WO2017026591A1 - Stereoscopic imaging device using microprism array - Google Patents

Stereoscopic imaging device using microprism array Download PDF

Info

Publication number
WO2017026591A1
WO2017026591A1 PCT/KR2015/013507 KR2015013507W WO2017026591A1 WO 2017026591 A1 WO2017026591 A1 WO 2017026591A1 KR 2015013507 W KR2015013507 W KR 2015013507W WO 2017026591 A1 WO2017026591 A1 WO 2017026591A1
Authority
WO
WIPO (PCT)
Prior art keywords
microprism array
light source
stereoscopic imaging
imaging apparatus
plate
Prior art date
Application number
PCT/KR2015/013507
Other languages
French (fr)
Korean (ko)
Inventor
정기훈
양성표
김재준
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2017026591A1 publication Critical patent/WO2017026591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only

Definitions

  • the present invention relates to a three-dimensional stereoscopic image projection apparatus, and more particularly to a stereoscopic imaging apparatus to obtain a three-dimensional stereoscopic image without wearing a polarizing liquid crystal plate glasses for observing the three-dimensional stereoscopic image.
  • FIG. 1 is a schematic diagram showing a conventional stereoscopic imaging apparatus.
  • a conventional stereoscopic imaging apparatus includes a pair of lenses 10a and 10b for enlarging a light source reflected and reflected on an object, and a light source passing through the pair of lenses 10a and 10b.
  • a pair of imaging elements 12a and 12b for converting a signal into an electrical signal, and an image processor 13 for projecting an electrical signal transmitted from the pair of imaging elements 12a and 12b into a left eye image and a right eye image, respectively.
  • Body 10 is installed therein; And a stereoscopic image processor 20 for converting the left eye image and the right eye image projected by the image processor 13 into 3D stereoscopic images.
  • the related art requires a separate channel for installing a pair of lenses and a pair of imaging elements inside the main body, which requires a lot of manufacturing cost and difficulty in miniaturization, and thus cannot be applied to a microscope or an endoscope.
  • an optical apparatus for receiving and processing an image through a lens of Korean Patent No. 0851576 (2008.08.05), comprising: a first lens, a second lens, and a third lens for photographing a subject; Image input means for receiving images from the first, second, and third lenses; An optical element disposed between the first, second, and third lenses and the image input means to adjust an optical path from each of the lenses toward the image input means; And an image processor configured to image the image data received by the image input means, wherein the first and second lenses are arranged side by side by a predetermined distance on the same first plane, and the third lens is disposed in the An image is arranged between a first lens and a second lens on a second plane different from the first plane, and all images input from the first, second, and third lenses are input to the one image input means.
  • Optical devices have been presented which are characterized by.
  • an object of the present invention is to provide a stereoscopic imaging apparatus using a microprism array that can be applied to a microscope or endoscope because the manufacturing cost is small and can be miniaturized .
  • the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention includes an incidence plane 111 and an outgoing plane 112 through which light sources irradiated and reflected by the object 10 are incident and exited in a horizontal direction, respectively.
  • the plurality of first inclination plates 120 and the plurality of second inclination plates 130 which are formed in the upper and lower directions of the entrance plate 110 and the top and bottom of the exit surface 112, respectively, are formed to be inclined in different directions. And a plurality of first inclination plates 120 and a plurality of second inclination plates 130 corresponding to the first split light source and the right eye image corresponding to the left eye image, respectively.
  • a microprism array 100 aiming at a specific point while converting to a second split light source;
  • a lens 200 installed at a specific point where the first and second split light sources are aimed to enlarge the first split light source and the second split light source;
  • a first projection unit 310 installed to be spaced apart from the lens 200 and projecting the first divided light source and the second separated light source that pass through the lens 200 to the left eye image and the right eye image, respectively.
  • an image sensor 300 including a second projection unit 320.
  • An observation field area (FOV) is formed at the center of the incident surface 111 to simultaneously view the left eye image and the right eye image. It is characterized by.
  • microprism array 100 is characterized in that the plurality of first inclined plate 120 and the plurality of second inclined plate 130 is formed in a structure that is symmetrical in the vertical direction.
  • microprism array 100 is characterized in that the cross section of the first inclined plate 120 and the cross section of the second inclined plate 130 is formed in a right triangle.
  • the microprism array 100 has a structure in which the hypotenuse of the first inclined plate 120 is opposed to the upper side, and the hypotenuse of the second inclined plate 130 is formed in a structure facing the lower side. do.
  • microprism array 100 is characterized in that the plurality of first inclined plate 120 and the second inclined plate 130 is formed by the MEMS process of the exit surface (112).
  • the stereoscopic imaging apparatus 1000 using the microprism array further includes a case 400 in which the microprism array 100, the lens 200, and the image sensor 300 are accommodated therein. It is done.
  • the stereoscopic imaging apparatus using the microprism array according to the present invention has a low manufacturing cost and can be miniaturized, and thus can be applied to a microscope or an endoscope.
  • FIG. 1 is a schematic diagram showing a conventional stereoscopic imaging apparatus
  • FIG. 2 is a conceptual diagram illustrating a stereoscopic imaging apparatus using a microprism array according to the present invention.
  • FIG. 3 is a perspective view showing a stereoscopic imaging apparatus using a microprism array according to the present invention
  • Figure 4 is an exploded perspective view showing a stereoscopic imaging apparatus using a microprism array according to the present invention
