WO2017026191A1 - Method for cutting brittle substrate - Google Patents

Method for cutting brittle substrate Download PDF

Info

Publication number
WO2017026191A1
WO2017026191A1 PCT/JP2016/069424 JP2016069424W WO2017026191A1 WO 2017026191 A1 WO2017026191 A1 WO 2017026191A1 JP 2016069424 W JP2016069424 W JP 2016069424W WO 2017026191 A1 WO2017026191 A1 WO 2017026191A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
trench line
substrate
brittle substrate
glass substrate
Prior art date
Application number
PCT/JP2016/069424
Other languages
French (fr)
Japanese (ja)
Inventor
佑磨 岩坪
曽山 浩
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2017534133A priority Critical patent/JP6493537B2/en
Priority to CN201680045817.8A priority patent/CN107848862B/en
Priority to KR1020187003638A priority patent/KR102083381B1/en
Publication of WO2017026191A1 publication Critical patent/WO2017026191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for dividing a brittle substrate.
  • a scribe line is formed on the substrate, and then the substrate is divided along the scribe line.
  • the scribe line can be formed by mechanically processing the substrate using the cutting edge.
  • a trench due to plastic deformation is formed on the substrate, and at the same time, a vertical crack is formed immediately below the trench.
  • stress is applied, which is called a breaking process.
  • the substrate is divided by causing the vertical crack to advance completely in the thickness direction.
  • the process of dividing the substrate is relatively often performed immediately after the process of forming a scribe line on the substrate.
  • a scribe line is formed on a glass substrate for each region to be an organic EL display before mounting a sealing cap. For this reason, the contact between the sealing cap and the glass cutter, which becomes a problem when the scribe line is formed on the glass substrate after the sealing cap is provided, can be avoided.
  • the processing to the brittle substrate is performed after the scribe line is formed, and then the breaking process is performed by applying stress.
  • the substrate processing step is not performed between the scribe line forming step and the substrate breaking step, the substrate is usually transported or stored after the scribe line forming step and before the substrate breaking step. In this case, the substrate may be unintentionally divided.
  • the present inventor has developed an original cutting technique.
  • a trench line having no crack is formed immediately below the line.
  • the formation of the trench line defines the position where the brittle substrate will be divided.
  • division along the trench line is not easily generated.
  • the trench line is less likely to break along the scribe line than the normal scribe line. This prevents unintentional fragmentation of the brittle substrate, while increasing the difficulty of accurately performing the fragmentation of the brittle substrate along the trench line.
  • the present invention has been made to solve the above-described problems, and its object is to provide a method for dividing a brittle substrate that can accurately perform division along a trench line that does not have a crack directly underneath it. It is to be.
  • the method for dividing a brittle substrate of the present invention is as follows. a) providing a brittle substrate having a first surface and a second surface opposite to the first surface and having a thickness direction perpendicular to the first surface; b) generating plastic deformation on the first surface of the brittle substrate by moving the blade edge on the first surface while pressing the blade edge onto the first surface of the brittle substrate; Forming a trench line having a portion, wherein in the step of forming the trench line, a load applied to the cutting edge to form a second portion of the trench line forms a first portion of the trench line.
  • the step of forming the trench line is higher than the load applied to the blade edge, so that a crackless state in which the brittle substrate is continuously connected in the direction intersecting the trench line immediately below the trench line is obtained.
  • the stress applying member is separated from the third portion of the second surface of the brittle substrate that faces the first portion of the trench line, and the second surface of the brittle substrate.
  • the brittle substrate is in contact with the fourth portion of the second surface of the brittle substrate that faces the second portion of the trench line and away from the third portion that faces the first portion.
  • a stress applying member is brought into contact with the second surface. That is, prior to the third portion, the stress applying member is brought into contact with the fourth portion facing the second portion where the crack has already occurred along the third portion. Thereby, the separation of the brittle substrate along the second portion is stably generated. Thereafter, the stress applying member is brought into contact with the third portion facing the first portion of the trench line. Thereby, further separation of the brittle substrate occurs stably along the first part. Therefore, the brittle substrate can be stably divided along the entire trench line.
  • FIG. 3 is a schematic sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view (A) taken along line IVA-IVA in FIG. 2 and a schematic cross-sectional view (B) taken along line IVB-IVB in FIG. It is a top view which shows roughly 1 process of the cutting method of the brittle board
  • FIG. 6 is a schematic sectional view taken along line VI-VI in FIG. 5.
  • FIG. 6 is a schematic sectional view taken along line VII-VII in FIG. 5. It is a top view which shows roughly 1 process of the cutting method of the brittle board
  • FIG. 9 is a schematic sectional view taken along line IX-IX in FIG. 8.
  • FIG. 9 is a schematic sectional view taken along line XX in FIG. 8. It is a top view which shows roughly 1 process of the cutting method of the brittle board
  • FIG. 14 is a schematic partial cross-sectional view taken along line XIV-XIV in FIG. 13. It is sectional drawing which shows roughly 1 process of the cutting method of the brittle board
  • the side view (A) which shows roughly the structure of the scribing instrument used for the cutting method of a brittle board
  • a glass substrate 11 is prepared (FIG. 1: step S110).
  • the glass substrate 11 has a first surface SF1 and a second surface SF2 opposite to the first surface SF1. Further, the glass substrate 11 has a thickness direction DT perpendicular to the first surface SF1.
  • a scribing instrument with a cutting edge is prepared. Details of the scribing device will be described later.
  • the blade edge 51 is moved from the start point N1 to the end point N3 via the intermediate point N2 on the first surface SF1.
  • plastic deformation is generated on the first surface SF1 of the glass substrate 11.
  • a trench line TL extending from the start point N1 to the end point N3 via the midpoint N2 is formed on the first surface SF1 (FIG. 1: step S120).
  • three TLs are formed by the movement of the blade edge in the direction DA.
  • the process of forming the trench line TL includes the process of forming the low load section LR (first portion) as a part of the trench line TL (FIG. 1: step S120L) and the high load section HR as a part of the trench line TL. Forming a (second portion) (FIG. 1: Step S120H).
  • a low load section is formed from the start point N1 to the midpoint N2
  • a high load section is formed from the midpoint N2 to the end point N3.
  • the load applied to the cutting edge 51 in the process of forming the high load section HR is higher than the load used in the process of forming the low load section LR.
  • the load applied to the cutting edge 51 in the process of forming the low load section LR is lower than the load used in the process of forming the high load section HR, for example, 30 to 50 of the load in the high load section HR. %. Therefore, the width of the high load section HR is larger than the width of the low load section LR.
  • the high load section HR has a width of 10 ⁇ m
  • the low load section LR has a width of 5 ⁇ m.
  • the depth of the high load section HR is larger than the depth of the low load section LR.
  • the cross section of the trench line TL has, for example, a V shape with an angle of about 150 °.
  • the step of forming the trench line TL is a crackless state in which the glass substrate 11 is continuously connected in the direction DC (FIGS. 4A and 4B) intersecting the trench line TL immediately below the trench line TL. This is done so that a state is obtained.
  • the load applied to the blade edge is made large enough to cause plastic deformation of the glass substrate 11 and small enough not to generate cracks starting from this plastic deformation part.
  • a crack line (FIG. 1: step S130) is formed as follows.
  • an assist line AL that intersects the high load section HR is formed on the first surface SF1 of the glass substrate 11.
  • the assist line AL is accompanied by a crack that penetrates in the thickness direction of the glass substrate 11.
  • the assist line AL can be formed by a normal scribing method.
  • the glass substrate 11 is separated along the assist line AL. This separation can be performed by a normal break process. With this separation as a trigger, the crack of the glass substrate 11 in the thickness direction is extended along only the high load section HR among the low load section LR and the high load section HR of the trench line TL.
  • cracks are generated only along the high load section HR of the low load section LR and the high load section HR of the trench line TL as described above.
  • the crack line CL is formed in a portion between the side newly generated by the separation and the midpoint N2 in the high load section HR.
  • the direction in which the crack line CL is formed is opposite to the direction DA (FIG. 2) in which the trench line TL is formed. Note that a crack line CL is hardly formed in a portion between the side newly generated by the separation and the end point N3. This direction dependency is caused by the state of the cutting edge when the high load section HR is formed, and will be described in detail later.
  • the glass substrate 11 is disconnected continuously in the direction DC intersecting the extending direction of the trench line TL immediately below the high load section HR of the trench line TL by the crack line CL.
  • continuous connection means a connection that is not interrupted by a crack.
  • the portions of the glass substrate 11 may be in contact with each other through the cracks of the crack line CL.
  • a breaking process for dividing the glass substrate 11 along the trench line TL is performed.
  • the crack is extended along the low load section LR starting from the crack line CL.
  • the direction in which the crack extends (arrow PR in FIG. 11) is opposite to the direction DA (FIG. 2) in which the trench line TL is formed.
  • a receiving blade 80 (support portion) is prepared.
  • the receiving blade 80 has a flat surface provided with a gap GP (described later with reference to FIG. 14).
  • the glass substrate 11 (FIG. 9) in which the crack line CL was formed is set
  • a break bar 85 (stress applying member) is prepared.
  • the break bar 85 preferably has a protruding shape so as to locally press the surface of the glass substrate 11, and has a substantially V-shaped shape in FIG. 14.
  • the protruding portion extends linearly.
  • a gap GP is provided in a portion of the surface of the receiving blade 80 that faces the protruding portion of the break bar 85.
  • the break bar 85 is opposed to the second surface SF2 with a space from the second surface SF2 of the glass substrate 11.
  • the second surface SF2 includes a portion SP3 (third portion) facing the low load section LR of the trench line TL in the thickness direction (vertical direction in FIG. 13) and a high load section HR of the trench line TL. And a portion SP4 (fourth portion) opposed to each other in the thickness direction.
  • the break bar 85 is opposed to the second surface SF2 so that the distance between the break bar 85 and the portion SP4 is smaller than the distance between the break bar 85 and the portion SP3.
  • a break bar 85 having a protruding portion (a lower side in FIG. 13) extending along a straight line is prepared, and the break bar 85 is arranged so that the straight line is inclined from the second surface SF2.
  • the break bar 85 is arranged so that the straight line is inclined from the horizontal plane.
  • the surface of the receiving blade 80 is inclined from the horizontal plane.
  • the distance L3 is the distance L3
  • the break bar on the side of the partial SP4 from this reference plane If the distance to the end of 85 (the right end in FIG. 13) is the distance L4, the distance L3> the distance L4 may be obtained in order to obtain the above-described inclination.
  • the difference between the distance L3 and the distance L4 is, for example, about 200 ⁇ m, and preferably 300 ⁇ m or less.
  • the portion on the part SP4 side (the left portion in FIG. 13) of the break bar 85 is glass.
  • the end (the right end in FIG. 13) of the break bar 85 on the part SP ⁇ b> 4 side comes into contact with the receiving blade 80. In this case, the left portion of the break bar 85 cannot perform its function.
  • the break bar 85 is linearly moved relative to the receiving blade 80 in the direction DR (one direction).
  • the break bar 85 is brought into contact with the portion SF4 while being separated from the portion SP3 in the second surface SF2 of the glass substrate 11 (FIG. 1: step S150).
  • the direction DR should just be selected so that the break bar 85 may approach the receiving blade 80, for example, is a direction perpendicular
  • the stress is applied to the part SP4 by the break bar 85 contacting the part SP4 and being pushed onto the part SP4 along the direction DR. Thereby, a crack expands from the crack line CL (FIG. 13) provided along the high load section HR facing the portion SP4. As a result, the glass substrate 11 is separated along the high load section HR.
  • the break bar 85 is further linearly moved relative to the receiving blade 80 in the direction DR (one direction).
  • the break bar 85 is brought into contact with the portion SP3 while further entering the glass substrate 11 from the portion SP4 of the second surface SF2 (FIG. 1: step S160).
  • the stress is applied to the part SP3 by the break bar 85 contacting the part SP3 and being pushed onto the part SP3 along the direction DR.
  • the crack expands from the high load section HR side (right side in the figure) along the low load section LR facing the portion SP3 as indicated by the arrow PR.
  • the glass substrate 11 is separated along the low load section LR.
  • the glass substrate 11 is separated along both the high load section HR and the low load section LR. Thereby, the breaking process which divides
  • the break process using the break bar 85 may be performed by other methods.
  • the stress applying member is first brought into contact with the portion SP4 while being separated from the portion SP3 of the second surface SF2 of the glass substrate 11, and then the second surface SF2 of the glass substrate 11 is contacted. What is necessary is just to be made to contact part SP3.
  • a roller that rolls on the second surface SF2 may be used instead of the break bar. In such a case, since the stress applying member moves from the portion SP4 to the portion SP3, the stress applying member is not necessarily in contact with the portion SP4 when in contact with the portion SP3.
  • the relative movement of the stress applying member with respect to the receiving blade 80 is not limited to a linear movement along one direction, and may involve a more complicated movement.
  • the stress applying member may have a plurality of portions, which may be moved individually.
  • a scribing instrument 50 suitable for forming the above-described trench line TL will be described.
  • the scribing instrument 50 is attached to a scribe head (not shown) and moves relative to the glass substrate 11 to scribe the glass substrate 11.
  • the scribing instrument 50 has a cutting edge 51 and a shank 52. The blade edge 51 is held by the shank 52.
  • the cutting edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1.
  • the plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface).
  • the top surface SD1 and the side surfaces SD2 and SD3 face different directions and are adjacent to each other.
  • the blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex.
  • the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51.
  • the side part PS extends linearly from the protrusion part PP.
  • the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
  • the cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond. In this case, the hardness can be easily increased and the surface roughness can be decreased. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a ⁇ 001 ⁇ plane, and each of the side surfaces SD2 and SD3 is a ⁇ 111 ⁇ plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
  • Diamond that is not a single crystal may be used.
  • polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used.
  • CVD Chemical Vapor Deposition
  • polycrystalline diamond sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, or sintered diamond obtained by bonding diamond particles with a binder such as an iron group element May be used.
  • the shank 52 extends along the axial direction AX.
  • the blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX.
  • the blade edge 51 is pressed against the first surface SF1 of the glass substrate 11. Specifically, the protrusion part PP and the side part PS of the blade edge 51 are pressed in the thickness direction DT of the glass substrate 11.
  • the direction DA is obtained by projecting the direction extending from the protrusion PP along the side part PS onto the first surface SF1, and roughly corresponds to the direction in which the axial direction AX is projected onto the first surface SF1. .
  • the blade edge 51 is dragged on the first surface SF 1 by the shank 52.
  • plastic deformation is generated on the first surface SF ⁇ b> 1 of the glass substrate 11.
  • the trench line TL is formed by this plastic deformation.
  • the formation of the crack line CL shown in FIG. 9 and the progress of the crack shown in FIG. 16 are less likely to occur than when the direction DA is used. More generally speaking, in the trench line TL formed by the movement of the blade edge 51 in the direction DA, cracks are likely to extend in the direction opposite to the direction DA. On the other hand, in the trench line TL formed by the movement of the blade edge 51 in the direction DB, cracks are likely to extend in the same direction as the direction DB. Such direction dependency is presumed to be related to the stress distribution generated in the glass substrate 11 due to the plastic deformation generated when the trench line TL is formed.
  • the break bar 85 is brought into contact with the second surface SF2 so as to be in contact with the portion SP4 of the second surface SF2 of the glass substrate 11 and away from the portion SP3. It is done. That is, before the portion SP3, the break bar 85 is brought into contact with the portion SP4 facing the high load section HR where the crack has already occurred along the portion SP3. Thereby, separation of the glass substrate 11 along the high load section HR facing the portion SP4 occurs stably. Thereafter, as shown in FIG. 16, the break bar 85 is brought into contact with the portion SP3. As a result, further separation of the glass substrate 11 occurs stably along the low load section LR. Therefore, the glass substrate 11 can be stably divided along the entire trench line TL.
  • the break bar 85 is brought into contact with the second surface SF2 of the glass substrate 11 by linearly moving the break bar 85 with respect to the receiving blade 80 along the direction DR.
  • a break can be performed without requiring a complicated operation of the break bar 85 or the receiving blade 80.
  • the cutting edge 51 (FIG. 17A) in the low load section LR as compared with the high load section HR. The load applied to)) is reduced. Thereby, damage to the blade edge 51 can be reduced.
  • the trench line TL is formed before the assist line AL is formed. Thereby, it is possible to avoid the influence of the assist line AL when the trench line TL is formed. In particular, the formation abnormality immediately after the cutting edge 51 passes over the assist line AL for forming the trench line TL can be avoided.
  • crack line CL may be formed in response to assist line AL intersecting with trench line TL. Such a phenomenon may occur when the stress applied to the glass substrate 11 is large when the assist line AL is formed.
  • assist line AL may be formed on first surface SF ⁇ b> 1 of glass substrate 11, and then trench line TL (not shown in FIG. 19) may be formed.
  • assist line AL may be formed on second surface SF2 of glass substrate 11 so as to intersect with high load section HR in the planar layout. Thereby, both the assist line AL and the trench line TL can be formed without affecting each other.
  • scribing instrument 50v may be used instead of scribing instrument 50 (FIGS. 17A and 17B).
  • the blade edge 51v has a conical shape having a vertex and a conical surface SC.
  • the protruding part PPv of the blade edge 51v is constituted by a vertex.
  • the side portion PSv of the blade edge is configured along a virtual line (broken line in FIG. 21B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
  • an assist line AL that intersects a high-load section HR (FIG. 23) described later due to the movement of the blade edge in the direction DB on the first surface SF1 of the glass substrate 11 is on the first surface SF1. It is formed.
  • a trench line TL is formed on the first surface SF1 of the glass substrate 11 from the start point Q1 to the end point Q4 via intermediate points Q2 and Q3.
  • the trench line TL from the start point Q1 to the midpoint Q2 and from the midpoint Q3 to the end point Q4 is formed as a low load section LR.
  • a trench line TL from the midpoint Q2 to the midpoint Q3 is formed as a high load section HR.
  • the glass substrate 11 is separated along the assist line AL. This separation can be performed by a normal break process. As a result of this separation, the crack of the glass substrate 11 in the thickness direction is extended along the trench line TL only in the high load section HR of the trench line TL.
  • the crack line CL is formed along a part of the trench line TL by the extension of the crack described above. Specifically, the crack line CL is formed in a portion between the side newly generated by the separation and the midpoint Q3 in the high load section HR.
  • the direction in which the crack line CL is formed is the same as the direction DB (FIG. 23) in which the trench line TL is formed. Note that the crack line CL is not easily formed in a portion between the side newly generated by the separation and the midpoint Q2. This direction dependency is caused by the state of the cutting edge when the high load section HR is formed, and will be described in detail later.
  • the break process (FIGS. 12 to 16) similar to that of the first embodiment is performed to extend the crack from the halfway point Q3 to the end point Q4 along the trench line TL starting from the crack line CL. Is called. Thereby, the glass substrate 11 is divided.
  • trench line TL may be formed, and then assist line AL may be formed.
  • crack line CL may be formed with the formation of assist line AL as a trigger.
  • assist line AL may be formed on second surface SF2 of glass substrate 11 so as to intersect high load section HR in the planar layout.
  • the high load section HR is formed from the halfway point Q2 to Q3.
  • the high load section HR may be formed at a portion intersecting the assist line AL, for example, from the start point Q1 to the halfway point Q3. May be formed.
  • the scribing instrument 50R includes a scribing wheel 51R, a holder 52R, and a pin 53.
  • the scribing wheel 51R has a substantially disk shape, and its diameter is typically about several millimeters.
  • the scribing wheel 51R is held by a holder 52R via a pin 53 so as to be rotatable around a rotation axis RX.
  • the scribing wheel 51R has an outer peripheral portion PF provided with a cutting edge.
  • the outer peripheral portion PF extends in an annular shape around the rotation axis RX. As shown in FIG. 30A, the outer peripheral portion PF stands up like a ridge line at the visual level, thereby forming a cutting edge composed of a ridge line and an inclined surface.
  • the part that actually acts when the scribing wheel 51R enters the first surface SF1 (below the two-dot chain line in FIG. 30 (B)).
  • the ridgeline of the outer peripheral portion PF has a fine surface shape MS.
  • Surface shape MS preferably has a curved shape having a finite radius of curvature in a front view (FIG. 30B).
  • the scribing wheel 51R is formed using a hard material such as cemented carbide, sintered diamond, polycrystalline diamond, or single crystal diamond.
  • the entire scribing wheel 51R may be made of single crystal diamond from the viewpoint of reducing the surface roughness of the ridgeline and the inclined surface.
  • the formation of the trench line TL using the scribing instrument 50R is performed by rolling the scribing wheel 51R on the first surface SF1 of the glass substrate 11 (FIG. 29: arrow RT), so that the scribing wheel 51R is the first surface SF1. This is done by proceeding upward in the direction DB. Progression by this rolling is performed while pressing the outer peripheral portion PF of the scribing wheel 51R onto the first surface SF1 of the glass substrate 11 by applying a load F to the scribing wheel 51R. Thereby, by generating plastic deformation on the first surface SF1 of the glass substrate 11, a trench line TL having a groove shape is formed.
  • the load F has a vertical component Fp parallel to the thickness direction DT of the glass substrate 11 and an in-plane component Fi parallel to the first surface SF1.
  • the direction DB is the same as the direction of the in-plane component Fi.
  • the trench line TL is formed by using the scribing tool 50 (FIGS. 17A and 17B) or 50v (FIGS. 21A and 21B) moving in the direction DB instead of using the scribing tool 50R moving in the direction DB. B)) may be used.
  • substantially the same effect as in the first embodiment can be obtained.
  • the trench line TL can be formed using a rotating blade edge instead of a fixed blade edge, the life of the blade edge can be extended.
  • the method for dividing a brittle substrate according to each of the above embodiments is particularly preferably applied to a glass substrate, but the brittle substrate may be made of a material other than glass.
  • the brittle substrate may be made of a material other than glass.
  • ceramics, silicon, a compound semiconductor, sapphire, or quartz may be used as a material other than glass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Dicing (AREA)

