WO2017026395A1 - 塗装機及びこれに用いる回転霧化頭 - Google Patents

塗装機及びこれに用いる回転霧化頭 Download PDF

Info

Publication number
WO2017026395A1
WO2017026395A1 PCT/JP2016/073102 JP2016073102W WO2017026395A1 WO 2017026395 A1 WO2017026395 A1 WO 2017026395A1 JP 2016073102 W JP2016073102 W JP 2016073102W WO 2017026395 A1 WO2017026395 A1 WO 2017026395A1
Authority
WO
WIPO (PCT)
Prior art keywords
paint
chamber
rotary shaft
feed tube
atomizing head
Prior art date
Application number
PCT/JP2016/073102
Other languages
English (en)
French (fr)
Inventor
勝浩 石川
Original Assignee
トリニティ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トリニティ工業株式会社 filed Critical トリニティ工業株式会社
Publication of WO2017026395A1 publication Critical patent/WO2017026395A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces

Definitions

  • the present invention relates to a coating machine in which a rotary atomizing head is attached to the tip of a hollow rotating shaft that is driven to rotate at high speed by an air motor built in the main body of the coating machine, and a rotary atomizing head used in the coating machine.
  • FIG. 4 shows a conventional general rotary atomizing type coating machine 40, in which a rotary atomizing head 50 is attached to the tip of a hollow rotary shaft 43 of an air motor 42 incorporated in a main body 41 of the coating machine.
  • a feed tube 44 is inserted into the shaft 43.
  • the air motor 42 is formed by integrally mounting an air turbine 46 on the rear end side of the hollow rotary shaft 43 supported by a radial bearing 45, and is rotated by compressed air blown from an air supply port 47 formed on the outer periphery of the turbine.
  • the exhaust air is driven and discharged to the outside through the main exhaust passage 48 on the back side of the coating machine 40.
  • the rotary atomizing head 50 has a cylindrical nut (cylinder) that is screwed to the bolt portion 43a of the hollow rotary shaft 43 on the back side thereof via a bell inner 51 that is disposed opposite to the tip opening of the feed tube 44. And a paint chamber 54 in which a nozzle insertion port 53 for inserting the tip of a feed tube 44 inserted into the hollow rotary shaft 43 is formed, and a substantially conical surface is formed on the front side thereof.
  • the rim 55 is formed.
  • the paint or the like supplied from the feed tube 44 to the paint chamber 54 is positively applied to the hollow rotary shaft 43 so as not to flow into the gap between the hollow rotary shaft 43 and the feed tube 44 through the nozzle insertion port 53.
  • the pressure in the hollow rotary shaft 43 is increased.
  • the pressure in the paint chamber 54 of the rotary atomizing head 50 in communication is too high, the atomization state of the paint is adversely affected.
  • the cause is unknown, since the gap between the nozzle insertion port 53 and the feed tube 44 is very narrow, the pressure in the hollow rotary shaft 43 increases, and air passes through the nozzle insertion port 53 to the paint chamber 54 side.
  • the exhaust passage 58 functions as an ejector, and it is conceivable that external air flows backward through the exhaust passage 58 and flows into the hollow rotary shaft 43.
  • FIG. 5 there is also proposed a structure in which an exhaust passage 59 that communicates the inside and the outside is formed on the side wall of the hollow rotary shaft 43 having a relatively wide passage (see Patent Document 2). 5 that are the same as those in FIG. 4 are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the present invention has a technical problem to allow a sufficient centrifugal force to act on the exhaust passage communicating between the inside and the outside of the hollow rotary shaft so that the air in the space can be quickly exhausted.
  • the present invention is a hollow rotary shaft that is driven to rotate by an air motor built in the coating machine body, is supported by a radial bearing, and a rotary atomizing head is attached to the tip thereof.
  • the rotary atomizing head has a cylindrical coupling mechanism attached to and fixed to the hollow rotary shaft, a nozzle insertion port for inserting a tip of a feed tube inserted into the hollow rotary shaft, and the feed
  • a paint chamber that receives the supply of paint from the tube is formed
