and protection switching, and is applicable to already deployed based MPLS-TP device.
  • FIG. 1 is a schematic structural diagram of an eMBMS network architecture in the prior art
  • FIG. 2 is a schematic diagram of a principle of implementing Layer 2 multicast by using IGMP Snooping in the prior art
  • FIG. 3 is a schematic diagram of a principle of three-layer multicast in the prior art
  • FIG. 4 is a schematic flowchart of a method for multicasting service packets according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a working path and a protection path construction process provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of determining a root node and a leaf node according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a working principle of a node device with a selector according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a principle of encapsulating and decapsulating a service packet according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an end-to-end PTN multicast bearer according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a fault when an access side link fails according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a handover working path when an access side link fails according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a fault when a convergence side link occurs according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a handover working path when a convergence side link fails according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a core side link failure when an embodiment of the present disclosure is provided.
  • FIG. 15 is a schematic structural diagram of a handover working path when a core side link is faulty according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a fault when a sink node device occurs according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of a handover working path when a sink node device fails according to an embodiment of the present disclosure
  • FIG. 18 is a schematic structural diagram of a core node device failure according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of a core node device faulty switching working path according to an embodiment of the present disclosure Schematic diagram of the structure of the diameter;
  • FIG. 20 is a schematic structural diagram of another method for generating a sink node device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another working mode of a convergence node device when a failure occurs in an embodiment of the present disclosure
  • FIG. 22 is a schematic diagram of a principle of a multicast service fault detection process according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a multicast apparatus for service packets according to an embodiment of the present disclosure.
  • a method for multicasting service packets is provided in the embodiment of the present disclosure. As shown in FIG. 4, the method includes:
  • Step 402 Receive a service packet sent by the multicast source server and a destination IP address of the service packet, where the destination IP address includes an IP address of multiple multicast clients;
  • step 404 the service packet is copied and forwarded to multiple multicast clients corresponding to the destination IP address by using the P2P path between the nodes in the PTN network according to the destination IP address of the service packet.
  • the node in the PTN network is used according to the destination IP address of the service packet.
  • the P2P-based path copies and forwards the service packets to multiple multicast clients corresponding to the destination IP address, so that the service packets are copied and forwarded to multiple groups through the P2P path between the nodes in the PTN network.
  • the multicast client can implement the multicast of the P2MP service packet in the P2P mode, and can use the P2P mode. Fault detection and protection switching ensure fast fault detection and protection switching, and are applicable to deployed MPLS-TP-based devices.
  • the P2P path in the PTN network may be a PW path or a Label Switching Path (LSP).
  • LSP Label Switching Path
  • the multicast source server is the sender of the multicast service packet.
  • the service packet is encapsulated by the multicast source and then connected to the PTN network.
  • the multicast source server sends and receives IGMP protocol packets.
  • a multicast client is a receiver of a multicast service packet, and receives a service packet sent by the PTN network.
  • the multicast client sends and receives IGMP protocol packets.
  • the node in the PTN network includes at least one root node and at least one leaf node
  • the multicast source server is connected to the root node
  • the multicast client and the leaf are connected. Node connection.
  • the root node is connected to the multicast source server, and the multicast source server is connected to the network element node of the PTN network.
  • the leaf node is connected to the multicast client, and the multicast client accesses the network element node of the PTN network.
  • Child nodes can be connected to the root node or to other leaf nodes.
  • the service packet is copied and forwarded to the destination by using a point-to-point P2P path in the packet transport network PTN network according to the destination IP address of the service packet.
  • the multiple multicast clients corresponding to the IP address include: when the service packet is copied and forwarded to multiple multicast clients corresponding to the destination IP address, if the current node in the PTN network determines that the path needs to be utilized by using the P2P path.
  • any node in the network layer where the node is located is selected as the primary node, and another node is selected as the standby node.
  • the current node is a root node or a leaf node.
  • the active node and the standby node copy and forward the service packets to multiple lower-level nodes.
  • the path that the active node copies and forwards the service packet to the multiple lower-level nodes is the working path, and the standby node copies and forwards the service packet.
  • the path to multiple lower-level nodes is a protection path.
  • the path that the active node copies and forwards the service packet to the next-level node is the protection path, and the standby node copies the service packet and forwards the service packet to the next-level path as the working path.
  • the current node is used as the primary node, and any other node in the network layer where the current node is located is used as the standby node. Both the active node and the standby node need to copy and forward the service packets.
  • the network layer where the current node is located may include: an access ring, an aggregation ring, and a core ring.
  • the active node forwards the service packet to the path of any of the next-level nodes, and forwards the service packet to the next-level node with the standby node.
  • the path is different.
  • a metropolitan area network is taken as an example to describe a path establishment process of service packet forwarding.
  • the metropolitan area network is usually composed of a multi-layer ring network. As shown in FIG. 5, it is divided into an access ring, an aggregation ring, and a core ring.
  • SDN Software Defined Network
  • centralized networks can better provide centralized operation and maintenance management of distributed devices than traditional networks.
  • Network visualization topology rendering and intelligent and efficient routing algorithms.
  • the control plane in the computing system can obtain the global topology of the network, and construct two multicast paths according to the global perspective, which are respectively the working path (the path shown by the solid line in Figure 5) and the protection. Path (the path shown by the dashed line in Figure 5).
  • the centralized computing system makes real-time sensing of network changes through the whole network topology, making dynamic adjustments and more flexible. Copy and forward the service packets sent by the multicast source server to multiple multicast clients through the working path and the protection path. Specifically:
  • the PW forwarding path of the P2P that is, the working path and the protection path, is established between the root node and the leaf node by specifying the root node and the leaf node in the Layer 2 static network.
  • the working path and the protection path depend on the OAM of the PW to detect the fault.
  • the service packet is forwarded along the working path and the protection path of the PW.
  • the established forwarding path only one data stream exists in the same service packet, and the multicast data stream is forwarded along the leaf node.
  • the forked node of the working path and the protection path that is, when the service packet of the current node needs to be forwarded to multiple lower-level nodes, the forked node completes the replication of the multicast data stream in different directions to ensure that it is in the same downstream. There is only one multicast stream in the direction.
  • the fork node is responsible for selecting the active node and the standby node, and the active node and the standby node copy and forward the service packet to the next lower-level node, and finally send it to the multicast client, for example, the base station.
  • the service packet is IGMP Snooping listening on the leaf node. Only when the corresponding multicast request is received, the leaf node will forward the service packet to the corresponding host.
  • the host can be an IGMP client or an IGMP. Apply for a network.
  • routers on the downstream of the multicast source server or the multicast source server need to be deployed on the root node of the Layer 2 static network.
  • the leaf nodes can be deployed at any position after the root node.
  • the root node (root) of the PW P2MP multicast is the G and H nodes shown in FIG. 6.
  • the end-to-end static gateway or controller establishes a multicast working path between the nodes according to the deployed root node and the leaf node, as shown by the solid line in FIG.
  • a protection path is established between the root node and the leaf node, as shown by the dotted line in FIG. It is necessary to ensure that the working path and the protection path do not generate a shared risk link group to any leaf node, that is, the working path forwarded by the service packet to any node and the service packet is forwarded to the node.
  • the protection path is different.
  • the ingress port of the working path on all nodes of the multicast path is the working root port
  • the ingress port of the protection path is the protection root port.
  • Each node can have only one and only one working root port and one protection root port.
  • all other user network interfaces (UNI) and network node interfaces (NNI) are leaf ports. Specifically, the working leaf and the protection leaf are determined based on the working path and the protection path in the ring, and the other leaf nodes are all assigned to the common leaf node, and the PTN devices A, B, C, and D are taken as an example for description.
  • the inbound port direction (C->A) from the working path is defined as the working root node (Root_w);
  • the ingress port direction (B->A) coming from the protection path is defined as the protection root node ( Root_p); in this ring, along the working path, the port direction (A->B) defines the working leaf node (Leaf_w);
  • the downstream ring node can be defined as the common leaf node (Common Leaf).