Abstract

A blade edge is moved on a first surface (SF1) of a brittle substrate (11) while the blade edge is pressed against the first surface (SF1), and a trench line (TL) having a first portion (LR) and a second portion (HR) is thereby formed so as to be in a crackless state. The load applied to the blade edge in order to form the second portion (HR) is greater than the load applied to the blade edge in order to form the first portion (LR). A crack is caused to occur along the second portion (HR). A stress applying member (85) is brought into contact with a fourth portion (SP4) facing the second portion (HR) of the trench line (TL) in the second surface (SF2), while being separated from a third portion (SP3) facing the first portion (LR) of the trench line (TL) in the second surface (SF2). The stress applying member (85) is subsequently brought into contact with the third portion (SP3).

Description

脆性基板の分断方法Method for dividing brittle substrate
 本発明は脆性基板の分断方法に関する。 The present invention relates to a method for dividing a brittle substrate.
 フラットディスプレイパネルまたは太陽電池パネルなどの電気機器の製造において、ガラス基板などの脆性基板を分断することがしばしば必要となる。まず基板上にスクライブラインが形成され、次にこのスクライブラインに沿って基板が分断される。スクライブラインは、刃先を用いて基板を機械的に加工することによって形成され得る。刃先が基板上を摺動または転動することで、基板上に塑性変形によるトレンチが形成されると同時に、このトレンチの直下には垂直クラックが形成される。その後、ブレイク工程と称される応力付与がなされる。これにより上記垂直クラックを厚さ方向に完全に進行させることで、基板が分断される。 In the manufacture of electrical devices such as flat display panels or solar cell panels, it is often necessary to break a brittle substrate such as a glass substrate. First, a scribe line is formed on the substrate, and then the substrate is divided along the scribe line. The scribe line can be formed by mechanically processing the substrate using the cutting edge. When the blade edge slides or rolls on the substrate, a trench due to plastic deformation is formed on the substrate, and at the same time, a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a breaking process. Thus, the substrate is divided by causing the vertical crack to advance completely in the thickness direction.
 基板が分断される工程は、基板にスクライブラインを形成する工程の直後に行われることが比較的多い。しかしながら、スクライブラインを形成する工程とブレイク工程との間において基板を加工する工程を行なうことも提案されている。 The process of dividing the substrate is relatively often performed immediately after the process of forming a scribe line on the substrate. However, it has also been proposed to perform a step of processing the substrate between the step of forming the scribe line and the breaking step.
 たとえば国際公開第2002/104078号の技術によれば、有機ELディスプレイの製造方法において、封止キャップを装着する前に各有機ELディスプレイとなる領域毎にガラス基板上にスクライブラインが形成される。このため、封止キャップを設けた後にガラス基板上にスクライブラインを形成したときに問題となる封止キャップとガラスカッターとの接触を回避させることができる。 For example, according to the technique of International Publication No. 2002/104078, in the method of manufacturing an organic EL display, a scribe line is formed on a glass substrate for each region to be an organic EL display before mounting a sealing cap. For this reason, the contact between the sealing cap and the glass cutter, which becomes a problem when the scribe line is formed on the glass substrate after the sealing cap is provided, can be avoided.
 また、たとえば国際公開第2003/006391号の技術によれば、液晶表示パネルの製造方法において、2つのガラス基板が、スクライブラインが形成された後に貼り合わされる。これにより1度のブレイク工程で2枚の脆性基板を同時にブレイクすることができる。 Further, for example, according to the technique of International Publication No. 2003/006391, in a method for manufacturing a liquid crystal display panel, two glass substrates are bonded together after a scribe line is formed. As a result, two brittle substrates can be simultaneously broken in a single breaking step.
国際公開第2002/104078号International Publication No. 2002/104078 国際公開第2003/006391号International Publication No. 2003/006391
 上記従来の技術によれば、脆性基板への加工がスクライブラインの形成後に行われ、その後の応力付与によりブレイク工程が行われる。このことは、脆性基板への加工時にスクライブライン全体に沿って垂直クラックが既に存在していることを意味する。よって、この垂直クラックの厚さ方向におけるさらなる伸展が加工中に意図せず発生することで、加工中は一体であるべき脆性基板が分離されてしまうことがあり得た。また、スクライブラインの形成工程と基板のブレイク工程との間に基板の加工工程が行われない場合においても、通常、スクライブラインの形成工程の後かつ基板のブレイク工程の前に基板の搬送または保管が必要であり、その際に基板が意図せず分断されてしまうことがあり得た。 According to the above conventional technique, the processing to the brittle substrate is performed after the scribe line is formed, and then the breaking process is performed by applying stress. This means that vertical cracks already exist along the entire scribe line during processing into a brittle substrate. Therefore, the further extension in the thickness direction of the vertical crack occurs unintentionally during the processing, and the brittle substrate that should be integrated during the processing may be separated. Also, even when the substrate processing step is not performed between the scribe line forming step and the substrate breaking step, the substrate is usually transported or stored after the scribe line forming step and before the substrate breaking step. In this case, the substrate may be unintentionally divided.
 上記課題を解決するために本発明者は独自の分断技術を開発してきた。この技術によれば、脆性基板が分断される位置を規定するラインとして、まず、その直下にクラックを有しないトレンチラインが形成される。トレンチラインが形成されることにより、脆性基板が分断されることになる位置が規定される。その後、トレンチラインの直下にクラックが存在していない状態が維持されていれば、トレンチラインに沿った分断が容易には生じにくい。この状態を用いることで、脆性基板が分断されることになる位置を予め規定しつつも、分断されるべき時点より前に脆性基板が意図せず分断されることを防ぐことができる。 In order to solve the above problems, the present inventor has developed an original cutting technique. According to this technique, as a line that defines a position where a brittle substrate is divided, first, a trench line having no crack is formed immediately below the line. The formation of the trench line defines the position where the brittle substrate will be divided. Thereafter, if a state in which no crack is present immediately below the trench line is maintained, division along the trench line is not easily generated. By using this state, it is possible to prevent the brittle substrate from being unintentionally divided before the time point at which it should be divided, while predefining the position where the brittle substrate is to be divided.
 上述したようにトレンチラインは、通常のスクライブラインに比して、それに沿った分断が発生しにくい。これにより脆性基板の意図しない分断が防がれる一方で、脆性基板の分断をトレンチラインに沿って正確に行うことの難易度が高くなるという問題があった。 As described above, the trench line is less likely to break along the scribe line than the normal scribe line. This prevents unintentional fragmentation of the brittle substrate, while increasing the difficulty of accurately performing the fragmentation of the brittle substrate along the trench line.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、その直下にクラックを有しないトレンチラインに沿った分断を正確に行うことができる脆性基板の分断方法を提供することである。 The present invention has been made to solve the above-described problems, and its object is to provide a method for dividing a brittle substrate that can accurately perform division along a trench line that does not have a crack directly underneath it. It is to be.
 本発明の脆性基板の分断方法は、
  a)第1の面と第1の面と反対の第2の面とを有し、第1の面に垂直な厚さ方向を有する脆性基板を準備する工程と、
  b)刃先を脆性基板の第1の面上へ押し付けながら第1の面上で刃先を移動させることによって脆性基板の第1の面上に塑性変形を発生させることで、第1および第2の部分を有するトレンチラインを形成する工程とを備え、トレンチラインを形成する工程において、トレンチラインの第2の部分を形成するために刃先に加えられる荷重は、トレンチラインの第1の部分を形成するために刃先に加えられる荷重よりも高く、トレンチラインを形成する工程は、トレンチラインの直下において脆性基板がトレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行われ、さらに
  c)トレンチラインの第1および第2の部分のうち第2の部分にのみ沿ってクラックを発生させる工程と、
  d)工程c)の後に、脆性基板の第1の面が支持部に対向するように脆性基板を支持部上に置く工程と、
  e)工程d)の後に、応力印加部材を、脆性基板の第2の面のうちトレンチラインの第1の部分に対向する第3の部分からは離しつつ、脆性基板の第2の面のうちトレンチラインの第2の部分に対向する第4の部分に接触させる工程と、
  f)工程e)の後に、脆性基板の第2の面のうち第3の部分に応力印加部材を接触させる工程と、
を有する。
The method for dividing a brittle substrate of the present invention is as follows.
a) providing a brittle substrate having a first surface and a second surface opposite to the first surface and having a thickness direction perpendicular to the first surface;
b) generating plastic deformation on the first surface of the brittle substrate by moving the blade edge on the first surface while pressing the blade edge onto the first surface of the brittle substrate; Forming a trench line having a portion, wherein in the step of forming the trench line, a load applied to the cutting edge to form a second portion of the trench line forms a first portion of the trench line. Therefore, the step of forming the trench line is higher than the load applied to the blade edge, so that a crackless state in which the brittle substrate is continuously connected in the direction intersecting the trench line immediately below the trench line is obtained. C) generating cracks only along the second portion of the first and second portions of the trench line; and
d) after step c), placing the brittle substrate on the support so that the first surface of the brittle substrate faces the support;
e) After step d), the stress applying member is separated from the third portion of the second surface of the brittle substrate that faces the first portion of the trench line, and the second surface of the brittle substrate. Contacting a fourth portion opposite the second portion of the trench line;
f) after step e), bringing the stress applying member into contact with the third portion of the second surface of the brittle substrate;
Have
 本発明によれば、脆性基板の第2の面のうちトレンチラインの第2の部分に対向する第4の部分に接触しかつ第1の部分に対向する第3の部分から離れるように脆性基板の第2の面に応力印加部材が接触させられる。すなわち、第3の部分よりも先に、既にそれに沿ってクラックが発生している第2の部分に対向する第4の部分に応力印加部材が接触させられる。これにより第2の部分に沿った脆性基板の分離が安定的に生じる。この後に、トレンチラインの第1の部分に対向する第3の部分に応力印加部材が接触させられる。これにより、脆性基板のさらなる分離が第1の部分に沿って安定的に生じる。よって、脆性基板をトレンチラインの全体に沿って安定的に分断することができる。 According to the present invention, the brittle substrate is in contact with the fourth portion of the second surface of the brittle substrate that faces the second portion of the trench line and away from the third portion that faces the first portion. A stress applying member is brought into contact with the second surface. That is, prior to the third portion, the stress applying member is brought into contact with the fourth portion facing the second portion where the crack has already occurred along the third portion. Thereby, the separation of the brittle substrate along the second portion is stably generated. Thereafter, the stress applying member is brought into contact with the third portion facing the first portion of the trench line. Thereby, further separation of the brittle substrate occurs stably along the first part. Therefore, the brittle substrate can be stably divided along the entire trench line.
