WO2011160600A1 - 光生物反应器和光生物培养方法 - Google Patents
光生物反应器和光生物培养方法 Download PDFInfo
- Publication number
- WO2011160600A1 WO2011160600A1 PCT/CN2011/076287 CN2011076287W WO2011160600A1 WO 2011160600 A1 WO2011160600 A1 WO 2011160600A1 CN 2011076287 W CN2011076287 W CN 2011076287W WO 2011160600 A1 WO2011160600 A1 WO 2011160600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- photobioreactor
- photobioculture
- height
- flexible film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/04—Flat or tray type, drawers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/44—Multiple separable units; Modules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/48—Holding appliances; Racks; Supports
Definitions
- the present invention relates to the field of photosynthetic microorganism culture technology, and more particularly to a photosynthetic microorganism culture method and system for cultivating photosynthetic microorganisms using an assembled photobioreactor, a photobioreactor and a container. Background technique
- Photosynthetic microorganisms especially microalgae and cyanobacteria (abbreviated as algae), rely mainly on simple minerals for their growth and reproduction.
- Algae use photosynthesis (such as sunlight and artificial lighting) to convert water and carbon dioxide into high-value organic compounds such as pigments, proteins, fatty acids, sugars, and secondary metabolites. Algae exhibit greater growth potential than higher plants due to their high light and nutrient use efficiency.
- algae By using the latest breakthroughs in molecular biology, metabolic engineering, and functional genomics research, the gene expression vector of algae can be applied to the production of recombinant proteins and other biologically active substances in nutrition and health care. Because algae have the ability to rapidly absorb nutrients such as C0 2 , nitrogen, and phosphorus from the surrounding environment and convert them into organic compounds (such as proteins stored in cells), they can also be used to remove or recycle wastewater and thermal power plants. Nutrient waste in C0 2 rich flue gas. As a by-product of the bio-purification process, algae can also be used as a raw material for the production of biofuels (such as biodiesel, alcohol and decane), animal feed additives and organic fertilizers.
- biofuels such as biodiesel, alcohol and decane
- the industrial scale photoreactor is generally an open-type runway pool, and a shallow pool of 1000-5000 m 2 (water depth 15 ⁇ 30cni) is built, and the culture fluid is circulated by the slurry wheel.
- the advantage of this mode of production is that its structure and maintenance are relatively simple, but it has many shortcomings in controlling the growth factors of algae outdoors. Due to the lack of temperature control, long optical path length and uneven mixing, the overall productivity of the open track pool is low, and the open runway pool for cultivating algae is easily contaminated by direct contact with air, often resulting in failure of culture.
- the drawbacks of the open runway pool have driven the development of closed culture systems in which tubular photobioreactors made of transparent tubes or vessels and mixed with a pump or bubble.
- tubular photobioreactors generally use pumps to achieve mixing and circulation of microalgae algae liquid, and the use of pumps can cause serious damage to microalgae cells.
- application of tubular reactors is also limited by its high cost and maintenance costs, and is only used to produce small-volume, high value-added special products.
- plate reactors have received increasing attention, and plate reactors have overcome problems such as dark areas of the tubular reactor, aeration, and the like, and have been able to reduce damage to microalgae cells.
- the application number is CN200920160301. 5
- the patent application entitled "Photobioreactor” provides a photobioreactor comprising an aeration system for controlling the temperature of the culture fluid in the tank.
- a reactor control system and at least one reactor unit the reactor unit comprising a tank body and a support frame thereof, the tank body being a box body adapted to contain a liquid, the top of which is an open opening, the inner chamber is integrally penetrated; the tank body
- the longitudinally opposite two long sides are a unitary structure, at least one long side is transparent; the laterally opposite short side is provided with a feeding port, a sampling port, and a liquid discharging port; the two long sides of the box body are supported by the supporting frame
- the support frame is evenly arranged along the longitudinal direction of the box body, and the height of the support frame is not less than the height of the box body; the support frame is trapezoidal, vertical ground, symmetrically arranged on both sides of the lateral vertical plane of the box body, each side is a right
- the plate type biophotoreactor When the plate type biophotoreactor is applied on a large scale, it is easy to use a large volume, but the increase in volume increases the difficulty and cost of the reactor.
- the plate reactors are mostly bonded by bonding, so the reactor production efficiency is low, especially As the volume of the reactor increases, the reactor cost doubles nonlinearly.
- due to the plate reactor after the adhesion it is inconvenient to transport, and the bonding can only be assembled at the place of use. Once bonded, it is not easy to move, otherwise it will easily cause cracking of the bonded portion of the reactor.
- the commonly used plate reactors are made of glass.
- the larger reactor not only brings difficulties for transportation, but also increases with height as the reactor increases, and the water pressure gradually increases, so that the side walls are subjected to The pressure is also increasing, and the pressure bearing capacity of the side wall material is also required to be high, requiring the reactor material to have sufficient rigidity, which largely limits the height of the reactor.
- Plate type photobioreactors generally have angular edges, and there are dead angles in the static state at the corners, resulting in incomplete cleaning and disinfection.
- the local culture solution in the reactor is not stirred enough, the nutrient distribution is uneven, the cells are stuck in the dead zone, and the sedimentation is serious. Death, which reduces the efficiency of the culture, and it becomes more and more difficult to clean with height.
- the plate type biophotoreactor has a large energy consumption for aeration.
- the plate reactor also has problems such as cleaning dead angle, sidewall pressure, limited reactor height, inconvenient assembly movement, etc., resulting in high cost and low efficiency of photosynthetic microorganism cultivation, which limits the large-scale application of the plate reactor. .
- the structural unit size of the reactor can not be adjusted after determining
- Embodiments of the present invention provide a photobioreactor comprising at least two containers disposed one above another in a vertical direction, and any two adjacent containers are connected to each other, thereby enabling the photobioculture liquid to be from the uppermost layer.
- the containers flow layer by layer to the lowermost container.
- Embodiments of the present invention provide a photosynthetic microorganism culture method, system, and photobioreactor,
- the invention solves the problems that there is a dead angle of cleaning in the plate photobioreactor in the prior art, and the height of the reactor is limited by materials, and the assembly movement is inconvenient.
- a photobioreactor characterized by comprising at least two containers arranged one above another in a vertical direction, and any two upper and lower adjacent containers are connected to each other such that the photobioculture liquid can be transported from the uppermost container Flow one by one to the lowermost container.
- the container is made of a thin plate, and each of the containers has an open end at one end and a closed end at the other end, and the photobioculture liquid is in the two-layer container adjacent to each other.
- the closed end of the upper container flows toward the open end and from the open end into the closed end of the lower container.
- each of the containers includes: a trough-type structural body; a closed baffle at one end of the trough-shaped structural body; and a side of the closed baffle, above the side wall of the trough-shaped structural body Two side panels of predetermined length.
- the inner bottom surface of the container is at a predetermined inclination angle with the horizontal plane such that the height of the inner bottom surface of the container at the closed end is higher than the height at the open end; wherein the inclination angle is greater than 0° and less than 90°;
- the angle of inclination of the container is 0° to 10°.
- the height of the side baffle is equal to or smaller than the height of the main body of the trough type structure; the height of the closing baffle is equal to or less than twice the height of the main body of the trough type structure.
- the height of the closing baffle is equal to the height of the side baffle and the height of the trough-shaped structural body, and the height of the side baffle is the same as the height of the trough-shaped structural body.
- the flow guiding groove of the container has a rectangular, square, trapezoidal, semicircular, semi-elliptical or a combination of the above shapes.
- a photobioreactor comprising: at least two of the above containers;
- the at least two containers are stacked and staggered, and the open end of the upper layer of the container is placed corresponding to the closed end of the container of the next layer; wherein, the outer side of the open end of the upper layer of the container and the side of the side baffle of the next layer of the container Engaging; forming a photobioreactor with fluid connectivity.
- the above photobioreactor of the present invention further comprising: at least one column;
- the column is disposed outside the side wall of the assembled at least two container containers and/or outside the closing baffle for maintaining stability of the assembled photobioreactor.
- the photobioreactor of the present invention further includes: at least one support plate connected to each of the columns; the support plates at the same height on different columns constitute a support plate group, and the support plate group is Said at least two containers are divided into at least two container groups;
- Each of the support plate sets is for supporting a set of assembled container sets above itself.
- a photosynthetic microorganism culture method using the above photobioreactor comprises: a closed end of a container at the end;
- the photobioculture liquid flows from the closed end of the container along the container on the container to the open end, from the open end to the closed end of the container of the next layer; sequentially flows to the container of the next layer, from the container of the lowermost layer
- the open end flows into the photobioculture liquid pool to achieve agitation of the photobioculture solution.
- the above method of the present invention further includes:
- the flow rate of the photobioculture solution is adjusted by selecting containers having different inclination angles.
- the above method of the present invention further includes:
- the photo-bioculture liquid pool is supplemented with photosynthetic components: nutrients required for biological growth, and removal of harmful substances.
- the above method of the present invention provides the photobioculture liquid with carbon dioxide gas required for photosynthesis by a ventilating device provided in the culture tank; and/or removes harmful substances in the photobioculture solution by a filtering device provided in the culture tank. substance.
- a photosynthetic microorganism culture system comprising: a photobioculture liquid pool, a liquid lifting device, and at least one of the above photobioreactors;
- the photo-bioculture liquid pool for storing the collected photo-biology culture solution
- the liquid lifting device is configured to lift the photobioculture liquid from the photobioculture liquid pool to the closed end of the container at the top of the photobioreactor;
- the photobioreactor is configured to provide a flow channel for the photobioculture liquid raised by the liquid lifting device, allowing the photobioculture liquid to flow from the closed end of the uppermost container along the container on the container to the open end, The open end flows into the closed end of the container of the next layer; it flows to the container of the next layer in turn, and flows into the photobioculture liquid pool from the open end of the lowermost container.
- the photobioculture liquid pool further includes:
- each container comprises: a flexible film; and a support assembly supporting the flexible film and constraining the flexible film into a container shape for holding therein Photobioculture solution.
- the upper flexible film is inclined such that one longitudinal end is higher than the other longitudinal end, and the lower flexible film is inclined to one longitudinal end than the other The longitudinal end is low so that the photobioculture fluid can flow downward from at least two flexible films layer by layer under the action of gravity.
- the support assembly comprises: at least two curved tubes, the at least two curved tubes supporting the flexible film, and constraining the flexible film into a curved grooved container shape .
