WO2017026827A1 - Optical position detector and method of manufacturing same - Google Patents

Optical position detector and method of manufacturing same Download PDF

Info

Publication number
WO2017026827A1
WO2017026827A1 PCT/KR2016/008864 KR2016008864W WO2017026827A1 WO 2017026827 A1 WO2017026827 A1 WO 2017026827A1 KR 2016008864 W KR2016008864 W KR 2016008864W WO 2017026827 A1 WO2017026827 A1 WO 2017026827A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
regions
position detector
substrate
electrode
Prior art date
Application number
PCT/KR2016/008864
Other languages
French (fr)
Korean (ko)
Inventor
김규태
김웅연
김현정
이재우
김동현
문영선
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2017026827A1 publication Critical patent/WO2017026827A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an optical position detector and a manufacturing method thereof, and more particularly, to an optical position detector for detecting the position of the incident light and a manufacturing method of the optical position detector.
  • Optical position detector is a kind of optical sensor for detecting the position of the optical signal.
  • the optical position detector is used for an atomic force microscope or the like.
  • the photo position detector includes a photoactive layer forming a P-N junction. By the incident light incident on the photoactive layer, the current value is changed so that the optical position detector can detect the optical position.
  • Si, Ge and InGaAs photo-position detection devices are widely used for light detection in the ultraviolet, visible and infrared regions, respectively.
  • Si and Ge operate at room temperature, but have limited optical detection bands, while InGaAs must be cooled to 4.2K to achieve high sensitivity.
  • next-generation optoelectronic devices In addition, recently, devices that maximize portability, and are bent and transparent are required as next-generation optoelectronic devices. In order to realize this, the device process must be performed using a transparent and curved substrate, but there are many difficulties in fabricating a curved device using materials such as Si, Ge, and InGaAs, which are susceptible to heat and grow at high temperatures. Therefore, it is necessary to search for materials and structures suitable for optical position detection devices capable of detecting a wide range of light and exhibiting high sensitivity and high efficiency as well as being applied to a monotonous, inexpensive, curved or transparent substrate.
  • One object of the present invention is to provide a photo-position detector capable of realizing high sensitivity and high efficiency while having a simplified structure.
  • One object of the present invention is to provide a method of manufacturing the optical position detector described above.
  • An optical position detector is a substrate in which a plurality of regions are defined, a first electrode formed on one surface of the substrate, and formed on the first electrode, and a current according to incident light is changed and a two-dimensional plane
  • An active layer having a structure, and second electrodes formed on the active layer and formed in each of the regions.
  • the light position detector may further include a guide wall formed on the active layer to partition the plurality of regions and guide the path of the incident light.
  • the active layer may include molybdenum sulfide.
  • the first electrode is formed on one surface of the substrate defined a plurality of regions, on the first electrode, the current according to the incident light is changed 2 To form an active layer having a dimensional planar structure. Subsequently, second electrodes formed in each of the regions are formed on the active layer.
  • a guide wall may be formed on the active layer to partition the plurality of regions and guide the incident light.
  • the active layer may be formed using molybdenum sulfide.
  • the optical position detector according to the embodiments of the present invention may include an active layer having a two-dimensional planar structure such as molybdenum sulfide or graphene, thereby effectively detecting the optical position.
  • the photo-position detector can have a simplified structure by the active layer having a two-dimensional planar structure to replace the conventional P-N junction.
  • SOC system on chip
  • FIG. 1 is a perspective view showing a light position detector according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a light position detector according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a perspective view showing a light position detector according to an embodiment of the present invention.
  • an optical position detector 100 includes a substrate 110, a first electrode 120, an active layer 130, and a second electrode 140.
  • the substrate 110 may be made of silicon material or silicon oxide.
  • the substrate 110 may have a structure in which a silicon thin film and a silicon oxide thin film are sequentially stacked.
  • a plurality of regions is defined in the substrate 110.
  • Each of the second electrodes 140 may be provided in each of the plurality of regions.