本発明の実施の形態1における脆性基板の分断方法を概略的に示すフロー図である。It is a flowchart which shows schematically the division | segmentation method of a brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 図2の線III-IIIに沿う概略断面図である。FIG. 3 is a schematic sectional view taken along line III-III in FIG. 2. 図2の線IVA-IVAに沿う概略断面図(A)、および図2の線IVB-IVBに沿う概略断面図(B)である。FIG. 4 is a schematic cross-sectional view (A) taken along line IVA-IVA in FIG. 2 and a schematic cross-sectional view (B) taken along line IVB-IVB in FIG. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 図5の線VI-VIに沿う概略断面図である。FIG. 6 is a schematic sectional view taken along line VI-VI in FIG. 5. 図5の線VII-VIIに沿う概略断面図である。FIG. 6 is a schematic sectional view taken along line VII-VII in FIG. 5. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 図8の線IX-IXに沿う概略断面図である。FIG. 9 is a schematic sectional view taken along line IX-IX in FIG. 8. 図8の線X-Xに沿う概略断面図である。FIG. 9 is a schematic sectional view taken along line XX in FIG. 8. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す断面図である。It is sectional drawing which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す断面図である。It is sectional drawing which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 図13の線XIV-XIVに沿う概略的な部分断面図である。FIG. 14 is a schematic partial cross-sectional view taken along line XIV-XIV in FIG. 13. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す断面図である。It is sectional drawing which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法の一工程を概略的に示す断面図である。It is sectional drawing which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法に用いられるスクライビング器具の構成を概略的に示す側面図(A)、および図17(A)の矢印XVIIに対応する視野による刃先の底面図(B)である。The side view (A) which shows roughly the structure of the scribing instrument used for the cutting method of a brittle board | substrate in Embodiment 1 of this invention, and the bottom view of the blade edge | tip by the visual field corresponding to arrow XVII of FIG. 17 (A) ( B). 本発明の実施の形態1の第1の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 1st modification of Embodiment 1 of this invention. 本発明の実施の形態1の第2の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 2nd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第3の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 3rd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第4の変形例における脆性基板の分断方法に用いられるスクライビング器具の構成を概略的に示す側面図(A)、および図21(A)の矢印XXIに対応する視野による刃先の底面図(B)である。Side view (A) schematically showing the configuration of a scribing instrument used in the method for cutting a brittle substrate in the fourth modification of the first embodiment of the present invention, and a field of view corresponding to arrow XXI in FIG. 21 (A) It is a bottom view (B) of the blade edge by. 本発明の実施の形態2における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 2 of this invention. 本発明の実施の形態2における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 2 of this invention. 本発明の実施の形態2における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 2 of this invention. 本発明の実施の形態2の第1の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第1の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第2の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態2の第3の変形例における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in the 3rd modification of Embodiment 2 of this invention. 本発明の実施の形態2における脆性基板の分断方法に用いられるスクライビング器具の構成を概略的に示す側面図である。It is a side view which shows roughly the structure of the scribing instrument used for the cutting method of the brittle board | substrate in Embodiment 2 of this invention. 図29におけるスクライビングホイールおよびピンの構成を概略的に示す正面図(A)、および図30(A)の部分拡大図(B)である。It is the front view (A) which shows schematically the structure of the scribing wheel and pin in FIG. 29, and the elements on larger scale (B) of FIG. 30 (A).
 以下、図面に基づいて本発明の各実施の形態における脆性基板の分断方法について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, a method for dividing a brittle substrate in each embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 本実施の形態のガラス基板11(脆性基板)の分断方法について、図1のフロー図を参照しつつ、以下に説明する。
(Embodiment 1)
A method for dividing the glass substrate 11 (brittle substrate) of the present embodiment will be described below with reference to the flowchart of FIG.
 図2~図4を参照して、まずガラス基板11が準備される(図1:ステップS110)。ガラス基板11は、第1の面SF1と、それと反対の第2の面SF2とを有する。またガラス基板11は、第1の面SF1に垂直な厚さ方向DTを有する。 Referring to FIGS. 2 to 4, first, a glass substrate 11 is prepared (FIG. 1: step S110). The glass substrate 11 has a first surface SF1 and a second surface SF2 opposite to the first surface SF1. Further, the glass substrate 11 has a thickness direction DT perpendicular to the first surface SF1.
 また刃先を有するスクライビング器具が準備される。スクライビング器具の詳細については後述する。 Also, a scribing instrument with a cutting edge is prepared. Details of the scribing device will be described later.
 次に、刃先がガラス基板11の第1の面SF1上へ押し付けられながら、第1の面SF1上で刃先51が始点N1から途中点N2を経由して終点N3へ移動させられる。これによってガラス基板11の第1の面SF1上に塑性変形が発生させられる。これによって第1の面SF1上に、始点N1から途中点N2を経由して終点N3へ延びるトレンチラインTLが形成される(図1:ステップS120)。図2においては、方向DAへの刃先の移動により、3つのTLが形成される。 Next, while the blade edge is pressed onto the first surface SF1 of the glass substrate 11, the blade edge 51 is moved from the start point N1 to the end point N3 via the intermediate point N2 on the first surface SF1. Thus, plastic deformation is generated on the first surface SF1 of the glass substrate 11. As a result, a trench line TL extending from the start point N1 to the end point N3 via the midpoint N2 is formed on the first surface SF1 (FIG. 1: step S120). In FIG. 2, three TLs are formed by the movement of the blade edge in the direction DA.
 トレンチラインTLを形成する工程は、トレンチラインTLの一部として低荷重区間LR(第1の部分)を形成する工程(図1:ステップS120L)と、トレンチラインTLの一部として高荷重区間HR(第2の部分)を形成する工程(図1:ステップS120H)とを含む。図2においては、始点N1から途中点N2まで低荷重区間が形成され、途中点N2から終点N3まで高荷重区間が形成される。高荷重区間HRを形成する工程において刃先51に加えられる荷重は、低荷重区間LRを形成する工程で用いられる荷重よりも高い。逆に言えば、低荷重区間LRを形成する工程において刃先51に加えられる荷重は、高荷重区間HRを形成する工程で用いられる荷重よりも低く、たとえば、高荷重区間HRの荷重の30~50%程度である。そのため、高荷重区間HRの幅は、低荷重区間LRの幅よりも大きい。たとえば、高荷重区間HRが幅10μmを有し、低荷重区間LRが幅5μmを有する。また高荷重区間HRの深さは、低荷重区間LRの深さよりも大きい。トレンチラインTLの断面は、たとえば、角度150°程度のV字形状を有する。 The process of forming the trench line TL includes the process of forming the low load section LR (first portion) as a part of the trench line TL (FIG. 1: step S120L) and the high load section HR as a part of the trench line TL. Forming a (second portion) (FIG. 1: Step S120H). In FIG. 2, a low load section is formed from the start point N1 to the midpoint N2, and a high load section is formed from the midpoint N2 to the end point N3. The load applied to the cutting edge 51 in the process of forming the high load section HR is higher than the load used in the process of forming the low load section LR. Conversely, the load applied to the cutting edge 51 in the process of forming the low load section LR is lower than the load used in the process of forming the high load section HR, for example, 30 to 50 of the load in the high load section HR. %. Therefore, the width of the high load section HR is larger than the width of the low load section LR. For example, the high load section HR has a width of 10 μm, and the low load section LR has a width of 5 μm. Further, the depth of the high load section HR is larger than the depth of the low load section LR. The cross section of the trench line TL has, for example, a V shape with an angle of about 150 °.
 トレンチラインTLを形成する工程は、トレンチラインTLの直下においてガラス基板11がトレンチラインTLと交差する方向DC(図4(A)および(B))において連続的につながっている状態であるクラックレス状態が得られるように行われる。このためには、刃先に加えられる荷重が、ガラス基板11の塑性変形を発生させる程度に大きく、かつ、この塑性変形部を起点としたクラックを発生させない程度に小さくされる。 The step of forming the trench line TL is a crackless state in which the glass substrate 11 is continuously connected in the direction DC (FIGS. 4A and 4B) intersecting the trench line TL immediately below the trench line TL. This is done so that a state is obtained. For this purpose, the load applied to the blade edge is made large enough to cause plastic deformation of the glass substrate 11 and small enough not to generate cracks starting from this plastic deformation part.
 次に、クラックライン(図1:ステップS130)が、以下のように形成される。 Next, a crack line (FIG. 1: step S130) is formed as follows.
 図5~図7を参照して、まず、ガラス基板11の第1の面SF1上において高荷重区間HRに交差するアシストラインALが形成される。アシストラインALは、ガラス基板11の厚さ方向に浸透するクラックを伴う。アシストラインALは、通常のスクライブ方法によって形成し得る。 5 to 7, first, an assist line AL that intersects the high load section HR is formed on the first surface SF1 of the glass substrate 11. The assist line AL is accompanied by a crack that penetrates in the thickness direction of the glass substrate 11. The assist line AL can be formed by a normal scribing method.
 次に、アシストラインALに沿ってガラス基板11が分離される。この分離は、通常のブレイク工程によって行い得る。この分離をきっかけとして、厚さ方向におけるガラス基板11のクラックが、トレンチラインTLの低荷重区間LRおよび高荷重区間HRのうち高荷重区間HRのみに沿って伸展させられる。 Next, the glass substrate 11 is separated along the assist line AL. This separation can be performed by a normal break process. With this separation as a trigger, the crack of the glass substrate 11 in the thickness direction is extended along only the high load section HR among the low load section LR and the high load section HR of the trench line TL.
 図8および図9を参照して、以上により、トレンチラインTLの低荷重区間LRおよび高荷重区間HRのうち高荷重区間HRにのみ沿ってクラックが発生させられる。具体的には、高荷重区間HRのうち、分離によって新たに生じた辺と、途中点N2との間の部分に、クラックラインCLが形成される。クラックラインCLが形成される方向は、トレンチラインTLが形成された方向DA(図2)と反対である。なお、分離によって新たに生じた辺と終点N3との間の部分にはクラックラインCLが形成されにくい。この方向依存性は、高荷重区間HRの形成時における刃先の状態に起因するものであり、詳しくは後述する。 Referring to FIGS. 8 and 9, cracks are generated only along the high load section HR of the low load section LR and the high load section HR of the trench line TL as described above. Specifically, the crack line CL is formed in a portion between the side newly generated by the separation and the midpoint N2 in the high load section HR. The direction in which the crack line CL is formed is opposite to the direction DA (FIG. 2) in which the trench line TL is formed. Note that a crack line CL is hardly formed in a portion between the side newly generated by the separation and the end point N3. This direction dependency is caused by the state of the cutting edge when the high load section HR is formed, and will be described in detail later.
 図10を参照して、クラックラインCLによってトレンチラインTLの高荷重区間HRの直下において、ガラス基板11はトレンチラインTLの延在方向と交差する方向DCにおいて連続的なつながりが断たれている。ここで「連続的なつながり」とは、言い換えれば、クラックによって遮られていないつながりのことである。なお、上述したように連続的なつながりが断たれている状態において、クラックラインCLのクラックを介してガラス基板11の部分同士が接触していてもよい。 Referring to FIG. 10, the glass substrate 11 is disconnected continuously in the direction DC intersecting the extending direction of the trench line TL immediately below the high load section HR of the trench line TL by the crack line CL. Here, “continuous connection” means a connection that is not interrupted by a crack. In addition, in the state where the continuous connection is broken as described above, the portions of the glass substrate 11 may be in contact with each other through the cracks of the crack line CL.