  • the ingress port direction (D->B) from the protection path is defined as the protection root node (Root_p);
  • the ingress port direction (A->B) from the working path is defined as the working root node ( Root_w);
  • the working leaf node (Leaf_w) is defined along the outgoing port direction of the working path (B->D);
  • the downstream ring node can be defined as a common leaf node (Common Leaf).
  • the direction from the working path (E->C) is defined as the working root node (Root_w); the direction from the protection path (A->C) is defined as the protection root node (Root_p); The direction of the egress port (C->A) along the working path is defined as the working leaf node (Leaf_w).
  • the direction from the protection path (F->D) is defined as the protection root node (Root_p); the direction from the working path (B->D) is defined as the working root node (Root_w); The direction of the egress port (D->B) along the protection path is defined as the protection leaf node (Leaf_p).
  • All UNI (User Networks interface) and NNI (Network to Network Interface) leaf nodes are ports with working path and protection path selector, as shown in Figure 7.
  • the selector switch (Switch) controls the selection switch (Switch) to select the state.
  • the working path and the protection path selector state are determined by the automatic protection switching (APS) state machine of the working path and the protection path, specifically :
  • the forwarding process of the multicast service in a single node (1) When the APS state machine state of the working path and the protection path is working, the working root port receives the multicast service fixed to the working Leaf port and protects the Leaf. And all other with a selector port to send. (2) When the APS state machine state of the working path and the protection path is protected, the protection root port receives the multicast service and sends it to the working leaf port to send and protect the leaf port.
  • the multicast source server sends a unidirectional multicast service flow to the multicast client.
  • the packet sent by the multicast source server is an ETH encapsulation (Ethernet encapsulation) that conforms to the Ethernet link layer protocol encapsulation format.
  • the multicast IP packet, the destination IP address is an address within the range of the multicast IP address (224.0.1.0 to 239.0.0.0), and the DMAC of the packet is the multicast MAC address mapped by the multicast IP address.
  • the root node of the Layer 2 multicast network identifies the multicast service packet, forwards the multicast service packet to the P2MP multicast service path, and completes the MPLS encapsulation of the multicast service.
  • the multicast service carries the encapsulated tunnel and the pseudowire label and the outer Ethernet encapsulation when forwarding in the P2MP path (working path and protection path).
  • the leaf node of the Layer 2 multicast network decapsulates, pops up the tunnel pseudowire encapsulation, and the outer Ethernet header, restores the multicast service packet, and sends the multicast service from the corresponding UNI to the multicast client.
  • IGMP messages sent by the multicast client port are forwarded along with the service packets when IGMP snooping is disabled.
  • IGMP Snooping When IGMP Snooping is enabled, packets are intercepted and forwarded to the multicast source server.
  • the multicast service and the unicast service share the same physical network.
  • the multicast physical networking needs to meet the following principles:
  • the device supports only Layer 2 multicast, IGMP Snooping, and P2MP.
  • the PW P2MP forwarding path is used to establish a multicast path.
  • the primary and backup PW P2MP forwarding paths are recommended to carry multicast services.
  • the method further includes: when any node in the PTN network fails or the path of the P2P between the nodes fails, the node is connected to the node.
  • the primary node or the next-level node connected to the path reselects the PW path for receiving service packets.
  • the P2MP multicast 1+1 channel protection scheme is adopted for the Layer 2 network to support fast protection of link faults and node faults in the multicast forwarding path.
  • the protection switching depends on MPLS OAM.
  • Fast detection and APS status switching enable fast switching of 50ms on a single node.
  • the end-to-end PTN multicast bearer solution is configured with a static PW P2MP multicast bearer channel in the Layer 2 domain, as shown in Figure 9.
  • the solid line in FIG. 9 shows the working path, and the broken line shows the protection path.
  • the specific protection configuration details are as follows:
  • the primary and backup multicast PW P2MP forwarding paths are set up from the two multicast root nodes (PTN1/PTN2 shown in Figure 9), and the PW P2MP channels are composed of end-to-end PWs. Any node failure and link failure triggers the next-level node of the current ring to perform primary and backup service selection.
  • the node creates a multicast service model, selects the multicast primary and port ports, and the alternate root port and leaf port (including UNI). And the NNI type of Leaf port), where the NNI is bound to the P2MP channel PW.
  • Protection of multicast services depends on the hardware APS state machine to select.
  • the multicast service is selected and received between the working root port and the protection root of the node, and the traffic forms a 1+1 backup on the node. Complete a fast protection switch.
  • the protection switching of the embodiment of the present disclosure will be described below by taking an example of an access side link failure, a convergence side link failure, a core side link failure, a sink node device failure, and a core node device failure as an example.
  • Embodiment 1 Access link failure
  • the next-level node of the link between the PTN5 and the PTN7 reselects the path for accepting the multicast service.
  • the PTN 7 completes the APS selection and selects to receive the multicast service from the protection path.
  • the PTN8 receives the indication of the fault of the working path, completes the selection of the APS, and receives the multicast service from the protection path.
  • the multicast service flow is: PTN1->PTN3->PTN5->PTN6->PTN8->PTN7.
  • WTR APS Waiting for Recovery
  • Embodiment 2 The link on the aggregation side is faulty.
  • the next-level node of the link between PTN5 and PTN3 re-selects the path for accepting the multicast service. Specifically: as shown in Figure 13.
  • the PTN5 completes the APS selection and selects to receive the multicast service from the protection path.
  • the PTN6 receives the indication of the fault of the working path, completes the selection of the APS, and receives the multicast traffic from the protection path.
  • the service flow is: PTN1->PTN3->PTN4->PTN6->PTN5->PTN7->PTN8.
  • each node waits for the APS WTR timer to switch to the original working path (such as the working path shown in FIG. 9) to receive the multicast service.
  • Embodiment 3 The core side link is faulty
  • the next-level node of the link between PTN3 and PTN1 reselects the path for accepting the multicast service.
  • PTN3 completes the APS selection and selects to receive the multicast service from the protection path.
  • the PTN4 receives the indication of the fault of the working path, completes the selection of the APS, and receives the multicast traffic from the protection path.
  • the service flow is: PTN1->PTN2->PTN4->PTN3->PTN5->PTN7->PTN8.
  • each node waits for the APS WTR timer to switch to the original working path (such as the working path shown in FIG. 9) to receive the multicast service.
  • Embodiment 4 The fault of the aggregation node device
  • the next-level node of the PTN5 reselects the path for accepting the multicast service.
  • nodes PTN7 and PTN8 sense a working path failure and select to receive multicast traffic from the protection path.
  • the node PTN6 senses the working path failure and chooses to receive multicast traffic from the protection path.
  • the service flow is: PTN1->PTN3->PTN4->PTN6->PTN8->PTN7.
  • each node waits for the APS WTR timer to switch to the original working path (such as the working path shown in FIG. 9) to receive the multicast service.
  • Embodiment 5 The core node device is faulty
  • the next-level node of PTN3 reselects the path for accepting the multicast service.
  • nodes PTN5 and PTN6 sense a working path failure and select to receive multicast traffic from the protection path.
  • the node PTN4 senses the working path failure and chooses to receive multicast traffic from the protection path.
  • the service flow is: PTN1->PTN2->PTN4->PTN6->PTN5->PTN7->PTN8.
  • each node waits for the APS WTR timer to switch to the original working path (such as the working path shown in FIG. 9) to receive the multicast service.
  • nodes PTN3 and PTN4 sense a working path failure and select to receive multicast traffic from the protection path.
  • the node PTN2 senses the working path failure and chooses to receive multicast traffic from the protection path.
  • the service flow is: PTN2->PTN4->PTN3->PTN5->PTN7->PTN8.
  • each node waits for the APS WTR timer to switch to the original working path (such as the working path shown in FIG. 9) to receive the multicast service.
  • Layer 2 multicast only needs to be configured with PW P2MP multicast protection. It is not necessary to configure multiple layers of protection coupling to prevent multiple switching, so as to ensure PW P2MP single node protection switching, for example, 50 milliseconds (ms).
  • the end-to-end switching interruption time is, for example, less than or equal to 150 ms.
  • the multicast service path and the protection path are independently configured for fast OAM detection. Any path where the root and protection root ports are located detects a fault and needs to work corresponding to the path.