- the support assembly further includes: a support net on which the support net is placed for restricting plastic deformation of the flexible film.
- the support assembly further includes: a pair of diametrically opposed first support plates and a pair of laterally opposite second support plates, wherein the first and second support plates are respectively located in the At the two longitudinal ends of the integral bracket.
- the two ends of the curved tube are fixed on a pair of laterally opposite first support plates or a pair of laterally opposite second support plates, and the height of at least one of the first and second support plates can be adjusted Thereby, the inclination of one longitudinal end of the flexible film with respect to the other longitudinal end can be adjusted.
- the photobioreactor further comprises a lifting device for adjusting the height of the first support plate and/or the second support plate.
- the photobioreactor further includes a pump that pumps the photobioculture liquid in the photobioculture liquid pool to the uppermost flexible film of the photobioreactor Medium, the photo-bioculture liquid flows down the inclined at least two flexible films layer by layer to the lowermost flexible film, and flows from the lowermost flexible film back to the photo-bioculture liquid pool In order to achieve circulating flow culture.
- the curvature of the arcuate tube of each of said containers can be adjusted to change the shape of the flexible film thereon.
- the arc of each of the arcuate tubes of the container can be adjusted from 0 to 180 degrees.
- any two of said containers of curved tubes can be adjusted to change the degree of shading between two adjacent flexible films.
- any two adjacent support members can be staggered in the lateral direction so as to be able to change the degree of shading between adjacent two flexible films.
- the photobioreactor further includes an intake pipe for injecting a gas into the photobioculture solution of the flexible film, the gas containing a reaction gas required for photobio growth .
- the flexible film is selected from the group consisting of a polyethylene PE film, a polyvinyl chloride PVC film or a polyurethane PU film.
- a photobioreactor system comprising at least two photobioreactors as described above.
- a photobioculture method using the photobioreactor described above comprising the steps of: delivering a photobioculture solution in a photobioculture bath to the light by a liquid lifting device In the uppermost container of the bioreactor, the photobioculture solution then flows from the uppermost container layer to the lowermost container layer layer, and flows from the lowermost container to the photobioculture liquid pool. Thereby achieving circulating flow culture.
- the photobioculture solution flows in from one end of each container and flows out from the opposite end, thereby increasing the stirring efficiency of the photobioculture solution.
- the method further comprises the step of: adjusting the flow rate of the photobioculture solution by selecting containers having different inclination angles and/or by adjusting the inclination angle of the containers.
- the method further comprises the steps of: supplementing the photobio-culture tank with nutrients required for photobiological growth, and removing harmful substances.
- the photobioculture fluid is a carbon dioxide gas required for photosynthesis through the aeration device; and/or the harmful substances in the photobioculture fluid are removed by the filtration device.
- the photobioreactor is composed of at least two containers, and the assembled reactor simultaneously embodies the advantages of the existing tubular and plate type, and is convenient for assembly. , splitting, moving; and avoiding cleaning by liquid flow
- the corner and side walls are under pressure, which reduces the production cost.
- the liquid self-weight agitation is realized by the liquid self-weight, which saves the energy consumption of the culture liquid.
- each layer of the flexible film is restrained by the support member into a single culture container, and therefore, the structure is simpler than that of the bag container of the prior art, only It is a flexible film, so it is easy to clean.
- the shape and position of the support member can be adjusted, so that the shape and the degree of light receiving of the culture container formed by the flexible film can be easily changed, and at the same time, the harvesting of the photobioculture liquid can be facilitated.
- FIG. 1 is a schematic structural view of a photobioreactor according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic structural view of a container according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic structural view of an angled container in the first embodiment of the present invention.
- FIG. 4 is a top plan view of a container having an arc-shaped cross section according to Embodiment 1 of the present invention.
- Figure 5 is a right side view of the container of Figure 4 in the first embodiment of the present invention.
- FIG. 6 is a schematic structural view of a photobioreactor according to Embodiment 2 of the present invention.
- FIG. 7 is a schematic structural view of a photobioreactor according to Embodiment 3 of the present invention.
- Figure 8 is a cross-sectional view showing a photobioreactor according to a third embodiment of the present invention.
- FIG. 9 is a schematic structural view of a photobioculture system according to an embodiment of the present invention.
- FIG. 10 is a flow chart of a photobioculture method in an embodiment of the present invention.
- Figure 11 is a view showing the overall structure of a photobioreactor according to a preferred embodiment of the present invention.
- Figure 12 is a schematic exploded view of a container according to a preferred embodiment of the present invention
- Figure 13 is a schematic view showing the structure of the curved tube fixed to the support plate
- Figure 14 is a schematic view showing the adjustment of the arc of the arc tube and the spacing between the adjacent arc tubes.
- Figure 15 shows a circulating photobioreactor according to a preferred embodiment of the invention. detailed description
- Embodiment 1 In order to solve the problem that the cleaning dead angle existing in the plate reactor in the prior art is difficult to clean, and the height is increased, the side wall pressure is large, the movement is inconvenient, the agitation energy consumption is large, and the like, and the embodiment of the invention provides an assembled photobioreaction. It is easy to assemble and transport, realizes automatic stirring through the flow of photo-bio-culture liquid, and can eliminate the cleaning dead angle and avoid excessive sidewall pressure.
- the photobioreactor provided in the first embodiment of the present invention includes: at least two containers 110.
- each of the containers includes: a trough-type structural body 111; a closing baffle 112 at one end of the trough-shaped structural body 111; and a side wall of the trough-shaped structural body 111 inside the closed baffle 112 Two predetermined lengths of side fences 113 above.
- the at least two containers 110 are stacked and staggered, and the open end of the upper container 110 is placed corresponding to the closed end of the container 110 of the next layer; specifically, the end surface of the open end of the upper container 110 and the side stop of the lower container 110 The end faces of the plates 113 are joined to form a photobioreactor with fluid connectivity.
- one container 110 is first placed in the lowermost layer, and then another container 110 is placed on the lowermost container 110 as the second layer; the opening of the second layer of the container 110 The end of the container 110 corresponding to the first layer is placed so that the containers 110 are placed in an upwardly staggered arrangement so that the photobioreactor can reach any height.
- the container 110 is configured to flow the photobioculture solution from the closed end to the open end and from the open end to the closed end of the lower layer of the container 110 to effect agitation of the photobioculture solution.
- the inner bottom surface of the container 110 shown in Fig. 2 is horizontal.
- the inner bottom surface of the container 110 can also be designed to have a certain angle of inclination.
- Fig. 3 it is a schematic structural view of a container having a certain inclination angle, wherein the inner bottom surface has an inclination angle of 1 degree with the horizontal plane, and the inner bottom surface and the vertical surface are at an angle of 91 degrees as shown in the figure.
- the inner bottom surface of the container is at a predetermined inclination angle with the horizontal plane in order to make the height of the inner bottom surface at the closed end higher than the height at the open end, thereby facilitating the flow of the culture liquid.
- the tilt angle is selected from 0° to 10°. .
- the height of the side fences 133 of the container 110 is equal to or less than the height of the channel structure body 111.
- the height of the closing flap 112 is equal to or less than twice the height of the channel structure body 111. That is, the height of the closing flap 112 of the container 110 is equal to or smaller than the sum of the height of the side fence 113 and the height of the channel structure main body 111.
- the height of the closing baffle 112 of the container 110 is equal to the sum of the height of the side baffle 113 and the height of the trough-shaped structural body 111, and the height of the side baffle 113 is the same as the height of the trough-shaped structural body 111, thereby ensuring the upper and lower phases. A good fit of the adjacent container assembly.
- the flow guiding groove section of the container 110 may be rectangular, square, trapezoidal, semi-circular, semi-elliptical, curved, U-shaped or a combination of the above.
- FIG. 4 is a plan view of the container 110 having a curved cross section of the guide groove
- FIG. 5 is a right side view of FIG.
- the curved cross section can better avoid the cleaning dead angle and facilitate the flow of the culture liquid.
- the number of the vessels 110 contained in the above photobioreactor is determined by the total height of the reactor to be assembled, and is generally preferably not more than 2 meters on the principle of ease of use.
- the photobioreactor provided in the second embodiment of the present invention is different from the photobioreactor in the first embodiment, as shown in FIG. 6.
- the photobioreactor includes at least one column in addition to at least two containers 110. 120.
- the column 120 is disposed outside the side walls of the assembled at least two containers 110 and/or outside the closed baffle for maintaining stability of the assembled photobioreactor.
- the column 120 can be fixed without being connected to the reactor, and only serves as a support, a stabilizer, and a guide, which expands the selection range of the material of the column 120 and reduces the cost.
- the stability of the reactor is weakened when the number of layers is small.
- the column 120 can be disposed at the periphery of the photobioreactor to ensure the reaction. The device will not dump.
- the photobioreactor shown in Figure 6 is provided with five columns 120. In actual use, the number of columns can be selected according to requirements.
- the photobioreactor provided in the third embodiment of the present invention is different from the photobioreactor in the second embodiment, as shown in FIG. 7.
- the photobioreactor comprises at least two containers 110 and at least two columns 120, in addition to the photobioreactor.
- the method includes: at least one support plate 130 coupled to each of the pillars 120.
- FIG. 8 A cross-sectional view of the bioreactor is shown in Fig. 8.
- the support plates 130 at different heights on the different columns 120 form a support plate group, and the at least two containers 110 are divided into at least two container groups by the support plate group; each support plate group is used for supporting itself.
- the upper set of assembled containers are shown in Fig. 8.
- the weight of the container 110 at the bottom layer of the reactor will also increase.
- the support plate can be connected to the peripheral column of the photobioreactor. 130.
- the containers 110 are divided into several groups and placed on the support plates 130 of different levels to reduce the load of the bottom container 110.
- the five columns 120 of the photobioreactor shown in Fig. 7 are each provided with two support plates 130, and the upper two sets of containers are placed on the support plate 130, and the lowermost set of containers are not supported.
- a photobioculture system can be constructed, as shown in FIG. 9, comprising: a photobioculture liquid tank 7, a liquid lifting device 8 (for example, a pump), and At least two of the above photobioreactors.
- the photobioculture tank 7 is used to store the collected photobioculture solution.
- a photobioculture bath is used as needed for a set of reactors or groups of reactors.
- the liquid lifting device 8 is for lifting the photobioculture liquid from the photobioculture liquid pool 7 to the closed end of the container at the top of the photobioreactor.