 次に、トレンチラインTLに沿ってガラス基板11を分断するブレイク工程が行われる。この際に、ガラス基板11に応力を加えることによってクラックラインCLを起点として低荷重区間LRに沿ってクラックが伸展させられる。クラックが伸展する方向(図11における矢印PR)は、トレンチラインTLが形成された方向DA(図2)と反対である。 Next, a breaking process for dividing the glass substrate 11 along the trench line TL is performed. At this time, by applying a stress to the glass substrate 11, the crack is extended along the low load section LR starting from the crack line CL. The direction in which the crack extends (arrow PR in FIG. 11) is opposite to the direction DA (FIG. 2) in which the trench line TL is formed.
 次に上記ブレイク工程の詳細について、以下に説明する。 Next, the details of the break process will be described below.
 図12を参照して、受刃80(支持部)が準備される。受刃80は、ギャップGP(図14を参照して後述)が設けられた平坦な表面を有している。そして、ガラス基板11の第1の面SF1が受刃80に対向するように、クラックラインCLが形成されたガラス基板11(図9)が受刃80上に置かれる(図1:ステップS140)。 Referring to FIG. 12, a receiving blade 80 (support portion) is prepared. The receiving blade 80 has a flat surface provided with a gap GP (described later with reference to FIG. 14). And the glass substrate 11 (FIG. 9) in which the crack line CL was formed is set | placed on the receiving blade 80 so that 1st surface SF1 of the glass substrate 11 may oppose the receiving blade 80 (FIG. 1: step S140). .
 図13および図14を参照して、ブレイクバー85(応力印加部材)が準備される。ブレイクバー85は、図14に示すように、ガラス基板11の表面を局所的に押し付けることができるように突出した形状を有することが好ましく、図14においては略V字状の形状を有する。図13に示すように、この突出部分は直線状に延在している。また受刃80の表面のうち、ブレイクバー85の上記突出部分に対向することになる部分には、ギャップGPが設けられている。 Referring to FIGS. 13 and 14, a break bar 85 (stress applying member) is prepared. As shown in FIG. 14, the break bar 85 preferably has a protruding shape so as to locally press the surface of the glass substrate 11, and has a substantially V-shaped shape in FIG. 14. As shown in FIG. 13, the protruding portion extends linearly. Further, a gap GP is provided in a portion of the surface of the receiving blade 80 that faces the protruding portion of the break bar 85.
 そして、ガラス基板11の第2の面SF2から間隔を空けて第2の面SF2にブレイクバー85が対向させられる。ここで、第2の面SF2は、トレンチラインTLの低荷重区間LRに厚さ方向(図13における縦方向)において対向する部分SP3(第3の部分)と、トレンチラインTLの高荷重区間HRに厚さ方向において対向する部分SP4(第4の部分)とを有している。ブレイクバー85は、ブレイクバー85と部分SP4との間の距離がブレイクバー85と部分SP3との間の距離よりも小さくなるように、第2の面SF2に対向させられる。 Then, the break bar 85 is opposed to the second surface SF2 with a space from the second surface SF2 of the glass substrate 11. Here, the second surface SF2 includes a portion SP3 (third portion) facing the low load section LR of the trench line TL in the thickness direction (vertical direction in FIG. 13) and a high load section HR of the trench line TL. And a portion SP4 (fourth portion) opposed to each other in the thickness direction. The break bar 85 is opposed to the second surface SF2 so that the distance between the break bar 85 and the portion SP4 is smaller than the distance between the break bar 85 and the portion SP3.
 具体的には、直線に沿って延在する突出部分(図13における下辺)を有するブレイクバー85が準備され、上記直線が第2の面SF2から傾くようにブレイクバー85が配置される。たとえば、受刃80の表面(図13における上面)が水平面である場合、上記直線が水平面から傾くようにブレイクバー85が配置される。逆に、上記直線が水平面に沿っている場合、受刃80の表面が水平面から傾けられる。第2の面SF2を含む平面を基準面として、この基準面から部分SP3側のブレイクバー85の端(図13における左端)までの距離を距離L3とし、この基準面から部分SP4側のブレイクバー85の端(図13における右端)までの距離を距離L4とすると、上述した傾きを得るには、距離L3>距離L4とされればよい。距離L3と距離L4との差異は、たとえば200μm程度であり、好ましくは300μm以下である。距離の差が過度に大きいと、ブレイクバー85と受刃80とを直線移動によって相対的に近づけていった際に、ブレイクバー85のうち部分SP4側の部分(図13における左部分)がガラス基板11に接触する前に、部分SP4側のブレイクバー85の端(図13における右端)が受刃80に接触してしまう。この場合、ブレイクバー85の左部分がその機能を果たせなくなる。 Specifically, a break bar 85 having a protruding portion (a lower side in FIG. 13) extending along a straight line is prepared, and the break bar 85 is arranged so that the straight line is inclined from the second surface SF2. For example, when the surface of the receiving blade 80 (upper surface in FIG. 13) is a horizontal plane, the break bar 85 is arranged so that the straight line is inclined from the horizontal plane. Conversely, when the straight line is along the horizontal plane, the surface of the receiving blade 80 is inclined from the horizontal plane. Using the plane including the second surface SF2 as a reference plane, the distance from this reference plane to the end of the break bar 85 on the side of the partial SP3 (left end in FIG. 13) is the distance L3, and the break bar on the side of the partial SP4 from this reference plane If the distance to the end of 85 (the right end in FIG. 13) is the distance L4, the distance L3> the distance L4 may be obtained in order to obtain the above-described inclination. The difference between the distance L3 and the distance L4 is, for example, about 200 μm, and preferably 300 μm or less. When the difference in distance is excessively large, when the break bar 85 and the receiving blade 80 are relatively brought close to each other by linear movement, the portion on the part SP4 side (the left portion in FIG. 13) of the break bar 85 is glass. Before contacting the substrate 11, the end (the right end in FIG. 13) of the break bar 85 on the part SP <b> 4 side comes into contact with the receiving blade 80. In this case, the left portion of the break bar 85 cannot perform its function.
 図15を参照して、次に、ブレイクバー85が受刃80に対して方向DR(一の方向)へ相対的に直線移動させられる。これによって、ブレイクバー85が、ガラス基板11の第2の面SF2のうち部分SP3からは離されつつ、部分SF4に接触させられる(図1:ステップS150)。方向DRは、ブレイクバー85が受刃80に接近するように選択されればよく、たとえば、受刃80の表面(図中、上面)に垂直な方向である。 Referring to FIG. 15, next, the break bar 85 is linearly moved relative to the receiving blade 80 in the direction DR (one direction). Thus, the break bar 85 is brought into contact with the portion SF4 while being separated from the portion SP3 in the second surface SF2 of the glass substrate 11 (FIG. 1: step S150). The direction DR should just be selected so that the break bar 85 may approach the receiving blade 80, for example, is a direction perpendicular | vertical to the surface (upper surface in the figure) of the receiving blade 80. FIG.
 ブレイクバー85が部分SP4に接触し、そして方向DRに沿って部分SP4上に押し込まれることによって、部分SP4に応力が加えられる。これにより、部分SP4に対向する高荷重区間HRに沿って設けられていたクラックラインCL(図13)からクラックが拡張する。この結果、高荷重区間HRに沿ってガラス基板11が分離される。 The stress is applied to the part SP4 by the break bar 85 contacting the part SP4 and being pushed onto the part SP4 along the direction DR. Thereby, a crack expands from the crack line CL (FIG. 13) provided along the high load section HR facing the portion SP4. As a result, the glass substrate 11 is separated along the high load section HR.
 図16を参照して、次に、ブレイクバー85が受刃80に対して方向DR(一の方向)へ相対的にさらに直線移動させられる。これによって、ブレイクバー85が、第2の面SF2の部分SP4上からガラス基板11中へさらに侵入しつつ、部分SP3に接触させられる(図1:ステップS160)。 Referring to FIG. 16, next, the break bar 85 is further linearly moved relative to the receiving blade 80 in the direction DR (one direction). Thus, the break bar 85 is brought into contact with the portion SP3 while further entering the glass substrate 11 from the portion SP4 of the second surface SF2 (FIG. 1: step S160).
 ブレイクバー85が部分SP3に接触し、そして方向DRに沿って部分SP3上に押し込まれることによって、部分SP3に応力が加えられる。これにより、部分SP3に対向する低荷重区間LRに沿って高荷重区間HR側(図中右側)から矢印PRに示すようにクラックが拡張する。この結果、低荷重区間LRに沿ってガラス基板11が分離される。 The stress is applied to the part SP3 by the break bar 85 contacting the part SP3 and being pushed onto the part SP3 along the direction DR. As a result, the crack expands from the high load section HR side (right side in the figure) along the low load section LR facing the portion SP3 as indicated by the arrow PR. As a result, the glass substrate 11 is separated along the low load section LR.
 以上により、高荷重区間HRおよび低荷重区間LRの両方に沿ってガラス基板11が分離される。これによりガラス基板11を図11に示すように分断するブレイク工程が行われる。 Thus, the glass substrate 11 is separated along both the high load section HR and the low load section LR. Thereby, the breaking process which divides | segments the glass substrate 11 as shown in FIG. 11 is performed.
 なおブレイクバー85(応力印加部材)を用いたブレイク工程について上記において具体的に説明したが、ブレイク工程は他の方法によっても行い得る。ブレイク工程を行うためには、応力印加部材が、まずガラス基板11の第2の面SF2の部分SP3からは離されつつ部分SP4に接触させられ、次にガラス基板11の第2の面SF2の部分SP3に接触させられればよい。ガラス基板11への応力印加のために、ブレイクバーに代わり、第2の面SF2上を転動するローラが用いられてもよい。このような場合、応力印加部材は、部分SP4上から部分SP3上へと移動することから、部分SP3と接触している際には部分SP4と必ずしも接触していない。また受刃80(より一般的にいえば支持部)に対する応力印加部材の相対的移動は、一の方向に沿った直線移動のみに限定されるものではなく、より複雑な移動をともなってもよい。また応力印加部材が複数の部分を有し、それらが個別に移動させられてもよい。 In addition, although the break process using the break bar 85 (stress applying member) has been specifically described above, the break process may be performed by other methods. In order to perform the breaking process, the stress applying member is first brought into contact with the portion SP4 while being separated from the portion SP3 of the second surface SF2 of the glass substrate 11, and then the second surface SF2 of the glass substrate 11 is contacted. What is necessary is just to be made to contact part SP3. In order to apply stress to the glass substrate 11, a roller that rolls on the second surface SF2 may be used instead of the break bar. In such a case, since the stress applying member moves from the portion SP4 to the portion SP3, the stress applying member is not necessarily in contact with the portion SP4 when in contact with the portion SP3. In addition, the relative movement of the stress applying member with respect to the receiving blade 80 (more generally speaking, the support portion) is not limited to a linear movement along one direction, and may involve a more complicated movement. . Further, the stress applying member may have a plurality of portions, which may be moved individually.
 図17(A)および(B)を参照して、上述したトレンチラインTLの形成に適したスクライビング器具50について説明する。スクライビング器具50は、スクライブヘッド(図示せず)に取り付けられることによってガラス基板11に対して相対的に移動することにより、ガラス基板11に対するスクライブを行うものである。スクライビング器具50は刃先51およびシャンク52を有する。刃先51は、シャンク52に保持されている。 With reference to FIGS. 17A and 17B, a scribing instrument 50 suitable for forming the above-described trench line TL will be described. The scribing instrument 50 is attached to a scribe head (not shown) and moves relative to the glass substrate 11 to scribe the glass substrate 11. The scribing instrument 50 has a cutting edge 51 and a shank 52. The blade edge 51 is held by the shank 52.
