WO2017028018A1 - 层叠式薄板光生物反应器 - Google Patents

层叠式薄板光生物反应器 Download PDF

Info

Publication number
WO2017028018A1
WO2017028018A1 PCT/CN2015/086982 CN2015086982W WO2017028018A1 WO 2017028018 A1 WO2017028018 A1 WO 2017028018A1 CN 2015086982 W CN2015086982 W CN 2015086982W WO 2017028018 A1 WO2017028018 A1 WO 2017028018A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
photobioreactor
laminated
photobioreactor according
sheets
Prior art date
Application number
PCT/CN2015/086982
Other languages
English (en)
French (fr)
Inventor
胡强
迟庆雷
Original Assignee
国家开发投资公司
中国电子工程设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家开发投资公司, 中国电子工程设计院 filed Critical 国家开发投资公司
Priority to CN201580000320.XA priority Critical patent/CN107429211A/zh
Priority to PCT/CN2015/086982 priority patent/WO2017028018A1/zh
Priority to CN201610187268.XA priority patent/CN106467902A/zh
Publication of WO2017028018A1 publication Critical patent/WO2017028018A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/16Apparatus for enzymology or microbiology containing, or adapted to contain, solid media
    • C12M1/18Multiple fields or compartments
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/04Tissue, human, animal or plant cell, or virus culture apparatus with means providing thin layers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the invention relates to the field of photobioreactors, in particular to a laminated thin plate photobioreactor.
  • Photosynthetic microorganisms are microorganisms that live with light as the sole or main source of energy, including microalgae, cyanobacteria and other microorganisms that contain chlorophyll and can be used for photosynthesis. These microorganisms have important bioavailability, especially microalgae, which is rich in protein and can be used as aquatic bait or livestock feed (such as spirulina); more importantly, some microalgae can synthesize secondary metabolism under certain conditions. Things, such as oils, carotenoids, polysaccharides, etc., are often bioactive substances with extremely high economic value, which can be used in functional foods, food additives, pharmaceuticals, bio-energy and other fields. Among them, the large-scale cultivation of microalgae oil by microalgae, which is converted into liquid fuel, such as biodiesel, is considered to be one of the most important ways to solve bioenergy production and carbon sequestration.
  • the microalgae has been cultivated in large quantities for several decades.
  • the current industrial microalgae culture is liquid immersion type, that is, a large amount of culture liquid is used as a medium for microalgae growth, and the algae species are immersed in the culture liquid for cultivation.
  • the immersion culture mainly includes an open culture tank and a closed photo-bioreactor (PBR).
  • the advantage of the open culture tank is that the construction and operation cost is low. However, the algae cells in the lower part of the liquid surface are weakly exposed, and the cells at the bottom of the pool are often difficult to receive sufficient illumination. Moreover, the open pool covers a large area and needs to be cultured. Use high-power agitator and aeration equipment. In addition, the open culture tank is greatly affected by the external natural environment and is susceptible to contamination by bacteria and pests, directly affecting algae growth and biomass growth.
  • the closed PBR is generally made of a light-transmitting material (such as glass, plexiglass, plastic film, etc.) to make a container having a small light path.
  • a light-transmitting material such as glass, plexiglass, plastic film, etc.
  • the illumination area/volume of the culture system is relatively large, the cell illumination is sufficient, and the photosynthetic microbial cell culture density is higher than that of the open culture tank.
  • Environmental conditions are highly controllable and less susceptible to external environmental pollution.
  • the closed PBR also requires a circulation/mixing device and an aeration device. The effective culture area per unit volume is small.
  • this type of PBR usually has a relatively expensive construction cost, high operation and maintenance cost, is difficult to scale up, and cannot achieve the desired industrialization goal.
  • these traditional immersion culture methods because of the need to use agitation, aeration, recycling machinery, etc., can not be used for the efficient cultivation of some special algae, such as hairy vegetables, gems and groceries.
  • connection components such as special connection rubber sleeves, connectors, U-bends, etc., are often used, and glass tubes or connecting components are often present. Damaged and difficult to maintain.
  • the above-mentioned open type and closed type are continuously circulated and flowed by the culture liquid. Therefore, once the culture liquid is partially contaminated, explosive pollution is quickly generated in the entire culture liquid range; and the solid culture method, It is often the case that the liquid supply to the surface of the porous material is supplied through the liquid supply device at the top, so that the rapid propagation of the pollution source cannot be avoided.
  • the algae species is not efficient in light utilization, and its porosity will allow algae species to enter the pores in the pores for subsequent liquid supply, harvesting, cleaning and Disinfection brings difficulties.
  • the solid state culture method is often very unsuitable for the cultivation of large-sized algae such as hairy vegetables, gems and sauerkraut.
  • the existing photobioreactors generally have the following technical problems: 1.
  • the open-type runway pool occupies a large area, the culture density is low, the culture liquid circulation energy consumption is high, and it is susceptible to external pollution; 2.
  • the closed type The high cost of the transparent container, especially the glass container, is limited by the particularity of the glass processing technology, and cannot be formed at one time. The manufacturing cost, installation and maintenance cost are very high, and the cell density is low, the space utilization is insufficient, and the energy consumption is high. The problem. 3. Whether it is an open runway pool or a closed-type light-transmissive container, it needs to consume a large amount of culture liquid and energy.
  • the concentration of the culture liquid at the time of harvest is low, and the technical defects of the complicated separation, filtration and drying process are required, and the microalgae cannot be reduced. Product into this. 4 Solid-state culture photobioreactor has great dependence on the material itself and low light utilization efficiency, and its applicability is also limited. The liquid supply device is an energy-consuming device, so the cultivation cost cannot be further reduced. 5 Existing photobioreactors are not conducive to effective isolation and control of pollution sources.
  • the cultured photobioreactor is used to reduce the production cost of the microalgae as a whole.
  • the object of the present invention is to provide a photobioreactor which has high yield, low energy consumption, wide applicability and is suitable for large-scale cultivation.
  • a laminated sheet photobioreactor comprising a plurality of sheets arranged in a stack in a vertical direction, the plurality of sheets being supported such that adjacent sheets are spaced apart by a predetermined distance, each sheet Extending in the horizontal direction, having opposite upper and lower surfaces, and having a dam portion extending upward from the upper surface of the corresponding sheet at the periphery, the upper surface of each sheet and the inner surface of the dam portion being formed to accommodate the culture target A space of a culture solution of a photosynthetic microorganism (hereinafter referred to as "photobio"), wherein the cofferdam has a minimum vertical height of not more than 10 cm.
  • photobio a culture solution of a photosynthetic microorganism