  • the first electrode 120 is formed on the substrate 110.
  • the first electrode 120 may be formed to cover the entire upper surface of the substrate 110.
  • the first electrode 120 may function as a common electrode for each of the second electrodes 140.
  • the first electrode 120 may be formed of a metal thin film. That is, the first electrode 120 may be made of a metal material such as aluminum, gold, and silver.
  • the active layer 130 is formed on the first electrode 120.
  • the active layer 130 is provided to allow a current to flow between the first electrode 110 and the second electrodes 140.
  • the active layer 130 is made of a material having a two-dimensional planar structure.
  • the active layer 130 may be made of molybdenum sulfide.
  • the active layer 130 may be made of graphene.
  • the active layer 130 may be formed of a single thin film having a two-dimensional planar structure.
  • the active layer 130 may have a thickness range of 10 nm to 500 nm.
  • the active layer 130 has a two-dimensional planar structure, when light is incident on the active layer 130, the active layer 130 has a resistance value that is changed. As a result, the current value flowing between the first and second electrodes 120 and 140 via the active layer 130 is changed.
  • the second electrodes 140 are formed on the active layer 130.
  • Each of the second electrodes 140 is provided in respective regions defined in the substrate 110. For example, when the regions are divided into four, each of the second electrodes 140 is provided in each of the four regions. That is, when the substrate 110 has a rectangular plate shape, each of the second electrodes 140 may be provided at a position corresponding to each of corners of the substrate 110. Alternatively, each of the second electrodes 140 may be formed in each of edge regions of the substrate 110. In this case, each of the second electrodes 140 may have a stripe shape.
  • a current value flowing by light irradiated to each region may vary in each of the first electrode 120, the active layer 130, and the second electrodes 140. Thereby, the position of the irradiated light can be detected using the current value.
  • Each of the second electrodes 140 may be formed of a metal material.
  • the second electrodes 140 may be made of aluminum, gold, or silver.
  • the light position detector 100 may further include a guide wall 150.
  • the guide wall 150 is formed on the active layer 120.
  • the guide wall 150 partitions the plurality of regions and guides the path of the incident light. As a result, distortion of the path of the incident light can be suppressed.
  • the guide wall 150 may be formed along a boundary between the regions defined in the substrate 110. In addition, the guide wall 150 may be formed to extend vertically from the upper surface of the active layer 130.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a light position detector according to an embodiment of the present invention.
  • the first electrode 120 is formed on one surface of the substrate 110 in which a plurality of regions are defined ( S110).
  • the substrate 110 may be formed using a silicon material or silicon oxide.
  • the substrate 110 may be formed by sequentially stacking a silicon thin film and a silicon oxide thin film.
  • the silicon oxide thin film may be formed by oxidizing an upper portion of the silicon thin film.
  • a plurality of regions are defined in the substrate 110.
  • Each of the plurality of regions may be provided with each of the second electrodes 140 to be subsequently formed.
  • an active layer 130 having a two-dimensional planar structure is formed on the first electrode 120 by changing current according to incident light (S120).
  • the active layer 130 may be formed by transferring a nano thin film having a two-dimensional planar structure formed on a template onto the substrate 110.
  • the active layer 130 may be formed on the substrate 110 through a chemical vapor deposition process or a physical substrate deposition process.
  • the active layer 130 may be formed using a molybdenum sulfide material. In addition, the active layer 130 may be formed using graphene.
  • second electrodes 140 formed in each of the regions are formed on the active layer 130 (S130). After forming the metal layer through the physical vapor deposition process or the chemical vapor deposition process, the second electrodes 140 may be formed in each of the regions by patterning the metal layer.
  • the guide wall 150 may be further formed on the active layer 130 to partition the plurality of regions and guide the incident light (S140).
  • the guide wall 150 partitions the plurality of regions and guides the path of the incident light. As a result, distortion of the path of the incident light can be suppressed.
  • the guide wall 150 may be formed along a boundary between the regions defined in the substrate 110. In addition, the guide wall 150 may be formed to extend vertically from the upper surface of the active layer 130.
  • optical position detector may be applied to atomic force microscopy (AFM).
  • AFM atomic force microscopy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