 刃先51には、天面SD1(第1の面)と、天面SD1を取り囲む複数の面とが設けられている。これら複数の面は側面SD2(第2の面)および側面SD3(第3の面)を含む。天面SD1、側面SD2およびSD3は、互いに異なる方向を向いており、かつ互いに隣り合っている。刃先51は、天面SD1、側面SD2およびSD3が合流する頂点を有し、この頂点によって刃先51の突起部PPが構成されている。また側面SD2およびSD3は、刃先51の側部PSを構成する稜線をなしている。側部PSは突起部PPから線状に延びている。また側部PSは、上述したように稜線であることから、線状に延びる凸形状を有する。 The cutting edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1. The plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface). The top surface SD1 and the side surfaces SD2 and SD3 face different directions and are adjacent to each other. The blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex. Further, the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51. The side part PS extends linearly from the protrusion part PP. Moreover, since the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
 刃先51はダイヤモンドポイントであることが好ましい。すなわち刃先51はダイヤモンドから作られていることが好ましい。この場合、容易に、硬度を高く、表面粗さを小さくすることができる。より好ましくは刃先51は単結晶ダイヤモンドから作られている。さらに好ましくは結晶学的に言って、天面SD1は{001}面であり、側面SD2およびSD3の各々は{111}面である。この場合、側面SD2およびSD3は、異なる向きを有するものの、結晶学上、互いに等価な結晶面である。 The cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond. In this case, the hardness can be easily increased and the surface roughness can be decreased. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a {001} plane, and each of the side surfaces SD2 and SD3 is a {111} plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
 なお単結晶でないダイヤモンドが用いられてもよく、たとえば、CVD(Chemical Vapor Deposition)法で合成された多結晶体ダイヤモンドが用いられてもよい。あるいは、微粒のグラファイトや非グラファイト状炭素から、鉄族元素などの結合材を含まずに焼結された多結晶体ダイヤモンド、またはダイヤモンド粒子を鉄族元素などの結合材によって結合させた焼結ダイヤモンドが用いられてもよい。 Diamond that is not a single crystal may be used. For example, polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used. Alternatively, polycrystalline diamond sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, or sintered diamond obtained by bonding diamond particles with a binder such as an iron group element May be used.
 シャンク52は軸方向AXに沿って延在している。刃先51は、天面SD1の法線方向が軸方向AXにおおよそ沿うようにシャンク52に取り付けられることが好ましい。 The shank 52 extends along the axial direction AX. The blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX.
 スクライビング器具50を用いたトレンチラインTLの形成においては、まずガラス基板11の第1の面SF1に刃先51が押し付けられる。具体的には、刃先51の突起部PPおよび側部PSが、ガラス基板11が有する厚さ方向DTへ押し付けられる。 In forming the trench line TL using the scribing instrument 50, first, the blade edge 51 is pressed against the first surface SF1 of the glass substrate 11. Specifically, the protrusion part PP and the side part PS of the blade edge 51 are pressed in the thickness direction DT of the glass substrate 11.
 次に、押し付けられた刃先51が第1の面SF1上で方向DAへ摺動させられる。方向DAは、突起部PPから側部PSに沿って延びる方向を第1の面SF1上に射影したものであり、軸方向AXを第1の面SF1上へ射影した方向におおよそ対応している。摺動時、刃先51はシャンク52によって第1の面SF1上を引き摺られる。この摺動によって、ガラス基板11の第1の面SF1上に塑性変形が発生させられる。この塑性変形によりトレンチラインTLが形成される。 Next, the pressed blade edge 51 is slid in the direction DA on the first surface SF1. The direction DA is obtained by projecting the direction extending from the protrusion PP along the side part PS onto the first surface SF1, and roughly corresponds to the direction in which the axial direction AX is projected onto the first surface SF1. . When sliding, the blade edge 51 is dragged on the first surface SF 1 by the shank 52. By this sliding, plastic deformation is generated on the first surface SF <b> 1 of the glass substrate 11. The trench line TL is formed by this plastic deformation.
 なお本実施の形態における始点N1から終点N3へのトレンチラインTLの形成において、刃先51が方向DBへ移動させられるとすると、言い換えれば、刃先51の移動方向を基準として刃先51の姿勢が逆方向に傾いているとすると、図9に示すクラックラインCLの形成、および図16に示すクラックの進行が、方向DAを用いた場合に比して生じにくくなる。より一般的に言えば、方向DAへの刃先51の移動により形成されたトレンチラインTLにおいては、方向DAとは逆方向にクラックが伸展しやすい。一方で、方向DBへの刃先51の移動により形成されたトレンチラインTLにおいては、方向DBと同方向にクラックが伸展しやすい。このような方向依存性は、トレンチラインTLの形成時に生じる塑性変形に起因してガラス基板11内に生じる応力分布と関連しているのではないかと推測される。 In the formation of the trench line TL from the start point N1 to the end point N3 in the present embodiment, if the blade edge 51 is moved in the direction DB, in other words, the posture of the blade edge 51 is reverse with respect to the movement direction of the blade edge 51. 9, the formation of the crack line CL shown in FIG. 9 and the progress of the crack shown in FIG. 16 are less likely to occur than when the direction DA is used. More generally speaking, in the trench line TL formed by the movement of the blade edge 51 in the direction DA, cracks are likely to extend in the direction opposite to the direction DA. On the other hand, in the trench line TL formed by the movement of the blade edge 51 in the direction DB, cracks are likely to extend in the same direction as the direction DB. Such direction dependency is presumed to be related to the stress distribution generated in the glass substrate 11 due to the plastic deformation generated when the trench line TL is formed.
 本実施の形態によれば、図15に示すように、ガラス基板11の第2の面SF2の部分SP4に接触しかつ部分SP3から離れるように、第2の面SF2にブレイクバー85が接触させられる。すなわち、部分SP3よりも先に、既にそれに沿ってクラックが発生している高荷重区間HRに対向する部分SP4に、ブレイクバー85が接触させられる。これにより、部分SP4に対向する高荷重区間HRに沿ったガラス基板11の分離が安定的に生じる。この後に、図16に示すように、部分SP3にブレイクバー85が接触させられる。これにより、ガラス基板11のさらなる分離が低荷重区間LRに沿って安定的に生じる。よって、ガラス基板11をトレンチラインTLの全体に沿って安定的に分断することができる。 According to the present embodiment, as shown in FIG. 15, the break bar 85 is brought into contact with the second surface SF2 so as to be in contact with the portion SP4 of the second surface SF2 of the glass substrate 11 and away from the portion SP3. It is done. That is, before the portion SP3, the break bar 85 is brought into contact with the portion SP4 facing the high load section HR where the crack has already occurred along the portion SP3. Thereby, separation of the glass substrate 11 along the high load section HR facing the portion SP4 occurs stably. Thereafter, as shown in FIG. 16, the break bar 85 is brought into contact with the portion SP3. As a result, further separation of the glass substrate 11 occurs stably along the low load section LR. Therefore, the glass substrate 11 can be stably divided along the entire trench line TL.
 なお、本実施の形態と異なり、仮にブレイクバー85が部分SP4よりも先に部分SP3に接触させられる場合、部分SP4に対向する高荷重区間HRに沿った分離が生じる前に、部分SP3に対向する低荷重区間LRを起点とする分離が促される。しかしながら、低荷重区間LRには、分離の起点となり得るクラックが設けられていないため、低荷重区間LRに沿った分離は安定的には生じにくい。このため、低荷重区間LRから外れた箇所でガラス基板11が割れてしまう可能性が高くなる。すなわち、ガラス基板11をトレンチラインTLに沿って安定的に分断することが困難である。 Note that unlike the present embodiment, if the break bar 85 is brought into contact with the part SP3 before the part SP4, the part SP3 faces before the separation along the high load section HR facing the part SP4 occurs. Separation starting from the low-load section LR is promoted. However, since the crack that can be the starting point of separation is not provided in the low load section LR, the separation along the low load section LR is unlikely to occur stably. For this reason, possibility that the glass substrate 11 will break in the location remove | deviated from the low load area LR becomes high. That is, it is difficult to stably divide the glass substrate 11 along the trench line TL.
 好ましくは、ガラス基板11の第2の面SF2へのブレイクバー85の接触は、受刃80に対してブレイクバー85を方向DRに沿って直線移動させることによって行われる。これにより、ブレイクバー85または受刃80の複雑な動作を必要とせずに、ブレイクを行うことができる。 Preferably, the break bar 85 is brought into contact with the second surface SF2 of the glass substrate 11 by linearly moving the break bar 85 with respect to the receiving blade 80 along the direction DR. Thereby, a break can be performed without requiring a complicated operation of the break bar 85 or the receiving blade 80.
 また、ガラス基板11が分断される位置を規定するためのトレンチラインTL(図2および図3)の形成に際して、高荷重区間HRに比して低荷重区間LRにおいて、刃先51(図17(A))に加えられる荷重が軽減される。これにより刃先51へのダメージを小さくすることができる。 Further, when forming the trench line TL (FIGS. 2 and 3) for defining the position at which the glass substrate 11 is divided, the cutting edge 51 (FIG. 17A) in the low load section LR as compared with the high load section HR. The load applied to)) is reduced. Thereby, damage to the blade edge 51 can be reduced.
 また低荷重区間LRおよび高荷重区間HRのうち低荷重区間LRがクラックレス状態である場合(図8および図9)、ガラス基板11が分断される起点となるクラックが低荷重区間LRにはない。よってこの状態においてガラス基板11に対して任意の処理を行う場合、低荷重区間LRに不慮の応力が加わっても、ガラス基板11の意図しない分断が生じにくい。よって上記処理を安定的に行うことができる。 In addition, when the low load section LR is in a crackless state among the low load section LR and the high load section HR (FIGS. 8 and 9), there is no crack in the low load section LR as a starting point at which the glass substrate 11 is divided. . Therefore, when arbitrary processing is performed on the glass substrate 11 in this state, even if an unexpected stress is applied to the low load section LR, the glass substrate 11 is unlikely to be unintentionally divided. Therefore, the above process can be performed stably.
 また低荷重区間LRおよび高荷重区間HRの両方がクラックレス状態である場合(図2および図3)、ガラス基板11が分断される起点となるクラックがトレンチラインTLにない。よってこの状態においてガラス基板11に対して任意の処理を行う場合、トレンチラインTLに不慮の応力が加わっても、ガラス基板11の意図しない分断が生じにくい。よって上記処理をより安定的に行うことができる。 In addition, when both the low load section LR and the high load section HR are in a crackless state (FIGS. 2 and 3), there is no crack in the trench line TL that is a starting point at which the glass substrate 11 is divided. Therefore, when arbitrary processing is performed on the glass substrate 11 in this state, even if an unexpected stress is applied to the trench line TL, unintentional division of the glass substrate 11 is unlikely to occur. Therefore, the above process can be performed more stably.
 またトレンチラインTLはアシストラインALの形成前に形成される。これにより、トレンチラインTLの形成時にアシストラインALが影響を及ぼすことを避けることができる。特に、トレンチラインTL形成のために刃先51がアシストラインAL上を通過した直後における形成異常を避けることができる。 Further, the trench line TL is formed before the assist line AL is formed. Thereby, it is possible to avoid the influence of the assist line AL when the trench line TL is formed. In particular, the formation abnormality immediately after the cutting edge 51 passes over the assist line AL for forming the trench line TL can be avoided.
 次に実施の形態1の変形例について、以下に説明する。 Next, a modification of the first embodiment will be described below.
 図18を参照して、アシストラインALがトレンチラインTLと交差することをきっかけとして、クラックラインCLが形成されてもよい。アシストラインALの形成時にガラス基板11に加わる応力が大きい場合、このような事象が生じ得る。 Referring to FIG. 18, crack line CL may be formed in response to assist line AL intersecting with trench line TL. Such a phenomenon may occur when the stress applied to the glass substrate 11 is large when the assist line AL is formed.
 図19を参照して、ガラス基板11の第1の面SF1に、まずアシストラインALが形成され、その後にトレンチラインTL(図19において図示せず)が形成されてもよい。 Referring to FIG. 19, first, assist line AL may be formed on first surface SF <b> 1 of glass substrate 11, and then trench line TL (not shown in FIG. 19) may be formed.