  • the laminated thin-plate photobioreactor of the present invention can culture the microalgae at a thickness of not more than 10 cm, so that the photosynthetic microorganisms in the bottom layer of the culture solution can still be received without stirring. To full light.
  • a plurality of support columns are provided between adjacent sheets for supporting the upper sheets.
  • the dam portion is formed integrally with the respective sheet or is separately attached to the respective sheet.
  • the support columns are formed integrally with the respective sheets or are separately formed and attached to the lower surface of the respective sheets.
  • the dam portion has an inclination of greater than or equal to 90 degrees with respect to the upper surface of the respective sheet.
  • the dam portion is raised from 1 mm to 10 cm above the upper surface of the respective sheet, preferably from 1 mm to 5 mm, from 10 mm to 30 mm or from 30 mm to 100 mm.
  • the dam portion is made of the same or a different material as the sheet, and/or the support column is made of the same or a different material as the sheet.
  • the support column is in the form of a column or tube having a circular, rectangular or square cross section.
  • the sheet is made of light-transmissive glass or a plastic having a high light transmittance.
  • the sheet is made of one of the following materials: glass, GPPS, transparent ABS, AS (styrene acrylonitrile), PVC, PMMA (polymethyl methacrylate), PC (polycarbonate) ), PS (polystyrene).
  • the sheet is made of flat glass
  • the dam is a strip attached to the sheet, preferably a transparent strip, that is, a strip of transparent strip is adhered around the sheet glass. Form a storage space for the culture solution.
  • the sheet is made of an organic material, and the dam is integrally formed with the sheet.
  • the spacing between the sheets is the same or different.
  • the dimensions of the sheets are sequentially increased from top to bottom such that at least one side of the photobioreactor exhibits a beveled shape.
  • One side of the inclined surface is provided with a light source, and the inclined surface allows more light to enter between the two thin plates.
  • the sheet has a gauge of 10 m in length x 1 m in width and a spacing between adjacent sheets of 0.04 m.
  • the support post is formed in a hole through which light can pass.
  • the present invention also provides a method for cultivating a photosynthetic microorganism using the above-described laminated thin-plate photobioreactor, wherein the method is to accommodate the culture solution in a thin layer and a static state in each of the thin plates in a culture period.
  • the upper surface, wherein the thickness of the culture solution is not more than 10 cm.
  • the culture plate for photobioculture is a flat plate, which is simple in processing and low in cost, and can realize a large cultivation area of a single culture plate, and the thickness can also be relatively thin, and the transparency can be made. Can be higher.
  • a plurality of flat plates are vertically stacked to integrate the structure, and the effective cultivation area per unit of floor space is maximized, which has a significant specific surface area advantage. Since each of the thin plates is made of a transparent material, the light receiving area is large and the light utilization efficiency is very high.
  • the algae liquid on each layer of the thin plate is diluted, and one surface thereof is directly in contact with the environment, so that it can fully contact and absorb CO 2 in the air, and fully receive external illumination, so that
  • the photosynthetic microorganisms at the bottom of the culture medium can also receive the light source and reduce the occlusion; the integration of the structure facilitates the fixation of the reactor and improves the space utilization efficiency.
  • a large amount of water body is not needed, no transportation, circulation machinery or stirring operation is needed, energy consumption for transportation, circulation and stirring is saved, light is well obtained, and explosive diffusion of local pollution sources is effectively controlled.
  • the photobioreactor of the invention opens up a thin layer and static culture mode, and is a new culture mode between immersion culture and solid state culture, and can be applied to various algae with different volume and shape. Farming.
  • FIG. 1 is a perspective view of a laminated sheet photobioreactor according to a preferred embodiment of the present invention
  • Figure 2 is a front elevational view of Figure 1;
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1.
  • FIG. 4 is a perspective view of a horizontal tube tube photobioreactor in contrast to a stacked sheet photobioreactor according to the present invention.
  • Figure 5 is a schematic illustration of the spatial layout of photobioculture using the reactor of Figure 4 over a 200 m2 footprint.
  • Fig. 6 is a schematic view showing the spatial layout of photobioculture using the laminated thin-plate photobioreactor of Fig. 1 in a footprint of 200 m 2 .
  • the photobioreactor provided by the present invention is a laminated thin-plate photobioreactor comprising a plurality of thin plates stacked in a vertical direction and arranged at a predetermined interval, the plurality of thin plates extending in a horizontal direction,
  • Each of the sheets has an upper surface and an opposite lower surface for the culture liquid for culturing the target photo-organism, and the periphery of each of the sheets is provided with a dam portion extending from the corresponding sheet and extending upward from the upper surface of the corresponding sheet.
  • FIG. 1 through 3 illustrate a stacked sheet photobioreactor 100 in accordance with a preferred embodiment of the present invention.
  • the laminated thin plate photobioreactor 100 includes a plurality of thin plates 20 stacked in a vertical direction and a plurality of support columns 40 between adjacent thin plates.
  • Each of the sheets 20 extends in the horizontal direction and has an upper surface 22 and an opposite lower surface 24 for the culture liquid for culturing the target photoorganism.
  • the periphery of each of the sheets 20 is provided with a dam portion 26 extending from the corresponding sheet 20 and inclined upwardly from the upper surface 22 of the corresponding sheet 20.
  • Each of the sheets 20 forms a culture plate of the photobioreactor, i.e., the upper surface 22 of each of the sheets 20, and the inner surface of the dam portion 26 of the sheet 20 defines a space 30 for holding the culture solution.
  • the sheet 20 forming the photobioreactor may be a transparent plate made of a glass material or an organic material.
  • the photobioreactor composed of a flat plate according to the present invention is simple to manufacture, low in cost, and capable of achieving a culture area of a single culture plate. Large, the thickness can also be relatively thin, and the transparency can be higher.
  • the thin plates 20 are stacked in the vertical direction to integrate the structure, and the effective cultivation area per unit of the floor space is maximized.
  • each of the thin plates 20 Since the material of each of the thin plates 20 is a material having high transparency, in the initial stage of the cultivation of the algae, since the algae on each of the thin plates 20 have not formed a dark green biofilm, light from the outside can pass through the upper surface of each of the thin plates 20 to reach the phase.
  • the culture liquid surface of the adjacent lower sheet can also reach the culture liquid surface of the upper sheet from the lower surface of each of the thin sheets 20, and the illumination efficiency is high.
  • the light source directly illuminates the algae cells from the upper surface of the thin plate 20 and is irradiated to the photobiocells cultured on the upper surface 22 of the lower plate 20 through the thin plate 20, so that the light receiving area is large and the light use efficiency is extremely high.