  • On the front side in a coating machine in which a rim having a substantially frustoconical surface shape is formed, which spreads the paint that has flowed out from the paint chamber by centrifugal force and atomizes at the tip, A pressure adjusting chamber through which the feed tube passes is formed between the nozzle insertion port of the rotating atomizing head and the coupling mechanism, and the pressure adjusting chamber is opened to the outer peripheral surface of the rotating atomizing head.
  • An exhaust passage is formed, The outlet of the
  • the pressure adjusting chamber through which the feed tube passes is formed between the nozzle insertion port formed on the back side of the rotary atomizing head and the cylindrical coupling mechanism, and the pressure adjusting chamber Is formed with an exhaust passage open to the outer peripheral surface.
  • the inner diameter of the pressure adjusting chamber is larger than the inner diameter of the nozzle insertion port and the inner diameter of the hollow rotary shaft, thereby forming orifices on the upstream side and the downstream side of the feed tube with the pressure adjusting chamber interposed therebetween. Therefore, once the air passing through the hollow rotating shaft toward the paint chamber is temporarily stored and the pressure in the pressure adjustment chamber becomes high, the internal air is discharged through the exhaust passage and the pressure is released.
  • the outlet of the exhaust passage is formed in an opening at a position where the linear distance from the rotation center is larger than the radius of the portion of the hollow rotary shaft supported by the radial bearing.
  • the centrifugal force acting on the air is greater than the centrifugal force acting on the outer peripheral surface of the hollow rotary shaft, and therefore, sufficient exhaust volume is ensured as compared with the case where the exhaust passage is formed on the hollow rotary shaft. Can do.
  • a hollow rotary shaft that is rotationally driven by an air motor built in the coating machine body is supported by a radial bearing, and a rotary atomizing head is attached to the tip thereof.
  • the rotary atomizing head has a cylindrical coupling mechanism attached to and fixed to the hollow rotary shaft, a nozzle insertion port for inserting a tip of a feed tube inserted into the hollow rotary shaft, and the feed
  • a paint chamber that receives the supply of paint from the tube is formed,
  • a pressure adjusting chamber through which the feed tube passes is formed between the nozzle insertion port of the rotating atomizing head and the coupling mechanism, and the pressure adjusting chamber is opened to the outer peripheral surface of the rotating atomizing head.
  • An exhaust passage is formed, The outlet of the exhaust passage is characterized in that
  • FIG. 1 shows an example of a coating machine according to the present invention.
  • the coating machine 1 has a rotary atomizing head 20 at the tip of a hollow rotary shaft 12 that is driven to rotate at high speed by an air motor 11 built in the coating machine body 10.
  • the feed tube 13 is inserted into the hollow rotary shaft 12.
  • the air motor 11 is formed by integrally mounting an air turbine 15 on the rear end side of the hollow rotary shaft 12 supported by a radial bearing 14, and is rotated by compressed air blown from an air supply port 16 formed on the outer periphery of the turbine.
  • the exhaust air is driven and discharged to the outside through the main exhaust passage 17 on the back side of the coating machine 1.
  • the rotary atomizing head 20 has a cylindrical nut (cylinder) screwed to the bolt portion 12a of the hollow rotary shaft 12 on the back side thereof via a bell inner 21 disposed opposite to the tip opening of the feed tube 13.
  • Shaped coupling mechanism) 22 a nozzle insertion port 23 for inserting the tip of the feed tube 13 inserted into the hollow rotary shaft 12, and a paint chamber 24 for receiving paint supply from the feed tube 13 are formed on the front side thereof.
  • the rim 25 having a substantially frustoconical surface is formed.
  • a paint outflow hole 26 is formed in the peripheral portion of the bell inner 21 to allow the paint in the paint chamber 24 to flow out to the rim 25 side by centrifugal force when the rotary atomizing head 20 is rotated.
  • a cleaning flow path 27 for cleaning the front side of the bell inner 21 by causing the cleaning liquid supplied into the paint chamber 24 to flow out during cleaning is formed.
  • a pressure adjusting chamber 30 through which the feed tube 13 passes is formed between the nozzle insertion port 23 of the rotary atomizing head 20 and the cylindrical nut 22.