- the photo-bioculture liquid pool 7 is also provided with means for replenishing nutrients required for photosynthetic microorganism growth, and means for removing harmful substances.
- the photo-bioculture liquid pool 7 is further provided with a venting device for providing carbon dioxide gas required for photosynthesis for the photo-biology culture solution.
- the culture solution in the photo-bioculture liquid pool 7 is subjected to downstream treatment, and the downstream treatment includes the processes of concentration, filtration, collection, drying, extraction, etc. of the culture solution in the downstream processing workshop. Process.
- each container when it is necessary to clean the photobioreactor, each container can be easily disassembled and cleaned after disassembling, so that no dead angle of cleaning is generated, and cleaning is relatively easy.
- only the portion of the photobioreactor that needs to be cleaned can be disassembled, washed and installed back without having to clean the entire reactor.
- FIG. 10 The method for realizing photosynthetic microorganism cultivation using the photobioreactors provided in the first, second and third embodiments above is shown in FIG. 10, and the execution steps are as follows:
- Step S101 The photo-biology culture solution is lifted from the photo-bioculture liquid pool to the closed end of the topmost container by a liquid lifting device.
- the culture solution of the photosynthetic microorganism can be lifted to the closed end of the uppermost container by various liquid lifting devices such as pumps and wind power devices.
- the flow rate of the culture fluid in the photobioreactor can also be controlled by adjusting the flow rate, which can be controlled by the liquid lift device controlling the amount of lift.
- the photobioculture liquid pool is supplemented with nutrients required for the growth of photosynthetic microorganisms, and harmful substances are removed.
- a ventilating device provided in the culture tank, wherein the aeration device may be an aeration device or other ventilation device, that is, introducing C0 2 into the photobioculture liquid pool.
- the gas provides a carbon source for the photobioculture fluid.
- co 2 gas can be from exhaust gas or cylinder gas emitted from power plants, cement plants, steel plants, chemical plants, etc.
- a filtering device can be provided to remove harmful substances in the photo-bioculture solution.
- the pH adjustment of the photobioculture medium and other parameters are also completed in the photobioculture liquid pool.
- Step S102 The photo-bioculture solution flows from the closed end of the container to the open end.
- the flow rate of the photobioculture solution is adjusted by selecting containers having different inclination angles.
- the method of changing the container can be used in addition to adjusting the pump flow. That is, the inclination angle of the bottom surface of the container with respect to the horizontal plane is changed, and the inclination angle can be selected to be any angle of 0-90 degrees, wherein 0. ⁇ 10. The best results.
- the selected inclination angle is also relatively large, so that the flow rate of the culture solution is increased, thereby achieving the purpose of increasing the agitation.
- Step S103 The photo-bioculture solution flows from the open end of the container into the container of the next layer to be closed. And.
- Step S104 Determine whether it is the lowest level container.
- step S105 is performed, otherwise returning to step S102, the culture liquid is sequentially flowed to the next layer of the container.
- Step S105 flowing into the photobioculture liquid pool from the open end of the bottommost container.
- the shape of the container is similar to a sink closed at one end, and the photobioculture solution flows from the closed end of the container at the top layer; flows through the open end of the container, and flows into the closed end of the next layer by gravity; the process is repeated. After the culture solution flows to the open end of the bottommost container, it flows into the photobioculture bath. The agitation of the photobioculture solution is achieved by gravity, which saves energy.
- the above photosynthetic microorganism culture method further comprises: performing downstream treatment when the photosynthetic microorganism culture is completed without further recycling.
- the photosynthetic microorganism cultivation method, system and photobioreactor provided by the embodiments of the present invention decompose the reactor into at least two containers, so that the reactor can be freely disassembled for convenient cleaning; and at least two containers are assembled and decomposed.
- the water pressure of the reactor is basically unchanged, which reduces the influence on the physical properties of the material. Therefore, it is possible to use a variety of relatively inexpensive transparent materials to make reactors, such as plastic transparent plates, etc., which is reduced. Reactor production costs. Because the container is easy to disassemble, it is easy to move and transport, while saving assembly and transportation time.
- the utility model can utilize gravity to make the culture liquid flow in an open manner, so that the flow resistance of the culture liquid is minimized, and the stirring force can be adjusted by adjusting the inclination angle of the bottom surface of the container, which is convenient to use, simple to implement, and requires no stirring power. Save on mixing energy.
- the reactor can learn from the culture principle of the plate reactor, maximize the use of light, and also decompose the plate reactor into a small reactor, which greatly reduces the reactor production cost, and can be used in one mold to improve the reactor. Production efficiency, and each right angle on the container can be rounded to eliminate dead ends.
- the assembled reactor can be further reinforced by the column to support, stabilize and guide.
- the support plate can further optimize the load-bearing capacity of the assembled reactor, thereby adapting to large-scale cultivation, reducing cultivation cost and increasing photosynthetic microbial yield. the goal of.
- Figure 11 shows a schematic overall structural view of a photobioreactor in accordance with a preferred embodiment of the present invention.
- the photobioreactor includes at least two containers which are vertically stacked on the unitary support 1 in the vertical direction (height direction).
- the unitary stent 1 employs a frame structure.
- each container includes a flexible film 2 and a support assembly 3.
- the flexible film 2 is placed on the support member 3 and supported by the support member 3.
- the support member 3 has a predetermined shape to constrain the flexible film 2 into a predetermined container shape for containing the photobioculture liquid therein.
- Figure 12 shows an exploded schematic view of a container in accordance with a preferred embodiment of the present invention.
- the support assembly 3 includes two curved tubes 31a, 31b and a support net 32.
- the support net 32 is placed on the two curved tubes 31a, 31b, and the flexible film 2 is placed on the support net 32.
- the support net 32 is not essential, and when the liquid held on the flexible film 2 is small, the support net 32 may not be used at all.
- the support net 32 is for restricting excessive deformation of the flexible film 2 because the strength of the flexible film 2 is limited when the liquid contained in the flexible film 2 is large, and if the support net 32 is not provided, the flexible film 2 may be excessively deformed or even damaged. .
- the flexible film 2 and the support net 32 are constrained by the arc shape of the curved tubes 31a, 31b, thereby forming an arc-shaped groove shape, so that the photo-bioculture liquid can be accommodated in the flexible film 1 Formed in an arcuate trough-like container.
- the support mesh 32 may be a conventional rigid wire fence or flexible mesh.
- the invention is not limited thereto, and the number of arc tubes can be adjusted as needed, for example, when the longitudinal direction of the flexible film is For a long time, it is necessary to increase the number of arc tubes for support to prevent the flexible film from being excessively deformed due to excessive span.
- the support assembly 3 further includes a pair of laterally opposed first support plates 11a and laterally opposed pairs of second support plates 11b.
- a pair of first support plates 11a are mounted at one longitudinal end of the unitary bracket 1 (left end shown in Fig. 11), and a pair of second support plates 1 ib are mounted at the other longitudinal end of the unitary bracket 1 (Fig. 11 Right End).
- both ends of the curved tube 31a at the left end are fixed in the mounting holes of the pair of first opposing support plates 11a, and the ends of the curved tubes 31b at the right end are fixed in the laterally opposite one.
- the mounting hole of the second support plate l ib In the mounting hole of the second support plate l ib.
- At least two mounting holes of different heights may be disposed on the first support plate 11a and the second support plate l ib, so that the "! Bar arc tubes 31a, 31b can be mounted differently.
- the height of the curved tubes 31a, 31b is adjusted, or the spacing between the upper and lower adjacent arc tubes 31a, 31b in the height direction is adjusted.
- At least one of the first and second support plates 1 la, l ib can be moved up and down in the height direction to adjust the flexible film 2 thereon to be one end high. , one end low tilt state.
- the present invention further includes a lifting device 6 for raising or lowering the first support plate 11a and/or the second support plate l lb.
- the lifting device 6 may be any suitable device of the prior art such as a cam device, a pulley device and a gear device.
- the flexible film 2 can be adjusted to an inclined position at which the one end is high and the end is low, the two longitudinal ends of the respective flexible films 2a, 2b, 2c can be adjusted by the lifting device 6 when harvesting the photo-biology culture solution. Not at the same height (see Fig. 15), so that the photo-bioculture solution can flow downward from at least two flexible films 2a, 2b, 2c, and finally from one end of the lowermost flexible film 2c, thereby Finish the harvest.
- Fig. 14 is a view showing the adjustment of the arc of the arc tube and the spacing between the upper and lower arc tubes. As shown in Fig. 14, the arc of the arcuate tube 2b of the lower container is adjusted to be larger than the arc of the arcuate tube 2a of the above one container. Therefore, it is possible to hold more of the culture solution in one of the following containers.
- the height D in the height direction between the curved tube 2a of the upper container and the curved tube 2b of the lower container can also be adjusted by the lifting device 6 or the mounting holes installed at different heights.
- the spacing D is increased, the mutual shielding between the two upper and lower flexible films is reduced.
- the spacing D is decreased, the mutual shielding between the upper and lower adjacent flexible films is increased, and even the upper flexible film is present. Extremely full coverage of the flexible film below Condition.
- any two adjacent support members can be staggered in the lateral direction to enable varying the degree of shading between adjacent two flexible films.
- the photobioreactor further includes an injection tube 4 for injecting a photobioculture solution into the flexible film 2.
- the injection pipe 4 is mounted and fixed to the integral bracket 1.
- the photobioreactor of the present invention in order to accelerate the growth rate of the photobiological organism, further comprises an intake pipe 5 for injecting a gas into the photobioculture liquid of the flexible film 2, which gas contains the photobio growth required Reaction gas.
- the reaction gas can be supplemented to the photo-bioculture solution, but also the photo-bioculture solution can be sufficiently agitated by the ejected gas, thereby improving the light-receiving efficiency of the photo-biology culture solution.
- the flexible film is selected from the following materials: polyethylene PE film, polyvinyl chloride PVC film or polyurethane PU film.
- Figure 15 shows a circulating photobioreactor in accordance with a preferred embodiment of the present invention. As shown in Fig. 15, it is assumed that the entire reactor includes three layers of flexible films 2a, 2b, 2c stacked one on top of the other. However, the present invention is not limited thereto, and the number of layers of the flexible film can be arbitrarily selected, for example, 2 layers, 4 layers, 5 layers or more.