This optical position detector comprises: a substrate having a plurality of regions defined thereon; a first electrode formed on one surface of the substrate; an active layer formed on the first electrode, having a current that is changed according to incident light, and having a two-dimensional planar structure; and second electrodes formed on the active layer, and formed in each of the regions.

Description

광위치 검출기 및 이의 제조 방법Optical position detector and manufacturing method thereof
본 발명은 광위치 검출기 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는 입사되는 광의 위치를 검출하는 광위치 검출기 및 상기 광 위치 검출기의 제조 방법에 관한 것이다.The present invention relates to an optical position detector and a manufacturing method thereof, and more particularly, to an optical position detector for detecting the position of the incident light and a manufacturing method of the optical position detector.
광위치 검출기는 광신호의 위치를 감지하는 광센서의 일종이다. 상기 광위치 검출기는 원자력간 현미경 등에 이용되고 있다.Optical position detector is a kind of optical sensor for detecting the position of the optical signal. The optical position detector is used for an atomic force microscope or the like.
일반적으로 광위치 검출기는 P-N 접합을 이루는 광활성층을 포함한다. 상기 광활성층에 입사되는 입사광에 의하여, 상기 흐르는 전류값이 변경됨으로써 상기 광위치 검출기는 광위치를 검출할 수 있다. In general, the photo position detector includes a photoactive layer forming a P-N junction. By the incident light incident on the photoactive layer, the current value is changed so that the optical position detector can detect the optical position.
상용화된 Si, Ge 및 InGaAs 광위치 검출 소자는 각각 자외선, 가시광선, 적외선 영역의 광 탐지에 널리 사용되고 있다. 하지만 Si과 Ge 같은 경우는 상온에서 작동되지만, 광 검출 대역이 제한적이고, 한편, InGaAs는 4.2 K까지 냉각해야만 고감도의 성능을 발휘할 수 있다. Commercially available Si, Ge and InGaAs photo-position detection devices are widely used for light detection in the ultraviolet, visible and infrared regions, respectively. Si and Ge, however, operate at room temperature, but have limited optical detection bands, while InGaAs must be cooled to 4.2K to achieve high sensitivity.
또한, 최근 휴대성을 극대화하고 투명하고 휘어지는 소자들이 차세대 광전자 소자로서 요구되고 있다. 이를 실현시키기 위해, 투명하고 휘어지는 기판을 사용하여 소자 공정이 진행되어야 하지만 이러한 기판은 열에 취약해 고온에서 성장되는 Si, Ge, InGaAs 같은 물질을 사용하여 휘어지는 소자를 제작하기에는 많은 어려움이 있다. 따라서, 공정이 단조롭고 비용이 적게 들며 휘어지거나 투명한 기판에 적용될 뿐만 아니라 넓은 영역의 빛을 검출할 수 있고, 고감도, 고효율을 발휘할 수 있는 광위치 검출 소자에 적합한 물질 및 구조를 모색해야 한다.In addition, recently, devices that maximize portability, and are bent and transparent are required as next-generation optoelectronic devices. In order to realize this, the device process must be performed using a transparent and curved substrate, but there are many difficulties in fabricating a curved device using materials such as Si, Ge, and InGaAs, which are susceptible to heat and grow at high temperatures. Therefore, it is necessary to search for materials and structures suitable for optical position detection devices capable of detecting a wide range of light and exhibiting high sensitivity and high efficiency as well as being applied to a monotonous, inexpensive, curved or transparent substrate.
본 발명의 일 목적은 단순화된 구조를 가지면서 고감도 고효율을 실현할 수 있는 광위치 검출기를 제공하는 것이다.One object of the present invention is to provide a photo-position detector capable of realizing high sensitivity and high efficiency while having a simplified structure.
본 발명의 일 목적은 상술한 광위치 검출기의 제조 방법을 제공하는 것이다.One object of the present invention is to provide a method of manufacturing the optical position detector described above.
본 발명의 일 실시예에 따른 광 위치 검출기는 복수의 영역들이 정의된 기판, 상기 기판의 일면 상에 형성된 제1 전극, 상기 제1 전극 상에 형성되며, 입사광에 따른 전류가 변경되며 2차원 평면 구조를 갖는 활성층, 및 상기 활성층 상에 형성되며, 상기 영역들 각각에 형성되는 제2 전극들을 포함한다.An optical position detector according to an embodiment of the present invention is a substrate in which a plurality of regions are defined, a first electrode formed on one surface of the substrate, and formed on the first electrode, and a current according to incident light is changed and a two-dimensional plane An active layer having a structure, and second electrodes formed on the active layer and formed in each of the regions.