  • the photobioreactor of the present structure uses less water, so the cultivation of photobiota does not require agitation and saves energy. In addition, since the amount of water is small, the process can be reduced at the time of harvesting and thus the harvesting cost can be reduced. Therefore, the photobioreactor of the present structure is used to culture the photobio as a stationary culture, and it is not necessary to provide transportation or stirring power during the cultivation process, and the illumination can be well obtained.
  • the dam portion 26 of each of the thin plates 20 may be integrally formed with the thin plate 20, or may be separately formed and attached to the thin plate 20.
  • the dam portion 26 may be a strip of glue bonded to the periphery of the sheet 20, preferably a transparent strip.
  • the dam portion 26 can be integrally formed with the thin plate 20.
  • the material forming the thin plate 20 may be glass or a plastic having high light transmittance, such as GPPS, transparent ABS, AS (styrene acrylonitrile), PVC, PMMA (polymethyl methacrylate), PC (polycarbonate), PS (polystyrene), and the like.
  • the material forming the dam portion 26 may be the same material as the thin plate 20, and other transparent materials such as a strip of glue, glass glue or the like may be used.
  • the dam portion 26 is at an angle greater than or equal to 90 degrees with the upper surface 22 of the thin plate 20, so that the photo-organism cultured on the upper surface 22 is blown out of the thin plate 20 with high-pressure water/gas, thereby realizing harvesting of photobiota;
  • the dam portion 26 is at an angle greater than 90 degrees from the upper surface 22 of the sheet 20 and is radiused between the junctions to prevent the formation of a dead angle or a clean corner.
  • the dam portion 26 is raised from the upper surface 22 of the respective sheet 20 by a distance of from 1 mm to 10 cm, preferably from 1 mm to 5 mm.
  • the spacing between the sheets 20 is determined in accordance with the light source arrangement, photobioculture, and harvesting requirements.
  • the shape, material, number, spacing, and arrangement of the support columns 40 may not be limited, and only the support columns 40 have a strength sufficient to support the culture liquid on the upper stacked sheets 20 and their upper surfaces 22.
  • the support column 40 is made of a transparent material such as glass, acrylic, PC or the like.
  • Support post 40 can have any suitable shape including, but not limited to, cylindrical, tubular, square, elongated, and the like.
  • the support columns 40 are arranged in a row.
  • the support post 40 is provided with a hole for transmitting light.
  • the support column 40 may be a glass column or a non-glass column.
  • the support post 40 can be separated from the upper and lower sheets 20 or bonded to the lower surface 24 of the upper sheet 20.
  • the support post 40 can be integrally formed with the thin plate 20.
  • the laminated thin-film photobioreactor of the present invention may further be provided with a culture droplet injection device 50 capable of replenishing the culture liquid to each of the thin plates 20, and cultivating
  • the droplet injection device 50 is shown schematically in Figure 3, and optionally, a level monitor (not shown) that measures the precise level of each sheet 20 can be configured. Also shown in Figure 3 is a light source 60.
  • the laminated thin-film photobioreactor of the present invention may further comprise a light-transmissive membrane cover encapsulating the laminated thin-film photobioreactor to provide a constant temperature for the internal laminated thin-film photobioreactor, The atmosphere of air humidity. This can reduce the evaporation of water, giving light organisms The culture creates the most suitable growth conditions so that it is not necessary to replenish the supply medium during the culture period of the photosynthetic microorganism.
  • the thin plates 20 may also be respectively placed on a support having a plurality of cross bars through which the gravity of each of the thin plates 20 and the culture liquid is dispersed; The same technical effect.
  • the photobioreactor according to the present invention does not require a large amount of water body, so in the processes of harvesting, concentration, drying, water treatment, etc., a large amount of work and energy consumption can be reduced, thereby reducing the comprehensive cost at the time of harvesting, and obtaining remarkable High economic efficiency and high yield, suitable for large-scale cultivation.
  • the light area of the photobioreactor is one of the most critical factors in evaluating the efficiency of photobioreactor culture.
  • the laminated thin-film photobioreactor of the present invention and the conventional horizontal tube photobioreactor are compared to the area of illumination to illustrate the photobioreaction of the laminated thin plate of the present invention.
  • the advantage of the device is one of the most critical factors in evaluating the efficiency of photobioreactor culture.
  • Conventional horizontal tube photobioreactor 1L volume of algae liquid, occupying a glass tube with a diameter of 50mm, calculated to have a light-receiving surface area of 0.04m 2 .
  • the laminated thin-film photobioreactor of the present invention comprises: 1 L volume of algae liquid, a liquid surface thickness of 3 mm, and a double-sided light receiving area of 0.66 m 2 . It can be seen that the same volume of algae liquid received an increase in the illumination area by about 16.67 times.
  • a horizontal tube tube photobioreactor 200 shown in perspective view in Figure 4, with arrows indicating the entry and exit of the culture fluid into the reactor 200.
  • each set of horizontal tubular photobioreactor has a height of 2.5 m and a total culture volume of 4000 L. In a 10-day culture period, a biomass of 3 g/L is calculated, and a total of 12 kg of dry matter is harvested.
  • the laminated flat sheet photobioreactor according to the present invention is used, and no additional supporting facilities as shown in Fig. 5 are required, so that 50 reactors 100 can be arranged.
  • the height of the reactor 100 is also 2.5 m
  • the sheet 20 made of flat glass has a specification of 2.0 ⁇ 0.8 m
  • the spacing between adjacent sheets 20 is 10 mm
  • each reactor 100 can be laminated with 250 layers, each reaction.
  • the biomass yield obtained by using the laminated flat thin layer photobioreactor according to the present invention is approximately the same as that obtained by the horizontal tube photobioreactor in the case of the same footprint and floor space.
  • the biomass production was 16.67 times.
  • the laminated thin-film photobioreactor according to the present invention is a stationary culture and does not require a large amount of The water body does not need to be conveyed or stirred during the cultivation process, which saves the transportation and stirring power, and can obtain the light well.
  • the concentration of the culture solution is much higher than that of the traditional pipeline photobioreactor, so in the process of harvesting, concentration, drying, water treatment, etc., the workload and energy consumption of a large amount of photobio-culture liquid separation can be reduced, thereby Reduce the overall cost of harvest and achieve significant economic benefits.
  • the present invention is the first to create a culture method in which a static (without agitation), a thin layer (a small amount of culture liquid, and a high light utilization) is used in the culture process, the photosynthetic microorganism is cultured in a suitable culture liquid amount, so it is very suitable for use.
  • a static without agitation
  • a thin layer a small amount of culture liquid, and a high light utilization
  • the photosynthetic microorganism is cultured in a suitable culture liquid amount, so it is very suitable for use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供了一种层叠式薄板光生物反应器及利用该生物反应器培养光合微生物的方法,所述反应器包括在竖直方向上层叠布置的多个薄板,所述多个薄板被支撑使得相邻的薄板之间间隔一预定距离,各薄板沿水平方向延伸,具有相反的上表面和下表面,并且在外围设有从相应薄板的上表面向上延伸的围堰部,各薄板的上表面和围堰部的内表面形成用于容纳培养目标光合微生物的培养液的空间,所述围堰部的最小竖直高度不大于10cm。