- the uppermost flexible film 2a is inclined such that the right end is lower than the left end
- the middle one flexible film 2b is inclined such that the right end is higher than the left end
- the lowermost flexible film 2c is inclined so that the right end is lower than the left end.
- the reactor further includes a photobioculture tank 7 and a pump 8.
- the pump 8 pumps the photobioculture solution in the photobioculture tank 7 to the uppermost flexible membrane 2a of the photobioreactor, as indicated by the arrow in Fig. 15, the photobioculture solution is inclined along at least two The flexible films 2a, 2b, 2c flow down one by one to the lowermost flexible film 2c, and flow from the lowermost flexible film 2c back into the photobioculture bath, thereby achieving circulation Flow culture.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Clinical Laboratory Science (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
光生物反应器和光生物培养方法 技术领域
本发明涉及光合微生物培养技术领域,尤指一种使用组装式光生物反 应器培养光合微生物的光合微生物培养方法和系统、 光生物反应器及容 器。 背景技术
光合微生物, 尤其是微藻和蓝细菌(简称藻类)的生长繁殖主要依靠 简单的矿物质。 藻类通过光合作用, 利用光能(如太阳光和人工照明)将 水和二氧化碳转化成色素、 蛋白质、 脂肪酸、 糖类及次生代谢物等高价值 有机化合物。藻类因具有极高的光及营养利用效率表现出比高等植物更强 的生长潜力。
通过利用分子生物学、代谢工程、功能基因组研究等方面的最新突破, 可以将藻类这一极 的基因表达载体应用于生产营养保健方面的重组蛋 白和其它生物活性物质。 由于藻类具有快速从周围环境中吸收 C02、 氮、 磷等营养物质并将其转化为有机化合物(如储存在细胞中的蛋白)的能力, 它还可以用于去除或回收废水及和火电站富含 C02的烟气中的营养废弃 物。藻类作为生物净化过程的副产物还可作为生产生物燃料(如生物柴油, 酒精和曱烷)、 动物饲料添加剂和有机肥料的原料。 虽然藻类在气、 液态 可再生生物能源、 高附加值产品和环境生物净化方面的应用是科学的、符 合环境要求的, 但藻类应用的经济可行性是由供藻类生长、繁殖的工业规 模的光反应器的培养效率和成本效益决定的。
当前工业规模的光反应器一般为开放式跑道池,多建成 1000 - 5000 m2 环形的浅池(水深 15 ~ 30cni ), 用浆轮使培养液循环流动。 这种生产模式 的优点在于其结构和维护相对简单,但它在藻类户外生长生产力因素的控 制方面有许多不足。 因为缺乏温度控制、 光程长及混合不均勾, 使得开放 式跑道池的总体生产率低,由于培养藻类的开放式跑道池直接与空气接触 而易于染菌, 常导致培养失败。
开放式跑道池的缺陷推动了封闭式培养系统的发展,用透明的管或容 器制成并用泵或气泡实现培养液混合的管式光生物反应器出现了。但管式 反应器的气体交换罐是一个很大的 "暗区或暗体积" (通常占总培养体积 的 10 ~ 15 % ); 且管式反应器中易于积累光合作用过程中生成的氧, 从而 抑制光合作用及生物量生产潜力; 此外, 管式光生物反应器一般用泵来实 现微藻藻液的混合及循环, 泵的使用会造成微藻细胞的严重损伤。 同时, 管式反应器的应用也受到其高成本及维护费用的限制, 仅用于生产小批 量、 高附加值特种产品。
因此, 板式反应器越来越多的受到关注, 板式反应器克服了管式反应 器的暗区、 通气等问题, 并能减小对微藻细胞的破坏。
申请号为 CN200920160301. 5 , 名称为《一种光生物反应器》的专利申 请提供了一种光生物反应器, 包括曝气系统, 用于控制所述箱体中培养液 的温度的控温系统, 反应器控制系统和至少一个反应器单元; 其反应器单 元包括箱体及其支撑框架, 箱体为适于容纳液体的盒体, 其顶部是开放式 开口, 内腔整体贯通; 该箱体纵向相对的两长侧面是整体结构, 至少一个 长侧面是透明的; 在横向相对的短侧面上设有进料口、 取样口、 排液口; 该箱体的两长侧面外侧以支撑框架支撑, 支撑框架沿箱体纵向均匀布设, 支撑框架的高不小于箱体的高; 支撑框架呈梯形, 垂直地面, 以箱体的横 向中垂面两侧对称设置,每侧呈直角三角形, 直角三角形的垂直边为支撑 框架立柱, 两支撑框架立柱间固夹箱体, 定位, 两直角三角形底边为一根 支撑杆件相连接,底边位于支撑面上。该反应器结构简单,便于整体收获, 运行费用低, 是一种可连续培养微藻的反应器。
但上述板式反应器也存在着以下不足之处:
板式生物光反应器大规模应用时, 易采用较大的容积, 但容积增大会 增加反应器的制作难度和成本;板式反应器大都采用粘合方式连接,因此, 反应器制作效率低, 特别是随着反应器的容积增大, 反应器成本非线性倍 增。 且由于粘连后的板式反应器, 不便.运输, 只能在使用地点组装粘合, 一旦粘合好后, 不易移动, 否则容易造成反应器粘合部分开裂。
现有常用的板式反应器为玻璃材质,较大的反应器不仅为运输带来了 困难, 而且随着反应器的增大, 高度增加, 水压逐渐增大, 使侧壁所承受
的压力也越来越大, 对侧壁材料的承压能力也提出了较高的要求,要求反 应器材料具有足够的刚性, 这很大程度上限制了反应器的高度。
板式光生物反应器一般都存在棱角, 棱角处存在处于静止状态的死 角, 导致清洗、 消毒不完全, 反应器局部培养液搅动不充分, 营养分布不 均匀, 细胞在死角区贴壁、 沉降严重甚至死亡, 从而降低了培养效率, 且 随着高度的增加清洗会越来越困难。 由于光合微生物, 尤其是微藻培养过 程中, 减小反应器内径即降低培养过程的光程可以增加培养物的产量, 但 是随着板式生物光反应器内径的减少, 特别是当高度在 0. 5米以上时, 清 洗越来越困难。
板式生物光反应器通气搅拌能耗较大。
可见板式反应器还存在有清洗死角、 侧壁压力、 反应器高度受限、 组 装移动不方便等问题, 从而导致光合微生物培养的成本高、 效率低, 这些 都限制了板式反应器的大规模应用。
另外, 专利文件 (公开号 W0 2008 / 151 376 A1 )公开了一种薄膜袋反 应器, 但是, 该薄膜袋反应器存在如下缺点:
a、 反应器的结构单元尺寸确定后无法调整;
b、 制作工艺较为复杂, 每个薄膜袋单元侧面呈波浪状, 需要烫接或 其他辅助工艺;
c、 由于反应器宽度较小, 同时波浪状侧壁导致内部贯通性较差, 有 死角, 清洗很不方便;
d、 由于该反应器侧面是主要受光面, 反应器摆放形式(方向) 受到 限制;
e、 反应器较深, 侧板上的应力分布不均, 材料上部力学性能利用率 低。 同时, 水压对薄膜壁的材料性能要求较高。 材料成本随之升高。 发明内容
本发明实施例提供一种光生物反应器,包括沿竖直方向上下层叠地设 置的至少两个容器, 并且任意两个上下相邻的容器相互连通, 从而使得光 生物培养液能够从最上层的容器一层一层地流到最下层的容器。
本发明实施例提供一种光合微生物培养方法、 系统及光生物反应器,
用以解决现有技术中存在板式光生物反应器存在清洗的死角、且反应器高 度受到材料限制、 组装移动不方便等问题。
一种光生物反应器, 其特征在于, 包括沿竖直方向上下层叠地设置的 至少两个容器, 并且任意两个上下相邻的容器相互连通, 从而使得光生物 培养液能够从最上层的容器一层一层地流到最下层的容器。
根据本发明的一个优选实施例, 所述容器由薄板制成, 并且每个所述 容器的一端为开口端, 另一端为封闭端, 在上下相邻的两层容器中, 光生 物培养液从上层容器的封闭端流向开口端,并从开口端流入下层容器的封 闭端。
根据本发明的另一个优选实施例,每个所述容器包括:槽型结构主体; 位于槽型结构主体的一端的封闭挡板; 和位于封闭挡板内侧、槽型结构主 体的侧壁上方的两个预定长度的侧挡板。
本发明的上述容器, 所述容器的内底面与水平面成预定倾斜角度, 使 容器内底面在封闭端的高度高于在开口端高度;其中所述倾斜角度大于等 于 0° 小于 90° ;
优选的, 所述容器的倾斜角度为 0° ~ 10° 。
本发明的上述容器,所述侧挡板的高度等于或小于所述槽型结构主体 的高度; 所述封闭挡板的高度等于或小于所述槽型结构主体的高度的两 倍。
优选的,所述封闭挡板的高度等于侧挡板的高度与槽型结构主体的高 度之和, 且侧挡板的高度与槽型结构主体的高度相同。
本发明的上述容器,所述容器的导流槽截面为长方形、正方形、梯形、 半圓形、 半椭圆形或上述形状的组合。
一种光生物反应器, 包括: 至少两个上述的容器;
所述至少两个容器层叠交错组合,上一层的容器的开口端对应下一层 的容器的封闭端放置; 其中, 上一层容器开口端的外侧面与下一层容器的 侧挡板的侧面接合; 形成具有流体连通性的光生物反应器。
本发明的上述光生物反应器, 还包括: 至少一个立柱;
所述立柱, 设置于组装后的所述至少两个容器容器的侧壁外侧和 /或 封闭挡板外侧, 用于维持组装后的光生物反应器的稳定。
本发明的上述光生物反应器, 还包括: 与每个所述立柱连接的至少一 个支撑板; 不同立柱上的处于相同高度处的支撑板组成一个支撑板组, 通 过所述支撑板组将所述至少两个容器分为至少两个容器组;
每个所述支撑板组, 用于支撑位于自身上方的一组组装后的容器组。 一种光合微生物培养方法, 采用上述的光生物反应器, 包括: 端的容器的封闭端;
光生物培养液从该容器的封闭端沿容器上的容器向开口端流动,从所 述开口端流入下一层的容器封闭端; 依次向再下一层的容器流动, 从最下 层的容器的开口端流入光生物培养液池中, 实现光生物培养液的搅动。
本发明的上述方法, 还包括:
通过选用具有不同倾斜角度的容器, 调节光生物培养液的流动速度。 本发明的上述方法, 还包括:
在所述光生物培养液池中补充光合 ^:生物生长所需要的营养物质,以 及清除有害物质。