본 발명의 일 실시예에 있어서, 광 위치 검출기는, 상기 활성층 상에 형성되며, 상기 복수의 영역들을 구획하며 상기 입사광의 경로를 가이드는 가이드 벽을 더 포함할 수 있다.In an embodiment of the present disclosure, the light position detector may further include a guide wall formed on the active layer to partition the plurality of regions and guide the path of the incident light.
본 발명의 일 실시예에 있어서, 상기 활성층은 황화 몰리브덴을 포함할 수 있다.In one embodiment of the present invention, the active layer may include molybdenum sulfide.
본 발명의 일 실시예에 따른 광 위치 검출기의 제조 방법에 있어서, 복수의 영역들이 정의된 기판의 일면 상에 제1 전극을 형성하고, 상기 제1 전극 상에, 입사광에 따른 전류가 변경되며 2차원 평면 구조를 갖는 활성층을 형성한다. 이후, 상기 활성층 상에, 상기 영역들 각각에 형성되는 제2 전극들을 형성한다.In the manufacturing method of the optical position detector according to an embodiment of the present invention, the first electrode is formed on one surface of the substrate defined a plurality of regions, on the first electrode, the current according to the incident light is changed 2 To form an active layer having a dimensional planar structure. Subsequently, second electrodes formed in each of the regions are formed on the active layer.
본 발명의 일 실시예에 있어서, 상기 활성층 상에, 상기 복수의 영역들을 구획하며 상기 입사광을 가이드는 가이드 벽이 추가적으로 형성될 수 있다.In one embodiment of the present invention, a guide wall may be formed on the active layer to partition the plurality of regions and guide the incident light.
본 발명의 일 실시예에 있어서, 상기 활성층은 황화 몰리브덴을 이용하여 형성될 수 있다.In one embodiment of the present invention, the active layer may be formed using molybdenum sulfide.
본 발명의 실시예들에 따른 광위치 검출기는 황화 몰리브덴 또는 그래핀과 같은 2차원 평면 구조를 갖는 활성층을 포함함으로써, 광 위치를 효과적으로 검출할 수 있다. 또한, 2차원 평면 구조를 갖는 활성층이 기존의 P-N 접합을 대체함으로써 상기 광위치 검출기는 단순화된 구조를 가질 수 있다. 또한, 상기 광위치 검출기를 포함하는 에스오시(SOC; system on chip) 소자를 설계할 경우, 단순한 구조를 구현함에 따라 그 설계의 어려움이 해소될 수 있다.The optical position detector according to the embodiments of the present invention may include an active layer having a two-dimensional planar structure such as molybdenum sulfide or graphene, thereby effectively detecting the optical position. In addition, the photo-position detector can have a simplified structure by the active layer having a two-dimensional planar structure to replace the conventional P-N junction. In addition, when designing a system on chip (SOC) device including the optical position detector, the design difficulty can be solved by implementing a simple structure.
도 1은 본 발명의 일 실시예에 따른 광위치 검출기를 나타낸 사시도이다.1 is a perspective view showing a light position detector according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 광위치 검출기의 제조 방법을 설명하기 위한 순서도이다.2 is a flowchart illustrating a method of manufacturing a light position detector according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 대상물들의 크기와 양은 본 발명의 명확성을 기하기 위하여 실제보다 확대 또는 축소하여 도시한 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In the accompanying drawings, the size and amount of the objects are shown to be enlarged or reduced than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "include" are intended to indicate that there is a feature, step, function, component, or combination thereof described on the specification, and other features, steps, functions, components Or it does not exclude in advance the possibility of the presence or addition of them in combination.
한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
광위치Location 검출기 Detector
도 1은 본 발명의 일 실시예에 따른 광위치 검출기를 나타낸 사시도이다.1 is a perspective view showing a light position detector according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광위치 검출기(100)는 기판(110), 제1 전극(120), 활성층(130) 및 제2 전극(140)을 포함한다.Referring to FIG. 1, an optical position detector 100 according to an exemplary embodiment of the present invention includes a substrate 110, a first electrode 120, an active layer 130, and a second electrode 140.
상기 기판(110)은 실리콘 물질 또는 실리콘 산화물로 이루어질 수 있다. 또한 상기 기판(110)은 실리콘 박막 및 실리콘 산화물 박막이 순차적으로 적층된 구조를 가질 수 있다. The substrate 110 may be made of silicon material or silicon oxide. In addition, the substrate 110 may have a structure in which a silicon thin film and a silicon oxide thin film are sequentially stacked.
상기 기판(110)에는 복수의 영역들이 정의된다. 상기 복수의 영역들 각각에는 상기 제2 전극들(140) 각각이 구비될 수 있다.A plurality of regions is defined in the substrate 110. Each of the second electrodes 140 may be provided in each of the plurality of regions.