  • FIG. 2 is a conceptual diagram illustrating a stereoscopic imaging apparatus using a microprism array according to the present invention
  • FIG. 3 is a perspective view showing a stereoscopic imaging apparatus using a microprism array according to the present invention
  • FIG. 4 is a microprism array according to the present invention.
  • the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention includes a microprism array 100, a lens 200, and an image sensor 300. .
  • the microprism array 100 serves to aim at a specific point while converting a light source irradiated and reflected by the object 10 into a left eye light source and a right eye light source, and an entrance plate 110 and a plurality of first slope plates. 120, a plurality of second slope plates 130.
  • the incidence plate 110 is disposed long in the vertical direction, and includes an incidence surface 111 and an emission surface 112 in which light sources irradiated and reflected on the object 10 are incident and exited in a horizontal direction, respectively, and have a rectangular parallelepiped shape. It can be formed as.
  • the plurality of first inclination plates 120 and the plurality of second inclination plates 130 are formed in upper and lower directions, respectively, on top and bottom of the emission surface 112 of the incidence plate 110, and are inclined in different directions. .
  • the plurality of first inclination plates 120 and the plurality of second inclination plates 130 may be formed to be inclined in opposite directions to each other.
  • first inclined plate 120 and the second inclined plate 130 may have a vertical width of 1 to 15 ⁇ m and a horizontal width of 4 to 100 ⁇ m.
  • the plurality of first inclination plates 120 and the plurality of second inclination plates 130 correspond to a first split light source and a right eye image corresponding to a left eye image, respectively, of the light source passing through the incident plate 110. Aim at a specific point while converting to a second split light source.
  • the lens 200 is installed at a specific point where the first and second split light sources are aimed to enlarge the diameters of the first and second split light sources.
  • the first split light source and the second split light source enlarged by the lens 200 are incident to the image sensor 300.
  • the image sensor 300 is installed to be spaced apart from the lens 200 by a predetermined distance and the first and second split light sources passing through the lens 200 are projected to the left eye image and the right eye image, respectively.
  • the projection unit 310 and the second projection unit 320 is included. Thereafter, the left eye image and the right eye image projected on the first projection unit 310 overlap each other and are converted into 3D stereoscopic images.
  • an observer is provided with an observation field of view (FOV) in which the left eye image and the right eye image can be simultaneously viewed in the center of the incident surface 111, so that the left eye image is opposite from the direction in which the light source is incident. Observation of right eye and right eye can be observed.
  • FOV observation field of view
  • the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention converts a light source irradiated and reflected from an object into a left eye light source and a right eye light source, and aims at a specific point while maintaining a microscopic size.
  • the prism array 100 By performing the prism array 100, there is an advantage that can be applied to a microscope or endoscope because the manufacturing cost is reduced and can be miniaturized.
  • the microprism array 100 may have a structure in which the plurality of first inclined plates 120 and the plurality of second inclined plates 130 are symmetrical in the vertical direction. Accordingly, the plurality of first inclination plates 120 and the plurality of second inclination plates 130 correspond to the first split light source and the right eye image corresponding to the left eye image, respectively, of the light sources passing through the entrance plate 110. It can be aimed more easily to a specific point while converting to a second separated light source.
  • the microprism array 100 may have a structure in which a cross section of the first inclined plate 120 and a cross section of the second inclined plate 130 are at right angles.
  • microprism array 100 is formed in a structure in which the hypotenuse of the first inclined plate 120 is opposed to the upper side, and is formed in a structure in which the hypotenuse of the second inclined plate 130 is opposite to the lower side.
  • the first separated light source emitted from the first inclined plate 120 is incident to the lower portion of the image sensor 300 through the lens 200 and the second emitted from the second inclined plate 130.
  • the separated light source passes through the lens 200 and is incident to the upper portion of the image sensor 300.
  • the first inclined plate 120 and the second inclined plate 130 may be formed by a MEMS process of the emission surface 112. Accordingly, surface roughness of the first slope plate 120 and the second slope plate 130 may be minimized.
  • the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention may further include a case 400 in which the microprism array 100, the lens 200, and the image sensor 300 are housed. Can be.
  • the case 400 includes a fitting body 410, an inserting body 420, a receiving body 430, and a cover body 440.
  • the fitting body 410 has a fitting hole 411 into which the microprism array 100 is fitted, and a fitting protrusion 412 protruding in the horizontal direction is formed at the edge of the fitting hole 411. .
  • the insert 420 has a first insertion hole 421 is formed in communication with the fitting hole 411 therein, the insertion protrusion 412 is inserted into the edge of the first insertion hole 421 Two insertion holes 422 are formed.
  • the accommodating body 430 is coupled to the lens 200 at one end thereof, and an accommodating protrusion 431 is inserted into the first insertion hole 421, and the image sensor 300 is accommodated therein.
  • the cover body 440 is divided into a first cover body 441 and a second cover body 442, and the housing 430 is disposed between the first cover body 441 and the second cover body 442. It is stored. At this time, the cover body 440 may be formed in a cylindrical structure.
  • the case 400 may be mounted on a microscope or an endoscope to apply the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention to a microscope or an endoscope.