  • the inner diameter of the pressure adjusting chamber 30 is larger than the inner diameter of the hollow rotary shaft 12 and the inner diameter of the nozzle insertion port 23, so that orifices are respectively provided on the upstream side and the downstream side of the feed tube 13 with the pressure adjusting chamber 26 interposed therebetween.
  • 31 and 32 are formed.
  • the upstream orifice 31 is formed by a gap between the hollow rotary shaft 12 and the feed tube 13
  • the downstream orifice 32 is formed by a gap between the nozzle insertion port 23 and the feed tube 13.
  • an exhaust passage 33 opened on the outer peripheral surface of the rotary atomizing head 20 is formed in the pressure adjusting chamber 30.
  • the outlet 34 of the exhaust passage 33 is formed at a position where the linear distance from the rotation center C is larger than the radius of the portion of the hollow rotary shaft 12 supported by the radial bearing 14. That is, the opening position P34 of the outlet 34 is outside the outer peripheral surface position P12 corresponding to the radius of the hollow rotary shaft 12. Further, the sum of the cross-sectional areas of the narrowest portions of the exhaust passages 33 is formed wider than the cross-sectional area of the downstream orifice 32, so that the air in the pressure adjustment chamber 30 can easily escape from the exhaust passage 33 to the outside. ing.
  • the outlet 34 of the exhaust passage 33 is opened to the rear side of the opening position of the shaping air outlets 18 and 19 so that the exhaust from the pressure adjusting chamber 30 does not adversely affect the air flow of the shaping air. Has been.
  • the exhaust flow path 33 is not limited to being formed in a radial shape as shown in FIG. 2A, but is formed, for example, in the tangential direction of the annular peripheral wall of the pressure adjusting chamber 30 as shown in FIG. May be. Although it is preferable that the exhaust flow path 33 shown in FIG.2 (b) is opening backward with respect to the rotation direction, it is not restricted to this.
  • the exhaust passage 33 is not limited to being formed in a horizontal direction (a direction orthogonal to the rotation center C), and the exhaust passage 33 shown by a solid line in FIG. Thus, it may be formed to be inclined to the front side, or may be formed to be inclined to the back side as in the exhaust flow path 33 shown by a broken line in FIG. Furthermore, as shown in FIG. 3B, the channel cross section may be substantially enlarged by branching in the middle.
  • the shape of the exhaust flow path 33 is not limited thereto, and may be, for example, a shape in which the flow path cross section is expanded stepwise or continuously from the pressure adjustment chamber 30 side toward the outlet 34.
  • the exhaust flow path 33 is formed in the pressure adjustment chamber 30, when the pressure in the pressure adjustment chamber 30 becomes high, the exhaust is passed through the exhaust flow path 33.
  • the outlet 34 of the exhaust passage 33 is formed at a position where the linear distance from the rotation center C is larger than the radius of the portion of the hollow rotary shaft 12 supported by the radial bearing 14. Even if the rotational speed is constant, a larger centrifugal force acts than when the exhaust passage is formed in the hollow rotary shaft 12 or the cylindrical nut 22. As a result, the amount of exhaust discharged outside through the exhaust passage 33 increases, so that smooth exhaust can be performed.
  • the change in the pressure adjusting chamber 30 does not directly affect the pressure in the paint chamber 24, so that the coating failure is less likely to occur, and the exhaust gas formed in the pressure adjusting chamber 30 is not affected.
  • the outlet 34 of the flow path 33 is opened at a position where the linear distance from the rotation center C is larger than the radius from the rotation center C to the outer peripheral surface of the hollow rotation shaft 12. Compared with the case where the exhaust passage is formed in the 12 or the cylindrical nut 22, a large centrifugal force can be applied to ensure a sufficient exhaust amount.
  • the present invention can be applied to a coating machine including a rotary atomizing head that is driven to rotate by an air motor built in the coating machine main body, and a rotary atomizing head used for the same.