상기 제1 전극(120)은 상기 기판(110) 상에 형성된다. 상기 제1 전극(120)은 기판(110)의 상면을 전체적으로 덮도록 형성될 수 있다. 상기 제1 전극(120)은 상기 제2 전극들(140) 각각에 대한 공통 전극으로 기능할 수 있다. 상기 제1 전극(120)은 금속 박막으로 이루어질 수 있다. 즉, 상기 제1 전극(120)은 알루미늄, 금, 은과 같은 금속 물질로 이루어질 수 있다. The first electrode 120 is formed on the substrate 110. The first electrode 120 may be formed to cover the entire upper surface of the substrate 110. The first electrode 120 may function as a common electrode for each of the second electrodes 140. The first electrode 120 may be formed of a metal thin film. That is, the first electrode 120 may be made of a metal material such as aluminum, gold, and silver.
상기 활성층(130)은 상기 제1 전극(120) 상에 형성된다. 상기 활성층(130)은 상기 제1 전극(110) 및 제2 전극들(140) 사이에 전류가 흐를 수 있도록 구비된다. The active layer 130 is formed on the first electrode 120. The active layer 130 is provided to allow a current to flow between the first electrode 110 and the second electrodes 140.
상기 활성층(130)은 2차원 평면 구조를 갖는 물질로 이루어진다. 예를 들면, 상기 활성층(130)은 황화 몰리브덴으로 이루어질 수 있다. 이와 다르게 상기 활성층(130)은 그래핀으로 이루어질 수 있다. 이로써, 상기 활성층(130)은 2차원 평면 구조를 갖는 단일 박막으로 이루어질 수 있다. 예를 들면, 상기 활성층(130)은 10 nm 내지 500 nm의 두께 범위를 가질 수 있다.The active layer 130 is made of a material having a two-dimensional planar structure. For example, the active layer 130 may be made of molybdenum sulfide. Alternatively, the active layer 130 may be made of graphene. As a result, the active layer 130 may be formed of a single thin film having a two-dimensional planar structure. For example, the active layer 130 may have a thickness range of 10 nm to 500 nm.
상기 활성층(130)이 2차원 평면 구조를 가짐에 따라 상기 활성층(130)에 광이 입사될 경우, 상기 활성층(130)은 변경되는 저항값을 가진다. 이로써, 상기 활성층(130)을 경유하여 상기 제1 및 제2 전극들(120, 140) 사이에 흐르는 전류값이 변경된다.As the active layer 130 has a two-dimensional planar structure, when light is incident on the active layer 130, the active layer 130 has a resistance value that is changed. As a result, the current value flowing between the first and second electrodes 120 and 140 via the active layer 130 is changed.
상기 제2 전극들(140)은 상기 활성층(130) 상에 형성된다. The second electrodes 140 are formed on the active layer 130.
상기 제2 전극들(140) 각각은 상기 기판(110)에 정의된 각각의 영역들 내에 구비된다. 예를 들면, 상기 영역들이 4개로 구획될 경우, 상기 제2 전극들(140) 각각은 모두 4개의 영역들 각각에 구비된다. 즉, 상기 기판(110)이 사각 플레이트 형상을 가질 경우, 상기 제2 전극들(140) 각각은 상기 기판(110)의 모서리들 각각에 대응되는 위치에 구비될 수 있다. 이와 다르게, 상기 제2 전극들(140)은 각각은 상기 기판(110)의 에지 영역들 각각에 형성될 수 있다. 이 경우, 상기 제2 전극들(140) 각각은 스트라이프 형상을 가질 수 있다.Each of the second electrodes 140 is provided in respective regions defined in the substrate 110. For example, when the regions are divided into four, each of the second electrodes 140 is provided in each of the four regions. That is, when the substrate 110 has a rectangular plate shape, each of the second electrodes 140 may be provided at a position corresponding to each of corners of the substrate 110. Alternatively, each of the second electrodes 140 may be formed in each of edge regions of the substrate 110. In this case, each of the second electrodes 140 may have a stripe shape.
이로써, 상기 제1 전극(120), 활성층(130) 및 상기 제2 전극들(140) 각각에는 각 영역에 조사된 광에 의하여 흐르는 전류값이 달라질 수 있다. 이로써, 상기 전류값을 이용하여 상기 조사된 광의 위치를 검출할 수 있다.As a result, a current value flowing by light irradiated to each region may vary in each of the first electrode 120, the active layer 130, and the second electrodes 140. Thereby, the position of the irradiated light can be detected using the current value.
상기 제2 전극들(140) 각각은 금속 물질로 이루어질 수 있다. 예를 들면, 상기 제2 전극들(140)은 알루미늄, 금 또는 실버로 이루어질 수 있다.Each of the second electrodes 140 may be formed of a metal material. For example, the second electrodes 140 may be made of aluminum, gold, or silver.
본 발명의 일 실시예에 따른 광위치 검출기(100)는 가이드 벽(150)을 더 포함할 수 있다. 상기 가이드 벽(150)은 상기 활성층(120) 상에 형성된다. 상기 가이드 벽(150)은 상기 복수의 영역들을 구획하며 상기 입사되는 광의 경로를 가이드 한다. 이로써, 상기 입사되는 광의 경로가 왜곡되는 것이 억제될 수 있다. The light position detector 100 according to the embodiment of the present invention may further include a guide wall 150. The guide wall 150 is formed on the active layer 120. The guide wall 150 partitions the plurality of regions and guides the path of the incident light. As a result, distortion of the path of the incident light can be suppressed.