  • the path of the leaf and the protection leaf is inserted into the fault indication, so that the next-level node can switch the path of receiving the multicast service packet according to the fault indication.
  • the OAM of the Ethernet service is configured between the Layer 2 multicast node and the UNI of the Leaf node.
  • the unicast Ethernet OAM mechanism is the same as that of the unicast Ethernet OAM mechanism.
  • the multicast device of the service packet provided by the embodiment of the present disclosure includes: a receiving unit 2302, configured to receive a service packet sent by the multicast source server and a destination IP address of the service packet
  • the destination IP address includes the IP addresses of the plurality of multicast clients
  • the processing unit 2304 is connected to the receiving unit 2302, and is configured to use the point-to-point between the nodes in the PTN network according to the destination IP address of the service packet.
  • the P2P path copies and forwards the service packets to multiple multicast clients corresponding to the destination IP address.
  • the multicast device according to the service message provided by the embodiment of the present disclosure is set, for example, at any router between the multicast source server and the multicast client, as shown in FIG. 2 .
  • the service report sent by the multicast source server is received.
  • the service packet is copied and forwarded to the destination IP address by using the P2P path between the nodes in the PTN network of the packet transport network according to the destination IP address of the service packet.
  • a multicast client which implements the replication and forwarding of service packets to multiple multicast clients through the P2P path between the nodes in the PTN network, and the point-to-multipoint P2MP service based on the MPLS-TP technology in the prior art.
  • the multicast implementation of the packet is more complex than that of the P2P service.
  • the fault detection and protection switching can be performed in the P2P mode. Therefore, fast fault detection and protection switching can be ensured.
  • the deployed MPLS-TP based device is more complex than that of the P2P service.
  • the node in the PTN network includes at least one root node and at least one leaf node
  • the multicast source server is connected to the root node
  • the multicast client and the leaf Node connection in the apparatus provided by the embodiment of the present disclosure, includes at least one root node and at least one leaf node, the multicast source server is connected to the root node, and the multicast client and the leaf Node connection.
  • the processing unit 2304 is specifically configured to: when the processing unit 2304 copies and forwards the service packet to multiple multicast clients corresponding to the destination IP address, If the current node in the PTN network determines that the P2P path needs to be used to send the service packet to multiple lower-level nodes, select any node as the primary node and select another node as the standby node in the network layer where the node is located. .
  • the current node is a root node or a leaf node. Service packets are copied and forwarded to multiple lower-level nodes through the active node and the standby node.
  • the processing unit 2304 copies and forwards the service packet to the working path of the plurality of lower-level nodes by using the active node, and the processing unit 2304 passes the standby.
  • the path that the node copies and forwards the service packet to the multiple lower-level nodes is the protection path, or the processing unit 2304 copies the service packet and forwards the service packet to the multiple lower-level nodes through the active node as the protection path, and the processing unit 2304
  • the service path is copied and forwarded by the standby node to multiple lower-level paths as working paths.
  • the processing unit 2304 forwards the service packet to the path of any of the next-level nodes by using the primary node, and processes the service packet with the processing unit by using the standby node.
  • the path forwarded to the next level node is different.
  • the processing unit 2304 is further configured to: when any node in the PTN network fails or the path of the P2P between the nodes fails, the processing unit 2304 reselects The next-level node to which the node is connected or connected to the path The path of the next-level node receiving service packets.
  • the multicast device of the service message provided by the embodiment of the present disclosure may be integrated in an existing PTN network.
  • the receiving unit 2302 can employ a receiver or a signal receiver, and the processing unit 2304 can employ a processor such as a CPU.