Landscapes

  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

先端に回転霧化頭が取り付けられた中空回転軸の内外を連通する排気流路に十分な遠心力を作用させて、その空間内の空気をスムースに排出する。 回転霧化頭(20)の背面側に、エアモータ(11)の中空回転軸(12)に取付固定される筒状連結機構(22)と、中空回転軸(12)内に挿通されたフィードチューブ(13)の先端を挿入するノズル挿入口(23)と、フィードチューブ(13)から塗料の供給を受ける塗料室(24)が形成され、ノズル挿入口(23)と連結機構(22)の間に、外周面に開放された排気流路(33)を備えた圧力調整室(30)が形成され、当該排気流路(33)の流出口(34)を、回転中心(C)からの直線距離が、前記中空回転軸(12)のラジアル軸受(14)により支持される部分の半径よりも大きくなる位置に開口形成した。

Description

塗装機及びこれに用いる回転霧化頭
 本発明は、塗装機本体に内蔵されたエアモータで高速回転駆動される中空回転軸の先端に回転霧化頭が取り付けられた塗装機及びこれに用いる回転霧化頭に関する。
 図4は、従来一般の回転霧化式の塗装機40を示し、塗装機本体41に内蔵されたエアモータ42の中空回転軸43の先端に回転霧化頭50が取り付けられており、その中空回転軸43内にフィードチューブ44が挿通されている。
 エアモータ42は、ラジアル軸受45で支持された中空回転軸43の後端側にエアタービン46が一体的に取り付けられて成り、タービン外周に形成された給気口47から吹きつけられる圧縮エアにより回転駆動され、その排気エアは塗装機40の背面側の主排気流路48を通って外部に排出される。
 回転霧化頭50は、フィードチューブ44の先端開口部に対向配設されるベルインナー51を介して、その背面側に、中空回転軸43のボルト部43aに螺合される筒状ナット(筒状連結機構)52と、中空回転軸43内に挿通されたフィードチューブ44の先端を挿入するノズル挿入口53を形成した塗料室54が形成され、その正面側には、略截頭円錐面状のリム55が形成されている。
 回転霧化頭50をエアモータ42により高速回転駆動しながら、負極の高電圧(-45~90kV)を印加し、フィードチューブ44を介して塗料を供給すると、ベルインナー51背面側に滴下された塗料に遠心力が作用し、その周縁部に開口された塗料流出孔56を通って塗料室54から流出し、リム55上で展延され、その先端で霧化される。
 この塗装機40において、フィードチューブ44から塗料室54に供給された塗料等がノズル挿通口53を通って中空回転軸43とフィードチューブ44の隙間内に流入しないように中空回転軸43に積極的に空気を供給し、あるいは、エアタービン47を高速で回転させたときにその排気エアの一部が中空回転軸43内に流入したときに、中空回転軸43内の圧力が高くなり、これに伴って、連通する回転霧化頭50の塗料室54の圧力が高くなり過ぎると、塗料の霧化状態に悪影響を与える。
 例えば、塗料流出孔56から気泡を含む塗料粒子が吹き出されたり、ベルインナー51の中央部に形成されたクリーニング流路57から塗料が微粒化されないまま吹き出されたりして塗装不良を起こすという問題があった。
 そこで、中空回転軸43内の圧力を逃がすため、図4に示すように、回転霧化頭50の背面側に形成されたノズル挿通口53の側面に排気流路58を形成したものが提案された(特許文献1参照)。
 しかしながら、本発明者らの実験によれば、このような排気流路58を形成しても、塗料室54内の圧力が効果的に下がらない場合があることが判明した。
 その原因は不明であるが、ノズル挿通口53とフィードチューブ44の隙間は非常に狭いため、中空回転軸43内の圧力が高くなって、ノズル挿通口53を通って塗料室54側に空気が流れるときに、ノズル挿通口53の流速が大きくなると、排気流路58がエジェクタとして機能し、外部の空気が排気流路58を逆流して中空回転軸43内に流入するということが考えられる。
 一方、図5に示すように、流路の比較的広い中空回転軸43の側壁にその内外を連通する排気流路59を形成したものも提案されている(特許文献2参照)。なお、図5中、図4と共通する部分は、同一符号を付して詳細説明を省略する。
 これによれば、排気流路59が形成された部分の中空回転軸43とフィードチューブ43の間隔が比較的大きいので、排気流路59がエジェクタとして機能することはない。
 しかし、これでも十分な排気量が確保できないことが判明した。
 特に最近では、エアモータ42を今まで以上に高速で回転させるため、あるいは、大吐出量で塗装する際に回転霧化頭50の回転数が低下しないようにするため、エアタービン46に吹き付けられる圧縮エアを、より高圧・大流量で供給することが行われている。
 このような場合に、中空回転軸43内に流入する空気量が増大するため、十分な排気量を確保する必要があるが、排気量はその排気流路59に作用する遠心力に依存し、図5に示すような塗装機では十分な遠心力が作用していないものと考えられる。