또한, 상기 가이드 벽(150)은 상기 기판(110)에 정의된 각 영역들 간의 경계를 따라 형성될 수 있다. 또한 상기 가이드 벽(150)은 상기 활성층(130)의 상부표면으로부터 수직으로 연장되게 형성될 수 있다.In addition, the guide wall 150 may be formed along a boundary between the regions defined in the substrate 110. In addition, the guide wall 150 may be formed to extend vertically from the upper surface of the active layer 130.
광위치Location 검출기의 제조 방법 Manufacturing method of the detector
도 2는 본 발명의 일 실시예에 따른 광위치 검출기의 제조 방법을 설명하기 위한 순서도이다.2 is a flowchart illustrating a method of manufacturing a light position detector according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 광위치 검출기의 제조 방법에 있어서, 복수의 영역들이 정의된 기판(110)의 일면 상에 제1 전극(120)을 형성한다(S110). 상기 기판(110)은 실리콘 물질 또는 실리콘 산화물을 이용하여 형성될 수 있다. 또한 상기 기판(110)은 실리콘 박막 및 실리콘 산화물 박막을 순차적으로 적층하여 형성될 수 있다. 이 경우, 상기 실리콘 박막의 상부를 산화시켜 상기 실리콘 산화물 박막이 형성될 수 있다.1 and 2, in the method of manufacturing the optical position detector according to the exemplary embodiment, the first electrode 120 is formed on one surface of the substrate 110 in which a plurality of regions are defined ( S110). The substrate 110 may be formed using a silicon material or silicon oxide. In addition, the substrate 110 may be formed by sequentially stacking a silicon thin film and a silicon oxide thin film. In this case, the silicon oxide thin film may be formed by oxidizing an upper portion of the silicon thin film.
한편, 상기 기판(110)에는 복수의 영역들이 정의된다. 상기 복수의 영역들 각각에는 후속하여 형성될 제2 전극들(140) 각각이 구비될 수 있다.Meanwhile, a plurality of regions are defined in the substrate 110. Each of the plurality of regions may be provided with each of the second electrodes 140 to be subsequently formed.
이어서, 상기 제1 전극(120) 상에, 입사광에 따른 전류가 변경되며 2차원 평면 구조를 갖는 활성층(130)을 형성한다(S120). 상기 활성층(130)은 템플릿에 형성된 2차원 평면 구조를 갖는 나노 박막을 상기 기판(110) 상에 전사시켜 형성될 수 있다. 이와 다르게 상기 활성층(130)은, 상기 기판(110) 상에 화학적 기상 증착 공정 또는 물리적 기판 증착 공정을 통하여 형성될 수 있다.Subsequently, an active layer 130 having a two-dimensional planar structure is formed on the first electrode 120 by changing current according to incident light (S120). The active layer 130 may be formed by transferring a nano thin film having a two-dimensional planar structure formed on a template onto the substrate 110. Alternatively, the active layer 130 may be formed on the substrate 110 through a chemical vapor deposition process or a physical substrate deposition process.
상기 활성층(130)은, 황화몰리브덴 물질을 이용하여 형성될 수 있다. 또한 상기 활성층(130)은 그래핀을 이용하여 형성될 수 있다.The active layer 130 may be formed using a molybdenum sulfide material. In addition, the active layer 130 may be formed using graphene.
이어서, 상기 활성층(130) 상에, 상기 영역들 각각에 형성되는 제2 전극들(140)을 형성한다(S130). 상기 제2 전극들(140)은 물리적 기상 증착 공정 또는 화학적 기상 증착 공정을 통하여 금속층을 형성한 후, 상기 금속층을 패터닝함으로써 상기 영역들 각각에 제2 전극들(140)이 형성될 수 있다. Subsequently, second electrodes 140 formed in each of the regions are formed on the active layer 130 (S130). After forming the metal layer through the physical vapor deposition process or the chemical vapor deposition process, the second electrodes 140 may be formed in each of the regions by patterning the metal layer.
본 발명의 일 실시예에 있어서, 상기 활성층(130) 상에, 상기 복수의 영역들을 구획하며 상기 입사광을 가이드는 가이드 벽(150)을 추가적으로 형성할 수 있다(S140).In an embodiment of the present disclosure, the guide wall 150 may be further formed on the active layer 130 to partition the plurality of regions and guide the incident light (S140).
상기 가이드 벽(150)은 상기 복수의 영역들을 구획하며 상기 입사되는 광의 경로를 가이드 한다. 이로써, 상기 입사되는 광의 경로가 왜곡되는 것이 억제될 수 있다. The guide wall 150 partitions the plurality of regions and guides the path of the incident light. As a result, distortion of the path of the incident light can be suppressed.
또한, 상기 가이드 벽(150)은 상기 기판(110)에 정의된 각 영역들 간의 경계를 따라 형성될 수 있다. 또한 상기 가이드 벽(150)은 상기 활성층(130)의 상부표면으로부터 수직으로 연장되게 형성될 수 있다. In addition, the guide wall 150 may be formed along a boundary between the regions defined in the substrate 110. In addition, the guide wall 150 may be formed to extend vertically from the upper surface of the active layer 130.
본 발명의 실시예들에 따른 광위치 검출기는 원자간력 현미경(atomic force microscopy; AFM)등에 적용될 수 있다. The optical position detector according to the embodiments of the present invention may be applied to atomic force microscopy (AFM).
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (6)

