WO2017026179A1 - Magnetic detector - Google Patents

Magnetic detector Download PDF

Info

Publication number
WO2017026179A1
WO2017026179A1 PCT/JP2016/068956 JP2016068956W WO2017026179A1 WO 2017026179 A1 WO2017026179 A1 WO 2017026179A1 JP 2016068956 W JP2016068956 W JP 2016068956W WO 2017026179 A1 WO2017026179 A1 WO 2017026179A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotation axis
magnetic
rotation
magnetic detection
Prior art date
Application number
PCT/JP2016/068956
Other languages
French (fr)
Japanese (ja)
Inventor
良一 片岡
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2017026179A1 publication Critical patent/WO2017026179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick

Definitions

  • the present invention relates to a magnetic detection device.
  • the first and second rotating bodies that rotate in response to the swinging operation of the outer lever are provided as non-contact detection of the two crossing movements caused by the tilting operation of the lever.
  • the magnetic field of the two magnets is detected by two magnetic detection elements provided corresponding to the respective magnets, and the control means detects the rotation angle of each rotating body from this detection signal, and the operation signal corresponding to this Is known (see Patent Document 1).
  • the magnetic detection device of Patent Document 1 has a problem that two magnets are required corresponding to each movement in order to detect movements in two intersecting directions due to the tilting operation of the lever by the magnetic detection element. Further, when the movement of the lever in two directions is detected by each magnetic detection element as a two-direction magnetic field change of one magnet, each magnetic detection element generates crosstalk that detects a two-direction magnetic field change. There is a problem that the movement of the camera cannot be accurately detected independently.
  • An object of the present invention is to provide a magnetic detection device that can accurately and accurately detect movement in two directions with a single magnet.
  • a magnetic detection device is a magnet that is rotated around a first rotation axis by an operation unit and tilted around a second rotation axis, and the magnet of the magnet
  • a first magnetic detection unit that detects a change in the magnetic field around the first rotation axis
  • a second magnetic detection unit that detects a change in the magnetic field around the second rotation axis of the magnet.
  • the first rotation axis and the second rotation axis are orthogonal to each other, and the first magnetic detection unit and the second magnetic detection unit perform the rotation operation and the tilt operation of the magnet. Detect independently.
  • the first magnetic detection unit is provided at a position that can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet and that does not change the direction of the magnetic field associated with the tilting operation of the magnet. , [1] or [2].
  • the second magnetic detection unit is provided at a position that can detect a change in the direction of the magnetic field associated with the tilting operation of the magnet and that does not change the direction of the magnetic field associated with the rotation operation of the magnet. , [1] or [2].
  • a vehicle lever combination switch includes: [1] The magnetic detection device according to any one of [7] is provided.
  • a magnetic detection device that can independently and accurately detect movement in two directions with a single magnet.
  • FIG. 1 is an explanatory diagram showing the interior of a vehicle on which a magnetic detection device according to an embodiment of the present invention is mounted.
  • FIG. 2 is a perspective view showing an appearance of a lever combination switch including a magnetic detection device.
  • FIG. 3A is a plan view of the magnetic detection device according to the first embodiment of the present invention as seen from the direction of the first rotation axis.
  • FIG. 3B is a front view showing the magnetic detection device as seen from the direction of the second rotation axis.
  • FIG. 4 is a block diagram showing the configuration of the magnetic detection device according to the embodiment of the present invention.
  • FIG. 5A is a perspective view showing the magnetizing direction of the magnet, the state of magnetic flux, and the positional relationship of the rotation detection sensor.
  • FIG. 5A is a perspective view showing the magnetizing direction of the magnet, the state of magnetic flux, and the positional relationship of the rotation detection sensor.
  • FIG. 5B is a cross-sectional view taken along line EE of FIG. 5A.
  • FIG. 5C is a plan view illustrating the positional relationship between the state of magnetic flux and the rotation detection sensor as viewed from the direction F of FIG. 5A.