Abstract

A stereoscopic imaging device (1000) using a microprism array according to the present invention comprises: a microprism array (100); a lens (200); and an image sensor (300).

Description

마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치Stereoscopic Imaging Device Using Microprism Array
본 발명은 3차원 입체 영상 투영 장치에 관한 것으로, 보다 상세하게는 3차원 입체영상을 관측하는 편광 액정판 안경을 착용하지 않고도 3차원의 입체영상을 얻을수 있도록 한 스테레오스코픽 이미징 장치에 관한 것이다.The present invention relates to a three-dimensional stereoscopic image projection apparatus, and more particularly to a stereoscopic imaging apparatus to obtain a three-dimensional stereoscopic image without wearing a polarizing liquid crystal plate glasses for observing the three-dimensional stereoscopic image.
최근 3D 입체 영화의 성공, 3D TV의 대중화와 함께 본격적인 3D 콘텐츠 서비스 시대가 열리게 될 것이라는 기대가 커지고 있다. 영화와 방송 산업의 3D 진입 가속화는 3D 디스플레이 기술, 3D 콘텐츠 제작, 3D 전송 인프라 등 3D 콘텐츠 산업 활성화와 함께 3D 입체 영상 관련 제반 기술 발전의 토대가 되고 있다. 또한 3D 디스플레이 기술의 발전과 대중의 3D 콘텐츠에 대한 관심의 증가는 3D 방송, 영화, 게임 등과 같이 다양한 경로로 사용자들에게 3D 콘텐츠를 보급할 수 있는 여건을 마련하는 초석이 되고 있다.Recently, with the success of 3D stereoscopic movies and the popularization of 3D TVs, there is growing expectation that the era of full-scale 3D contents service will be opened. The acceleration of 3D entry into the film and broadcasting industry is laying the foundation for the development of 3D stereoscopic technology along with the activation of the 3D contents industry such as 3D display technology, 3D contents production, and 3D transmission infrastructure. In addition, the development of 3D display technology and the increasing interest in 3D content by the public has become a cornerstone for preparing the conditions for distributing 3D content to users through various channels such as 3D broadcasting, movies, and games.
하지만, 이와 같은 본격적인 3D 영상 시대에 대한 기대감에도 불구하고 3D 영상 콘텐츠의 부족과 시청 안전성 이슈는 향후 3D 시장 성장을 저해하는 요인으로 작용할 것이라는 우려도 또한 커지고 있다. 예를 들어, 인체의 입체 영상 인식 구조를 이용하여 양안의 시차를 입체 영상 구현에 활용하는 스테레오스코픽 방식의 경우, 3D 입체 영상의 구현을 위하여 많이 사용되는 방식임에도 불구하고 시청 안전성에 대한 이슈가 끊임없이 제기 되고 있기도 하다. 스테레오스코픽 방식의 3D 입체 영상의 경우 특히 시각적 불편감(visual discomfort)과 시각피로(visual fatigue) 등의 증상이 발생할 수 있는 것으로 알려져 있다.However, despite such expectations for the full-fledged 3D video era, there is also a growing concern that the lack of 3D video content and viewing safety issues will hinder future 3D market growth. For example, the stereoscopic method that uses the parallax of both eyes to implement stereoscopic image using the stereoscopic image recognition structure of the human body, despite the many methods used to implement 3D stereoscopic image, the issue of viewing safety is constantly It is being raised. In the case of stereoscopic 3D stereoscopic images, symptoms such as visual discomfort and visual fatigue are known to occur.
또한, 현재 3D 콘텐츠 제작 워크플로우에서는 기술적 지원의 부족으로 인해 많은 시간과 비용이 소요되는 것으로 알려져 있다. 이러한 높은 비용은 주로 시각적 불편감 없는 영상 제작을 위해 촬영 시에 들어가는 고비용의 수작업 모니터링과 재편집 및 재촬영의 과정에 기인한다. 이러한 높은 제작 비용으로 인한 3D 콘텐츠의 부족은 3D영상 산업의 활성화에 걸림돌이 되고 있다. 따라서 적은 비용으로 보다 쉽게 시각적 불편감 없는 3D 콘텐츠의 제작을 가능하게 하는 방법 및 시스템이 필요하며, 이는 3D 콘텐츠 및 제반 시장을 본격적으로 활성화하는데 크게 기여할 수 있을 것이다.In addition, current 3D content creation workflows are known to be time consuming and costly due to the lack of technical support. This high cost is mainly due to the high cost of manual monitoring, re-editing and re-shooting, which takes place during filming to produce visually uncomfortable images. The lack of 3D content due to such high production costs has been an obstacle to revitalization of the 3D video industry. Therefore, there is a need for a method and system that enables the production of 3D content without visual discomfort more easily at a lower cost, which will greatly contribute to full-fledged activation of 3D content and the overall market.
도 1은 종래의 스테레오스코픽 이미징 장치를 나타낸 개략도이다.1 is a schematic diagram showing a conventional stereoscopic imaging apparatus.
도 1에 도시된 바와 같이, 종래의 스테레오스코픽 이미징 장치는 객체에 조사되어 반사된 광원을 확대하는 한 쌍의 렌즈(10a, 10b)와, 상기 한 쌍의 렌즈(10a, 10b)를 통과한 광원을 전기신호로 변환하는 한 쌍의 촬상 소자(12a, 12b)와, 상기 한 쌍의 촬상 소자(12a, 12b)에서 전송된 전기신호가 각각 좌안시 영상과 우안시 영상으로 투영되는 이미지처리기(13)가 내부에 설치되는 본체(10); 및 상기 이미지처리기에서(13)에 투영된 좌안시 영상과 우안시 영상을 3D 입체영상으로 변환하는 입체영상 프로세서(20);를 포함한다.As shown in FIG. 1, a conventional stereoscopic imaging apparatus includes a pair of lenses 10a and 10b for enlarging a light source reflected and reflected on an object, and a light source passing through the pair of lenses 10a and 10b. A pair of imaging elements 12a and 12b for converting a signal into an electrical signal, and an image processor 13 for projecting an electrical signal transmitted from the pair of imaging elements 12a and 12b into a left eye image and a right eye image, respectively. Body 10 is installed therein; And a stereoscopic image processor 20 for converting the left eye image and the right eye image projected by the image processor 13 into 3D stereoscopic images.
그러나 종래기술은 본체의 내부에 한 쌍의 렌즈와 한 쌍의 촬상 소자를 설치하기 위한 별도의 채널이 필요함으로써, 제조비용이 많이 소요되고 소형화가 어려워서 현미경이나 내시경에 적용할 수 없는 문제점이 있다.However, the related art requires a separate channel for installing a pair of lenses and a pair of imaging elements inside the main body, which requires a lot of manufacturing cost and difficulty in miniaturization, and thus cannot be applied to a microscope or an endoscope.
따라서 상술한 문제점을 해결하기 위한 다양한 스테레오스코픽 이미징 장치의 개발이 필요한 실정이다.Therefore, it is necessary to develop various stereoscopic imaging apparatuses to solve the above problems.