  1. 복수의 영역들이 정의된 기판;A substrate in which a plurality of regions are defined;
    상기 기판의 일면 상에 형성된 제1 전극;A first electrode formed on one surface of the substrate;
    상기 제1 전극 상에 형성되며, 입사광에 따른 전류가 변경되며 2차원 평면 구조를 갖는 활성층; 및An active layer formed on the first electrode and having a two-dimensional planar structure with a current changed according to incident light; And
    상기 활성층 상에 형성되며, 상기 영역들 각각에 형성되는 제2 전극들을 포함하는 것을 특징으로 하는 광 위치 검출기.And second electrodes formed on the active layer and formed in each of the regions.
  2. 제1항에 있어서, 상기 활성층 상에 형성되며, 상기 복수의 영역들을 구획하며 상기 입사광의 경로를 가이드는 가이드 벽을 더 포함하는 광 위치 검출기.The light position detector of claim 1, further comprising a guide wall formed on the active layer and partitioning the plurality of regions and guiding the path of the incident light.
  3. 제1항에 있어서, 상기 활성층은 황화 몰리브덴을 포함하는 것을 특징으로 하는 광 위치 검출기The optical position detector of claim 1, wherein the active layer comprises molybdenum sulfide.
  4. 복수의 영역들이 정의된 기판의 일면 상에 제1 전극을 형성하는 단계;Forming a first electrode on one surface of the substrate in which the plurality of regions are defined;
    상기 제1 전극 상에, 입사광에 따른 전류가 변경되며 2차원 평면 구조를 갖는 활성층을 형성하는 단계; 및Forming an active layer on the first electrode, the active layer having a two-dimensional planar structure, in which a current according to incident light is changed; And
    상기 활성층 상에, 상기 영역들 각각에 형성되는 제2 전극들을 형성하는 단계를 포함하는 것을 특징으로 하는 광 위치 검출기의 제조 방법.Forming second electrodes on each of the regions on the active layer.
  5. 제4항에 있어서, 상기 활성층 상에, 상기 복수의 영역들을 구획하며 상기 입사광을 가이드는 가이드 벽을 형성하는 단계를 더 포함하는 광 위치 검출기의 제조 방법.5. The method of claim 4, further comprising forming a guide wall on the active layer that partitions the plurality of regions and guides the incident light.
  6. 제4항에 있어서, 상기 활성층은 황화 몰리브덴을 이용하여 형성된 것을 특징으로 하는 광 위치 검출기의 제조 방법.The method of claim 4, wherein the active layer is formed using molybdenum sulfide.
PCT/KR2016/008864 2015-08-12 2016-08-12 Optical position detector and method of manufacturing same WO2017026827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0113675 2015-08-12
KR1020150113675A KR20170019623A (en) 2015-08-12 2015-08-12 Position sensitive photo detector and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017026827A1 true WO2017026827A1 (en) 2017-02-16