  • FIG. 6A is a perspective view illustrating the magnetizing direction, the state of magnetic flux, and the positional relationship of the tilt detection sensor.
  • 6B is a cross-sectional view taken along line EE of FIG. 6A.
  • FIG. 6C is a plan view showing the positional relationship between the state of magnetic flux and the tilt detection sensor as seen from the direction F of FIG. 6A.
  • FIG. 7A is a circuit diagram illustrating an example of a magnetic sensor.
  • FIG. 7A is a circuit diagram illustrating an example of a magnetic sensor.
  • FIG. 7B is a signal waveform diagram showing detection signals S1 and S2 detected by the first MR bridge and the second MR bridge.
  • FIG. 8A is a plan view showing the magnetic detection device according to the second embodiment of the present invention as seen from the direction of the first rotation axis.
  • FIG. 8B is a front view showing the magnetic detection device as seen from the direction of the second rotation axis.
  • a magnetism detection device 100 includes a magnet 120 that is rotated around a first rotation axis L1 and tilted around a second rotation axis L2 by an operation unit, and a magnet A rotation detection sensor 140 that is a first magnetic detection unit that detects a change in magnetic field around the first rotation axis L1 of 120, and a second that detects a change in the magnetic field around the second rotation axis L2 of the magnet.
  • the first rotation axis L1 and the second rotation axis L2 are orthogonal to each other, and the rotation detection sensor 140 and the tilt detection sensor 160 are used to rotate the magnet 120. And the operation of the tilting operation is detected independently.
  • This magnetic detection device 100 is used, for example, in a configuration built in a lever combination switch 10 or the like for operating a winker of the vehicle 5 or the like. Therefore, in the present embodiment, the operation unit will be described as the operation lever 20 of the lever combination switch 10 shown above. In addition, the operation part should just be able to operate around the 1st and 2nd rotating shaft, and is not restricted to what is mounted in a vehicle.
  • FIG. 1 is an explanatory diagram showing the interior of a vehicle on which a magnetic detection device according to an embodiment of the present invention is mounted.
  • FIG. 2 is a perspective view showing an appearance of a lever combination switch including a magnetic detection device.
  • FIG. 3A is a plan view showing the magnetic detection device according to the first embodiment of the present invention viewed from the direction of the first rotation axis
  • FIG. 3B is a magnetic view viewed from the direction of the second rotation axis. It is a front view which shows a detection apparatus.
  • FIG. 4 is a block diagram showing the configuration of the magnetic detection device according to the embodiment of the present invention.
  • the lever combination switch 10 is an operation device capable of operating a turn signal (direction indicator) or a headlamp of the vehicle 5, for example. As shown in FIG. 1, the lever combination switch 10 is mounted in the vicinity of the steering 6 of the vehicle, and is disposed so as to protrude from a steering column cover 7 that covers the steering column.
  • the lever combination switch 10 accommodates therein an operation lever 20 that performs a lever operation and a magnetic detection device 100 that detects an operation amount by a rotation operation and a tilt operation by the operation lever 20.
  • the main unit 30 is configured.
  • a lever combination switch 10 that protrudes to the right side in FIG. 1 operates, for example, a direction indicator and a headlamp.
  • the configuration and operation of the magnetic detection device in which the operation lever 20 as the operation unit performs the rotation operation around the first rotation axis L1 and the tilting operation around the second rotation axis L2. Will be described.
  • the operation around the first rotation axis L1 is a rotation operation around the rotation axis L1 in the magnetic detection device 100 shown in FIG. 3A.
  • the operation lever 20 when the operation lever 20 is operated in the P and D directions, it is operated around the second rotation axis.
  • the operation around the second rotation axis L2 is a tilting operation around the rotation axis L2 in the magnetic detection device 100 shown in FIG. 3B.
  • the second rotation axis L2 is orthogonal to the first rotation axis L1.