特開平09-220498号公報 国際公開第2015/004966号パンフレット
 そこで本発明は、中空回転軸の内外を連通する排気流路に十分な遠心力を作用させて、その空間内の空気を迅速に排気できるようにすることを技術的課題としている。
 この課題を解決するために、本発明は、塗装機本体に内蔵されたエアモータにより回転駆動される中空回転軸が、ラジアル軸受で支持されて、その先端に回転霧化頭が取り付けられ、
 当該回転霧化頭は、その背面側に、前記中空回転軸に取付固定される筒状連結機構と、前記中空回転軸内に挿通されたフィードチューブの先端を挿入するノズル挿入口と、前記フィードチューブから塗料の供給を受ける塗料室が形成され、
 その正面側には、前記塗料室から遠心力により流出された塗料を展延させてその先端で霧化する略截頭円錐面状のリムが形成された塗装機において、
 前記回転霧化頭の前記ノズル挿入口と前記連結機構の間に、前記フィードチューブが貫通する圧力調整室が形成されると共に、当該圧力調整室には回転霧化頭の外周面に開放された排気流路が形成され、
 当該排気流路の流出口は、回転中心からの直線距離が、前記中空回転軸のラジアル軸受により支持された部分の半径よりも大きくなる位置に開口形成されたことを特徴とする。
 本発明に係る塗装機によれば、回転霧化頭の背面側に形成されたノズル挿入口と筒状連結機構の間に、フィードチューブが貫通する圧力調整室が形成され、その圧力調整室には外周面に開放された排気流路が形成されている。
 圧力調整室は、例えば、その内径が、ノズル挿入口の内径及び中空回転軸の内径より大きく形成され、これにより、圧力調整室を挟んでフィードチューブの上流側と下流側にオリフィスが形成されるので、中空回転軸内を通って塗料室に向かう空気が一旦貯留され、圧力調整室内の圧力が高くなると、排気流路を介して内部空気が排出されて圧力が逃される。
 このとき、排気流路の流出口は、回転中心からの直線距離が、前記中空回転軸のラジアル軸受により支持された部分の半径よりも大きくなる位置に開口形成されているので、排気流路内の空気に作用する遠心力は、中空回転軸の外周面に作用する遠心力よりも大きく、したがって、排気流路を中空回転軸に形成する場合に比して、十分な排気量を確保することができる。
本発明に係る塗装機の一例を示す説明図。 本発明に係る回転霧化頭の横断面図。 本発明に係る回転霧化頭の縦断面図。 従来装置を示す説明図。 従来装置を示す説明図。
 本発明は、塗装機本体に内蔵されたエアモータにより回転駆動される中空回転軸がラジアル軸受で支持されて、その先端に回転霧化頭が取り付けられ、
 当該回転霧化頭は、その背面側に、前記中空回転軸に取付固定される筒状連結機構と、前記中空回転軸内に挿通されたフィードチューブの先端を挿入するノズル挿入口と、前記フィードチューブから塗料の供給を受ける塗料室が形成され、
 その正面側には、前記塗料室から遠心力により流出された塗料を展延させてその先端で霧化する略截頭円錐面状のリムが形成された塗装機において、
 前記回転霧化頭の前記ノズル挿入口と前記連結機構の間に、前記フィードチューブが貫通する圧力調整室が形成されると共に、当該圧力調整室には回転霧化頭の外周面に開放された排気流路が形成され、
 当該排気流路の流出口は、回転中心からの直線距離が、前記中空回転軸のラジアル軸受により支持された部分の半径よりも大きくなる位置に開口形成されたことを特徴とする。
 図1は、本発明に係る塗装機の一例であって、塗装機1は、塗装機本体10に内蔵されたエアモータ11で高速回転駆動される中空回転軸12の先端に回転霧化頭20が取り付けられ、その中空回転軸12内にフィードチューブ13が挿通されている。
 エアモータ11は、ラジアル軸受14で支持された中空回転軸12の後端側にエアタービン15が一体的に取り付けられて成り、タービン外周に形成された給気口16から吹きつけられる圧縮エアにより回転駆動され、その排気エアは塗装機1の背面側の主排気流路17を通って外部に排出される。
 回転霧化頭20は、フィードチューブ13の先端開口部に対向配設されるベルインナー21を介して、その背面側に、中空回転軸12のボルト部12aに螺合される筒状ナット(筒状連結機構)22と、中空回転軸12内に挿通されたフィードチューブ13の先端を挿入するノズル挿入口23と、フィードチューブ13から塗料の供給を受ける塗料室24が形成され、その正面側には、略截頭円錐面状のリム25が形成されている。
 ベルインナー21の周縁部には、回転霧化頭20を回転させたに塗料室24内の塗料を遠心力によりリム25側に流出させる塗料流出孔26が形成されると共に、中央部には、洗浄時に塗料室24内に供給された洗浄液を流出させてベルインナー21の正面側を洗浄するクリーニング流路27が形成されている。
 また、回転霧化頭20のノズル挿入口23と筒状ナット22の間に、フィードチューブ13が貫通する圧力調整室30が形成されている。