  • the method and apparatus for multicasting a service packet after receiving the service packet sent by the multicast source server and the destination IP address of the service packet, according to the service report
  • the destination IP address of the packet is used to copy and forward the service packet to the multiple multicast clients corresponding to the destination IP address by using the P2P path between the nodes in the PTN network of the packet transport network, thereby implementing the node in the PTN network.
  • the inter-P2P path copies and forwards the service packets to multiple multicast clients, and implements P2MP service packet multicasting in the P2P mode.
  • the P2P fault detection and protection switching can be used, thus ensuring fast fault detection and Protection switching, and is applicable to MPLS-TP-based devices that have already been deployed.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本公开文本公开了一种业务报文的组播方法及装置,用以通过P2P的路径实现业务报文的组播,保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。所述业务报文的组播方法,包括:接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中,所述目的IP地址包括多个组播客户端的IP地址;根据所述业务报文的目的IP地址,利用分组传送网PTN网络中节点之间点到点P2P的路径,将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端。

Description

一种业务报文的组播方法及装置
相关申请的交叉参考
本申请主张在2015年8月19日在中国提交的中国专利申请号No.201510511381.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,尤其涉及一种业务报文的组播方法及装置。
背景技术
近年来,国内外移动运营商发力建设长期演进(Long Term Evolution,LTE)网络,实现多业务承载和带宽提升,尤其移动视频业务备受关注。
LTE增强型多媒体广播多播业务(evolved Multimedia Broadcast Multicast Service,eMBMS)能够通过复用LTE现有网络资源,充分利用LTE高带宽、低时延和全IP优势,在业务系统与用户设备之间实现多用户共享一份带宽资源,网络负荷与用户体验不随用户数增加而变化。因此,LTE增强型多媒体广播多播业务相比于单播技术,能够大幅度节省无线空中接口与网络传输资源,提升用户视频业务体验。
第三代移动通信(3rd-Generation,3G)时代的多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)主要依附在既有的3G网络架构之上,通过引入广播组播业务中心(Broadcast Multicast-Service Center,BM-SC)来提供和管理MBMS业务。而eMBMS的网络架构不同于3G时代的MBMS的网络架构,eMBMS的网络架构,如图1所示。从图1中可以看到,除了原演进分组核心(Evolved Packet Core,EPC)和LTE网络既有的移动性管理实体(Mobility Management Entity,MME)和演进型基站(evolved Node B,eNB)外,新增了两个网元:多小区/多播协调实体(Muiti-cell/Multicast Coordination Entity,MCE)和MBMS网关(MBMS Gate Way,MBMS GW)。原来3G时代引入的BM-SC仍然存在,它位于MBMS GW上方,整体管理 网络的MBMS业务。在eMBMS网络架构中,M2(E-UTRAN internal control plane interface)和M3(control plane interface between E-UTRAN and EPC)为控制面接口,是双向接口。而M1(user plane interface)为用户面接口,是自核心网下行的单向接口,承载组播业务。
现有传输承载网络中支持eMBMS业务承载的主流组播技术有:
二层组播:如图2所示,采用Internet组管理协议(Internet Group Management Protocol,IGMP)+Snooping标准。该协议主要运行在因特网协议(Internet Protocol,IP)主机和路由器之间,实现的功能是双向的。eNB的单播业务与组播业务采用独立的逻辑接口(eNB一个子接口针对单播业务,另一个子接口则针对组播业务),各接口分别承载不同的业务。另外,为了避免IP组播报文在以太网按照广播方式将组播报文复制到所有端口,浪费大量网络资源,一般采用IGMP Snooping实现方式。
其中,二层组播技术采用IGMP+Snooping标准,很好地避免IP组播报文在以太网中的大量广播复制,但是对于移动回传网络往往节点数量大,如果要用IGMP的话,效率较低。另外,单纯的IGMP也不能解决网络要求的保护能力,即当网络发生故障时,网络有能力自动恢复。
三层组播:如图3所示,采用稀疏模式独立组播协议(Protocol Independent Multicast-Sparse Mode,PIM-SM)标准。IP网络中三层/IP组播能够实现点到多点的高效率数据传送。三层/IP组播技术需要先建立组播组(Multicast Group),源主机只发送一份以组播地址为目的地址的数据,组播域内所有端口都能接收到该数据,而不相关端口则接收不到。IP组播技术能够动态地控制端口的加入和撤离组播域。
其中,三层组播技术采用PIM-SM标准能够动态控制端口加入和撤离组播域,实现IP网络点到多点的数据传送,但需开启动态协议,协议比较复杂,同时网络保护的能力也有限。
基于传送多标签协议交换(Multi-Protocol Label Switching Transport Profile,MPLS-TP)技术的分组传送技术被广泛应用于城域网系统承载移动回传或者固定专线业务。MPLS-TP基于隧道技术,能够实现点到点的伪线(prisoner of war,PW)和标记交换路径(Label Switching Path,LSP)传输, 能够通过高效的运行、管理和维护(Operations Administration and Maintenance,OAM)机制和保护倒换机制实现快速的故障检测。但是MPLS-TP技术还没有成熟的点到多点(Point-to-Multi Point)的技术方案,互联网工程任务组(Internet Engineering Task Force,IETF)等标准化组织有文稿提到P2MP的PW和LSP来支持P2MP业务,但是实现技术复杂,无法保障快速的故障检测和保护倒换,而且对于已经部署的基于MPLS-TP设备无法升级。
综上所述,现有技术中基于MPLS-TP技术的点到多点P2MP业务报文的组播实现技术复杂,无法保证快速的故障检测和保护倒换,而且对于已经部署的基于MPLS-TP设备无法升级。
发明内容
(一)要解决的技术问题
本公开文本实施例的目的在于提供一种业务报文的组播方法及装置,用以通过P2P的路径实现业务报文的组播,保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。
(二)技术方案
为了实现上述目的,本公开文本提供如下技术方案:
本公开文本实施例提供的一种业务报文的组播方法,该方法包括:接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中,所述目的IP地址包括多个组播客户端的IP地址;根据所述业务报文的目的IP地址,利用分组传送网PTN网络中节点之间点到点P2P的路径,将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端。
在本公开文本实施例提供的上述方法中,在接收到组播源服务器发送的业务报文和该业务报文的目的IP地址之后,根据业务报文的目的IP地址利用分组传送网PTN网络中节点之间点到点P2P的路径将业务报文复制并转发至目的IP地址对应的多个组播客户端,实现了通过PTN网络中节点之间P2P的路径将业务报文复制并转发至多个组播客户端,与现有技术中基于MPLS-TP技术的点到多点P2MP业务报文的组播实现技术复杂相比,以P2P 的方式实现P2MP业务报文的组播,能够沿用P2P方式的故障检测和保护倒换,因此能够保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。
在一种可能的实施方式中,本公开文本实施例提供的上述方法中,所述PTN网络中的节点包括至少一个根节点和至少一个叶子节点,所述组播源服务器与所述根节点连接,所述组播客户端与所述叶子节点连接。
在一种可能的实施方式中,本公开文本实施例提供的上述方法中,所述根据该业务报文的目的IP地址利用分组传送网PTN网络中点到点P2P的路径将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端,具体包括:在将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端时,若PTN网络中当前节点确定需要利用P2P的路径将所述业务报文发送至多个下一级节点时,在该节点所在的网络层中选择任一节点作为主用节点,选择另一节点作为备用节点,其中,当前节点为根节点或叶子节点;所述主用节点和所述备用节点将所述业务报文复制并转发至多个下一级节点。
在一种可能的实施方式中,本公开文本实施例提供的上述方法中,所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为工作路径,所述备用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径。或者,在又一种可能的实施方式中,所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径,所述备用节点将所述业务报文复制并转发至多个下一级的路径为工作路径。