本!明的上述方法 ,通过在培养池中设置的通气装置为光生物培养液 提供光合作用所需的二氧化碳气体; 和 /或通过在培养池中设置的过滤装 置清除光生物培养液中的有害物质。
一种光合微生物培养系统, 包括: 光生物培养液池、 液体提升装置和 至少一个上述的光生物反应器;
所述光生物培养液池, 用于存放收集的光生物培养液;
所述液体提升装置,用于将光生物培养液从光生物培养液池中提升至 所述光生物反应器最顶端的容器的封闭端;
所述光生物反应器,用于为所述液体提升装置提升上来的光生物培养 液提供流动通道,允许光生物培养液从最上层的容器的封闭端沿容器上的 容器向开口端流动, 从所述开口端流入下一层的容器封闭端; 依次向再下 一层的容器流动, 从最下层的容器的开口端流入光生物培养液池中。
本发明的上述系统, 所述光生物培养液池中还包括:
补充光合微生物生长所需要的营养物质的装置; 和 /或
清除有害物质的装置。
根据本发明的另一个优选实施例, 每个容器包括: 柔性薄膜; 和支撑 组件,所述支撑组件支撑所述柔性薄膜,并将所述柔性薄膜约束成容器状., 用于在其中盛放光生物培养液。
根据本发明的另一个优选实施例, 在任意两个上下相邻的柔性薄膜 中, 上面一个柔性薄膜倾斜成一个纵向端比另一个纵向端高, 下面一个柔 性薄膜倾斜成一个纵向端比另一个纵向端低,从而使得光生物培养液能够 在重力的作用下从至少两个柔性薄膜一层一层地往下流动。
根据本发明的另一个优选实施例, 所述支撑组件包括: 至少两根弧形 管, 所述至少两根弧形管支撑所述柔性薄膜, 并将所述柔性薄膜约束成弧 形槽容器状。
根^ ^居本发明的另一个优选实施例, 所述支撑组件还包括: 支撑网, 所 述支撑网放置在所述弧形管上, 用于限制所述柔性薄膜发生塑性变形。
根据本发明的另一个优选实施例, 所述支撑组件还包括: 横向相对的 一对第一支撑板和横向相对的一对第二支撑板, 所述第一、 第二支撑板分 别位于所述整体支架的两个纵向端处。所述弧形管的两端固定在横向相对 的一对第一支撑板上或横向相对的一对第二支撑板上, 并且所述第一、 第 二支撑板中的至少一个的高度能够调节,从而能够调节所述柔性薄膜的一 个纵向端相对于另一个纵向端的倾斜度。
根据本发明的另一个优选实施例, 所述光生物反应器还包括升降装 置, 用于调节所述第一支撑板和 /或第二支撑板的高度。
根据本发明的另一个优选实施例, 所述光生物反应器还包括泵, 所述 泵将光生物培养液池中的光生物培养液泵送到所述光生物反应器的最上 面一个柔性薄膜中,光生物培养液沿着倾斜的至少两个柔性薄膜一层一层 地往下流动到最下面的一个柔性薄膜中,并从最下面的一个柔性薄膜流回 到所述光生物培养液池中, 从而实现循环流动培养。
根据本发明的另一个优选实施例,每个所述容器的弧形管的弧度能够 调节, 从而改变其上的柔性薄膜的形状。
根^ t居本发明的另一个优选实施例,每个所述容器的弧形管的弧 能够 在 0至 180度的范围内调节。
根据本发明的另一个优选实施例,任意两个所述容器的弧形管之间的
高度方向上的间距能够调节,从而能够改变相邻两个柔性薄膜之间的遮光 程度。
根据本.发明的另一个优选实施例,任意两个相邻的支撑组件在横向上 能够错开, 从而能够改变相邻两个柔性薄膜之间的遮光程度。
根^本发明的另一个优选实施例, 所述光生物反应器还包括进气管, 用于向所述柔性薄膜的光生物培养液中喷射气体,所述气体包含光生物生 长所需的反应气体。
根据本发明的另一个优选实施例, 所述柔性薄膜选用下列材料的薄 膜: 聚乙烯 PE薄膜、 聚氯乙烯 PVC薄膜或聚氨酯 PU薄膜。
根据本发明的另一个方面, 还提供一种光生物反应系统, 包括至少两 个如上所述的光生物反应器。
根据本发明的另一个方面,还提供一种光生物培养方法, 其采用前述 光生物反应器, 包括如下步骤: 通过液体提升装置将光生物培养液池中的 光生物培养液输送到所述光生物反应器的最上层的容器中,然后光生物培 养液从最上层的容器一层一层地流到最下层的容器,并从最下层的容器流 回到所述光生物培养液池中, 从而实现循环流动培养。
根据本发明的一个优选实施例,所述光生物培养液从每个容器的一端 流入并从相对的另一端流出, 从而提高对所述光生物培养液的搅拌效率。
根据本发明的另一个优选实施例, 还包括步骤: 通过选用具有不同倾 斜角度的容器和 /或通过调节容器的倾斜角度, 从而调节所述光生物培养 液的流动速度。
根据本发明的另一个优选实施例,还包括步骤: 在所述光生物培养液 池中补充光生物生长所需要的营养物质, 以及清除有害物质。
根据本发明的另一个优选实施例,通过曝气装置为光生物培养液^ ί是供 光合作用所需的二氧化碳气体; 和 /或通过过滤装置清除光生物培养液中 的有害物质。
本发明有益效果如下:
本发明实施例提供的光合微生物培养方法、 系统及光生物反应器, 该 光生物反应器由至少两个容器组成,这种组装式反应器同时体现了现有管 式和板式的优点, 便于组装、 拆分、 移动; 且通过液体流动避免了清洗死
角和侧壁承压过大, 降低了制作成本; 利用液体自重实现液体自流搅拌, 节约了培养液搅拌能耗。
同时, 在本发明中, 当用柔性薄膜形成容器时, 每层柔性薄膜被支撑 组件约束成一个单独的培养容器, 因此, 与现有技术中的袋式容器相比, 结构更为简单,仅仅是一张柔性薄膜,这样, 清洗起来也甚为方便。 而且, 在本发明中, 支撑组件的形状和位置可以调节, 从而能够方便地改变柔性 薄膜所形成的培养容器的形状和受光程度, 同时, 还便于光生物培养液的 收获。 附图说明
图 1为本发明实施例一中光生物反应器的结构示意图;
图 2为本发明实施例一中容器的结构示意图;
图 3为本 J^.明实施例一中带角度的容器的结构示意图;
图 4为本发明实施例一中弧形截面的容器的俯视图;
图 5为本发明实施例一中图 4所示的容器的右视图;
图 6为本发明实施例二中光生物反应器的结构示意图;
图 7为本发明实施例三中光生物反应器的结构示意图;
图 8为本发明实施例三中光生物反应器的截面图;
图 9为本发明实施例中光生物培养系统的结构示意图;
图 10为本发明实施例中光生物培养方法的流程图;
图 11显示根^居本发明的一个优选实施例的光生物反应器整体结构示 意图;
图 12显示根据本发明的一个优选实施例的一个容器的分解示意图; 图 13显示弧形管固定在支撑板上的结构示意图;
图 14显示调节弧形管的弧度和上下相邻的弧形管之间的间距的示意 图; 和
图 15显示根 本发明的一个优选实施例的循环型光生物反应器。 具体实施方式
下面通过实施例, 并结合附图, 对本发明的技术方案作进一步具体的
说明。 在说明书中, 相同或相似的附图标号指示相同或相似的部件。 下述 参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解 释, 而不应当理解为对本发明的一种限制。
为了解决现有技术中板式反应器存在的清洗死角导致清洗困难,高度 增加时导致侧壁压力大, 移动不方便, 搅动能耗大等问题, 本发明实施例 提供一种组装式的光生物反应器, 方便组装和运输、通过光生物培养液的 流动实现自动搅拌, 而且可以消除清洗死角, 避免侧壁压力过大。 实施例一
本发明实施例一提供的光生物反应器如图 1所示, 包括: 至少两个容 器 110。
其中, 容器 110的结构如图 2所示, 容器 110的形状像一个一端封闭 的水槽, 一端为开口端, 另一端为封闭端。 具体地, 如图 2所示, 每个容 器包括:槽型结构主体 111 ;位于槽型结构主体 111的一端的封闭挡板 112; 和位于封闭挡板 112内侧、槽型结构主体 111的侧壁上方的两个预定长度 的侧挡板 113。
上述至少两个容器 110层叠交错组合,上一层的容器 110的开口端对 应下一层的容器 110的封闭端放置;具体为上一层容器 110开口端的端面 与下一层容器 110的侧挡板 113的端面接合,形成具有流体连通性的光生 物反应器。
也就是说, 在组装光生物反应器时, 先取一个容器 110放在最下层, 然后将再取一个容器 110放置在最下层的容器 110上, 作为第二层; 第二 层的容器 110的开口端对应第一层的容器 110 的封闭端放置从而将容器 110依次向上交错组合放置, 使光生物反应器可以达到任意高度。
上述容器 110, 用于使光生物培养液从其封闭端流向开口端, 并从开 口端流入下一层容器 110的封闭端, 实现光生物培养液的搅动。
图 2所示的容器 110的内底面是水平的, 较佳的, 容器 110的的内底 面还可以设计成具有一定倾斜角度的。如图 3所示即为具有一定倾斜角度 的容器的结构示意图, 其中的内底面与水平面具有 1度的倾斜角度, 如图 中所示内底面与竖直面成 91度角。
一般将容器的内底面与水平面成预定倾斜角度,是为了使内底面在封 闭端的高度高于在开口端高度, 从而有利于培养液的流动。 其中倾斜角度
—般大于等于 0° 且小于 90° ; 较佳的, 倾斜角度选择 0° ~ 10。 。
较佳的,上述容器 110的侧挡板 1 13的高度等于或小于槽型结构主体 111的高度.。 封闭挡板 112的高度等于或小于槽型结构主体 111的高度的 两倍。也就是说容器 110的封闭挡板 112的高度等于或小于侧挡板 113的 高度与槽型结构主体 111的高度之和。
优选的, 容器 110的封闭挡板 112的高度等于侧挡板 113的高度与槽 型结构主体 111的高度之和, 且侧挡板 113高度与槽型结构主体 111的高 度相同, 从而保证上下相邻的容器组装的较好的吻合。
上述容器 110的导流槽截面可以为长方形、 正方形、 梯形、 半圆形、 半椭圓形、 弧形、 U型或上述形状的组合。
如图 4所示即为的导流槽截面弧形截面的容器 110的俯视图,图 5为 图 4的右视图。弧形截面的可以更好的避免清洗死角,有利于培养液流动。
上述光生物反应器中包含的容器 110 的数量以要组装的反应器的总 体高度来确定, 一般以方便使用为原则, 基本上以不超过 2米为宜。 实施例二
本发明实施例二提供的光生物反应器如图 6所示,与实施例一中的光 生物反应器不同的是该光生物反应器除了包括至少两个容器 110之外,还 包括至少一个立柱 120。
立柱 120,设置于组装后的至少两个容器 110的侧壁外侧和 /或封闭挡 板外侧, 用于维持组装后的光生物反应器的稳定。 立柱 120可以不与反应 器连接固定, 只起到支撑、 稳定和导向的作用即可, 扩大了立柱 120材料 的选择范围, 降低了成本。
在容器 110的层数增加之后,反应器的稳定性相对层数较少时有所减 弱, 为了保证光生物反应器整体的稳定性, 可以在光生物反应器的外围设 置立柱 120, 来保证反应器不会倾倒。
例如: 图 6所示的光生物反应器设置了五根立柱 120, 实际使用中可 以根据需求选择立柱的数量。
实施例三
本发明实施例三提供的光生物反应器如图 7所示,与实施例二中的光 生物反应器不同的是该光生物反应器除了包括至少两个容器 110 和至少 两个立柱 120, 还包括: 与每个立柱 120连接的至少一个支撑板 130。