 圧力調整室30は、その内径が、中空回転軸12の内径及びノズル挿入口23の内径より大きく形成され、これにより、圧力調整室26を挟んでフィードチューブ13の上流側と下流側に夫々オリフィス31、32が形成される。
 上流側のオリフィス31は、中空回転軸12とフィードチューブ13との隙間で形成され、下流側のオリフィス32はノズル挿入口23とフィードチューブ13との隙間で形成されている。
 また、圧力調整室30には回転霧化頭20の外周面に開放された排気流路33が形成されている。
 排気流路33の流出口34は、回転中心Cからの直線距離が、前記中空回転軸12のラジアル軸受14により支持された部分の半径よりも大きくなる位置に開口形成されている。
 すなわち、流出口34の開口位置P34は、中空回転軸12の半径に相当する外周面位置P12の外側にある。
 また、各排気流路33の最狭部の断面積の総和が、下流側のオリフィス32の断面積よりも広く形成され、圧力調整室30内の空気が排気流路33から外部へ抜けやすくなっている。
 なお、圧力調整室30からの排気が、シェーピングエアの空気流に悪影響を及ぼさないように、排気流路33の流出口34はシェーピングエア吹出口18、19の開口位置よりも、背面側に開口されている。
 この排気流路33は、図2(a)に示すように放射状に形成されている場合に限らず、例えば、図2(b)に示すように圧力調整室30の環状周壁の接線方向に形成されていてもよい。図2(b)に示す排気流路33は、回転方向に対して後ろ向きに開口していることが好ましいが、これに限るものではない。
 さらに、排気流路33は、図1に示すように、水平方向(回転中心Cに対して直交する方向)に形成される場合に限らず、図3(a)に実線で示す排気流路33のように、正面側に傾斜して形成する場合でもよく、同図破線で示す排気流路33のように、背面側に傾斜して形成する場合であってもよい。
 さらにまた、図3(b)図示のように、途中で分岐させることにより、実質的に流路断面を大きくする場合であってもよい。
 排気流路33の形状は、これらに限らず、例えば、圧力調整室30側から流出口34に向かって流路断面を段階的又は連続的に拡大させるような形状でもよい。
 以上が本発明の一構成例であって、次にその作用について説明する。
 回転霧化頭20をエアモータ11により高速回転駆動しながら、負極の高電圧(-45~90kV)を印加し、フィードチューブ13を介して塗料を供給すると、ベルインナー21の背面側に滴下された塗料に遠心力が作用し、その周縁部に開口された塗料流出孔26を通って塗料室24から流出し、リム25上で展延され、その先端で霧化される。
 このとき、エアモータ11の排気の一部が後端開口部から中空回転軸12内に流入すると、その空気は、回転霧化頭20へ向かって流下していき、上流側のオリフィス31を通り圧力調整室30に流入する。
 圧力調整室30は、バッファとして機能するので、圧力調整室30に流入する空気により、その内部圧力が変動しても、その変化がダイレクトに塗料室24の圧力変動として反映されることはない。
 また、圧力調整室30には排気流路33が形成されているので、圧力調整室30の圧力が高くなると、当該排気流路33を通って排気される。
 このとき、排気流路33の流出口34は、回転中心Cからの直線距離が、前記中空回転軸12のラジアル軸受14により支持された部分の半径よりも大きくなる位置に開口形成されているので、回転数が一定であったとしても、中空回転軸12又は筒状ナット22に排気流路を形成する場合に比して大きな遠心力が作用する。
 その結果、排気流路33を通って外部に排出される排気量が増大するので、スムースな排気を行うことができる。
 また、何らかの要因により圧力調整室30内で急激な圧力上昇を生じたとしても、下流側のオリフィス32よりも、排気流路33の断面積の方が広いので、下流側オリフィス32を通って塗料室24へ向かう空気の流れ阻止され、圧力調整室30内の空気は排気流路33を通って確実に外部に排出される。
 このように、本発明によれば、圧力調整室30の変化がダイレクトに塗料室24の圧力に影響を与えないため、塗装不良を起こすことが少なく、しかも、圧力調整室30に形成された排気流路33の流出口34は、回転中心Cからの直線距離が、当該回転中心Cから前記中空回転軸12の外周面に至る半径よりも大きくなる位置に開口形成されているので、中空回転軸12又は筒状ナット22に排気流路を形成する場合に比して、大きな遠心力を作用させて、十分な排気量を確保することができる。
 本発明は、塗装機本体に内蔵されたエアモータで回転駆動される回転霧化頭を備えた塗装機及びこれに用いる回転霧化頭に適用し得る。
 1  塗装機
10  塗装機本体
11  エアモータ
12  中空回転軸
13  フィードチューブ
14  ラジアル軸受
15  エアタービン
16  給気口
17  主排気流路
20  回転霧化頭
21  ベルインナー
22  筒状ナット(筒状連結機構)
23  ノズル挿入口
24  塗料室
25  リム
30  圧力調整室
33  排気流路
34  流出口
 C  回転中心