在一种可能的实施方式中,本公开文本实施例提供的上述方法中,所述主用节点将所述业务报文转发至任一下一级节点的路径,与所述备用节点将所述业务报文转发至该下一级节点的路径不同。
在一种可能的实施方式中,本公开文本实施例提供的上述方法中,该方法还包括:当所述PTN网络中任一节点故障或节点之间P2P的路径故障时,则与该节点相连接的下一级节点或与该路径相连接的下一级节点重新选择接收所述业务报文的路径。
本公开文本实施例提供的一种业务报文的组播装置,包括:接收单元,用于接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中, 所述目的IP地址包括多个组播客户端的IP地址;处理单元,连接至所述接收单元,用于根据所述业务报文的目的IP地址,利用分组传送网PTN网络中节点之间点到点P2P的路径,将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端。
在本公开文本实施例提供的上述装置中,在接收到组播源服务器发送的业务报文和该业务报文的目的IP地址之后,根据业务报文的目的IP地址利用分组传送网PTN网络中节点之间点到点P2P的路径将业务报文复制并转发至目的IP地址对应的多个组播客户端,实现了通过PTN网络中节点之间P2P的路径将业务报文复制并转发至多个组播客户端,与现有技术中基于MPLS-TP技术的点到多点P2MP业务报文的组播实现技术复杂相比,以P2P的方式实现P2MP业务报文的组播,能够沿用P2P方式的故障检测和保护倒换,因此能够保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。
在一种可能的实施方式中,本公开文本实施例提供的上述装置中,所述PTN网络中的节点包括至少一个根节点和至少一个叶子节点,所述组播源服务器与所述根节点连接,所述组播客户端与所述叶子节点连接。
在一种可能的实施方式中,本公开文本实施例提供的上述装置中,所述处理单元具体用于:所述处理单元在将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端时,若PTN网络中当前节点确定需要利用P2P的路径将所述业务报文发送至多个下一级节点时,在该节点所在的网络层中选择任一节点作为主用节点,选择另一节点作为备用节点,其中,当前节点为根节点或叶子节点;通过所述主用节点和所述备用节点将所述业务报文复制并转发至多个下一级节点。
在一种可能的实施方式中,本公开文本实施例提供的上述装置中,所述处理单元通过所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为工作路径,所述处理单元通过所述备用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径。或者,在又一种可能的实施方式中,本公开文本实施例提供的上述装置中,所述处理单元通过所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径,所述处理单元 通过所述备用节点将所述业务报文复制并转发至多个下一级的路径为工作路径。
在一种可能的实施方式中,本公开文本实施例提供的上述装置中,所述处理单元通过所述主用节点将所述业务报文转发至任一下一级节点的路径,与所述处理单元通过所述备用节点将所述业务报文转发至该下一级节点的路径不同。
在一种可能的实施方式中,本公开文本实施例提供的上述装置中,所述处理单元还用于:当所述PTN网络中任一节点故障或节点之间P2P的路径故障时,所述处理单元重新选择与该节点相连接的下一级节点或与该路径相连接的下一级节点接收所述业务报文的路径。
(三)有益效果
本公开文本实施例至少具有如下有益效果:
根据本公开文本实施例提供的一种业务报文的组播方法及装置,能够通过P2P的路径实现业务报文的组播,从而保证快速的故障检测和保护倒换,并且适用于已经部署的基于MPLS-TP设备。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为现有技术中eMBMS网络架构的结构示意图;
图2为现有技术中以IGMP Snooping实现二层组播的原理示意图;
图3为现有技术中三层组播的原理示意图;
图4为本公开文本实施例提供的一种业务报文的组播方法的流程示意 图;
图5为本公开文本实施例提供的工作路径和保护路径构建过程的原理示意图;
图6为本公开文本实施例提供的确定根节点和叶子节点的原理示意图;
图7为本公开文本实施例提供的一种带选择器的节点设备的工作原理示意图;
图8为本公开文本实施例提供的业务报文的封装与解封装的原理示意图;
图9为本公开文本实施例提供的一种端到端PTN组播承载的结构示意图;
图10为本公开文本实施例提供的一种发生接入侧链路故障时的结构示意图;
图11为本公开文本实施例提供的一种接入侧链路故障时切换工作路径的结构示意图;
图12为本公开文本实施例提供的一种发生汇聚侧链路故障时的结构示意图;
图13为本公开文本实施例提供的一种汇聚侧链路故障时切换工作路径的结构示意图;
图14为本公开文本实施例提供的一种发生核心侧链路故障时的结构示意图;
图15为本公开文本实施例提供的一种核心侧链路故障时切换工作路径的结构示意图;
图16为本公开文本实施例提供的一种发生汇聚节点设备故障时的结构示意图;
图17为本公开文本实施例提供的一种汇聚节点设备故障时切换工作路径的结构示意图;
图18为本公开文本实施例提供的一种发生核心节点设备故障时的结构示意图;
图19为本公开文本实施例提供的一种核心节点设备故障时切换工作路 径的结构示意图;
图20为本公开文本实施例提供的另一种发生汇聚节点设备故障时的结构示意图;
图21为本公开文本实施例提供的另一种汇聚节点设备故障时切换工作路径的结构示意图;
图22为本公开文本实施例提供的一种组播业务故障检测过程的原理示意图;以及
图23为本公开文本实施例提供的一种业务报文的组播装置的结构示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
下面结合附图,对本公开文本实施例提供的一种业务报文的组播方法及装置的具体实施方式进行详细地说明。
本公开文本实施例提供的一种业务报文的组播方法,如图4所示,该方法包括:
步骤402,接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中,目的IP地址包括多个组播客户端的IP地址;以及
步骤404,根据业务报文的目的IP地址,利用PTN网络中节点之间P2P的路径,将业务报文复制并转发至目的IP地址对应的多个组播客户端。
本公开文本实施例提供的方法中,在接收到组播源服务器发送的业务报文和该业务报文的目的IP地址之后,根据业务报文的目的IP地址利用分组传送网PTN网络中节点之间点到点P2P的路径将业务报文复制并转发至目的IP地址对应的多个组播客户端,从而实现了通过PTN网络中节点之间P2P的路径将业务报文复制并转发至多个组播客户端,与现有技术中基于MPLS-TP技术的点到多点P2MP业务报文的组播实现技术复杂相比,以P2P的方式实现P2MP业务报文的组播,能够沿用P2P方式的故障检测和保护倒换,因此能够保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。
值得说明的是,PTN网络中点到点的P2P路径可以是伪线PW路径,也可以是标记交换路径(Label Switching Path,LSP)。下面,本公开文本实施例中以PW为例进行说明,本领域技术人员在此基础上,可以通过适当修改来获得基于LSP的实施方式。
需要说的是,组播源服务器是指组播业务报文的发送者,业务报文由组播源进行封装后接入PTN网络,同时组播源服务器发送和接收IGMP协议报文。组播客户端是指组播业务报文的接收者,接收由PTN网络发送的业务报文,同时组播客户端发送和接收IGMP协议报文。
在一种可能的实施方式中,本公开文本实施例提供的方法中,PTN网络中的节点包括至少一个根节点和至少一个叶子节点,组播源服务器与根节点连接,组播客户端与叶子节点连接。
具体实施时,根节点与组播源服务器连接,为组播源服务器接入PTN网络的网元节点。另一方面,叶子节点与组播客户端连接,为组播客户端接入PTN网络的网元节点。当然,本领域技术人员应当理解的是,PTN网络中叶 子节点可以与根节点连接,也可以与其它叶子节点连接。
在一种可能的实施方式中,本公开文本实施例提供的方法中,根据该业务报文的目的IP地址利用分组传送网PTN网络中点到点P2P的路径将业务报文复制并转发至目的IP地址对应的多个组播客户端,具体包括:在将业务报文复制并转发至目的IP地址对应的多个组播客户端时,若PTN网络中当前节点确定需要利用P2P的路径将业务报文发送至多个下一级节点时,在该节点所在的网络层中选择任一节点作为主用节点,选择另一节点作为备用节点。其中,当前节点为根节点或叶子节点。主用节点和备用节点将业务报文复制并转发至多个下一级节点。
在一种可能的实施方式中,本公开文本实施例提供的方法中,主用节点将业务报文复制并转发至多个下一级节点的路径为工作路径,备用节点将业务报文复制并转发至多个下一级节点的路径为保护路径。或者,主用节点将业务报文复制并转发至多个下一级节点的路径为保护路径,备用节点将业务报文复制并转发至多个下一级的路径为工作路径。
作为较为优选的实施例,当前节点作为主用节点,当前节点所在的网络层中其它任一节点作为备用节点,主用节点和备用节点均需要进行业务报文的复制和转发。其中,当前节点所在的网络层可包括:接入环、汇聚环、核心环。
当然,本领域技术人员应当理解的是,若当前节点只需要将业务报文转发至一个下一级节点,则直接将业务报文转发至下一级节点即可。
在一种可能的实施方式中,本公开文本实施例提供的方法中,主用节点将业务报文转发至任一下一级节点的路径,与备用节点将业务报文转发至该下一级节点的路径不同。
作为较为具体的实施例,以城域网(Metropolitan Area Network,MAN)为例,对业务报文转发的路径建立过程进行说明。由于城域网通常以多层环形网构成,如图5所示,分为接入环、汇聚环、核心环。通过集中化的算路系统,例如:软件定义网络(Software Defined Network,SDN)控制器,集中化的网管系统,集中化网络较传统网络能够更好地提供分散设备的集中化运维管理,实现网络可视化拓扑呈现以及智能高效的路由算法。这里集中化 算路系统中控制平面(如SDN网络中的控制层)能够获得网络全局的拓扑情况,依照全局视角构建两条组播路径,分别为工作路径(图5中实线示出的路径)和保护路径(图5中虚线示出的路径)。而且集中化算路系统通过全网拓扑实时感知网络的变化,做出动态调整,更加灵活。通过工作路径和保护路径将组播源服务器发送的业务报文复制并转发至多个组播客户端,具体来说:
通过在二层静态网络指定根节点和叶子节点,在根节点和叶子节点之间建立P2P的PW转发路径,也即工作路径和保护路径,工作路径和保护路径依赖PW自身的OAM进行故障检测。
业务报文沿PW构成的工作路径和保护路径进行转发,在建立的转发路径内同一个业务报文只存在一份数据流,组播数据流沿叶子节点进行转发。在工作路径和保护路径的分叉节点上,也即当前节点的业务报文需要转发至多个下一级节点时,分叉节点完成到不同方向的组播数据流的复制,保证在同一个下游方向只存在一份组播数据流。同时,分叉节点负责选择主用节点和备用节点,并由主用节点和备用节点将业务报文复制并转发至多个下一级节点,最终发送至组播客户端,例如:基站。