Description

层叠式薄板光生物反应器 技术领域
本发明涉及光生物反应器领域,具体涉及一种层叠式薄板光生物反应器。
背景技术
光合微生物是一类以光为唯一或主要能量来源而生活的微生物,包括微藻、蓝细菌等含有叶绿素、可进行光合作用的微生物。这类微生物有着重要的生物利用价值,特别是微藻,富含蛋白质,可作为水产饵料或畜禽饲料(如螺旋藻);更重要的,某些微藻在特定条件下能够大量合成次生代谢物,如油脂、类胡萝卜素、多糖等,这些物质往往是具有极高经济价值的生物活性物质,可以用在功能食品、食品添加剂、制药、生物能源等领域。其中,通过微藻大规模培养提取微藻油脂,进而转化成液体燃料、如生物柴油被认为是解决生物能源生产与固碳减排的最重要途径之一。
微藻大量培养已有几十年历史,目前的工业化微藻培养为液体浸没式,即以大量培养液作为微藻生长的介质,将藻种浸没在培养液内进行培养。浸没式培养又主要包括开放式培养池与密闭式光生物反应器(photo-bioreactor,PBR)两种形式。
开放式培养池的优点在于建造和运行的成本较低,然而,液体表面下部藻细胞受光度弱,池底细胞往往难以接受到充分光照,而且,开放池占地面积大,在培养时还需使用大功率的搅拌装置和曝气设备。此外,开放式培养池受外部自然环境影响很大,易受到细菌体和病虫害的污染,直接影响藻的生长和生物质增殖。
与此相比,密闭式PBR一般是采用透光材料(如玻璃、有机玻璃、塑料薄膜等)制成光径小的容器。如卧式或立式玻璃管、平板式玻璃水槽等现有光生物反应器,其培养体系的光照面积/体积比较大,细胞光照较充分,光合微生物细胞培养密度较开放式培养池更高,环境条件可控性强,更不易受外部环境污染。但是密闭式PBR同样也需要循环\搅拌装置、曝气装置, 而单位空间体积的有效培养面积较小。而且,该类PBR通常其本体的造价较昂贵,运行维护成本高,难于规模化培养,无法达到理想的产业化目标,这些是实现微藻规模化产业最直接的制约因素,也是微藻产品成本无法达到大众化消费目标的原因。同时,这些传统的浸没式培养方式,由于必须使用搅拌、曝气、循环机械等,因此无法供一些特殊藻类的高效培养,如发菜、葛仙米及地皮菜。
另外,密闭式光生物反应器若采用玻璃材质,由于玻璃容器通常采用吹制工艺,要制作大型的、适于规模化生产的玻璃容器,目前存在很大的技术难度,即使是中小型试验用的玻璃管,其造价也相当高,而在连接组装过程中,还要借助许多连接组件,如专用的连接胶套,连接头,U形弯管等,还会经常出现玻璃管或连接组件的破损,维护起来也有困难。
前述的开放式、封闭式由于培养液在不停的循环和流动,因此,一旦培养液的局部被污染,则很快在全部的培养液范围内产生爆发性的污染;而固态的培养方式,经常是通过顶部的供液装置给多孔质材料表面供液,故同样无法避免污染源的快速传播。
另外,还有一类固态培养的光生物反应器,将藻种附着在能够吸附并释放水分的多孔质材料表面,通过慢慢向多孔质材料供应培养液,供附着其上的藻种生长。然而这种固态培养方法,往往在很大程度上要依赖多孔质材料的保水性能以及藻种附着特性,若材质保水性差,则需要不停地供水,耗费能量;而若藻种附着性差,藻种易脱离,则无法使藻种正常生长。这些多孔材质往往是不透光材料,会吸附较多光能,藻种对光的利用效率不高,其多孔性还会让藻种进入其内堵塞孔道,给后续供液、收获、清洁及消毒带来困难。而且,该固态培养方式往往非常不适用于体积较大的藻类,如发菜、葛仙米及地皮菜等的培养。
综上所述,现有的光生物反应器大致存在如下一些技术问题:①、开放式跑道池占地大,培养密度低,培养液循环能耗高,易受外界污染;②、密闭式的透光容器造价高,尤其玻璃容器,受限于玻璃加工工艺的特殊性,无法一次成型,制造成本、安装及维护成本都非常高,且同样存在细胞密度低,空间利用度不足,能耗高的问题。③、无论是开放式跑道池还是密闭式透光容器,都需要消耗大量培养液和能量,收获时培养液浓度低,需经过繁琐的分离、过滤和干燥处理程序的技术缺陷,无法降低微藻产品成 本。④固态培养光生物反应器,对于材质本身的依赖性很大、光利用效率低,其适用性也比较受局限,其供液装置是一种耗能装置,故无法更进一步降低培养成本。⑤现有的光生物反应器均不利于污染源的有效隔离与控制。
为此,本发明人希望能够提供一种造价成本低廉、单位空间体积有效培养面积更大、光能利用效率高、培养能耗低、适用性广、收获程序简化及适于藻大规模产业化培养的光生物反应器,以便整体降低微藻的生产成本。
发明内容
本发明的目的是提供一种产率高,能耗少、适用性广、适于规模化培养的光生物反应器。
为此目的,提供了一种层叠式薄板光生物反应器,包括在竖直方向上层叠布置的多个薄板,所述多个薄板被支撑使得相邻的薄板之间间隔一预定距离,各薄板沿水平方向延伸,具有相反的上表面和下表面,并且在外围设有从相应薄板的上表面向上延伸的围堰部,各薄板的上表面和围堰部的内表面形成用于容纳培养目标光合微生物(下文中简称“光生物”)的培养液的空间,其中,所述围堰部的最小竖直高度不大于10cm。
借助上述特征,可使本发明的层叠式薄板光生物反应器在培养微藻的时候,培养液的厚度不超过10cm,因而可在不搅拌的情况下,处于培养液底层的光合微生物依然可以接收到充分的光照。
根据一个可行实施方式,相邻的薄板之间设置多个支撑柱,所述支撑柱用于支撑上面的薄板。
根据一个可行实施方式,所述围堰部与相应薄板一体地形成,或者单独形成之后被附接到相应薄板。
根据一个可行的实施方式,所述支撑柱与相应薄板一体地形成,或者单独形成之后被附接到相应薄板的下表面。
根据一个可行实施方式,所述围堰部相对于相应薄板的上表面成大于或等于90度的倾角。