该生物反应器的截面图如图 8所示。 其中, 不同立柱 120上的处于相 同高度处的支撑板 130组成一个支撑板组,通过支撑板组将至少两个容器 110分为至少两个容器组; 每个支撑板组, 用于支撑位于自身上方的一组 组装后的容器组。
在容器的层数增加之后,位于反应器的底层的容器 110所承受的重量 也将增大, 为了减轻底层反应器的负荷, 可以在光生物反应器的外围立柱 上连接其支撑作用的支撑板 130, 将容器 110分为几组, 分别放置在 不同层面的支撑板 130上, 以降低底层容器 110的承重。
例如:图 7所示的光生物反应器的五根立柱 120上各设置两个支撑板 130, 上边的两组容器放置在支撑板 130上, 最下层的一组容器不用支撑。
根据上述实施例一、 二、 三所提供的光生物反应器, 可以构建一种光 生物培养系统, 如图 9所示, 包括: 光生物培养液池 7、 液体提升装置 8 (例如泵)和至少两个上述的光生物反应器。
光生物反应器,用于为液体提升装置 8提升上来的光生物培养液^ ¾供 流动通道, 允许光生物培养液从最上层的容器的封闭端向开口端流动, 并 从开口端流入下一层容器的封闭端; 然后依次向再下一层的容器流动,从 最下层的容器的开口端流入光生物培养液池中。
光生物培养液池 7, 用于存放收集的光生物培养液。
根据需要一组反应器或几组反应器使用一个光生物培养液池。
液体提升装置 8, 用于将光生物培养液从光生物培养液池 7中提升至 光生物反应器最顶端的容器的封闭端。
光生物培养液池 7 中还设置有用于补充光合微生物生长所需要的营 养物质的装置, 以及清除有害物质的装置。 例如: 光生物培养液池 7中还 设置有通气装置, 用于为光生物培养液提供光合作用所需的二氧化碳气 体。
当光合微生物培养成熟后不需要再循环时,对光生物培养液池 7中的 培养液进行下游处理, 下游处理包括在下游处理车间进行培养液浓缩、 过 滤、 收集、 干燥、 提.取等工艺流程。
上述光生物培养系统, 在需要对光生物反应器进行清洗时, 可以很方 便的将各个容器拆解下来,在拆解后进行清洗,从而不会产生清洗的死角, 清洗比较容易。较佳的, 可以仅将光生物反应器上需要清洗的部分拆解下 来, 清洗后再安装回去, 而不必针对整个反应器进行清洗。
使用上述实施例一、二、三所提供的光生物反应器实现光合微生物培 养的方法流程如图 10所示, 执行步骤如下:
步骤 S101 : 通过液体提升装置将光生物培养液从光生物培养液池中 提升至最顶端的容器的封闭端。
光合微生物的培养液可由如泵、风力装置等各种液体提升装置提升到 最上层容器的封闭端。培养液在光生物反应器中的流动速度也可以通过调 节流量控制, 具体可以通过液体提升装置控制提升量来控制。
较佳的, 在光生物培养液池中补充光合微生物生长所需要的营养物 质, 以及清除有害物质。 例如: 通过在培养池中设置的通气装置为光生物 培养液提供光合作用所需的二氧化碳气体, 其中, 通气装置可以是曝气装 置或其他通气设^ 即在光生物培养液池中引入 C02气体为光生物培养液 提供碳源。 其中, co2气体可来自电厂、 水泥厂、 钢厂、 化工厂等排放的 废气或者钢瓶气。 又例如: 可以设置过滤装置, 实现清除光生物培养液中 的有害物质。
光生物培养液的 PH值等参数调控也在光生物培养液池中完成。
步骤 S102: 光生物培养液从该容器的封闭端向开口端流动。
通过选用具有不同倾斜角度的容器, 调节光生物培养液的流动速度。 当培养物对搅拌程度较高时, 除了靠采用调节泵流量的方式, 也可通 过改变容器的方式。 即改变容器内底面相对于水平面的倾斜角度, 倾斜角 度可以选择为 0-90度的任意角度,其中以 0。 ~ 10。 效果最佳。一般当培 养的光合微生物的培养过程需要的搅拌程度高, 选择的倾斜角度也比较 大, 使得培养液流速增加, 从而达到增大搅拌的目的。
步骤 S 103 : 光生物培养液从该容器的开口端流入下一层的容器封闭
而。
步骤 S 104: 判断是否是最底层的容器。
如果是, 执行步骤 S 105 , 否则返回继续执行步驟 S 102, 从而实现培 养液依次向下一层的容器流动。
步骤 S 105 : 从最底层的容器的开口端流入光生物培养液池中。
也就是说, 容器形状类似于一个一端封闭的水槽, 光生物培养液从顶 层的容器封闭端流入; 流经到容器的开口端, 利用重力, 流入下一层容器 封闭端; 重复此过程。 当培养液流至最底层的容器的开口端之后, 流入光 生物培养液池。通过重力作用实现了实现光生物培养液的搅动, 节约了能 耗。
上述光合微生物培养方法还包括: 当光合微生物培养完成不需要再循 环时进行下游处理。
本发明实施例提供的上述光合微生物培养方法、 系统及光生物反应 器, 将反应器分解为至少两个容器, 使反应器可自由拆分, 方便清洗; 使 用至少两个容器组装的方式, 分解了水压, 随着高度的增加反应器水压基 本不变, 降低了对材料物理性质等方面的影响, 因此可以使用多种相对廉 价的透明材料制作反应器, 如塑料透明板材等, 降低了反应器制作成本。 由于容器拆装方便, 便于移动和运输, 同时节约组装和运输的时间。 且能 够利用重力, 使得培养液自流, 采用开放式的方式, 使得培养液流动阻力 降到最小,并能通过调节容器内底面的倾斜角度调整搅拌力度,使用方便、 实现原理简单且无需搅拌动力, 节约搅拌能耗。
该反应器能够借鉴板式反应器的培养原理, 最大限度的利用光, 也将 板式反应器分解为小型反应器,极大的降低反应器制作成本, 并且可以使 用模具一次成型,提高了反应器的制作效率, 同时容器上的每个直角都可 以做圓角处理, 消除了死角。
通过立柱可以使组装的反应器进一步加固,起到支撑、稳定和导向的 作用, 通过支撑板£可以进一步优化组装式反应器的承重, 从而达到适应 大规模培养、 降低培养成本、 提高光合微生物产量的目的。
图 1 1显示根据本发明的一个优选实施例的光生物反应器整体结构示 意图。 如图 11所示, 在本.发明的一个优选实施例中, 光生物反应器包括 沿竖直方向(高度方向)上下层叠地安装在整体支架 1上的至少两个容器。 为了减轻重量,在本发明的一个优选实施例中,整体支架 1采用框架结构。
请继续参见图 11, 每个容器包括一个柔性薄膜 2和一个支撑组件 3。 柔性薄膜 2放置在支撑组件 3上, 由支撑组件 3支撑。 如图 11所示, 支 撑组件 3具有预定的形状, 从而将柔性薄膜 2约束成预定的容器状, 用于 在其中盛放光生物培养液。
图 12显示根据本发明的一个优选实施例的一个容器的分解示意图。 如图 12所示, 在本发明的一个优选实施例中, 支撑组件 3包括两根弧形 管 31a、 31b和一个支撑网 32。
如图 12所示, 支撑网 32放置在两根弧形管 31a、 31b上, 柔性薄膜 2放置在支撑网 32上。 但是, 需要说明的是, 支撑网 32不是必须的, 当 柔性薄膜 2上盛放的液体较少时, 完全可以不采用支撑网 32。
支撑网 32是用于限制柔性薄膜 2过度变形, 因为, 当柔性薄膜 2上 盛放的液体较多时, 柔性薄膜 2的强度有限, 如果没有支撑网 32 , 柔性 薄膜 2可能会变形过度, 甚至损坏。
如图 12所示, 柔性薄膜 2和支撑网 32由于受弧形管 31a、 31b的弧 形形状约束, 从而形成了弧形槽状, 这样, 光生物培养液就可以容放在柔 性薄膜 1所形成的弧形槽状容器中。
在本发明的一个优选实施例中, 支撑网 32可选用普通刚性钢丝护栏 网或柔性丝网。
尽管在图示的优选实施例中, 仅采用了两跟弧形管 31a、 31b , 但是, 本发明不局限于此, 弧形管的数量可以根据需要进行调整, 例如, 当柔性 薄膜的纵向过长时, 则需要增加支撑用的弧形管的数量, 以防止柔性薄膜 因跨度过大而过度变形。
请返回到图 11 , 在本发明的一个优选实施例中, 支撑组件 3还包括 横向相对的一对第一支撑板 l la和横向相对的一对第二支撑板 l lb。 一对 第一支撑板 l la安装在整体支架 1的一个纵向端(图 11所示的左端)处, 一对第二支撑板 l ib安装在整体支架 1的另一个纵向端 (图 1 1所示的右
端) 处。
如图 11和图 13所示,左端的弧形管 31a的两端固定在横向相对的一 对第一支撑板 11a的安装孔中,右端的弧形管 31b的两端固定在横向相对 的一对第二支撑板 l ib的安装孔中。
如图 11.和图 13所示,第一支撑板 11a和第二支撑板 l ib上可以设置 至少两个不同高度的安装孔, 这样能够通过 "!巴弧形管 31a、 31b安装在不 同的安装孔中, 来调节弧形管 31a、 31b的高度., 或者调节上下相邻的弧 形管 31a、 31b之间在高度方向上的间距。
尽管未图示, 在本发明的一个优选实施例中, 第一、 第二支撑板 l la、 l ib中的至少一个能够沿高度方向上下移动, 以便将其上的柔性薄膜 2调 节成一端高、 一端低的倾斜状态。
为了使第一、 第二支撑板 l la、 l ib中的至少一个能够沿高度方向上 下移动, 本发明还包括升降装置 6, 用于上升或下降第一支撑板 11a和 / 或第二支撑板 l lb。
在本发明的一个优选实施例中, 升降装置 6可以选用凸轮装置、滑轮 装置及齿轮装置等现有技术中任一种合适的装置。
本 明中, 由于柔性薄膜 2能够调节到一端高一端低的倾斜位置, 因 此, 在收获光生物培养液时, 可以通过升降装置 6将各个柔性薄膜 2a、 2b、 2c的两个纵向端调节成不在同一高度(参见图 15 ), 从而使得光生物 培养液能够从至少两个柔性薄膜 2a、 2b、 2c—层一层地往下流动, 并最 终从最下面一个柔性薄膜 2c的一端流出, 从而完成收获。
图 14显示调节弧形管的弧度和上下相邻的弧形管之间的间距的示意 图。 如图 14所示, 下面一个容器的弧形管 2b的弧度被调节成大于上面一 个容器的弧形管 2a的弧度。 因此, 能够在下面一个容器中盛放更多的培 养液。
如图 14 所示, 上面一个容器的弧形管 2a与下面一个容器的弧形管 2b之间的高度方向上的间距 D也能够通过升降装置 6或安装在不同高度 的安装孔中来调节, 当间距 D增大时, 上下相邻两个柔性薄膜之间相互遮 挡就会减少, 当间距 D减小时, 上下相邻两个柔性薄膜之间相互遮挡就会 加大, 甚至出现上面的柔性薄膜完全覆盖在下面的柔性薄膜上的极端情
况。
尽管未图示, 在本发明的一个优选实施例中, 任意两个相邻的支撑组 件在横向上能够错开布置,从而能够改变相邻两个柔性薄膜之间的遮光程 度。
如图 1 1所示, 在一个优选实施例中, 光生物反应器还包括注入管 4, 用于向柔性薄膜 2中注入光生物培养液。注入管 4安装和固定在整体支架 1上。
在本发明中, 为了加快光生物的生长速度, 本发明的光生物反应器还 包括进气管 5 , 用于向柔性薄膜 2的光生物培养液中喷射气体, 该气体中 包含光生物生长所需的反应气体。 这样, 不仅可以向光生物培养液中补充 反应气体, 而且还可以利用喷射的气体充分搅动光生物培养液, 从而提高 光生物培养液的受光效率。