 図20を参照して、アシストラインALは、平面レイアウトにおいて高荷重区間HRと交差するように、ガラス基板11の第2の面SF2上に形成されてもよい。これにより、アシストラインALおよびトレンチラインTLの両方を、互いに影響を及ぼし合うことなく形成することができる。 Referring to FIG. 20, assist line AL may be formed on second surface SF2 of glass substrate 11 so as to intersect with high load section HR in the planar layout. Thereby, both the assist line AL and the trench line TL can be formed without affecting each other.
 図21(A)および(B)を参照して、スクライビング器具50(図17(A)および(B))の代わりに、スクライビング器具50vが用いられてもよい。刃先51vは、頂点と、円錐面SCとを有する円錐形状を有する。刃先51vの突起部PPvは頂点で構成されている。刃先の側部PSvは頂点から円錐面SC上に延びる仮想線(図21(B)における破線)に沿って構成されている。これにより側部PSvは、線状に延びる凸形状を有する。 Referring to FIGS. 21A and 21B, scribing instrument 50v may be used instead of scribing instrument 50 (FIGS. 17A and 17B). The blade edge 51v has a conical shape having a vertex and a conical surface SC. The protruding part PPv of the blade edge 51v is constituted by a vertex. The side portion PSv of the blade edge is configured along a virtual line (broken line in FIG. 21B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
 (実施の形態2)
 図22を参照して、まずガラス基板11が準備される。また刃先を有するスクライビング器具が準備される。スクライビング器具の詳細については後述する。
(Embodiment 2)
Referring to FIG. 22, first, glass substrate 11 is prepared. A scribing instrument having a cutting edge is also prepared. Details of the scribing device will be described later.
 次に、ガラス基板11の第1の面SF1上における方向DBへの刃先の移動により、後述する高荷重区間HR(図23)に交差することになるアシストラインALが第1の面SF1上に形成される。 Next, an assist line AL that intersects a high-load section HR (FIG. 23) described later due to the movement of the blade edge in the direction DB on the first surface SF1 of the glass substrate 11 is on the first surface SF1. It is formed.
 図23を参照して、方向DBへの刃先の移動により、ガラス基板11の第1の面SF1上において始点Q1から途中点Q2およびQ3を経由して終点Q4までトレンチラインTLが形成される。始点Q1から途中点Q2まで、および途中点Q3から終点Q4までのトレンチラインTLは低荷重区間LRとして形成される。途中点Q2から途中点Q3までのトレンチラインTLは高荷重区間HRとして形成される。 23, by moving the blade edge in the direction DB, a trench line TL is formed on the first surface SF1 of the glass substrate 11 from the start point Q1 to the end point Q4 via intermediate points Q2 and Q3. The trench line TL from the start point Q1 to the midpoint Q2 and from the midpoint Q3 to the end point Q4 is formed as a low load section LR. A trench line TL from the midpoint Q2 to the midpoint Q3 is formed as a high load section HR.
 次に、アシストラインALに沿ってガラス基板11が分離される。この分離は、通常のブレイク工程によって行い得る。この分離をきっかけとして、厚さ方向におけるガラス基板11のクラックがトレンチラインTLに沿って、トレンチラインTLのうち高荷重区間HRにのみ伸展させられる。 Next, the glass substrate 11 is separated along the assist line AL. This separation can be performed by a normal break process. As a result of this separation, the crack of the glass substrate 11 in the thickness direction is extended along the trench line TL only in the high load section HR of the trench line TL.
 図24を参照して、上述したクラックの伸展により、トレンチラインTLの一部に沿ってクラックラインCLが形成される。具体的には、高荷重区間HRのうち、分離によって新たに生じた辺と、途中点Q3との間の部分に、クラックラインCLが形成される。クラックラインCLが形成される方向は、トレンチラインTLが形成された方向DB(図23)と同じである。なお、分離によって新たに生じた辺と途中点Q2との間の部分にはクラックラインCLが形成されにくい。この方向依存性は、高荷重区間HRの形成時における刃先の状態に起因するものであり、詳しくは後述する。 Referring to FIG. 24, the crack line CL is formed along a part of the trench line TL by the extension of the crack described above. Specifically, the crack line CL is formed in a portion between the side newly generated by the separation and the midpoint Q3 in the high load section HR. The direction in which the crack line CL is formed is the same as the direction DB (FIG. 23) in which the trench line TL is formed. Note that the crack line CL is not easily formed in a portion between the side newly generated by the separation and the midpoint Q2. This direction dependency is caused by the state of the cutting edge when the high load section HR is formed, and will be described in detail later.
 次に、実施の形態1と同様のブレイク工程(図12~図16)により、クラックラインCLを起点としてトレンチラインTLに沿って途中点Q3から終点Q4に向かってクラックを伸展させるブレイク工程が行われる。これによりガラス基板11が分断される。 Next, the break process (FIGS. 12 to 16) similar to that of the first embodiment is performed to extend the crack from the halfway point Q3 to the end point Q4 along the trench line TL starting from the crack line CL. Is called. Thereby, the glass substrate 11 is divided.
 図25および図26を参照して、第1の変形例として、まずトレンチラインTLが形成され、その後、アシストラインALが形成されてもよい。図27を参照して、第2の変形例として、アシストラインALの形成をきっかけとして、クラックラインCLが形成されてもよい。図28を参照して、アシストラインALは、平面レイアウトにおいて高荷重区間HRと交差するように、ガラス基板11の第2の面SF2上に形成されてもよい。また本実施の形態においては高荷重区間HRが途中点Q2からQ3まで形成されるが、高荷重区間HRはアシストラインALと交差する部分に形成されていればよく、たとえば始点Q1から途中点Q3まで形成されてもよい。 Referring to FIGS. 25 and 26, as a first modification, first, trench line TL may be formed, and then assist line AL may be formed. Referring to FIG. 27, as a second modification, crack line CL may be formed with the formation of assist line AL as a trigger. Referring to FIG. 28, assist line AL may be formed on second surface SF2 of glass substrate 11 so as to intersect high load section HR in the planar layout. In the present embodiment, the high load section HR is formed from the halfway point Q2 to Q3. However, the high load section HR may be formed at a portion intersecting the assist line AL, for example, from the start point Q1 to the halfway point Q3. May be formed.
 図29を参照して、次に本実施の形態におけるトレンチラインTLの形成に適したスクライビング器具50Rについて説明する。スクライビング器具50Rは、スクライビングホイール51Rと、ホルダ52Rと、ピン53とを有する。スクライビングホイール51Rは、おおよそ円盤状の形状を有しており、その直径は、典型的には数mm程度である。スクライビングホイール51Rは、ホルダ52Rにピン53を介して、回転軸RX周りに回転可能に保持されている。 Referring to FIG. 29, a scribing instrument 50R suitable for forming the trench line TL in the present embodiment will be described next. The scribing instrument 50R includes a scribing wheel 51R, a holder 52R, and a pin 53. The scribing wheel 51R has a substantially disk shape, and its diameter is typically about several millimeters. The scribing wheel 51R is held by a holder 52R via a pin 53 so as to be rotatable around a rotation axis RX.
 スクライビングホイール51Rは、刃先が設けられた外周部PFを有する。外周部PFは、回転軸RX周りに円環状に延びている。外周部PFは、図30(A)に示すように、目視レベルでは稜線状に切り立っており、それによって、稜線と傾斜面とからなる刃先を構成している。一方、顕微鏡レベルでは、図30(B)に示すように、スクライビングホイール51Rが第1の面SF1内へ侵入することによって実際に作用する部分(図30(B)の二点鎖線よりも下方)において外周部PFの稜線は微細な表面形状MSを有する。表面形状MSは、正面視(図30(B))において、有限の曲率半径を有する曲線形状を有することが好ましい。スクライビングホイール51Rは、超硬合金、焼結ダイヤモンド、多結晶ダイヤモンドまたは単結晶ダイヤモンドなどの硬質材料を用いて形成されている。上述した稜線および傾斜面の表面粗さを小さくする観点でスクライビングホイール51R全体が単結晶ダイヤモンドから作られてもよい。 The scribing wheel 51R has an outer peripheral portion PF provided with a cutting edge. The outer peripheral portion PF extends in an annular shape around the rotation axis RX. As shown in FIG. 30A, the outer peripheral portion PF stands up like a ridge line at the visual level, thereby forming a cutting edge composed of a ridge line and an inclined surface. On the other hand, at the microscope level, as shown in FIG. 30 (B), the part that actually acts when the scribing wheel 51R enters the first surface SF1 (below the two-dot chain line in FIG. 30 (B)). The ridgeline of the outer peripheral portion PF has a fine surface shape MS. Surface shape MS preferably has a curved shape having a finite radius of curvature in a front view (FIG. 30B). The scribing wheel 51R is formed using a hard material such as cemented carbide, sintered diamond, polycrystalline diamond, or single crystal diamond. The entire scribing wheel 51R may be made of single crystal diamond from the viewpoint of reducing the surface roughness of the ridgeline and the inclined surface.
 スクライビング器具50Rを用いたトレンチラインTLの形成は、ガラス基板11の第1の面SF1上でスクライビングホイール51Rを転動させることによって(図29:矢印RT)、スクライビングホイール51Rが第1の面SF1上を方向DBへと進行することにより行われる。この転動による進行は、スクライビングホイール51Rに荷重Fを加えることによってスクライビングホイール51Rの外周部PFをガラス基板11の第1の面SF1上へ押し付けながら行われる。これによりガラス基板11の第1の面SF1上に塑性変形を発生させることで、溝形状を有するトレンチラインTLが形成される。荷重Fは、ガラス基板11の厚さ方向DTに平行な垂直成分Fpと、第1の面SF1に平行な面内成分Fiとを有する。方向DBは面内成分Fiの方向と同じである。 The formation of the trench line TL using the scribing instrument 50R is performed by rolling the scribing wheel 51R on the first surface SF1 of the glass substrate 11 (FIG. 29: arrow RT), so that the scribing wheel 51R is the first surface SF1. This is done by proceeding upward in the direction DB. Progression by this rolling is performed while pressing the outer peripheral portion PF of the scribing wheel 51R onto the first surface SF1 of the glass substrate 11 by applying a load F to the scribing wheel 51R. Thereby, by generating plastic deformation on the first surface SF1 of the glass substrate 11, a trench line TL having a groove shape is formed. The load F has a vertical component Fp parallel to the thickness direction DT of the glass substrate 11 and an in-plane component Fi parallel to the first surface SF1. The direction DB is the same as the direction of the in-plane component Fi.
 なお、トレンチラインTLの形成は、方向DBへ移動するスクライビング器具50Rによる代わりに、方向DBへ移動するスクライビング器具50(図17(A)および(B))または50v(図21(A)および(B))が用いられてもよい。 The trench line TL is formed by using the scribing tool 50 (FIGS. 17A and 17B) or 50v (FIGS. 21A and 21B) moving in the direction DB instead of using the scribing tool 50R moving in the direction DB. B)) may be used.
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 本実施の形態によっても、実施の形態1とほぼ同様の効果が得られる。また本実施の形態においては、固定された刃先ではなく回転する刃先を用いてトレンチラインTLを形成することができるため、刃先の寿命を長くすることができる。 Also according to the present embodiment, substantially the same effect as in the first embodiment can be obtained. In the present embodiment, since the trench line TL can be formed using a rotating blade edge instead of a fixed blade edge, the life of the blade edge can be extended.
 上記各実施の形態による脆性基板の分断方法はガラス基板に対して特に好適に適用されるが、脆性基板は、ガラス以外の材料から作られていてもよい。たとえば、ガラス以外の材料として、セラミックス、シリコン、化合物半導体、サファイア、または石英が用いられてもよい。 The method for dividing a brittle substrate according to each of the above embodiments is particularly preferably applied to a glass substrate, but the brittle substrate may be made of a material other than glass. For example, ceramics, silicon, a compound semiconductor, sapphire, or quartz may be used as a material other than glass.
AL アシストライン
CL クラックライン
HR 高荷重区間(第2の部分)
LR 低荷重区間(第1の部分)
SF1 第1の面
SF2 第2の面
SP3 部分(第3の部分)
SP4 部分(第4の部分)
TL トレンチライン
11 ガラス基板(脆性基板)
50,50R,50v スクライビング器具
51,51v 刃先
51R スクライビングホイール
80 受刃(支持部)
85 ブレイクバー(応力印加部材)
AL Assist line CL Crack line HR High load section (second part)
LR Low load section (first part)
SF1 First surface SF2 Second surface SP3 portion (third portion)
SP4 part (fourth part)
TL trench line 11 Glass substrate (brittle substrate)
50, 50R, 50v scribing device 51, 51v cutting edge 51R scribing wheel 80 receiving blade (supporting part)
85 Break bar (stress applying member)