根据一个可行实施方式,所述围堰部高出相应薄板的上表面1mm-10cm,优选为1mm-5mm、10mm-30mm或30mm-100mm。
根据一个可行实施方式,所述围堰部由与薄板相同或不同的材料制成,和/或所述支撑柱由与薄板相同或不同的材料制成。
根据一个可行实施方式,所述支撑柱是具有圆形、长方形或方形横截面的柱或管的形式。
根据一个可行实施方式,所述薄板由透光的玻璃或透光率高的塑料制成。
根据一个可行实施方式,所述薄板由下述材料之一制成:玻璃,GPPS,透明ABS,AS(苯乙烯丙烯腈),PVC、PMMA(聚甲基丙烯酸甲酯),PC(聚碳酸脂),PS(聚苯乙烯)。
根据一个可行实施方式,所述薄板由平板玻璃制成,并且所述围堰部是附接到薄板的胶条,优选为透明胶条,即在该平板玻璃的四周粘接一圈透明胶条形成一个培养液的容纳空间。
根据一个可行实施方式,所述薄板由有机材料制成,并且所述围堰部与薄板一体成型。
根据一个可行实施方式,各薄板之间的间距相同或不同。
根据一个可行实施方式,所述各薄板的尺寸从上至下依次增大,使光生物反应器的至少一侧呈现出斜面状。该斜面的一侧设有光源,借助斜面,可使两层薄板之间进入更多的光线。
根据一个可行实施方式,所述薄板的规格为长度10m×宽度1m,相邻薄板之间的间距为0.04m。
根据一个可行实施方式,所述支撑柱上形成于光能够透过的孔。
本发明还提供了一种利用上述的层叠式薄板光生物反应器对光合微生物进行培养的方法,其中,所述方法是使培养液在培养周期内以薄层和静态的状态被容纳于各薄板的上表面,其中培养液的厚度不大于10cm。
根据本发明的层叠式薄板光生物反应器,进行光生物培养的培养板为平板,加工制造简单、成本低,而且能够做到单个培养板的培养面积较大,厚度也可以相对较薄,透明度可以更高。多个平板竖直层叠设置,使结构集成化,单位占地空间的有效培养面积最大化,具有显著的比表面积优势。由于各薄板为透明度材质,所以受光面积大,光利用效率非常高。采用本发明的光生物反应器,各层薄板上的藻液被摊薄,以其一个表面直接与环境接触,故可以充分与空气中CO2接触和吸收的同时,还充分接收外部的 光照,使培养液最底层的光合微生物也可以接收到光源,减少遮挡;结构的集成化有利于反应器的固定、以及提高空间利用效率。运用本发明培养微藻过程中,不需要大量的水体,无需输送\循环机械或搅拌操作,节省了输送、循环和搅拌能耗,又能很好地获得光照,有效控制局部污染源的爆发性扩散;在收获时,由于培养液量少,降低了所培养的光生物与培养液分离难度,缩短了收获周期,能够获得显著的经济效益。本发明的光生物反应器开创了一种薄层、静态的培养方式,是一种介于浸没式培养与固态式培养之间的全新培养模式,更可应用于体积和形态千差万别的各种藻类的养殖。
附图说明
本发明的上述和其它方面、优势和特征将通过参考附图给出的实施例进行详细的描述。但是,本领域内的技术人员应理解,图中示出的实施例仅仅用来说明本发明的原理,而不意于限制本发明的范围。本发明的保护范围仅由权利要求限定。其中:
图1是根据本发明优选实施例的层叠式薄板光生物反应器的立体图;
图2是图1的正视图;以及
图3是沿图1中A-A的剖视图。
图4是与根据本发明的层叠式薄板光生物反应器形成对比的卧管式管道光生物反应器的立体图。
图5是在200m2的占地面积内采用图4中的反应器进行光生物培养的空间布局示意图。
图6是在200m2的占地面积内采用图1的层叠式薄板光生物反应器进行光生物培养的空间布局示意图。
具体实施方式
总体上,本发明提供的光生物反应器是一种层叠式薄板光生物反应器,其包括在竖直方向上层叠且呈预定间距布置的多个薄板,所述多个薄板沿水平方向延伸,每个薄板具有用于放置培养目标光生物的培养液的上表面和相反的下表面,每个薄板的外围设有从相应薄板伸出的倾斜于相应薄板的上表面向上延伸的围堰部。
图1至3示出了根据本发明优选实施例的层叠式薄板光生物反应器100。
从图中可以看出,层叠式薄板光生物反应器100包括在竖直方向上层叠布置的多个薄板20和位于相邻的薄板之间的多个支撑柱40。各薄板20沿水平方向延伸,并且具有用于放置培养目标光生物的培养液的上表面22和相反的下表面24。每个薄板20的外围设有从相应薄板20伸出的倾斜于相应薄板20的上表面22向上延伸的围堰部26。
各薄板20形成光生物反应器的培养板,即,各薄板20的上表面22、薄板20的围堰部26的内表面限定盛纳培养液的空间30。
形成光生物反应器的薄板20可采用由玻璃材料或有机材料制成的透明平板。相对于管状的、槽状的、或罐状的光生物反应器而言,根据本发明的由平板构成的光生物反应器加工制造简单、成本低,而且能够做到单个培养板的培养面积较大,厚度也可以相对较薄,透明度可以更高。
各薄板20在竖直方向上层叠布置,使结构集成化,单位占地空间的有效培养面积最大化。
由于各薄板20的材料为透明度高的材质,在藻的培养初期,由于各薄板20上的藻还未形成深绿色的生物膜,故来自外部的光可以透过各层薄板20上表面达到相邻的下层薄板的培养液面上,同样也可以从各层薄板20的下表面到达上层薄板的培养液面上,光照效率较高。光源从薄板20的上表面直接照射上面的藻细胞并且透过薄板20而照射到在下面的薄板20的上表面22上培养的光生物细胞,所以受光面积大,光利用效率非常高。
利用本结构的光生物反应器,使用的水体少,所以光生物的培养无需搅拌,节省能耗。另外,由于水量少,收获时可以减少工序并且因而降低收获成本。因而,利用本结构的光生物反应器培养光生物为静止培养,培养过程中无需提供输送或搅拌动力,又能很好地获得光照。
根据本发明,各薄板20的围堰部26可以与薄板20一体形成,也可以单独形成之后附接到薄板20。