业务报文在叶子节点进行IGMP Snooping侦听,只有侦听到相应的组播请求时,叶子节点才会将业务报文复制推送到相应的主机,主机可以是IGMP客户端,也可以是一个IGMP申请网络。
值得说明的是,组播源服务器或组播源服务器下行的路由器需要部署在二层静态网络的根节点,叶子节点可以在根节点之后的任意位置进行部署。
下面结合图6,以PW P2MP组播为例对本公开文本实施例的业务报文的组播方法进行详细说明。如图6所示,PW P2MP组播的根节点(root)为图6中示出的G和H节点。
端到端静态网关或者控制器根据部署的根节点和叶子(leaf)节点在节点之间建立组播工作路径,如图6中实线示出的路径。另外,为了部署组播业务的快速保护,同时在根节点和叶子节点之间建立保护路径,如图6中虚线示出的路径。需要确保工作路径和保护路径到任一叶子节点不产生共享风险链路组,也即业务报文转发至任一节点的工作路径与业务报文转发至该节点 的保护路径不同。
经过组播路径的建立,组播路径的所有节点上工作路径入端口为工作Root端口,保护路径入端口为保护Root端口。每个节点只能有且只有一个工作Root端口和一个保护Root端口。此外除工作Root端口和保护Root端口,其他所有用户网络接口(User Network Interface,UNI)和网络节点端口(Network Node Interface,NNI)均为Leaf端口。具体来说:工作leaf和保护leaf选择是基于环内工作路径和保护路径确定,其它叶子节点都归属普通叶子节点,以PTN设备A、B、C、D为例进行说明。
针对PTN设备A:从工作路径过来的入端口方向(C->A),定义为工作根节点(Root_w);从保护路径过来的入端口方向(B->A),定义为保护根节点(Root_p);本环内顺着工作路径出端口方向(A->B),定义工作叶子节点(Leaf_w);往下游环节点都可以定义为普遍叶子节点(Common Leaf)。
针对PTN设备B:从保护路径过来的入端口方向(D->B),定义为保护根节点(Root_p);从工作路径过来的入端口方向(A->B),定义为工作根节点(Root_w);本环内顺着工作路径的出端口方向(B->D),定义工作叶子节点(Leaf_w);往下游环节点都可以定义为普遍叶子节点(Common Leaf)。
针对PTN设备C:从工作路径过来的方向(E->C),定义为工作根节点(Root_w);从保护路径过来的方向(A->C),定义为保护根节点(Root_p);本环内顺着工作路径的出端口方向(C->A),定义为工作叶子节点(Leaf_w)。
针对PTN设备D:从保护路径过来的方向(F->D),定义为保护根节点(Root_p);从工作路径过来的方向(B->D),定义为工作根节点(Root_w);本环内顺着保护路径的出端口方向(D->B),定义为保护叶子节点(Leaf_p)。
所有UNI(User Networks interface)和NNI(Network to Network Interface)叶子节点均为带工作路径和保护路径选择器的端口,如图7所示。由选择器(Switch Machine)控制选择开关(Switch)进行选择,工作路径和保护路径选择器状态由工作路径和保护路径的自动保护倒换(Automatic Protection Switching,APS)状态机来决定状态,具体来说:
组播业务在单节点的转发过程:(1)工作路径和保护路径的APS状态机状态为工作时,工作Root端口收到组播业务固定往工作Leaf端口和保护Leaf 以及其他所有带选择器端口发送。(2)工作路径和保护路径的APS状态机状态为保护时,保护Root端口收到组播业务固定往工作Leaf端口发送和保护Leaf端口发送。
下面结合图8对本公开文本实施例中业务报文的封装与解封装过程进行说明。如图8所示,组播源服务器到组播客户端方向,发送单向组播业务流:组播源服务器发送出来的报文是符合以太网链路层协议封装格式的ETH封装(以太封装)的组播IP报文,目的IP是一个组播IP地址范围内(224.0.1.0~239.0.0.0)的地址,报文的DMAC是组播IP映射后的组播MAC地址。
二层组播网络的Root节点识别组播业务报文,将组播业务报文转发到P2MP组播业务路径,并完成组播业务的MPLS封装。组播业务在P2MP路径(工作路径和保护路径)内转发时携带封装隧道和伪线标签,以及外层的以太封装。
二层组播网络的Leaf节点解封装,弹出隧道伪线封装,以及外层的以太网头,还原组播业务报文,从对应的UNI发送组播业务到组播客户端。
组播客户端到组播源服务器方向:组播客户端口发送的IGMP协议报文在不启用IGMP Snooping时,跟随业务报文同样转发。启用IGMP Snooping时,报文会被侦听且转发到组播源服务器。
本公开文本实施例中组播业务和单播业务共用同一个物理网络,组播物理组网除了与单播物理组网要求一致之外,还需要满足以下原则:
设备仅支持二层组播、IGMP Snooping和P2MP;
采用PW P2MP建立组播路径,同一网络内建议建立主用和备用PW P2MP转发路径承载组播业务。
在一种可能的实施方式中,本公开文本实施例提供的方法中,该方法还包括:当PTN网络中任一节点故障或节点之间P2P的路径故障时,则与该节点相连接的下一级节点或与该路径相连接的下一级节点重新选择接收业务报文的PW路径。
具体实施时,对于二层网络,采用P2MP组播1+1通道保护方案,支持组播转发路径内链路故障和节点故障的快速保护,保护倒换依赖MPLS OAM 快速检测和APS状态切换,可实现单节点50ms的快速倒换。
具体来说,端到端的PTN组播承载方案,在二层域配置静态PW P2MP组播承载通道,如图9所示。图9中实线示出的为工作路径,虚线示出的为保护路径,具体保护配置细节如下:
分别从2个组播Root节点(图9中示出的PTN1/PTN2)建立主用和备用组播PW P2MP转发路径(通道),PW P2MP通道由逐端PW组成,均需要配置连通性检测;任意节点故障和链路故障会触发当前环的下一级节点进行主用和备用业务选择。
节点(图9中示出的PTN1/PTN2/PTN3/PTN4/PTN5/PTN7/PTN6/PTN8)创建组播业务模型,选择组播主用Root端口和Leaf端口以及备用Root端口和Leaf端口(包括UNI和NNI类型的Leaf端口),其中NNI与P2MP通道PW进行绑定。
组播业务的保护:组播业务的发送依赖硬件APS状态机来进行选择,相当于组播业务在节点的工作Root端口和保护Root之间进行选择接收,流量在节点上形成1+1备份,完成快速的保护切换。
下面结合具体的实施例,以接入侧链路故障、汇聚侧链路故障、核心侧链路故障、汇聚节点设备故障以及核心节点设备故障为例对本公开文本实施例的保护切换进行说明。
实施例一、接入侧链路故障
如图10所示,例如:PTN5与PTN7之间链路发生故障,则PTN5与PTN7之间链路的下一级节点重新选择接受组播业务的路径。具体来说:如图11所示,PTN7完成APS选择,选择从保护路径接收组播业务。PTN8收到工作路径故障缺陷指示,完成APS的选择,从保护路径接收组播业务。倒换后组播业务流为:PTN1->PTN3->PTN5->PTN6->PTN8->PTN7。当然,故障恢复时,各个节点等待APS等待恢复(Wait To Restore,WTR)定时器到时后切换到原来的工作路径(如图9中所示的工作路径)接收组播业务。
实施例二、汇聚侧链路故障
如图12所示,例如:PTN5与PTN3之间链路发生故障,则PTN5与PTN3之间链路的下一级节点重新选择接受组播业务的路径。具体来说:如图13所 示,PTN5完成APS选择,选择从保护路径接收组播业务。PTN6收到工作路径故障缺陷指示,完成APS的选择,从保护路径接收组播流量。倒换后业务流为:PTN1->PTN3->PTN4->PTN6->PTN5->PTN7->PTN8。当然,故障恢复时,各个节点等待APS WTR定时器到时后切换到原来的工作路径(如图9中所示的工作路径)接收组播业务。
实施例三、核心侧链路故障
如图14所示,例如:PTN3与PTN1之间链路发生故障,则PTN3与PTN1之间链路的下一级节点重新选择接受组播业务的路径。具体来说:如图15所示,PTN3完成APS选择,选择从保护路径接收组播业务。PTN4收到工作路径故障缺陷指示,完成APS的选择,从保护路径接收组播流量。倒换后业务流为:PTN1->PTN2->PTN4->PTN3->PTN5->PTN7->PTN8。当然,故障恢复时,各个节点等待APS WTR定时器到时后切换到原来的工作路径(如图9中所示的工作路径)接收组播业务。
实施例四、汇聚节点设备故障
如图16所示,例如:PTN5发生故障,则PTN5的下一级节点重新选择接受组播业务的路径。具体来说:如图17所示,节点PTN7和PTN8感知工作路径故障,选择从保护路径接收组播流量。节点PTN6感知工作路径故障,选择从保护路径接收组播流量。倒换后业务流为:PTN1->PTN3->PTN4->PTN6->PTN8->PTN7。当然,故障恢复时,各个节点等待APS WTR定时器到时后切换到原来的工作路径(如图9中所示的工作路径)接收组播业务。
实施例五、核心节点设备故障
(1)如图18所示,例如:PTN3发生故障,则PTN3的下一级节点重新选择接受组播业务的路径。具体来说:如图19所示,节点PTN5和PTN6感知工作路径故障,选择从保护路径接收组播流量。节点PTN4感知工作路径故障,选择从保护路径接收组播流量。倒换后业务流为:PTN1->PTN2->PTN4->PTN6->PTN5->PTN7->PTN8。当然,故障恢复时,各个节点等待APS WTR定时器到时后切换到原来的工作路径(如图9中所示的工作路径)接收组播业务。
(2)如图20所示,例如:PTN1发生故障,则PTN1的下一级节点重新选择接受组播业务的路径。具体来说:如图21所示,节点PTN3和PTN4感知工作路径故障,选择从保护路径接收组播流量。节点PTN2感知工作路径故障,选择从保护路径接收组播流量。倒换后业务流为:PTN2->PTN4->PTN3->PTN5->PTN7->PTN8。当然,故障恢复时,各个节点等待APS WTR定时器到时后切换到原来的工作路径(如图9中所示的工作路径)接收组播业务。
需要注意的是,对于组播承载组网,涉及到多个保护的配合,需配置相应的OAM检测时间,保证故障时倒换效率。二层组播只需配置PW P2MP组播保护,无需配置多层保护耦合,防止多次倒换,以确保PW P2MP单节点保护倒换例如50毫秒(ms)。端到端倒换中断时间例如小于或等于150ms。
组播业务的故障检测过程,如图22所示,组播工作路径和保护路径各自独立的进行快速OAM检测,工作Root和保护Root端口所在路径任一检测到故障,需要向该路径对应的工作Leaf和保护Leaf所在路径插入故障指示,以便下一级节点能依据故障指示切换接收组播业务报文的路径。
工作Root和保护Root端口所在路径同时故障时,节点上所有带选择器端口需要往其下一级组播节点插入故障指示,以便下一级节点能依据故障指示切换接收组播业务报文的路径。
以太业务OAM,在整个二层组播Root和Leaf节点UNI之间配置以太业务的OAM,与单播以太业务OAM机制一样,在此不再赘述。