  • the magnetic detection device 100 is accommodated in the main body 30, and the magnet 120 is rotated around the first rotation axis L1 by the operation lever 20 that is an operation unit.
  • the tilting operation is performed around the second rotation axis L2.
  • the rotation around the first rotation axis L1 and the tilting around the second rotation axis L2 can operate independently.
  • transmission of the driving force from the operation lever 20 to the magnet 120 can take a known mechanism and configuration such as a link mechanism, a gear mechanism, and a cam mechanism.
  • the magnet 120 is formed in a disk shape, for example, a permanent magnet such as an alnico magnet, a ferrite magnet, or a neodymium magnet, or a ferrite, neodymium, samakoba, or samarium iron nitrogen system.
  • a magnetic material such as polystyrene, polyethylene, polyamide, and a synthetic resin material such as acrylonitrile / butadiene / styrene (ABS) and mixed to form a desired shape.
  • the magnet 120 is magnetized in a direction perpendicular to the first rotation axis L1 and perpendicular to the second rotation axis L2. Due to this magnetization, the tilt detection sensor 160 side of the magnet 120 becomes the N pole and the opposite side becomes the S pole. Magnetization with reverse polarity is also possible. With this magnetization, as will be described later, as shown in FIGS. 5A to 5C and 6A to 6C, a typical magnetic flux (magnetic field) is radiated from the N pole of the magnet 120 toward the S pole, and from the N pole to the radius. The magnetic flux 500 radiated toward the outer side in the direction passes through the upper and lower sides of the disk portion 121 of the magnet 120 to form a magnetic flux 500 that converges to the S pole.
  • a typical magnetic flux magnetic field
  • control unit 130 for example, a CPU (Central Processing Unit) that performs operations and processes on acquired data according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, and a ROM ( Read only memory) and the like.
  • ROM Read only memory
  • a program for operating the control unit 130 is stored.
  • the RAM is used as a storage area for temporarily storing calculation results, for example.
  • the control unit 130 rotates around the first rotation axis L1 and the second rotation axis L2 of the operation lever 20 based on the detection signal S1 output from the rotation detection sensor 140 and the detection signal S2 output from the tilt detection sensor 160.
  • the four operation positions based on the rotation of can be determined.
  • control unit 130 can generate an operation signal S3 indicating the operation position of the operation lever 20 and output the operation signal S3 to the vehicle control unit of the vehicle 5.
  • the magnetic detection device 100 includes a rotation detection sensor 140 and a tilt detection sensor 160 as a magnetic detection unit.
  • the rotation detection sensor 140 and the tilt detection sensor 160 are both MR (Magneto Resistive) sensors using magnetoresistive elements.
  • MR Magnetic Resistive
  • a Hall sensor using a Hall element or the like can be used.
  • the rotation detection sensor 140 is disposed below the disc portion 121 of the magnet 120 on the first rotation axis L1. As shown in FIG. 3B, the rotation detection sensor 140 is positioned and fixed in a state where it is mounted on a substrate 190 that is separated from the lower surface 122 of the magnet 120 by a predetermined distance.
  • FIG. 5A is a perspective view showing the magnetizing direction of the magnet, the state of magnetic flux, and the positional relationship of the rotation detection sensor
  • FIG. 5B is a cross-sectional view taken along the line EE of FIG. 5A
  • FIG. It is a top view which shows the positional relationship of the state of magnetic flux and the rotation detection sensor 140 seen from the direction.
  • the typical magnetic flux of the magnet 120 is radiated from the N pole of the magnet 120 toward the S pole, and the magnetic flux radiated from the N pole in the radial direction is the disk of the magnet 120.
  • a magnetic flux 500 that converges on the south pole through the lower side of the part is formed.
  • the rotation detection sensor 140 is arranged so as to detect only a change in the direction of the magnetic field of the magnetic flux 500. That is, the rotation detection sensor 140 can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet 120 around the first rotation axis L1 and is accompanied by a tilting operation of the magnet 120 around the second rotation axis L2.