이와 관련된 기술로는 한국등록특허 제0851576호(2008.08.05)의 렌즈를 통해 영상을 입력받아 처리하는 광학장치에 있어서, 피사체를 촬영하기 위한 제1 렌즈, 제2 렌즈, 및 제3 렌즈; 상기 제1, 제2, 및 제3 렌즈로부터의 영상을 수신하는 영상입력수단; 상기 제1, 제2, 및 제3 렌즈와 상기 영상입력수단의 사이에 설치되어, 상기 렌즈 각각으로부터의 광 경로가 상기 영상입력수단을 향하도록 조정하는 광학요소; 및 상기 영상입력수단이 수신한 영상 데이터를 이미지 처리하는 이미지 프로세서;를 포함하고, 상기 제1 및 제2 렌즈는 동일한 제1 평면상에 소정 거리만큼 이격되어 나란히 배열되고, 상기 제3 렌즈는 상기 제1 렌즈와 제2 렌즈의 사이에서 상기 제1 평면과 상이한 제2 평면상에 배열되고, 상기 제1, 제2, 및 제3 렌즈로부터 입력되는 영상이 모두 상기 하나의 영상입력수단으로 입력되는 것을 특징으로 하는 광학장치가 제시된 적이 있었다.Related arts include an optical apparatus for receiving and processing an image through a lens of Korean Patent No. 0851576 (2008.08.05), comprising: a first lens, a second lens, and a third lens for photographing a subject; Image input means for receiving images from the first, second, and third lenses; An optical element disposed between the first, second, and third lenses and the image input means to adjust an optical path from each of the lenses toward the image input means; And an image processor configured to image the image data received by the image input means, wherein the first and second lenses are arranged side by side by a predetermined distance on the same first plane, and the third lens is disposed in the An image is arranged between a first lens and a second lens on a second plane different from the first plane, and all images input from the first, second, and third lenses are input to the one image input means. Optical devices have been presented which are characterized by.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 제조비용이 적게 소요되고 소형화가 가능하여 현미경이나 내시경에 적용이 가능한 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 제공하기 위한 것이다.The present invention has been made to solve the above problems, an object of the present invention is to provide a stereoscopic imaging apparatus using a microprism array that can be applied to a microscope or endoscope because the manufacturing cost is small and can be miniaturized .
본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)는 객체(10)에 조사되어 반사된 광원이 각각 수평방향으로 입사 및 출사되는 입사면(111) 및 출사면(112)을 포함하는 입사판(110), 상기 출사면(112)의 상부 및 하부에 각각 상하방향으로 배열 형성되되, 서로 다른 방향으로 경사지게 형성되는 다수의 제1경사판(120) 및 다수의 제2경사판(130)을 포함하며, 상기 다수의 제1경사판(120) 및 다수의 제2경사판(130)이 상기 입사판(110)을 통과한 광원을 각각 좌안시 영상에 해당하는 제1분리광원 및 우안시 영상에 해당하는 제2분리광원으로 변환하면서 특정지점으로 조준하는 마이크로프리즘 어레이(100); 상기 제1분리광원 및 제2분리광원이 조준된 특정지점에 설치되어 상기 제1분리광원과 제2분리광원을 확대하는 렌즈(200); 및 상기 렌즈(200)와 일정간격 이격되게 설치되어 상기 렌즈(200)를 통과한 제1분리광원과 제2분리광원이 각각 좌안시 영상과 우안시 영상으로 투영되는 제1투영부(310) 및 제2투영부(320)를 포함하는 이미지센서(300);를 포함하며, 상기 입사면(111)의 중심부에 상기 좌안시 영상과 우안시 영상을 동시에 볼 수 있는 관측시야영역(FOV)이 형성되는 것을 특징으로 한다.The stereoscopic imaging apparatus 1000 using the microprism array according to the present invention includes an incidence plane 111 and an outgoing plane 112 through which light sources irradiated and reflected by the object 10 are incident and exited in a horizontal direction, respectively. The plurality of first inclination plates 120 and the plurality of second inclination plates 130 which are formed in the upper and lower directions of the entrance plate 110 and the top and bottom of the exit surface 112, respectively, are formed to be inclined in different directions. And a plurality of first inclination plates 120 and a plurality of second inclination plates 130 corresponding to the first split light source and the right eye image corresponding to the left eye image, respectively. A microprism array 100 aiming at a specific point while converting to a second split light source; A lens 200 installed at a specific point where the first and second split light sources are aimed to enlarge the first split light source and the second split light source; And a first projection unit 310 installed to be spaced apart from the lens 200 and projecting the first divided light source and the second separated light source that pass through the lens 200 to the left eye image and the right eye image, respectively. And an image sensor 300 including a second projection unit 320. An observation field area (FOV) is formed at the center of the incident surface 111 to simultaneously view the left eye image and the right eye image. It is characterized by.
또한, 상기 마이크로프리즘 어레이(100)는 상기 다수의 제1경사판(120)과 다수의 제2경사판(130)이 서로 상하방향으로 대칭되는 구조로 형성되는 것을 특징으로 한다.In addition, the microprism array 100 is characterized in that the plurality of first inclined plate 120 and the plurality of second inclined plate 130 is formed in a structure that is symmetrical in the vertical direction.
또한, 상기 마이크로프리즘 어레이(100)는 상기 제1경사판(120)의 단면과 제2경사판(130)의 단면이 직각삼각형인 구조로 형성되는 것을 특징으로 한다.In addition, the microprism array 100 is characterized in that the cross section of the first inclined plate 120 and the cross section of the second inclined plate 130 is formed in a right triangle.
또한, 상기 마이크로프리즘 어레이(100)는 상기 제1경사판(120)의 빗변이 상측에 대향하는 구조로 형성되며, 상기 제2경사판(130)의 빗변이 하측에 대향하는 구조로 형성되는 것을 특징으로 한다.In addition, the microprism array 100 has a structure in which the hypotenuse of the first inclined plate 120 is opposed to the upper side, and the hypotenuse of the second inclined plate 130 is formed in a structure facing the lower side. do.
또한, 상기 마이크로프리즘 어레이(100)는 상기 다수의 제1경사판(120) 및 제2경사판(130)이 상기 출사면(112)의 멤즈(MEMS) 공정에 의해 형성되는 것을 특징으로 한다.In addition, the microprism array 100 is characterized in that the plurality of first inclined plate 120 and the second inclined plate 130 is formed by the MEMS process of the exit surface (112).
또한, 상기 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)는 상기 마이크로프리즘 어레이(100), 렌즈(200) 및 이미지센서(300)가 내부에 수납되는 케이스(400);를 더 포함하는 것을 특징으로 한다.In addition, the stereoscopic imaging apparatus 1000 using the microprism array further includes a case 400 in which the microprism array 100, the lens 200, and the image sensor 300 are accommodated therein. It is done.
이에 따라, 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치는 제조비용이 적게 소요되고 소형화가 가능하여 현미경이나 내시경에 적용이 가능한 장점이 있다.Accordingly, the stereoscopic imaging apparatus using the microprism array according to the present invention has a low manufacturing cost and can be miniaturized, and thus can be applied to a microscope or an endoscope.
도 1은 종래의 스테레오스코픽 이미징 장치를 나타낸 개략도1 is a schematic diagram showing a conventional stereoscopic imaging apparatus
도 2는 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 나타낸 개념도2 is a conceptual diagram illustrating a stereoscopic imaging apparatus using a microprism array according to the present invention.