本公开文本实施例提供的一种业务报文的组播装置,如图23所示,包括:接收单元2302,用于接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中,目的IP地址包括多个组播客户端的IP地址;处理单元2304,连接至接收单元2302,用于根据业务报文的目的IP地址,利用分组传送网PTN网络中节点之间点到点P2P的路径,将业务报文复制并转发至目的IP地址对应的多个组播客户端。这里,根据本公开文本实施例提供的业务报文的组播装置例如设置在组播源服务器和组播客户端之间的任一路由器处,如图2所示。
本公开文本实施例提供的装置中,在接收到组播源服务器发送的业务报 文和该业务报文的目的IP地址之后,根据业务报文的目的IP地址利用分组传送网PTN网络中节点之间点到点P2P的路径将业务报文复制并转发至目的IP地址对应的多个组播客户端,从而实现了通过PTN网络中节点之间P2P的路径将业务报文复制并转发至多个组播客户端,与现有技术中基于MPLS-TP技术的点到多点P2MP业务报文的组播实现技术复杂相比,以P2P的方式实现P2MP业务报文的组播,能够沿用P2P方式的故障检测和保护倒换,因此能够保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。
在一种可能的实施方式中,本公开文本实施例提供的装置中,PTN网络中的节点包括至少一个根节点和至少一个叶子节点,组播源服务器与根节点连接,组播客户端与叶子节点连接。
在一种可能的实施方式中,本公开文本实施例提供的装置中,处理单元2304具体用于:处理单元2304在将业务报文复制并转发至目的IP地址对应的多个组播客户端时,若PTN网络中当前节点确定需要利用P2P的路径将业务报文发送至多个下一级节点时,在该节点所在的网络层中选择任一节点作为主用节点,选择另一节点作为备用节点。其中,当前节点为根节点或叶子节点。通过主用节点和备用节点将业务报文复制并转发至多个下一级节点。
在一种可能的实施方式中,本公开文本实施例提供的装置中,处理单元2304通过主用节点将业务报文复制并转发至多个下一级节点的路径为工作路径,处理单元2304通过备用节点将业务报文复制并转发至多个下一级节点的路径为保护路径,或者处理单元2304通过主用节点将业务报文复制并转发至多个下一级节点的路径为保护路径,处理单元2304通过备用节点将业务报文复制并转发至多个下一级的路径为工作路径。
在一种可能的实施方式中,本公开文本实施例提供的装置中,处理单元2304通过主用节点将业务报文转发至任一下一级节点的路径,与处理单元通过备用节点将业务报文转发至该下一级节点的路径不同。
在一种可能的实施方式中,本公开文本实施例提供的装置中,处理单元2304还用于:当PTN网络中任一节点故障或节点之间P2P的路径故障时,处理单元2304重新选择与该节点相连接的下一级节点或与该路径相连接的 下一级节点接收业务报文的路径。
本公开文本实施例提供的业务报文的组播装置,可以集成在现有的PTN网络中。其中,接收单元2302可以采用接收器或信号接收机,而处理单元2304可以采用CPU等处理器。
综上所述,本公开文本实施例提供的一种业务报文的组播方法及装置,在接收到组播源服务器发送的业务报文和该业务报文的目的IP地址之后,根据业务报文的目的IP地址利用分组传送网PTN网络中节点之间点到点P2P的路径将业务报文复制并转发至目的IP地址对应的多个组播客户端,从而实现了通过PTN网络中节点之间P2P的路径将业务报文复制并转发至多个组播客户端,以P2P的方式实现P2MP业务报文的组播,能够沿用P2P方式的故障检测和保护倒换,因此能够保证快速的故障检测和保护倒换,且适用于已经部署的基于MPLS-TP设备。
本领域内的技术人员应明白,本公开文本的实施例可提供为方法、系统、或计算机程序产品。因此,本公开文本可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开文本可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开文本是参照根据本公开文本实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开文本进行各种改动和变型而不脱离本公开文本的精神和范围。这样,倘若本公开文本的这些修改和变型属于本公开文本权利要求及其等同技术的范围之内,则本公开文本也意图包含这些改动和变型在内。

Claims (12)

  1. 一种业务报文的组播方法,包括:
    接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中,所述目的IP地址包括多个组播客户端的IP地址;以及
    根据所述业务报文的目的IP地址,利用分组传送网PTN网络中节点之间点到点P2P的路径,将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端。
  2. 根据权利要求1所述的方法,其中,所述PTN网络中的节点包括至少一个根节点和至少一个叶子节点,所述组播源服务器与所述根节点连接,所述组播客户端与所述叶子节点连接。
  3. 根据权利要求2所述的方法,其中,所述根据该业务报文的目的IP地址利用分组传送网PTN网络中点到点P2P的路径将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端,具体包括:
    在将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端时,若PTN网络中当前节点确定需要利用P2P的路径将所述业务报文发送至多个下一级节点时,在该节点所在的网络层中选择任一节点作为主用节点,选择另一节点作为备用节点,其中,当前节点为根节点或叶子节点;
    所述主用节点和所述备用节点将所述业务报文复制并转发至多个下一级节点。
  4. 根据权利要求3所述的方法,其中,
    所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为工作路径,所述备用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径,或者
    所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径,所述备用节点将所述业务报文复制并转发至多个下一级的路径为工作路径。
  5. 根据权利要求3所述的方法,其中,所述主用节点将所述业务报文转发至任一下一级节点的路径,与所述备用节点将所述业务报文转发至该下一 级节点的路径不同。
  6. 根据权利要求2-5中任一项所述的方法,其中,该方法还包括:
    当所述PTN网络中任一节点故障或节点之间P2P的路径故障时,则与该节点相连接的下一级节点或与该路径相连接的下一级节点重新选择接收所述业务报文的路径。
  7. 一种业务报文的组播装置,包括:
    接收单元,用于接收组播源服务器发送的业务报文和该业务报文的目的IP地址,其中,所述目的IP地址包括多个组播客户端的IP地址;以及
    处理单元,连接至所述接收单元,用于根据所述业务报文的目的IP地址,利用分组传送网PTN网络中节点之间点到点P2P的路径,将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端。
  8. 根据权利要求7所述的装置,其中,所述PTN网络中的节点包括至少一个根节点和至少一个叶子节点,所述组播源服务器与所述根节点连接,所述组播客户端与所述叶子节点连接。
  9. 根据权利要求8所述的装置,其中,所述处理单元具体用于:
    所述处理单元在将所述业务报文复制并转发至所述目的IP地址对应的多个组播客户端时,若PTN网络中当前节点确定需要利用P2P的路径将所述业务报文发送至多个下一级节点时,在该节点所在的网络层中选择任一节点作为主用节点,选择另一节点作为备用节点,其中,当前节点为根节点或叶子节点;
    通过所述主用节点和所述备用节点将所述业务报文复制并转发至多个下一级节点。
  10. 根据权利要求9所述的装置,其中,
    所述处理单元通过所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为工作路径,所述处理单元通过所述备用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径,或者
    所述处理单元通过所述主用节点将所述业务报文复制并转发至多个下一级节点的路径为保护路径,所述处理单元通过所述备用节点将所述业务报文复制并转发至多个下一级的路径为工作路径。
  11. 根据权利要求9所述的装置,其中,所述处理单元通过所述主用节点将所述业务报文转发至任一下一级节点的路径,与所述处理单元通过所述备用节点将所述业务报文转发至该下一级节点的路径不同。
  12. 根据权利要求8-11中任一项所述的装置,其中,所述处理单元还用于:当所述PTN网络中任一节点故障或节点之间P2P的路径故障时,所述处理单元重新选择与该节点相连接的下一级节点或与该路径相连接的下一级节点接收所述业务报文的路径。
PCT/CN2016/083312 2015-08-19 2016-05-25 一种业务报文的组播方法及装置 WO2017028586A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/752,249 US20190028285A1 (en) 2015-08-19 2016-05-25 Service message multicast method and device
EP16836450.3A EP3340550B1 (en) 2015-08-19 2016-05-25 Service message multicast method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510511381.4A CN106470162B (zh) 2015-08-19 2015-08-19 一种业务报文的组播方法及装置
CN201510511381.4 2015-08-19

Publications (2)

Publication Number Publication Date
WO2017028586A1 WO2017028586A1 (zh) 2017-02-23
WO2017028586A9 true WO2017028586A9 (zh) 2018-04-26

Family

ID=58051137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083312 WO2017028586A1 (zh) 2015-08-19 2016-05-25 一种业务报文的组播方法及装置

Country Status (4)

Country Link
US (1) US20190028285A1 (zh)
EP (1) EP3340550B1 (zh)
CN (1) CN106470162B (zh)
WO (1) WO2017028586A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235259B (zh) * 2016-12-15 2021-11-12 中兴通讯股份有限公司 分组传送网的组播业务实现方法及其装置、通信系统