在薄板20由玻璃材料制成时,围堰部26可以是粘接到薄板20外围的一圈胶条,优选透明胶条。对于有机材料的薄板20来说,围堰部26可以与薄板20一体成型。
形成薄板20的材料可以为玻璃或透光率高的塑料,如GPPS,透明ABS, AS(苯乙烯丙烯腈),PVC、PMMA(聚甲基丙烯酸甲酯),PC(聚碳酸脂),PS(聚苯乙烯)等。形成围堰部26的材料可以是与薄板20相同的材料,也可以用其它透明材料,如胶条、玻璃胶等。
围堰部26与薄板20的上表面22成大于或等于90度的角度,以便于在上表面22上培养的光生物被以高压水/气吹出至薄板20外,从而实现光生物的收获;较佳地是围堰部26与薄板20的上表面22成大于90度的角度并且在两者结合处之间形成圆角,防止形成收获死角或清洁死角。可选地,所述围堰部26高出相应薄板20的上表面22的距离为1mm-10cm,优选为1mm-5mm。
各薄板20之间的间距根据光源布置、光生物的培养和收获要求来确定。
支撑柱40的形状、材料、数量、间距以及布置方式可以不限制,只需支撑柱40具有一定强度,足够支撑在上面堆叠的薄板20及其上表面22上的培养液。优选地,支撑柱40采用透明材质,如玻璃、亚克力、PC等材质。支撑柱40可具有任何适宜的形状,包括但不限制于圆柱形、圆管形、方形、长条形等。
在图示实施例中,支撑柱40被成排布置。另外可选地,支撑柱40上设置有用于使光能够透过的孔。
对于玻璃薄板20而言,支撑柱40可以用玻璃柱,也可以是非玻璃柱。支撑柱40可以与上面和下面的薄板20都分离,也可以粘接于上面薄板20的下表面24。
对于由有机透明材料制成的薄板20而言,支撑柱40可以与薄板20一体成型。
采用根据本发明的层叠式薄板光生物反应器100,实现了很大程度上增大比表面积的技术目的。然而,这可能导致本来水量很少的培养液快速蒸发的问题,为此,本发明的层叠式薄板光生物反应器可进一步设置能够向各薄板20补充培养液的培养液滴注装置50,培养液滴注装置50在图3中示意性示出了,以及可选地,可配置测量各薄板20的精准液位的液位监测器(未示出)。另外在图3中示出了光源60。
另外可选地,本发明的层叠式薄板光生物反应器可还包括将层叠式薄板光生物反应器包封起来的透光膜罩,为其内部的层叠式薄板光生物反应器提供恒定温度、空气湿度的氛围。这可以减少水分的蒸发,给光生物的 培养创造最为适宜的生长条件,如此可在光合微生物的培养周期内,无需再补充供应培养液。
除了上述实施例的光生物反应器外,所述各薄板20还可分别放置在具有数根横杆的支架上,通过该支架来分散各薄板20以及培养液的重力;同样可以达到与前述实施例相同的技术效果。
根据本发明的光生物反应器,不需要大量的水体,因此在收获、浓缩、干燥、水处理等环节,就可以降低大量的工作量和能耗,从而降低收获时的综合成本,获得显著的经济效益产率高,适于规模化培养。
光生物反应器的光照面积是评价光生物反应器培养效率的一个最为关键因素之一。下面,针对相同的培养液体积,使本发明的层叠式薄板光生物反应器与传统的卧管式光生物反应器二者接受到光照的面积比较,来说明本发明的层叠式薄板光生物反应器的优势。
接受光照面积的比较:
传统卧管式光生物反应器:1L体积量藻液,占据直径为50mm的玻璃管道,经计算其受光表面积为:0.04m2
本发明的层叠式薄板光生物反应器:1L体积量藻液,液面厚度3mm,双面受光面积为:0.66m2。可见,相同体积的藻液接受光照面积提高约16.67倍。
为了更进一步说明本发明光生物反应器的优势,下面再以实例的形式说明根据本发明的光生物反应器的优势。
与根据本发明的光生物反应器形成对比的是在图4中以透视图给出的卧管式管道光生物反应器200,箭头表示培养液进入和流出反应器200。
以200m2的占地面积为例(图5-6数字单位均为mm),如图5所示,因为要布置与反应器200配套使用的泵210和曝气池220,所以只能布置4套如图4示的卧管式管道光生物反应器。假设每套卧管式管道光生物反应器的高度为2.5m,总培养体积量4000L,在10天的培养时间内,以生物质产量3g/L计算,共收获干物质12kg。
同样在200m2的占地面积中,如图6所示采用根据本发明的层叠式平板薄层光生物反应器,不需要如图5所示的附加配套设施,所以能够布置50个反应器100。假设反应器100的高度同样为2.5m,由平板玻璃制成的薄板20规格为2.0×0.8m,相邻薄板20之间的间距为10mm,每个反应器 100可层叠250层,每个反应器培养面积400m2,则50个反应器100的总培养面积为400×50=20000m2。保守计算每天每平米培养生物质量1g/m2/d,同样培养周期10天,则生物质产量为:10d×20000m2×1g/m2/d=200kg。
由上述对比可知,相同占地面积和占地空间的情况下,采用根据本发明的层叠式平板薄层光生物反应器所得到的生物质产量大约是采用卧管式管道光生物反应器所得到的生物质产量的16.67倍。
与需要大量水体、需要大量功耗来输送培养液、而且还需要搅拌装置的传统的管道式光生物反应器相比,根据本发明的层叠式薄板光生物反应器为静止培养,不需要大量的水体,培养过程中无需输送或搅拌操作,节省了输送和搅拌动力,又能很好地获得光照。另外,培养液浓度远远高于传统的管道式光生物反应器,因此在收获、浓缩、干燥、水处理等环节,就可以降低大量的光生物-培养液分离的工作量和能耗,从而降低收获时的综合成本,获得显著的经济效益。
由于本发明首次开创了在培养过程采用静态(不用搅拌)、薄层(培养液量少,光利用度高)的培养方式,将光合微生物置于适宜培养液量中进行培养,故非常适用于体积和形态较大的单细胞藻类的培养,包括发菜、葛仙米及地皮菜等等。