도 3은 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 나타낸 사시도3 is a perspective view showing a stereoscopic imaging apparatus using a microprism array according to the present invention
도 4는 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 나타낸 분해사시도Figure 4 is an exploded perspective view showing a stereoscopic imaging apparatus using a microprism array according to the present invention
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다.Hereinafter, the technical spirit of the present invention will be described in more detail with reference to the accompanying drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.The accompanying drawings are only examples to illustrate the technical idea of the present invention in more detail, and thus the technical idea of the present invention is not limited to the forms of the accompanying drawings.
도 2는 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 나타낸 개념도, 도 3은 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 나타낸 사시도, 도 4는 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치를 나타낸 분해사시도이다.2 is a conceptual diagram illustrating a stereoscopic imaging apparatus using a microprism array according to the present invention, FIG. 3 is a perspective view showing a stereoscopic imaging apparatus using a microprism array according to the present invention, and FIG. 4 is a microprism array according to the present invention. An exploded perspective view showing a stereoscopic imaging apparatus using a.
도 2 내지 도 4에 도시된 바와 같이, 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)는 마이크로프리즘 어레이(100), 렌즈(200), 이미지센서(300)를 포함하여 구성된다.As shown in FIGS. 2 to 4, the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention includes a microprism array 100, a lens 200, and an image sensor 300. .
상기 마이크로프리즘 어레이(100)는 객체(10)에 조사되어 반사된 광원을 좌안시 광원 및 우안시 광원으로 변환하면서 특정지점으로 조준하는 역할을 하는 것으로, 입사판(110), 다수의 제1경사판(120), 다수의 제2경사판(130)을 포함한다.The microprism array 100 serves to aim at a specific point while converting a light source irradiated and reflected by the object 10 into a left eye light source and a right eye light source, and an entrance plate 110 and a plurality of first slope plates. 120, a plurality of second slope plates 130.
상기 입사판(110)은 상하방향으로 길게 배치되며, 객체(10)에 조사되어 반사된 광원이 각각 수평방향으로 입사 및 출사되는 입사면(111) 및 출사면(112)을 포함하며, 직육면체 형상으로 형성될 수 있다.The incidence plate 110 is disposed long in the vertical direction, and includes an incidence surface 111 and an emission surface 112 in which light sources irradiated and reflected on the object 10 are incident and exited in a horizontal direction, respectively, and have a rectangular parallelepiped shape. It can be formed as.
상기 다수의 제1경사판(120) 및 다수의 제2경사판(130)은 상기 입사판(110)의 출사면(112) 상부 및 하부에 각각 상하방향으로 배열 형성되되, 서로 다른 방향으로 경사지게 형성된다. 이 때, 상기 다수의 제1경사판(120)과 다수의 제2경사판(130)은 서로 반대 방향으로 경사지게 형성될 수 있다.The plurality of first inclination plates 120 and the plurality of second inclination plates 130 are formed in upper and lower directions, respectively, on top and bottom of the emission surface 112 of the incidence plate 110, and are inclined in different directions. . In this case, the plurality of first inclination plates 120 and the plurality of second inclination plates 130 may be formed to be inclined in opposite directions to each other.
이 때, 상기 제1경사판(120)과 제2경사판(130)은 상하방향 폭이 1 내지 15㎛이고 수평방향 폭이 4 내지 100㎛로 구성될 수 있다.In this case, the first inclined plate 120 and the second inclined plate 130 may have a vertical width of 1 to 15 μm and a horizontal width of 4 to 100 μm.
또한, 상기 다수의 제1경사판(120) 및 다수의 제2경사판(130)은 상기 입사판(110)을 통과한 광원을 각각 좌안시 영상에 해당하는 제1분리광원 및 우안시 영상에 해당하는 제2분리광원으로 변환하면서 특정지점으로 조준한다.In addition, the plurality of first inclination plates 120 and the plurality of second inclination plates 130 correspond to a first split light source and a right eye image corresponding to a left eye image, respectively, of the light source passing through the incident plate 110. Aim at a specific point while converting to a second split light source.
상기 렌즈(200)는 상기 제1분리광원 및 제2분리광원이 조준된 특정지점에 설치되어 상기 제1분리광원 및 제2분리광원의 직경을 확대한다. 이때, 상기 렌즈(200)에 의해 확대된 제1분리광원 및 제2분리광원은 상기 이미지센서(300)로 입사된다.The lens 200 is installed at a specific point where the first and second split light sources are aimed to enlarge the diameters of the first and second split light sources. In this case, the first split light source and the second split light source enlarged by the lens 200 are incident to the image sensor 300.
상기 이미지센서(300)는 상기 렌즈(200)와 일정간격 이격되게 설치되어 상기 렌즈(200)를 통과한 제1분리광원과 제2분리광원이 각각 좌안시 영상과 우안시 영상으로 투영되는 제1투영부(310) 및 제2투영부(320)를 포함한다. 이 후, 상기 제1투영부(310)에 투영된 좌안시 영상과 우안시 영상이 서로 중첩되어 3D입체영상으로 변환된다.The image sensor 300 is installed to be spaced apart from the lens 200 by a predetermined distance and the first and second split light sources passing through the lens 200 are projected to the left eye image and the right eye image, respectively The projection unit 310 and the second projection unit 320 is included. Thereafter, the left eye image and the right eye image projected on the first projection unit 310 overlap each other and are converted into 3D stereoscopic images.
한편, 관찰자는 상기 입사면(111)의 중심부에 상기 좌안시 영상과 우안시 영상을 동시에 볼 수 있는 관측시야영역(FOV)이 형성됨으로써, 상기 광원이 입사되는 방향의 맞은편에서 상기 좌안시 영상과 우안시 영상을 직접 관찰할 수 있다.On the other hand, an observer is provided with an observation field of view (FOV) in which the left eye image and the right eye image can be simultaneously viewed in the center of the incident surface 111, so that the left eye image is opposite from the direction in which the light source is incident. Observation of right eye and right eye can be observed.