 

Claims (7)

  1.  塗装機本体に内蔵されたエアモータにより回転駆動される中空回転軸が、ラジアル軸受で支持されて、その先端に回転霧化頭が取り付けられ、
     当該回転霧化頭は、その背面側に、前記中空回転軸に取付固定される筒状連結機構と、前記中空回転軸内に挿通されたフィードチューブの先端を挿入するノズル挿入口と、前記フィードチューブから塗料の供給を受ける塗料室が形成され、
     その正面側には、前記塗料室から遠心力により流出された塗料を展延させてその先端で霧化する略截頭円錐面状のリムが形成された塗装機において、
     前記回転霧化頭の前記ノズル挿入口と前記連結機構の間に、前記フィードチューブが貫通する圧力調整室が形成されると共に、当該圧力調整室には回転霧化頭の外周面に開放された排気流路が形成され、
     当該排気流路の流出口は、回転中心からの直線距離が、前記中空回転軸のラジアル軸受により支持された部分の半径よりも大きくなる位置に開口形成されたことを特徴とする塗装機。
  2.  前記排気流路は、圧力調整室側から流出口に向かって流路断面が段階的又は連続的に拡大する形状に形成された請求項1記載の塗装機。
  3.  前記圧力調整室の内径が、ノズル挿入口の内径及び中空回転軸の先端内径より大きく形成された請求項1又は2記載の塗装機。
  4.  前記圧力調整室を挟んでフィードチューブの上流側と下流側に夫々オリフィスが形成され、上流側のオリフィスは中空回転軸とフィードチューブの隙間で形成され、下流側のオリフィスはノズル挿入口とフィードチューブの隙間で形成された請求項3記載の塗装機。
  5.  前記排気流路の最狭部の断面積の総和が、下流側のオリフィスの断面積よりも広く形成された請求項4記載の塗装機。
  6.  塗装機本体に内蔵されたエアモータにより回転駆動される中空回転軸の先端に取り付けられ、
     前記中空回転軸に取付固定される筒状連結機構と、前記中空回転軸内に挿通されたフィードチューブの先端を挿入するノズル挿入口と、前記フィードチューブから塗料の供給を受ける塗料室が背面側に形成され、
     前記塗料室から遠心力により流出された塗料を展延させてその先端で霧化する略截頭円錐面状のリムが正面側に形成された回転霧化頭において、
     前記ノズル挿入口と前記連結機構の間に、前記フィードチューブが貫通する圧力調整室が形成されると共に、当該圧力調整室には外周面に開放された排気流路が形成され、
     当該排気流路の流出口は、回転中心からの直線距離が、前記中空回転軸のラジアル軸受により支持される部分の半径よりも大きくなる位置に開口形成されたことを特徴とする回転霧化頭。
  7.  前記排気流路は、圧力調整室側から流出口に向かって流路断面が段階的又は連続的に拡大する形状に形成された請求項6記載の回転霧化頭。
     
     