Claims (2)

  1.  a)第1の面と前記第1の面と反対の第2の面とを有し、前記第1の面に垂直な厚さ方向を有する脆性基板を準備する工程と、
     b)刃先を前記脆性基板の第1の面上へ押し付けながら前記第1の面上で前記刃先を移動させることによって前記脆性基板の前記第1の面上に塑性変形を発生させることで、第1および第2の部分を有するトレンチラインを形成する工程とを備え、前記トレンチラインを形成する工程において、前記トレンチラインの前記第2の部分を形成するために前記刃先に加えられる荷重は、前記トレンチラインの前記第1の部分を形成するために前記刃先に加えられる荷重よりも高く、前記トレンチラインを形成する工程は、前記トレンチラインの直下において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行われ、さらに
     c)前記トレンチラインの前記第1および第2の部分のうち前記第2の部分のみに沿ってクラックを発生させる工程と、
     d)前記工程c)の後に、前記脆性基板の前記第1の面が支持部に対向するように前記脆性基板を前記支持部上に置く工程と、
     e)前記工程d)の後に、応力印加部材を、前記脆性基板の前記第2の面のうち前記トレンチラインの前記第1の部分に対向する第3の部分からは離しつつ、前記脆性基板の前記第2の面のうち前記トレンチラインの前記第2の部分に対向する第4の部分に接触させる工程と、
     f)前記工程e)の後に、前記脆性基板の前記第2の面のうち前記第3の部分に前記応力印加部材を接触させる工程と、
    を備える、脆性基板の分断方法。
    a) preparing a brittle substrate having a first surface and a second surface opposite to the first surface and having a thickness direction perpendicular to the first surface;
    b) generating plastic deformation on the first surface of the brittle substrate by moving the blade edge on the first surface while pressing the blade edge onto the first surface of the brittle substrate; Forming a trench line having a first portion and a second portion, wherein in the step of forming the trench line, the load applied to the cutting edge to form the second portion of the trench line is The step of forming the trench line is higher than a load applied to the cutting edge to form the first portion of the trench line, and the step of forming the trench line is performed in a direction in which the brittle substrate intersects the trench line immediately below the trench line. A crackless state that is continuously connected is obtained; and c) the first and the trench lines Generating a crack along only the second portion of the second portion;
    d) after the step c), placing the brittle substrate on the support so that the first surface of the brittle substrate faces the support;
    e) After the step d), the stress applying member is separated from the third portion of the second surface of the brittle substrate facing the first portion of the trench line, and Contacting a fourth portion of the second surface opposite the second portion of the trench line;
    f) after the step e), bringing the stress applying member into contact with the third portion of the second surface of the brittle substrate;
    A method for dividing a brittle substrate.
  2.  g)前記工程e)の前に、前記脆性基板の前記第2の面から間隔を空けて前記第2の面に前記応力印加部材を対向させる工程をさらに備え、前記応力印加部材を対向させる工程は、前記応力印加部材と前記第4の部分との間の距離が前記応力印加部材と前記第3の部分との間の距離よりも小さくなるように行われ、
     前記工程e)および前記工程f)は、前記工程g)の後に、前記応力印加部材を前記支持部に対して一の方向へ相対的に直線移動させることによって行われる、請求項1に記載の脆性基板の分断方法。
    g) before the step e), further comprising the step of causing the stress applying member to face the second surface at a distance from the second surface of the brittle substrate, the step of causing the stress applying member to face Is performed such that the distance between the stress applying member and the fourth portion is smaller than the distance between the stress applying member and the third portion,
    The step e) and the step f) are performed by linearly moving the stress applying member in one direction relative to the support portion after the step g). Method for cutting a brittle substrate.
PCT/JP2016/069424 2015-08-07 2016-06-30 Method for cutting brittle substrate WO2017026191A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017534133A JP6493537B2 (en) 2015-08-07 2016-06-30 Method for dividing brittle substrate
CN201680045817.8A CN107848862B (en) 2015-08-07 2016-06-30 Method for dividing brittle substrate
KR1020187003638A KR102083381B1 (en) 2015-08-07 2016-06-30 Method for cutting brittle substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015156914 2015-08-07
JP2015-156914 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017026191A1 true WO2017026191A1 (en) 2017-02-16