이에 따라, 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)는 객체에 조사되어 반사된 광원을 좌안시 광원 및 우안시 광원으로 변환하면서 특정지점으로 조준하는 역할을 매우 미세한 크기의 마이크로프리즘 어레이(100)가 수행함으로써, 제조비용이 적게 소요되고 소형화가 가능하여 현미경이나 내시경에 적용이 가능한 장점이 있다.Accordingly, the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention converts a light source irradiated and reflected from an object into a left eye light source and a right eye light source, and aims at a specific point while maintaining a microscopic size. By performing the prism array 100, there is an advantage that can be applied to a microscope or endoscope because the manufacturing cost is reduced and can be miniaturized.
한편, 상기 마이크로프리즘 어레이(100)는 상기 다수의 제1경사판(120)과 다수의 제2경사판(130)이 서로 상하방향으로 대칭되는 구조로 형성될 수 있다. 이에 따라, 상기 다수의 제1경사판(120) 및 다수의 제2경사판(130)이 상기 입사판(110)을 통과한 광원을 각각 좌안시 영상에 해당하는 제1분리광원 및 우안시 영상에 해당하는 제2분리광원으로 변환하면서 특정지점으로 좀 더 용이하게 조준할 수 있다.Meanwhile, the microprism array 100 may have a structure in which the plurality of first inclined plates 120 and the plurality of second inclined plates 130 are symmetrical in the vertical direction. Accordingly, the plurality of first inclination plates 120 and the plurality of second inclination plates 130 correspond to the first split light source and the right eye image corresponding to the left eye image, respectively, of the light sources passing through the entrance plate 110. It can be aimed more easily to a specific point while converting to a second separated light source.
또한, 상기 마이크로프리즘 어레이(100)는 상기 제1경사판(120)의 단면과 제2경사판(130)의 단면이 직각삼각형인 구조로 형성될 수 있다.In addition, the microprism array 100 may have a structure in which a cross section of the first inclined plate 120 and a cross section of the second inclined plate 130 are at right angles.
또한, 상기 마이크로프리즘 어레이(100)는 상기 제1경사판(120)의 빗변이 상측에 대향하는 구조로 형성되며, 상기 제2경사판(130)의 빗변이 하측에 대향하는 구조로 형성된다.In addition, the microprism array 100 is formed in a structure in which the hypotenuse of the first inclined plate 120 is opposed to the upper side, and is formed in a structure in which the hypotenuse of the second inclined plate 130 is opposite to the lower side.
이에 따라, 상기 제1경사판(120)에서 출사된 제1분리광원은 상기 렌즈(200)를 통과하여 상기 이미지센서(300)의 하부로 입사되며, 상기 제2경사판(130)에서 출사된 제2분리광원은 상기 렌즈(200)를 통과하여 상기 이미지센서(300)의 상부로 입사된다.Accordingly, the first separated light source emitted from the first inclined plate 120 is incident to the lower portion of the image sensor 300 through the lens 200 and the second emitted from the second inclined plate 130. The separated light source passes through the lens 200 and is incident to the upper portion of the image sensor 300.
상기 마이크로프리즘 어레이(100)는 상기 제1경사판(120) 및 제2경사판(130)이 상기 출사면(112)의 멤즈(MEMS) 공정에 의해 형성될 수 있다. 이에 따라, 상기 제1경사판(120) 및 제2경사판(130)의 표면 거칠기를 최소화할 수 있다.In the microprism array 100, the first inclined plate 120 and the second inclined plate 130 may be formed by a MEMS process of the emission surface 112. Accordingly, surface roughness of the first slope plate 120 and the second slope plate 130 may be minimized.
또한, 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)는 상기 마이크로프리즘 어레이(100), 렌즈(200) 및 이미지센서(300)가 내부에 수납되는 케이스(400)를 더 포함할 수 있다.In addition, the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention may further include a case 400 in which the microprism array 100, the lens 200, and the image sensor 300 are housed. Can be.
상기 케이스(400)는 끼움체(410), 삽입체(420), 수납체(430), 커버체(440)를 포함한다.The case 400 includes a fitting body 410, an inserting body 420, a receiving body 430, and a cover body 440.
상기 끼움체(410)는 상기 마이크로프리즘 어레이(100)가 내부에 끼워지는 끼움홀(411)이 형성되며, 상기 끼움홀(411)의 테두리에 수평방향으로 돌출된 끼움돌기(412)가 형성된다.The fitting body 410 has a fitting hole 411 into which the microprism array 100 is fitted, and a fitting protrusion 412 protruding in the horizontal direction is formed at the edge of the fitting hole 411. .
상기 삽입체(420)는 내부에 상기 끼움홀(411)과 연통되는 제1삽입홀(421)이 형성되며, 상기 제1삽입홀(421)의 테두리에 상기 끼움돌기(412)가 삽입되는 제2삽입홀(422)이 형성된다.The insert 420 has a first insertion hole 421 is formed in communication with the fitting hole 411 therein, the insertion protrusion 412 is inserted into the edge of the first insertion hole 421 Two insertion holes 422 are formed.
상기 수납체(430)는 일단에 상기 렌즈(200)가 결합되며 상기 제1삽입홀(421)에 삽입되는 수납돌기(431)가 형성되며, 내부에 상기 이미지센서(300)가 수납된다.The accommodating body 430 is coupled to the lens 200 at one end thereof, and an accommodating protrusion 431 is inserted into the first insertion hole 421, and the image sensor 300 is accommodated therein.
상기 커버체(440)는 제1커버체(441)와 제2커버체(442)로 분리되며, 상기 수납체(430)가 제1커버체(441)와 제2커버체(442) 사이에 수납된다. 이 때, 상기 커버체(440)는 외관이 원통구조로 형성될 수 있다. The cover body 440 is divided into a first cover body 441 and a second cover body 442, and the housing 430 is disposed between the first cover body 441 and the second cover body 442. It is stored. At this time, the cover body 440 may be formed in a cylindrical structure.
상기 케이스(400)를 현미경이나 내시경에 장착하여 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)를 현미경이나 내시경에 적용할 수 있다.The case 400 may be mounted on a microscope or an endoscope to apply the stereoscopic imaging apparatus 1000 using the microprism array according to the present invention to a microscope or an endoscope.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application is not limited, and various modifications can be made without departing from the gist of the present invention as claimed in the claims.
(부호의 설명)(Explanation of the sign)
1000 : 본 발명에 따른 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치1000: stereoscopic imaging apparatus using a microprism array according to the present invention
100 : 마이크로프리즘 어레이 100: microprism array
110 : 입사판 110: entrance plate
111 : 입사면 111: incident surface
112 : 출사면 112: exit surface
120 : 제1경사판 120: first slope
130 : 제2경사판 130: second slope
200 : 렌즈 200 lens
300 : 이미지센서 300: image sensor
310 : 제1투영부 310: first projection
320 : 제2투영부 320: second projection unit
400 : 케이스 400: case
410 : 끼움체 410: fitting
411 : 끼움홀 411: fitting hole
412 : 끼움돌기 412: fitting
420 : 삽입체 420: insert
421 : 제1삽입홀 421: first insertion hole
422 : 제2삽입홀 422: second insertion hole
430 : 수납체 430: storage
431 ; 수납돌기 431; Storage projection
440 : 커버체 440: cover body
441 : 제1커버체 441: first cover body
442 : 제2커버체 442: second cover body