Family

ID=57983363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008864 WO2017026827A1 (en) 2015-08-12 2016-08-12 Optical position detector and method of manufacturing same

Country Status (2)

Country Link
KR (1) KR20170019623A (en)
WO (1) WO2017026827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710749A (en) * 2020-04-23 2020-09-25 中国科学院上海技术物理研究所 Long-line detector splicing structure based on multi-substrate secondary splicing and implementation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244494A (en) * 2000-02-29 2001-09-07 Hamamatsu Photonics Kk Optical tracking sensor
KR20100094605A (en) * 2009-02-19 2010-08-27 주식회사 새한티앤아이 Optical sensor module for sun location tracking type solar generation system
US20110042650A1 (en) * 2009-08-24 2011-02-24 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
KR20140103514A (en) * 2013-02-18 2014-08-27 삼성전자주식회사 Two-Dimensional Material Stacked Flexible Photosensor
KR20150051823A (en) * 2013-11-05 2015-05-13 삼성전자주식회사 Two-dimensional material, method of forming the same and device including two-dimensional material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244494A (en) * 2000-02-29 2001-09-07 Hamamatsu Photonics Kk Optical tracking sensor
KR20100094605A (en) * 2009-02-19 2010-08-27 주식회사 새한티앤아이 Optical sensor module for sun location tracking type solar generation system
US20110042650A1 (en) * 2009-08-24 2011-02-24 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
KR20140103514A (en) * 2013-02-18 2014-08-27 삼성전자주식회사 Two-Dimensional Material Stacked Flexible Photosensor
KR20150051823A (en) * 2013-11-05 2015-05-13 삼성전자주식회사 Two-dimensional material, method of forming the same and device including two-dimensional material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710749A (en) * 2020-04-23 2020-09-25 中国科学院上海技术物理研究所 Long-line detector splicing structure based on multi-substrate secondary splicing and implementation method

Also Published As

Publication number Publication date
KR20170019623A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
CN108073900B (en) Flexible display panel for fingerprint identification, display device and fingerprint identification method
Lee et al. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods
CN107895730B (en) Stack imaging sensor
US20140197305A1 (en) Optical apparatus, light sensitive device with micro-lens and manufacturing method thereof
WO2014021629A1 (en) Sensor panel having anti-reflection layer, and method for manufacturing same
WO2012141431A2 (en) Nanowire sensor having nanowire of network structure
WO2014098406A1 (en) Touch panel comprising anti-reflection layer and method for manufacturing same
WO2011162461A1 (en) Transparent electrode and a production method therefor
US20210359021A1 (en) Control panel and method for fabricating same
WO2017026827A1 (en) Optical position detector and method of manufacturing same
KR20150007301A (en) User interface device having transparent electrodes
WO2013100264A1 (en) Biosensor and method for manufacturing same
WO2014115957A1 (en) Transparent fingerprint recognizing sensor array
FI127409B (en) Radiation window
WO2012067444A2 (en) Conductive film with an oxide film and method for producing same
WO2021017423A1 (en) Display panel and display apparatus
CN105948023B (en) Patterned graphene and preparation method thereof
Kim et al. Parametric optimization of lateral NIPIN phototransistors for flexible image sensors
Park et al. ZnO nanowire based photoelectrical resistive switches for flexible memory
CN108573983A (en) Optical detector and preparation method thereof, fingerprint Identification sensor, display device
WO2015199403A1 (en) Solar cell module package and manufacturing method therefor
WO2013115492A1 (en) Transparent substrate having anti-reflection effect and anti-fingerprint properties
CN109407431A (en) Array substrate and preparation method thereof, display panel
WO2012087075A2 (en) Method for forming fine pattern in large area using laser interference exposure, method for non-planar transfer of the fine pattern formed by the method, and article to which the fine pattern is transferred by the transfer method
CN106159093B (en) Flexible optical sensor and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835467

Country of ref document: EP

Kind code of ref document: A1