  • the rotation detection sensor 140 is configured by a bridge of MR elements to be described later, and is arranged so that a surface on which the bridge is configured becomes a detection surface 141 for detecting a change in magnetic field direction.
  • the tilt detection sensor 160 is arranged at a position close to the outer periphery of the magnet 120 at the center of the thickness of the disc portion 121 at the neutral position of the magnet 120 (a position where the tilt operation is not performed). As shown in FIG. 3B, the tilt detection sensor 160 is mounted on a vertical board 191 erected on the board 190.
  • FIG. 6A is a perspective view showing the magnetization direction of the magnet, the state of magnetic flux, and the positional relationship of the tilt detection sensor
  • FIG. 6B is a cross-sectional view taken along line EE of FIG. 6A
  • FIG. It is a top view which shows the state of the magnetic flux seen from the direction, and the positional relationship of the tilt detection sensor 160.
  • the typical magnetic flux of the magnet 120 forms a magnetic flux 500 radiated from the N pole to the S pole of the magnet 120 and is radiated radially outward from the N pole.
  • the magnetic flux 501 is formed.
  • the tilt detection sensor 160 is arranged so as to detect only a change in the direction of the magnetic field of the magnetic flux 501 on the N pole side. In other words, the tilt detection sensor 160 can detect a change in the direction of the magnetic field associated with the tilting operation of the magnet 120 and is disposed at a position where the direction of the magnetic field associated with the rotating operation of the magnet 120 does not change.
  • the tilt detection sensor 160 is configured by a bridge of MR elements, which will be described later, and is arranged so that a surface on which the bridge is configured becomes a detection surface 161 for changing the direction of the magnetic field.
  • the rotation detection sensor 140 does not detect a change in the direction of the magnetic field due to the tilting operation because the change is substantially orthogonal to the detection surface 141 of the rotation detection sensor 140.
  • FIG. 7A is a circuit diagram showing an example of a magnetic sensor
  • FIG. 7B is a signal waveform diagram showing detection signals S1 and S2 detected by the first MR bridge and the second MR bridge.
  • FIG. 7A shows a configuration in which two full bridges are arranged with a rotation angle of 45 °.
  • An intermediate voltage is input to the operational amplifier (differential amplifier) OP1 from the nodes 215b and 215d of the first MR bridge 210 (MR elements 211, 212, 213, and 214), and the detection signal S1 can be detected as a differential signal.
  • intermediate voltages are input to the operational amplifier (differential amplifier) OP2 from the nodes 225b and 225d of the second MR bridge 220 (MR elements 221, 222, 223, and 224), and the detection signal S2 can be detected as a differential signal. It is configured.
  • the reference voltage Vcc is applied to the nodes 215a and 225a, and the nodes 215c and 225c are grounded (GND). Moreover, the detection signal S1 and the detection signal S1 are output to the vehicle control unit of the vehicle 5, for example.
  • the rotation detection sensor 140 which is a magnetic sensor configured as described above, outputs detection signals S1 and S2 as changes in the direction of the magnetic field of the magnet 120 disposed facing the rotation detection sensor 140, and is shown in FIG. 7B.
  • a phase difference of 45 ° For example, by performing an Arctan process that takes the arc tangent by dividing the two detection signals S1 and S2, for example, the direction position of the magnetic field is calculated with reference to the Arctan table stored as a table in the storage unit. be able to.
  • the calculated direction position of the magnetic field corresponds to the rotational operation position of the operation lever 20. Therefore, it is possible to detect what kind of rotation operation (for example, a left turn operation in the direction of arrow TL or a right turn operation in the direction of arrow TR) is performed around the first rotation axis L1.