Claims (6)

  1. 객체(10)에 조사되어 반사된 광원이 각각 수평방향으로 입사 및 출사되는 입사면(111) 및 출사면(112)을 포함하는 입사판(110), 상기 출사면(112)의 상부 및 하부에 각각 상하방향으로 배열 형성되되, 서로 다른 방향으로 경사지게 형성되는 다수의 제1경사판(120) 및 다수의 제2경사판(130)을 포함하며, 상기 다수의 제1경사판(120) 및 다수의 제2경사판(130)이 상기 입사판(110)을 통과한 광원을 각각 좌안시 영상에 해당하는 제1분리광원 및 우안시 영상에 해당하는 제2분리광원으로 변환하면서 특정지점으로 조준하는 마이크로프리즘 어레이(100);An incident plate 110 including an entrance surface 111 and an exit surface 112 through which light sources irradiated and reflected by the object 10 are incident and exited in a horizontal direction, respectively, and above and below the exit surface 112. Each of the plurality of first inclination plates 120 and the plurality of first inclination plates 120 and the plurality of second inclination plates 130 are formed to be inclined in different directions, the first inclination plate 120 and the plurality of second A microprism array in which the inclined plate 130 aims at a specific point while converting the light source passing through the entrance plate 110 into a first split light source corresponding to the left eye image and a second split light source corresponding to the right eye image, respectively; 100);
    상기 제1분리광원 및 제2분리광원이 조준된 특정지점에 설치되어 상기 제1분리광원과 제2분리광원을 확대하는 렌즈(200); 및A lens 200 installed at a specific point where the first and second split light sources are aimed to enlarge the first split light source and the second split light source; And
    상기 렌즈(200)와 일정간격 이격되게 설치되어 상기 렌즈(200)를 통과한 제1분리광원과 제2분리광원이 각각 좌안시 영상과 우안시 영상으로 투영되는 제1투영부(310) 및 제2투영부(320)를 포함하는 이미지센서(300);를 포함하며,The first projection unit 310 and the first separation light source and the second separation light source which are installed to be spaced apart from the lens 200 and passed through the lens 200 are projected to the left eye image and the right eye image, respectively. It includes; an image sensor 300 including the two projection unit 320,
    상기 입사면(111)의 중심부에 상기 좌안시 영상과 우안시 영상을 동시에 볼 수 있는 관측시야영역(FOV)이 형성되는 것을 특징으로 하는 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000).A stereoscopic imaging apparatus (1000) using a microprism array, characterized in that an observation field of view (FOV) is formed at the center of the incident surface (111) to simultaneously view the left and right eye images.
  2. 제1항에 있어서, 상기 마이크로프리즘 어레이(100)는The method of claim 1, wherein the microprism array 100
    상기 다수의 제1경사판(120)과 다수의 제2경사판(130)이 서로 상하방향으로 대칭되는 구조로 형성되는 것을 특징으로 하는 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000).The plurality of first inclination plate (120) and the plurality of second inclination plate (130) is a stereoscopic imaging apparatus using a microprism array, characterized in that formed in a structure that is symmetrical in the vertical direction.
  3. 제2항에 있어서, 상기 마이크로프리즘 어레이(100)는The method of claim 2, wherein the microprism array 100
    상기 제1경사판(120)의 단면과 제2경사판(130)의 단면이 직각삼각형인 구조로 형성되는 것을 특징으로 하는 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000).Stereoscopic imaging apparatus using a microprism array, characterized in that the cross-section of the first inclined plate 120 and the cross-section of the second inclined plate 130 is formed in a right triangle.
  4. 제3항에 있어서, 상기 마이크로프리즘 어레이(100)는The method of claim 3, wherein the microprism array 100
    상기 제1경사판(120)의 빗변이 상측에 대향하는 구조로 형성되며, 상기 제2경사판(130)의 빗변이 하측에 대향하는 구조로 형성되는 것을 특징으로 하는 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000).Stereoscopic imaging apparatus using a microprism array, characterized in that the hypotenuse of the first inclined plate 120 is formed to face the upper side, the hypotenuse of the second inclined plate 130 is formed in a structure facing the lower side. (1000).
  5. 제1항에 있어서, 상기 마이크로프리즘 어레이(100)는The method of claim 1, wherein the microprism array 100
    상기 다수의 제1경사판(120) 및 제2경사판(130)이 상기 출사면(112)의 멤즈(MEMS) 공정에 의해 형성되는 것을 특징으로 하는 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000).The plurality of first inclination plate (120) and the second inclination plate (130) is formed by the MEMS process of the exit surface 112, stereoscopic imaging apparatus using a micro-prism array (1000).
  6. 제1항에 있어서, 상기 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000)는The stereoscopic imaging apparatus 1000 of claim 1, wherein the stereoscopic imaging apparatus using the microprism array is provided.
    상기 마이크로프리즘 어레이(100), 렌즈(200) 및 이미지센서(300)가 내부에 수납되는 케이스(400);를 더 포함하는 것을 특징으로 하는 마이크로프리즘 어레이를 이용한 스테레오스코픽 이미징 장치(1000).And a case (400) in which the microprism array (100), the lens (200), and the image sensor (300) are housed therein.
PCT/KR2015/013507 2015-08-10 2015-12-10 Stereoscopic imaging device using microprism array WO2017026591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0112322 2015-08-10
KR1020150112322A KR20170018550A (en) 2015-08-10 2015-08-10 Miniaturized Stereoscopic Imaging Device with Microprism Arrays