Family

ID=57983042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069424 WO2017026191A1 (en) 2015-08-07 2016-06-30 Method for cutting brittle substrate

Country Status (5)

Country Link
JP (1) JP6493537B2 (en)
KR (1) KR102083381B1 (en)
CN (1) CN107848862B (en)
TW (1) TWI605024B (en)
WO (1) WO2017026191A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131179A1 (en) * 2018-12-06 2020-06-10 Schott Ag Glass element with cut edge and process for its production
WO2020183580A1 (en) * 2019-03-11 2020-09-17 株式会社オプト・システム Semiconductor chip production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278473A (en) * 1996-04-15 1997-10-28 Beldex:Kk Method for scribing glass and device therefor
JP2002316829A (en) * 2001-04-17 2002-10-31 Seiko Epson Corp Method for cutting glass substrate, method for manufacturing electro-optic device, electro-optic device, electronic apparatus and scribed groove former
WO2005113212A1 (en) * 2004-05-20 2005-12-01 Mitsuboshi Diamond Industrial Co., Ltd. Motherboard cutting method, motherboard scribing apparatus, program and recording medium
WO2008136239A1 (en) * 2007-04-27 2008-11-13 Asahi Glass Company, Limited Device and method for making cut line in strip sheet glass, and method for producing strip sheet glass
JP2008307747A (en) * 2007-06-13 2008-12-25 Shibuya Kogyo Co Ltd Splitting method of brittle material
WO2015151755A1 (en) * 2014-03-31 2015-10-08 三星ダイヤモンド工業株式会社 Method for cutting brittle-material substrate
JP2016098153A (en) * 2014-11-25 2016-05-30 三星ダイヤモンド工業株式会社 Cutting method of brittle substrate
JP2016098152A (en) * 2014-11-25 2016-05-30 三星ダイヤモンド工業株式会社 Cutting method of brittle substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100549099B1 (en) 2001-06-14 2006-02-02 미쓰보시 다이야몬도 고교 가부시키가이샤 Production device for organic el display and production method for organic el display
TWI226877B (en) 2001-07-12 2005-01-21 Mitsuboshi Diamond Ind Co Ltd Method of manufacturing adhered brittle material substrates and method of separating adhered brittle material substrates
JP2011079690A (en) * 2009-10-06 2011-04-21 Leo:Kk Laser thermal stress dividing of thick plate glass using diffraction grating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278473A (en) * 1996-04-15 1997-10-28 Beldex:Kk Method for scribing glass and device therefor
JP2002316829A (en) * 2001-04-17 2002-10-31 Seiko Epson Corp Method for cutting glass substrate, method for manufacturing electro-optic device, electro-optic device, electronic apparatus and scribed groove former
WO2005113212A1 (en) * 2004-05-20 2005-12-01 Mitsuboshi Diamond Industrial Co., Ltd. Motherboard cutting method, motherboard scribing apparatus, program and recording medium
WO2008136239A1 (en) * 2007-04-27 2008-11-13 Asahi Glass Company, Limited Device and method for making cut line in strip sheet glass, and method for producing strip sheet glass
JP2008307747A (en) * 2007-06-13 2008-12-25 Shibuya Kogyo Co Ltd Splitting method of brittle material
WO2015151755A1 (en) * 2014-03-31 2015-10-08 三星ダイヤモンド工業株式会社 Method for cutting brittle-material substrate
JP2016098153A (en) * 2014-11-25 2016-05-30 三星ダイヤモンド工業株式会社 Cutting method of brittle substrate
JP2016098152A (en) * 2014-11-25 2016-05-30 三星ダイヤモンド工業株式会社 Cutting method of brittle substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131179A1 (en) * 2018-12-06 2020-06-10 Schott Ag Glass element with cut edge and process for its production
US11851361B2 (en) 2018-12-06 2023-12-26 Schott Ag Glass element with cut edge and method of producing same
WO2020183580A1 (en) * 2019-03-11 2020-09-17 株式会社オプト・システム Semiconductor chip production method
JPWO2020183580A1 (en) * 2019-03-11 2020-09-17
JP7311584B2 (en) 2019-03-11 2023-07-19 株式会社 オプト・システム Semiconductor chip manufacturing method

Also Published As

Publication number Publication date
TW201708137A (en) 2017-03-01
KR20180030082A (en) 2018-03-21
JPWO2017026191A1 (en) 2018-04-12
JP6493537B2 (en) 2019-04-03
CN107848862B (en) 2020-09-15
KR102083381B1 (en) 2020-03-02
TWI605024B (en) 2017-11-11
CN107848862A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6288258B2 (en) Method for dividing brittle substrate
JP6432245B2 (en) Substrate cutting method
JP6311798B2 (en) Method for dividing brittle substrate
JP6493537B2 (en) Method for dividing brittle substrate
JP6413694B2 (en) Method for dividing brittle substrate
JP6555354B2 (en) Method for dividing brittle substrate
JP6350669B2 (en) Method for dividing brittle substrate
JP6413693B2 (en) Method for dividing brittle substrate
JP6682907B2 (en) Brittle substrate cutting method
KR101851069B1 (en) Method for dividing brittle substrate
WO2016067728A1 (en) Brittle base plate disjoining method
JP6648817B2 (en) Method of cutting brittle substrate
JP2016098154A (en) Cutting method of brittle substrate
JP2017065007A (en) Method of segmenting brittle substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534133

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187003638

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834888

Country of ref document: EP

Kind code of ref document: A1