Claims (17)

  1. 一种层叠式薄板光生物反应器,其特征是,所述层叠式薄板光生物反应器包括在竖直方向上层叠布置的多个薄板,所述多个薄板被支撑使得相邻的薄板之间间隔一预定距离,各薄板沿水平方向延伸,具有相反的上表面和下表面,并且在外围设有从相应薄板的上表面向上延伸的围堰部,各薄板的上表面和围堰部的内表面形成用于容纳培养目标光合微生物的培养液的空间,其中,所述围堰部的最小高度不大于10cm。
  2. 根据权利要求1所述的层叠式薄板光生物反应器,其特征是,相邻的薄板之间设置多个支撑柱,所述支撑柱用于支撑上面的薄板。
  3. 根据权利要求2所述的层叠式薄板光生物反应器,其特征是,所述围堰部与相应薄板一体地形成,或者单独形成之后被附接到相应薄板,和/或支撑柱与相应薄板一体地形成,或者单独形成之后被附接到相应薄板的下表面。
  4. 根据权利要求2所述的层叠式薄板光生物反应器,其特征是,所述围堰部相对于相应薄板的上表面成大于或等于90度的倾角。
  5. 根据权利要求2所述的层叠式薄板光生物反应器,其特征是,所述围堰部高出相应薄板的上表面1mm-10cm。
  6. 根据权利要求5所述的层叠式薄板光生物反应器,其特征是,所述围堰部高出相应薄板的上表面1-5mm、10mm-30mm或30mm-100mm。
  7. 根据权利要求1所述的层叠式薄板光生物反应器,其特征是,所述围堰部由与薄板相同或不同的材料制成,和/或所述支撑柱由与薄板相同或不同的材料制成。
  8. 根据权利要求1-7中任一所述的层叠式薄板光生物反应器,其特征 是,所述支撑柱是具有圆形、长方形或方形横截面的柱或管的形式。
  9. 根据权利要求1-8中任一所述的层叠式薄板光生物反应器,其特征是,所述薄板由透光的玻璃或透光率高的塑料制成。
  10. 根据权利要求1-9中任一所述的层叠式薄板光生物反应器,其特征是,所述薄板由下述材料之一制成:玻璃,GPPS,透明ABS,AS(苯乙烯丙烯腈),PVC、PMMA(聚甲基丙烯酸甲酯),PC(聚碳酸脂),PS(聚苯乙烯)。
  11. 根据权利要求1所述的层叠式薄板光生物反应器,其特征是,所述薄板由平板玻璃制成,并且所述围堰部是附接到薄板的胶条,优选为透明胶条。
  12. 根据权利要求1所述的层叠式薄板光生物反应器,其特征是,所述薄板由有机材料制成,并且所述围堰部与薄板一体成型。
  13. 根据权利要求1-12中任一所述的层叠式薄板光生物反应器,其特征是,各薄板之间的间距相同或不同。
  14. 根据权利要求1-13中任一所述的层叠式薄板光生物反应器,其特征是,各薄板的尺寸从上至下依次增大,使光生物反应器的至少一侧呈现出斜面状。
  15. 根据权利要求1-12中任一所述的层叠式薄板光生物反应器,其特征是,所述薄板的规格为长度10m×宽度1m,相邻薄板之间的间距为0.04m。
  16. 根据权利要求1-15中任一所述的层叠式薄板光生物反应器,其特征是,所述支撑柱上形成于光能够透过的孔。
  17. 一种利用根据权利要求1-16中任一所述的层叠式薄板光生物反应器对光合微生物进行培养的方法,其中,所述方法是使培养液在培养周期内以薄层和静态的状态被容纳于各薄板的上表面,其中培养液的厚度不大于10cm。
PCT/CN2015/086982 2015-08-14 2015-08-14 层叠式薄板光生物反应器 WO2017028018A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580000320.XA CN107429211A (zh) 2015-08-14 2015-08-14 层叠式薄板光生物反应器
PCT/CN2015/086982 WO2017028018A1 (zh) 2015-08-14 2015-08-14 层叠式薄板光生物反应器
CN201610187268.XA CN106467902A (zh) 2015-08-14 2016-03-29 一种光合微生物的培养方法及光生物反应器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086982 WO2017028018A1 (zh) 2015-08-14 2015-08-14 层叠式薄板光生物反应器