     
PCT/JP2016/073102 2015-08-10 2016-08-05 塗装機及びこれに用いる回転霧化頭 WO2017026395A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015157911A JP6525318B2 (ja) 2015-08-10 2015-08-10 塗装機及びこれに用いる回転霧化頭
JP2015-157911 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017026395A1 true WO2017026395A1 (ja) 2017-02-16

Family

ID=57983499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073102 WO2017026395A1 (ja) 2015-08-10 2016-08-05 塗装機及びこれに用いる回転霧化頭

Country Status (2)

Country Link
JP (1) JP6525318B2 (ja)
WO (1) WO2017026395A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243665B (zh) * 2018-01-31 2021-02-26 宁夏金博乐食品科技有限公司 一种农用种子风选加药系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491545A (en) * 1977-12-20 1979-07-20 Air Ind Electrostatic coating spray apparatus
JPH09220498A (ja) * 1996-02-14 1997-08-26 Toyota Motor Corp 回転霧化静電塗装装置
JP2000033292A (ja) * 1998-07-17 2000-02-02 Asahi Sunac Corp 回転霧化頭を用いた静電塗装ガン
JP2014113562A (ja) * 2012-12-11 2014-06-26 Trinity Industrial Co Ltd 回転霧化頭式塗装機
JP2014144388A (ja) * 2013-01-28 2014-08-14 Toyota Motor Corp 塗装装置
WO2015004966A1 (ja) * 2013-07-12 2015-01-15 Abb株式会社 回転霧化頭型塗装機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433080B2 (ja) * 1996-12-03 2003-08-04 Abb株式会社 回転霧化頭型塗装装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491545A (en) * 1977-12-20 1979-07-20 Air Ind Electrostatic coating spray apparatus
JPH09220498A (ja) * 1996-02-14 1997-08-26 Toyota Motor Corp 回転霧化静電塗装装置
JP2000033292A (ja) * 1998-07-17 2000-02-02 Asahi Sunac Corp 回転霧化頭を用いた静電塗装ガン
JP2014113562A (ja) * 2012-12-11 2014-06-26 Trinity Industrial Co Ltd 回転霧化頭式塗装機
JP2014144388A (ja) * 2013-01-28 2014-08-14 Toyota Motor Corp 塗装装置
WO2015004966A1 (ja) * 2013-07-12 2015-01-15 Abb株式会社 回転霧化頭型塗装機

Also Published As

Publication number Publication date
JP6525318B2 (ja) 2019-06-05
JP2017035658A (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6162267B2 (ja) スプレー器具用ノズルヘッド
US9168545B2 (en) Spray nozzle assembly with impingement post-diffuser
US10245602B2 (en) Atomizer nozzle
US6705538B2 (en) Two-medium spraying nozzle and method of using same
KR102168146B1 (ko) 풀콘 공기 보조식 분사 노즐 조립체
JP6908215B2 (ja) 加圧空気アシスト式フルコーンスプレーノズル組立体
JP5500475B2 (ja) 二流体ノズル
JP5733996B2 (ja) 回転霧化式塗装装置
JP2001276678A (ja) 改良型エアキャップを有する空気噴霧ノズルアセンブリ
RU2648430C2 (ru) Способ эксплуатации дискового распылителя, сопловая головка и дисковый распылитель с таковой сопловой головкой
JP2008194696A (ja) スプレイガン
CN110449282A (zh) 一种用于表面处理或上色的喷射装置
CN103846172A (zh) 外混式双介质雾化喷嘴
CN106984459A (zh) 喷雾装置
US20120168538A1 (en) Spin Annular Slit Spray Nozzle and Spray Apparatus Thereof
JP2008500869A (ja) ウオーターミスト発生ヘッド
WO2017026395A1 (ja) 塗装機及びこれに用いる回転霧化頭
US7175109B2 (en) Double-swirl spray nozzle
US11399916B2 (en) Mixing chamber and handpiece
CN112423894B (zh) 旋转雾化器
JP4606065B2 (ja) 塗装機とその回転霧化頭
JP2019529097A (ja) ワンピース型のスプレーノズル・クイックディスコネクト保持キャップを有するスプレーノズルアセンブリ
JP6440160B2 (ja) 広角フルコーンスプレーノズル
JP5684672B2 (ja) 塗装方法及び塗装装置
CN110090747A (zh) 喷雾装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835092

Country of ref document: EP

Kind code of ref document: A1