  • the tilt detection sensor 160 which is a magnetic sensor configured as described above, outputs detection signals S1 and S2 as a change in the direction of the magnetic field of the magnet 120 disposed opposite to the tilt detection sensor 160, As shown in FIG. 7B, detection can be performed with a phase difference of 45 °.
  • detection can be performed with a phase difference of 45 °.
  • the direction position of the magnetic field is calculated with reference to the Arctan table stored as a table in the storage unit. be able to.
  • the calculated direction position of the magnetic field corresponds to the tilting operation position of the operation lever 20. Therefore, it is possible to detect what kind of tilting operation (for example, a passing operation in the direction of arrow P or a dimmer operation in the direction of arrow D) is performed around the second rotation axis L2.
  • the magnetic detection device has the following effects.
  • a magnet 120 that is rotated around the first rotation axis L1 by the operation unit and is tilted around the second rotation axis L2, and the first of the magnet 120
  • a rotation detection sensor 140 which is a first magnetic detection unit that detects a change in the magnetic field around the rotation axis L1, and a second magnetic detection unit that detects a change in the magnetic field around the second rotation axis L2 of the magnet.
  • a tilt detection sensor 160, and the first rotation axis L1 and the second rotation axis L2 are orthogonal to each other, and the rotation detection sensor 140 and the tilt detection sensor 160 are operations for rotating and tilting the magnet 120.
  • the rotation detection sensor 140 is provided at a position that can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet 120 and that does not change the direction of the magnetic field associated with the tilting operation of the magnet 120. That is, the rotation detection sensor 140 can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet 120 around the first rotation axis L1 and is accompanied by a tilting operation of the magnet 120 around the second rotation axis L2. It is arranged at a position where the direction of the magnetic field does not change.
  • the rotation detection sensor 140 is constituted by a bridge of the above-described MR element, and is arranged so that a surface on which the bridge is formed becomes a detection surface 141 for detecting a change in magnetic field direction.
  • the tilt detection sensor 160 can detect a change in the direction of the magnetic field accompanying the tilting operation of the magnet 120, and is provided at a position where the direction of the magnetic field accompanying the rotating operation of the magnet 120 does not change.
  • the tilt detection sensor 160 can detect a change in the direction of the magnetic field associated with the tilting operation of the magnet 120 and is disposed at a position where the direction of the magnetic field associated with the rotating operation of the magnet 120 does not change.
  • the tilt detection sensor 160 is configured by the bridge of the MR element described above, and is arranged so that the surface on which the bridge is configured becomes the detection surface 161 of the direction change of the magnetic field. With such a configuration, the crosstalk of the detection signal due to the movement of one magnet in two directions is reduced, and the movement in two directions can be independently and accurately detected with one magnet. (3) According to the arrangement configuration of the magnet 120, the rotation detection sensor 140, and the tilt detection sensor 160 as described above, a signal is output with the neutral position of the rotation operation or tilt operation as an initial position. The center of the level is constant, and stable detection operation is possible. (4) A configuration in which two magnetometers are used to detect one magnet can reduce the cost compared to a conventional configuration in which two magnets are used. Further, by reducing the number of magnets, it is possible to reduce the size of the magnetic detection device.
  • FIG. 8A is a plan view showing the magnetic detection device according to the second embodiment of the present invention viewed from the direction of the first rotation axis
  • FIG. 8B is a magnetic view viewed from the direction of the second rotation axis. It is a front view which shows a detection apparatus.
  • the magnet is formed in a spherical shape instead of the disk shape shown in the first embodiment.
  • the other configuration is the same as that of the first embodiment, and a duplicate description is omitted.
  • the magnet 125 is formed in a spherical shape as shown in FIGS. 8A and 8B, and is, for example, a permanent magnet such as an alnico magnet, a ferrite magnet, or a neodymium magnet, or a ferrite-based, neodymium-based, samakoba-based, samarium-iron-nitrogen-based, or the like. It is a plastic magnet formed by mixing a magnetic material and a synthetic resin material such as polystyrene, polyethylene, polyamide, acrylonitrile / butadiene / styrene (ABS), etc., into a desired shape.