Publications (1)

Publication Number Publication Date
WO2017026591A1 true WO2017026591A1 (en) 2017-02-16

Family

ID=57983649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013507 WO2017026591A1 (en) 2015-08-10 2015-12-10 Stereoscopic imaging device using microprism array

Country Status (2)

Country Link
KR (1) KR20170018550A (en)
WO (1) WO2017026591A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075321A (en) * 2002-03-18 2003-09-26 삼성에스디아이 주식회사 Autostereoscopic display apparatus
KR20030092213A (en) * 2002-05-29 2003-12-06 한국전자통신연구원 Single lens stereo camera and stereo image system using the same
KR20070005123A (en) * 2005-07-05 2007-01-10 삼성전자주식회사 Optical system to take a picture of cubic image
US7170677B1 (en) * 2002-01-25 2007-01-30 Everest Vit Stereo-measurement borescope with 3-D viewing
US20080204873A1 (en) * 2007-02-23 2008-08-28 Strategic Patent Acquisitions Llc Techniques for three dimensional displays

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851576B1 (en) 2007-02-15 2008-08-12 주훈 Optical device with triple lenses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170677B1 (en) * 2002-01-25 2007-01-30 Everest Vit Stereo-measurement borescope with 3-D viewing
KR20030075321A (en) * 2002-03-18 2003-09-26 삼성에스디아이 주식회사 Autostereoscopic display apparatus
KR20030092213A (en) * 2002-05-29 2003-12-06 한국전자통신연구원 Single lens stereo camera and stereo image system using the same
KR20070005123A (en) * 2005-07-05 2007-01-10 삼성전자주식회사 Optical system to take a picture of cubic image
US20080204873A1 (en) * 2007-02-23 2008-08-28 Strategic Patent Acquisitions Llc Techniques for three dimensional displays

Also Published As

Publication number Publication date
KR20170018550A (en) 2017-02-20

Similar Documents

Publication Publication Date Title
WO2010147281A1 (en) Viewing range notification method and tv receiver for implementing the same
WO2015163671A1 (en) Image pickup apparatus including lens elements having different diameters
WO2012111970A2 (en) Stereo camera apparatus for a mobile device, and imaging method therefor
WO2015122647A1 (en) Head-mount type display apparatus
WO2013077664A1 (en) Stereoscopic image display device
WO2012030091A2 (en) Stereoscopic image projection system, and stereoscopic image player and projector therefor
WO2018117736A1 (en) Apparatus for displaying holographic images and method of controlling the same
WO2020085564A1 (en) Optical device
WO2017004859A1 (en) 3d display apparatus
WO2016105005A1 (en) Prism sheet for auto-stereoscopic 3d display and display device including same
WO2012046964A2 (en) Stereoscopic image display device for displaying a stereoscopic image by tracing a focused position
WO2019022517A1 (en) Three-dimensional head-up display device for vehicle and method for forming same
WO2017026591A1 (en) Stereoscopic imaging device using microprism array
WO2013022190A1 (en) Method and apparatus for attaching auto stereoscopic display panels
WO2013051796A2 (en) Apparatus for mounting stereoscopic imaging equipment
KR101820648B1 (en) Miniaturized Stereoscopic Imaging Device with Microprism Arrays
WO2014185578A1 (en) Method for aligning optical axis of orthogonal-type stereoscopic camera and orthogonal-type stereoscopic camera
JP3898263B2 (en) Image display device
WO2019142953A1 (en) Foveated near-eye display system for resolving problem of vergence-accommodation conflict
WO2017111274A1 (en) Monocular microscope for capturing stereoscopic image
WO2013085222A1 (en) Apparatus and method for displaying three-dimensional images
CN104136959A (en) Stereoscopic beam splitter
WO2019240388A1 (en) Hr box
WO2011056012A2 (en) Lens system for photographing stereoscopic images
WO2012134064A2 (en) Device for displaying three-dimensional images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901073

Country of ref document: EP

Kind code of ref document: A1