在本发明的一个优选实施例中, 为了降低制造成本, 柔性薄膜选用下 列材料的薄膜: 聚乙烯 PE薄膜、 聚氯乙烯 PVC薄膜或聚氨酯 PU薄膜。
图 15显示根据本发明的一个优选实施例的循环型光生物反应器。 如 图 15所示, 不妨假设整个反应器包括上下层叠的三层柔性薄膜 2a、 2b、 2c。 但是, 本发明不局限于此, 柔性薄膜层数可以任意选择, 例如 2层, 4层, 5层或更多层。
如图 15所示, 最上面一个柔性薄膜 2a倾斜成右端比左端低, 中间的 一个柔性薄膜 2b倾斜成右端比左端高,最下面一个柔性薄膜 2c倾斜成右 端比左端低。
如图 15所示, 反应器还包括光生物培养液池 7和泵 8。 泵 8将光生 物培养液池 7 中的光生物培养液泵送到光生物反应器的最上面一个柔性 薄膜 2a中, 如图 15中的箭头所示, 光生物培养液沿着倾斜的至少两个柔 性薄膜 2a、 2b、 2 c一层一层地往下流动到最下面的一个柔性薄膜 2c中, 并从最下面的一个柔性薄膜 2c流回到光生物培养液池 Ί中, 从而实现循 环流动培养。 虽然结合附图对本.发明进行了说明,但是附图中公开的实施例旨在对 本发明优选实施方式进行示例性说明, 而不能理解为对本发明的一种限
制。
虽然本总体发明构思的一些实施例已被显示和说明,本.领域普通技术 人员将理解, 在不背离本总体发明构思的原则和精神的情况下, 可对这些 实施例做出改变, 本发明的范围以权利要求和它们的等同物限定。
Claims
1、 一种光生物反应器, 其特征在于, 包括沿竖直方向上下层叠地设 置的至少两个容器, 并且任意两个上下相邻的容器相互连通, 从而使得光 生物培养液能够从最上层的容器一层一层地流到最下层的容器。
2、 根据权利要求 1所述的光生物反应器, 其特征在于,
所述容器由薄板制成, 并且每个所述容器的一端为开口端, 另一端为 封闭端,
在上下相邻的两层容器中,光生物培养液从上层容器的封闭端流向开 口端, 并从开口端流入下层容器的封闭端。
3、 根据权利要求 2所述的光生物反应器, 其特征在于, 每个所述容 器包括:
槽型结构主体 ( 111 );
位于槽型结构主体 ( 111 ) 的一端的封闭挡板( 112); 和
位于封闭挡板( 112) 内侧、 槽型结构主体( 111 )的侧壁上方的两个 预定长度的侧挡板( 113)。
4、 根据权利要求 2所述的光生物反应器, 其特征在于, 所述容器的 内底面与水平面成预定倾斜角度,使得容器内底面在封闭端的高度高于在 开口端高度。
5、 根^ ^居权利要求 4所述的光生物反应器, 其特征在于, 所述预定倾 斜角度大于 0。 且小于 90。 。
6、 根据权利要求 5所述的光生物反应器, 其特征在于, 所述预定倾 斜角度为 0° ~ 10° 。
7、 根据权利要求 3所述的光生物反应器, 其特征在于, 所述侧挡板 ( 113 )的高度等于或小于所述槽型结构主体( 111 )的高度.; 所述封闭挡 板(112) 的高度等于或小于所述槽型结构主体(111 ) 的高度的两倍。
8、 根据权利要求 7所述的光生物反应器, 其特征在于, 所述封闭挡 板(112) 的高度等于侧挡板(113 ) 的高度与槽型结构主体(111 ) 的高 度之和, 且侧挡板(113 ) 的高度与槽型结构主体(111 ) 的高度相同。
9、 根据权利要求 2所述的光生物反应器, 其特征在于, 所述容器的 横截面为长方形、 正方形、 梯形、 半圓形、 半椭圆形或上述形状的组合。
10、 根据权利要求 2所述的光生物反应器, 其特征在于, 还包括: 至 少一个立柱;
所述立柱,设置于组装后的至少两个容器的侧壁外侧, 用于维持组装 后的光生物反应器的稳定。
11、 根 ^^权利要求 10所述的光生物反应器, 其特征在于, 还包括: 与每个所述立柱连接的至少一个支撑板;不同立柱上的处于相同高度处的 支撑板组成一个支撑板组,通过所述支撑板组将所述至少两个容器分为至 少两个容器组;
每个所述支撑板组, 用于支撑位于自身上方的一组组装后的容器组。
12、 根据权利要求 2所述的光生物反应器, 其特征在于, 还包括: 液体提升装置,所述液体提升装置将光生物培养液池中的光生物培养 液输送到所述光生物^^应器的最上层的容器中,然后光生物培养液从最上 层的容器一层一层地流到最下层的容器,并从最下层的容器流回到所述光 生物培养液池中, 从而实现循环流动培养。
13、 根据权利要求 2所述的光生物反应器, 其特征在于, 还包括进气 管, 用于向所述容器的光生物培养液中喷射气体, 所述气体包含光生物生 长所需的反应气体。
14、 根据权利要求 12所述的光生物反应器, 其特征在于, 所述光生 物培养液池中还包括:
补充光合微生物生长所需要的营养物质的装置; 和 /或
清除有害物质的装置。
15、 根^ ^权利要求 1所述的光生物反应器, 其特征在于, 每个容器包 括:
柔性薄膜(2 ); 和
支撑组件 ( 3 ), 所述支撑组件 ( 3 ) 支撑所述柔性薄膜( 2 ), 并将所 述柔性薄膜(2 ) 约束成容器状, 用于在其中盛放光生物培养液。
16、 根据权利要求 15所述的光生物反应器, 其特征在于,
在任意两个上下相邻的柔性薄膜( 2a、 2b )中,上面一个柔性薄膜( 2a ) 倾斜成一个纵向端比另一个纵向端高, 下面一个柔性薄膜(2b)倾斜成一 个纵向端比另一个纵向端低,从而使得光生物培养液能够在重力的作用下 从至少两个柔性薄膜(2a、 2b、 2c) 一层一层地往下流动。
17、 根据权利要求 15所述的光生物反应器, 其特征在于, 所述支撑 组件 ( 3 ) 包括:
至少两根弧形管 (31a, 31b), 所述至少两根弧形管 (31a, 31b) 支 撑所述柔性薄膜(2), 并将所述柔性薄膜(2) 约束成弧形槽容器状。
18、 根据权利要求 17所述的光生物反.应器, 其特征在于, 所述支撑 组件 (3)还包括:
支撑网 (32), 所述支撑网 (32)放置在所述弧形管 (31a、 31b)上, 用于限制所述柔性薄膜(2)发生塑性变形。
19、 根据权利要求 18所述的光生物反应器, 其特征在于, 所述支撑 组件(3 )还包括:
横向相对的一对第一支撑板( ila) 和横向相对的一对第二支撑板 ( lib), 所述第一、 第二支撑板(lla、 lib)分别位于所述整体支架( 1 ) 的两个纵向端处,
所述弧形管 (31a、 31b) 的两端固定在横向相对的一对第一支撑板 ( 11a)上或横向相对的一对第二支撑板( lib)上, 并且所述第一、 第二 支撑板(lla、 lib) 中的至少一个的高度能够调节, 从而能够调节所述柔 性薄膜(2) 的一个纵向端相对于另一个纵向端的倾斜度。
20、 根据权利要求 19所述的光生物反应器, 其特征在于, 所述光生 物反应器还包括升降装置 (6), 用于调节所述第一支撑板(11a)和 /或第 二支撑板. ( lib) 的高度。
21、 居权利要求 15所述的光生物反应器, 其特征在于, 还包括: 液体提升装置 (8), 所述液体提升装置 (8)将光生物培养液池(7) 中的光生物培养液输送送到所述光生物反应器的最上面一个柔性薄膜 (2a) 中, 光生物培养液沿着倾斜的至少两个柔性薄膜(2a、 2b、 2c) - 层一层地往下流动到最下面的一个柔性薄膜(2c)中, 并从最下面的一个 柔性薄膜(2c) 流回到所述光生物培养液池(7) 中, 从而实现循环流动 培养。
22、 根据权利要求 20所述的光生物反应器, 其特征在于, 每个所述 容器的弧形管(3 1 a、 31 b )的弧度能够调节, 从而改变其上的柔性薄膜的 形状。
23、 根^^居权利要求 22所述的光生物反应器, 其特征在于, 每个所述 容器的弧形管 (3 1a、 31b ) 的弧度能够在 0至 180度的范围内调节。
24、 根据权利要求 20所述的光生物反应器, 其特征在于, 任意两个 所述容器的弧形管(3 1a、 3 1b )之间的高度方向上的间距能够调节, 从而 能够改变相邻两个柔性薄膜之间的遮光程度。
25、 根据权利要求 20所述的光生物反应器, 其特征在于, 任意两个 相邻的支撑组件在横向上能够错开,从而能够改变相邻两个柔性薄膜之间 的遮光程度。
26、 根据权利要求 15所述的光生物反应器, 其特征在于, 还包括进 气管 (5 ), 用于向所述柔性薄膜(2 ) 的光生物培养液中喷射气体, 所述 气体包舍光生物生长所需的反应气体。
27、 根据权利要求 15、 20或 21中任一项所述的光生物反应器, 其特 征在于, 所述柔性薄膜选用下列材料的薄膜: 聚乙烯 PE薄膜.、 聚氯乙烯 PVC薄膜或聚氨酯 PU薄膜。
28、 一种光生物培养方法, 采用如权利要求 1、 2或 15中任一项所述 的光生物反应器, 包括如下步骤:
通过液体提升装置将光生物培养液池中的光生物培养液输送到所述 光生物反.应器的最上层的容器中,然后光生物培养液从最上层的容器一层 一层地流到最下层的容器,并从最下层的容器流回到所述光生物培养液池 中, 从而实现循环流动培养。
29、 根据权利要求 28所述的方法, 还包括步骤: 通过选用具有不同 倾斜角度的容器和 /或通过调节容器的倾斜角度, 从而调节所述光生物培 养液的流动速度。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010219233.2 | 2010-06-25 | ||
CN201010219233 | 2010-06-25 | ||
CN201010295929.3 | 2010-09-21 | ||
CN201010295929.3A CN102296022B (zh) | 2010-06-25 | 2010-09-21 | 光生物反应器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011160600A1 true WO2011160600A1 (zh) | 2011-12-29 |
Family
ID=45356700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/076287 WO2011160600A1 (zh) | 2010-06-25 | 2011-06-24 | 光生物反应器和光生物培养方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102296022B (zh) |