  • a synthetic resin material such as polystyrene, polyethylene, polyamide, acrylonitrile / butadiene / styrene (ABS), etc.
  • the magnet 125 is magnetized in a direction perpendicular to the first rotation axis L1 and perpendicular to the second rotation axis L2. Due to this magnetization, the tilt detection sensor 160 side of the magnet 125 becomes the N pole and the opposite side becomes the S pole. Magnetization with reverse polarity is also possible. Due to this magnetization, as in the first embodiment, as shown in FIGS. 5A to 5C and 6A to 6C, a typical magnetic flux (magnetic field) is radiated from the N pole of the magnet 125 toward the S pole. The magnetic flux radiated from the north pole in the radial direction passes through the outer peripheral portion 126 of the magnet 125 to form a magnetic flux that converges to the south pole.
  • a typical magnetic flux magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Switches With Compound Operations (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

A magnetic detection device 100 has: a magnet 120 that is rotationally operated about a first rotation axis L1 and tilt-operated about a second rotation axis L2 by an operation part; a rotation detection sensor 140 that is a first magnetic detection unit for detecting changes in the magnetic field of the magnet 120 around the first rotation axis L1; and a tilt detection sensor 160 that is a second magnetic detection unit for detecting changes in the magnetic field of the magnet 120 around the second rotation axis L2. The first rotation axis L1 and the second rotation axis L2 are orthogonal to each other. The rotation detection sensor 140 and the tilt detection sensor 160 are disposed at positions at which the actions of the rotation operation and the tilt operation of the magnet 120 are independently detected.

Description

磁気検出装置Magnetic detector
本発明は、磁気検出装置に関する。 The present invention relates to a magnetic detection device.
レバーの傾倒操作による交差する2方向の動きを非接触で検出するものとして、外レバーの揺動操作に応じて回転する第一の回転体と第二の回転体を設け、この中央に装着された2つのマグネットの磁界をそれぞれのマグネットに対応して設けられた2つの磁気検出素子で検出すると共に、制御手段がこの検出信号から各回転体の回転角度を検出し、これに応じた操作信号を出力する磁気検出装置が知られている(特許文献1参照)。 The first and second rotating bodies that rotate in response to the swinging operation of the outer lever are provided as non-contact detection of the two crossing movements caused by the tilting operation of the lever. The magnetic field of the two magnets is detected by two magnetic detection elements provided corresponding to the respective magnets, and the control means detects the rotation angle of each rotating body from this detection signal, and the operation signal corresponding to this Is known (see Patent Document 1).
特開2008-218067号公報JP 2008-218067 A
特許文献1の磁気検出装置は、レバーの傾倒操作による交差する2方向の動きを磁気検出素子で検出するために、それぞれの動きに対応して2つのマグネットを要するという問題があった。また、レバーの2方向の動きを1つのマグネットの2方向の磁界変化としてそれぞれの磁気検出素子で検出すると、各磁気検出素子が2方向の磁界変化を検出するクロストークが発生するため、2方向の動きを独立して精度よく検出できないという問題があった。 The magnetic detection device of Patent Document 1 has a problem that two magnets are required corresponding to each movement in order to detect movements in two intersecting directions due to the tilting operation of the lever by the magnetic detection element. Further, when the movement of the lever in two directions is detected by each magnetic detection element as a two-direction magnetic field change of one magnet, each magnetic detection element generates crosstalk that detects a two-direction magnetic field change. There is a problem that the movement of the camera cannot be accurately detected independently.
本発明の目的は、1つのマグネットで2方向の動きを独立して精度よく検出できる磁気検出装置を提供することにある。 An object of the present invention is to provide a magnetic detection device that can accurately and accurately detect movement in two directions with a single magnet.