Publications (1)

Publication Number Publication Date
WO2017028018A1 true WO2017028018A1 (zh) 2017-02-23

Family

ID=58050452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086982 WO2017028018A1 (zh) 2015-08-14 2015-08-14 层叠式薄板光生物反应器

Country Status (2)

Country Link
CN (2) CN107429211A (zh)
WO (1) WO2017028018A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136342A (zh) * 2020-01-19 2021-07-20 中国石油化工股份有限公司 光生物反应器和光合微生物的培养方法及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916724B (zh) * 2015-12-28 2019-11-05 国投生物科技投资有限公司 一种栅藻培养方法及培养装置
CN106916749B (zh) * 2015-12-28 2021-03-09 国投生物科技投资有限公司 一种葛仙米的培养方法及培养装置
CN114940941B (zh) * 2022-07-04 2023-03-07 珠海元育生物科技有限公司 一种立体连续流动式微藻光生物反应器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296022A (zh) * 2010-06-25 2011-12-28 新奥科技发展有限公司 光生物反应器
CN102482634A (zh) * 2009-09-15 2012-05-30 拜尔材料科学有限公司 用于藻类生长的光生物反应器
CN105296338A (zh) * 2015-11-16 2016-02-03 河海大学 一种藻类微生物的多层光生物反应器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283937A (ja) * 2007-05-21 2008-11-27 Dialight Japan Co Ltd 光バイオリアクタ
BE1017763A5 (nl) * 2007-09-24 2009-06-02 Proviron Holding Bioreactor.
EP2247713A2 (en) * 2008-01-25 2010-11-10 Corning Incorporated Limited access multi-layer cell culture system
CN102224236A (zh) * 2008-11-12 2011-10-19 拉曼大学教育基金会 光生物反应器
CN101942388B (zh) * 2009-07-06 2014-04-09 新奥科技发展有限公司 一种光生物反应器
US8778669B2 (en) * 2009-07-22 2014-07-15 Corning Incorporated Multilayer tissue culture vessel
CA2836218A1 (en) * 2013-12-13 2015-06-13 Soheyl S. M. Mottahedeh Multilevel photobioreactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482634A (zh) * 2009-09-15 2012-05-30 拜尔材料科学有限公司 用于藻类生长的光生物反应器
CN102296022A (zh) * 2010-06-25 2011-12-28 新奥科技发展有限公司 光生物反应器
CN105296338A (zh) * 2015-11-16 2016-02-03 河海大学 一种藻类微生物的多层光生物反应器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136342A (zh) * 2020-01-19 2021-07-20 中国石油化工股份有限公司 光生物反应器和光合微生物的培养方法及其应用
CN113136342B (zh) * 2020-01-19 2023-05-05 中国石油化工股份有限公司 光生物反应器和光合微生物的培养方法及其应用

Also Published As

Publication number Publication date
CN107429211A (zh) 2017-12-01
CN106467902A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
US7997025B1 (en) Algae production and harvesting apparatus
US9260685B2 (en) System and plant for cultivation of aquatic organisms
US20070155006A1 (en) Photobioreactor
KR101148194B1 (ko) 투명 필름으로 이루어진 광합성 생물 반응기
CN101709264B (zh) 一种光生物反应器
CN101914431B (zh) 一种全塑模块化光生物反应器系统培养微藻的装置与方法
MX2008010770A (es) Fotobiorreactor y usos para el mismo.
US20120329147A1 (en) Aquatic-based microalgae production apparatus
WO2017028018A1 (zh) 层叠式薄板光生物反应器
CN102224236A (zh) 光生物反应器
CN101870950A (zh) 一种养殖微藻的装置
US20120295337A1 (en) Algae culture system
US20120115217A1 (en) Device and method for photosynthetic culture
WO2011160600A1 (zh) 光生物反应器和光生物培养方法
CN201424476Y (zh) 一种光生物反应器
MX2008010831A (es) Dispositivo de enfriamiento para uso en un horno de arco electrico.
KR101646246B1 (ko) 부착형 미세조류용 광생물반응기
KR101372328B1 (ko) 비닐 시트형 광생물반응기 및 이의 제작방법
CN106916723B (zh) 一种雨生红球藻培养方法及培养装置
CN204644342U (zh) 用于培养光合微生物的多孔式培养板
US20140127766A1 (en) System for obtaining biomass
CN106467888B (zh) 栅板式光生物反应器
CN107460129A (zh) 生物质与培养液分离的工业化微藻培养方法
CN106916749B (zh) 一种葛仙米的培养方法及培养装置
KR102354752B1 (ko) 바이오연료 생산을 위한 미세조류 배양기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901224

Country of ref document: EP

Kind code of ref document: A1