CN107018081B (zh) * 2017-03-15 2020-05-05 烽火通信科技股份有限公司 一种用于实现点对多点的1+1保护的方法
CN108632072A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种ptn层间保护的方法及装置
CN109981308B (zh) * 2017-12-27 2022-05-24 北京华为数字技术有限公司 报文传输方法及装置
CN110636033B (zh) * 2018-06-25 2021-11-26 中国电信股份有限公司 组播数据传输方法、系统、组播隧道终结点和存储介质
CN110855792B (zh) * 2019-11-19 2023-04-18 南京领行科技股份有限公司 一种消息推送方法、装置、设备及介质
US11426599B2 (en) 2019-11-22 2022-08-30 Palo Alto Research Center Incorporated Three-dimensional coil set used for neuromodulation
CN112866045B (zh) * 2019-11-27 2024-02-02 中兴通讯股份有限公司 一种链路状态检测方法、组播设备及链路状态检测系统
CN114286397B (zh) * 2020-09-27 2023-05-12 展讯通信(上海)有限公司 传输链路的切换方法及相关产品
CN112398742B (zh) * 2020-10-23 2022-04-12 北京直真科技股份有限公司 一种ptn业务路径的灵活编排装置
CN112468886B (zh) * 2020-11-05 2022-08-19 烽火通信科技股份有限公司 组播数据转发方法、装置、设备及可读存储介质
CN114866464B (zh) * 2022-05-18 2023-10-27 深圳市艾迪思特信息技术有限公司 一种自动发现ip组播域及组播代理节点的系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519616B2 (ja) * 1998-10-21 2004-04-19 株式会社日立製作所 中継装置
JP2002290458A (ja) * 2001-03-26 2002-10-04 Fujitsu Ltd マルチキャストシステム
US7496096B1 (en) * 2002-01-31 2009-02-24 Cisco Technology, Inc. Method and system for defining hardware routing paths for networks having IP and MPLS paths
US7339929B2 (en) * 2002-08-23 2008-03-04 Corrigent Systems Ltd. Virtual private LAN service using a multicast protocol
US8089964B2 (en) * 2005-04-05 2012-01-03 Cisco Technology, Inc. Transporting multicast over MPLS backbone using virtual interfaces to perform reverse-path forwarding checks
US7965656B1 (en) * 2006-05-31 2011-06-21 Cisco Technology, Inc. Building multipoint pseudo wires using a multipoint label distribution protocol (MLDP)
US8612614B2 (en) * 2008-07-17 2013-12-17 Citrix Systems, Inc. Method and system for establishing a dedicated session for a member of a common frame buffer group
CN101656679B (zh) * 2009-09-25 2012-04-04 华为技术有限公司 一种组播快速收敛方法、路由器和通信系统
US8422364B2 (en) * 2010-05-17 2013-04-16 Cisco Technology, Inc. Multicast label distribution protocol node protection
EP2572473B1 (en) * 2010-05-19 2014-02-26 Telefonaktiebolaget L M Ericsson (PUBL) Methods and apparatus for use in an openflow network
CN102025626B (zh) * 2010-12-09 2014-12-10 中兴通讯股份有限公司 转发组播数据报文的方法和提供商边缘设备
CN103297259B (zh) * 2012-02-29 2018-07-06 中兴通讯股份有限公司 点到多点组播业务的保护方法及装置
CN103716169B (zh) * 2012-09-29 2017-11-24 华为技术有限公司 点到多点的组播实现方法、网络节点和系统
EP2918052B1 (en) * 2012-11-08 2018-05-30 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for configuring multicast group
JP2014195179A (ja) * 2013-03-28 2014-10-09 Fujitsu Ltd パケット通信装置、パケット通信方法及びパケット通信プログラム

Also Published As

Publication number Publication date
CN106470162A (zh) 2017-03-01
WO2017028586A1 (zh) 2017-02-23
US20190028285A1 (en) 2019-01-24
CN106470162B (zh) 2019-06-25
EP3340550A4 (en) 2018-09-26
EP3340550B1 (en) 2022-04-06
EP3340550A1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2017028586A9 (zh) 一种业务报文的组播方法及装置
US10243841B2 (en) Multicast fast reroute at access devices with controller implemented multicast control plane
CN106992874B (zh) 用于通信的方法和网络设备
US9077551B2 (en) Selection of multicast router interfaces in an L2 switch connecting end hosts and routers, which is running IGMP and PIM snooping
US10142239B2 (en) Synchronizing multicast state between multi-homed routers in an Ethernet virtual private network
CN102638389B (zh) 一种trill网络的冗余备份方法及系统
US8730979B2 (en) Method and system for increasing forwarding efficiency of virtual private LAN service network
US9712334B2 (en) Efficient multicast topology construction in a routed network
US11381883B2 (en) Dynamic designated forwarder election per multicast stream for EVPN all-active homing
EP2996287A1 (en) Method for notifying information of pe device and pe device
WO2012003743A1 (zh) 组播流量的转发方法及装置
WO2009000180A1 (fr) Procédé, appareil et système de protection d'un noeud amont d'un trajet de commutation d'étiquette point à multipoint
US20140226525A1 (en) Safe Multicast Distribution with Predictable Topology Changes
EP1804423A2 (en) Method for rapidly recovering multicast service and network device
US20160182358A1 (en) Enhanced protocol independent multicast source registration over a reliable transport
WO2010111956A1 (zh) 一种组播转发路径收敛的方法和系统
CN107040441B (zh) 跨数据中心的数据传输方法、装置及系统
WO2013139159A1 (zh) 在网络中转发报文的方法和运营商边缘设备
WO2012129921A1 (zh) 组播方法及组播设备
US20140269746A1 (en) Load balancing of logical connections over multi-chassis trunk
EP2892196B1 (en) Method, network node and system for implementing point-to-multipoint multicast
WO2012146097A1 (zh) Vpls网络和以太环网的倒换方法及装置
WO2012152134A1 (zh) 以太网二层组播快速收敛的方法及以太网系统
WO2009074057A1 (fr) Procede de protection de nœud de tete, systeme et dispositif pour le trajet de commutation d'etiquettes point a multipoint
US9548887B2 (en) Proactive creation of multicast state in an overlay transport network to achieve fast convergence on failover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016836450

Country of ref document: EP