WO (1) | WO2011160600A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586353B2 (en) | 2006-11-02 | 2013-11-19 | Algenol Biofuels Switzerland GmbH | Closed photobioreactor system for continued daily In Situ production of ethanol from genetically enhanced photosynthetic organisms with means for separation and removal of ethanol |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102408984B (zh) * | 2010-09-21 | 2015-01-14 | 新奥科技发展有限公司 | 光生物反应器 |
DE102013001444B4 (de) * | 2013-01-29 | 2014-12-18 | Pateffect Schutzrechtsmanagement Gbr (Vertretungsberechtigte Gesellschafter: Dr. Volker Linden, 73430 Aalen Und Klaus Kunze, 88250 Weingarten) | Bioreaktoraufhängung |
CN104445800B (zh) * | 2014-10-21 | 2016-06-01 | 南通大学 | 利用微藻耦合光生物反应器处理污水与生产柴油的方法 |
CN106467888B (zh) * | 2015-08-14 | 2019-05-07 | 国投生物科技投资有限公司 | 栅板式光生物反应器 |
CN107429211A (zh) * | 2015-08-14 | 2017-12-01 | 国家开发投资公司 | 层叠式薄板光生物反应器 |
CN106916723B (zh) * | 2015-12-28 | 2019-11-26 | 国投生物科技投资有限公司 | 一种雨生红球藻培养方法及培养装置 |
CN106916724B (zh) * | 2015-12-28 | 2019-11-05 | 国投生物科技投资有限公司 | 一种栅藻培养方法及培养装置 |
CN106434279A (zh) * | 2016-09-08 | 2017-02-22 | 天津现代职业技术学院 | 一种光合细菌浓缩装置 |
CN113862111B (zh) * | 2021-08-31 | 2023-11-07 | 国核自仪系统工程有限公司 | 微藻培育装置及降低水体富营养化的方法 |
CN114940941B (zh) * | 2022-07-04 | 2023-03-07 | 珠海元育生物科技有限公司 | 一种立体连续流动式微藻光生物反应器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2257291Y (zh) * | 1996-06-25 | 1997-07-02 | 华南理工大学 | 一种密闭型循环浅层螺旋藻培养装置 |
CN1201827A (zh) * | 1997-06-05 | 1998-12-16 | 区裕雄 | 微藻密闭培养的柔性管道系统 |
US5981271A (en) * | 1996-11-06 | 1999-11-09 | Mikrobiologicky Ustav Akademie Ved Ceske Republiky | Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process |
WO2008022312A2 (en) * | 2006-08-17 | 2008-02-21 | Algepower, Llc | Hydroponic growing enclosure and method for growing, harvesting, processing and distributing algae, related microorganisms and their by products |
CN201309929Y (zh) * | 2008-09-19 | 2009-09-16 | 谢仕贤 | 光生物反应器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101405385A (zh) * | 2006-02-21 | 2009-04-08 | 亚利桑那州立大学董事会,代表亚利桑那州立大学法人团体利益 | 光生物反应器及其用途 |
-
2010
- 2010-09-21 CN CN201010295929.3A patent/CN102296022B/zh active Active
-
2011
- 2011-06-24 WO PCT/CN2011/076287 patent/WO2011160600A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2257291Y (zh) * | 1996-06-25 | 1997-07-02 | 华南理工大学 | 一种密闭型循环浅层螺旋藻培养装置 |
US5981271A (en) * | 1996-11-06 | 1999-11-09 | Mikrobiologicky Ustav Akademie Ved Ceske Republiky | Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process |
CN1201827A (zh) * | 1997-06-05 | 1998-12-16 | 区裕雄 | 微藻密闭培养的柔性管道系统 |
WO2008022312A2 (en) * | 2006-08-17 | 2008-02-21 | Algepower, Llc | Hydroponic growing enclosure and method for growing, harvesting, processing and distributing algae, related microorganisms and their by products |
CN201309929Y (zh) * | 2008-09-19 | 2009-09-16 | 谢仕贤 | 光生物反应器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586353B2 (en) | 2006-11-02 | 2013-11-19 | Algenol Biofuels Switzerland GmbH | Closed photobioreactor system for continued daily In Situ production of ethanol from genetically enhanced photosynthetic organisms with means for separation and removal of ethanol |
Also Published As
Publication number | Publication date |
---|---|
CN102296022B (zh) | 2015-09-02 |
CN102296022A (zh) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011160600A1 (zh) | 光生物反应器和光生物培养方法 | |
Xu et al. | Microalgal bioreactors: challenges and opportunities | |
Assunção et al. | Enclosed “non-conventional” photobioreactors for microalga production: A review | |
US8361786B2 (en) | Photobioreactor and uses therefor | |
Tredici | Mass production of microalgae: photobioreactors | |
Wang et al. | Closed photobioreactors for production of microalgal biomasses | |
US20070155006A1 (en) | Photobioreactor | |
CN102206570B (zh) | 一种用于微藻规模培养的装置及培养方法 | |
CN101838606A (zh) | 污水处理碳减排气升环流微藻自养-异养耦合光生物反应器 | |
CN101709264B (zh) | 一种光生物反应器 | |
KR20110085428A (ko) | 투명 필름으로 이루어진 광합성 생물 반응기 | |
CN102618434B (zh) | 一种基于植物仿生学的高效微藻培养装置 | |
AU2009261523A1 (en) | Photobioreactor, system and method for the cultivation of photosynthetic microorganisms | |
US20130205450A1 (en) | Cultivation of photosynthetic organisms | |
KR101155095B1 (ko) | 미세조류의 배양 및 수확 장치 | |
MX2008010831A (es) | Dispositivo de enfriamiento para uso en un horno de arco electrico. | |
CN201424476Y (zh) | 一种光生物反应器 | |
KR101439138B1 (ko) | 미세조류 배양용 광생물 반응기 | |
WO2017028018A1 (zh) | 层叠式薄板光生物反应器 | |
CN102787066A (zh) | 封闭式灌流式光生物反应器 | |
EP2740787B1 (en) | Photobioreactor for culturing photoautotrophic microorganisms | |
CN104031822A (zh) | 一种仿生型叠层式微藻光合反应器 | |
CN204644342U (zh) | 用于培养光合微生物的多孔式培养板 | |
AU2012203478B2 (en) | Photobioreactor and method for algae growth | |
TWI479988B (zh) | 具有二氧化碳捕集功能之微藻養殖裝置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11797631 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11797631 Country of ref document: EP Kind code of ref document: A1 |