[1]本発明の一態様に従う磁気検出装置は、操作部により第1の回転軸の回りに回転操作されると共に、第2の回転軸の回りに傾動操作されるマグネットと、前記マグネットの前記第1の回転軸の回りの磁界の変化を検出する第1の磁気検出部と、前記マグネットの前記第2の回転軸の回りの磁界の変化を検出する第2の磁気検出部と、を有し、前記第1の回転軸と前記第2の回転軸とは直交し、前記第1の磁気検出部と前記第2の磁気検出部は、前記マグネットの前記回転操作及び前記傾動操作の動作を独立に検出する。 [1] A magnetic detection device according to an aspect of the present invention is a magnet that is rotated around a first rotation axis by an operation unit and tilted around a second rotation axis, and the magnet of the magnet A first magnetic detection unit that detects a change in the magnetic field around the first rotation axis; and a second magnetic detection unit that detects a change in the magnetic field around the second rotation axis of the magnet. The first rotation axis and the second rotation axis are orthogonal to each other, and the first magnetic detection unit and the second magnetic detection unit perform the rotation operation and the tilt operation of the magnet. Detect independently.
[2]前記マグネットは、前記第1の回転軸及び前記第2の回転軸に直交する方向に着磁されている、[1]に記載の磁気検出装置であってもよい。 [2] The magnetism detection device according to [1], wherein the magnet is magnetized in a direction orthogonal to the first rotation axis and the second rotation axis.
[3]前記第1の磁気検出部は、前記マグネットの前記回転操作に伴う磁界の方向変化を検出でき、かつ、前記マグネットの前記傾動操作に伴う磁界の方向が変化しない位置に設けられている、[1]又は[2]に記載の磁気検出装置であってもよい。 [3] The first magnetic detection unit is provided at a position that can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet and that does not change the direction of the magnetic field associated with the tilting operation of the magnet. , [1] or [2].
[4]前記第2の磁気検出部は、前記マグネットの前記傾動操作に伴う磁界の方向変化を検出でき、かつ、前記マグネットの前記回転操作に伴う磁界の方向が変化しない位置に設けられている、[1]又は[2]に記載の磁気検出装置であってもよい。 [4] The second magnetic detection unit is provided at a position that can detect a change in the direction of the magnetic field associated with the tilting operation of the magnet and that does not change the direction of the magnetic field associated with the rotation operation of the magnet. , [1] or [2].
[5]前記マグネットは、円板状又は球状に形成されている、[1]~[4]のいずれか1に記載の磁気検出装置であってもよい。
[6]前記第1の磁気検出部は、前記第1の回転軸と直交する第1の検知面を有し、前記第2の磁気検出部は、前記第2の回転軸と直交する平面上に形成される第2の検知面を有する、[1]~[5]のいずれか1に記載の磁気検出装置であってもよい。
[7]前記第1及び第2の検知面は、MR素子からなるブリッジの面として構成される、[6]に記載の磁気検出装置であってもよい。
[8]本発明の他の態様に従う車両用レバーコンビネーションスイッチは、
[1]~[7]のいずれか1に記載の磁気検出装置を有する。
[5] The magnetic detection device according to any one of [1] to [4], wherein the magnet is formed in a disk shape or a spherical shape.
[6] The first magnetic detection unit has a first detection surface orthogonal to the first rotation axis, and the second magnetic detection unit is on a plane orthogonal to the second rotation axis. The magnetic detection device according to any one of [1] to [5], which includes a second detection surface formed on the substrate.
[7] The magnetic detection device according to [6], wherein the first and second detection surfaces are configured as a bridge surface made of an MR element.
[8] A vehicle lever combination switch according to another aspect of the present invention includes:
[1] The magnetic detection device according to any one of [7] is provided.
本発明の一態様に従い、1つのマグネットで2方向の動きを独立して精度よく検出できる磁気検出装置が提供される。 According to one aspect of the present invention, a magnetic detection device is provided that can independently and accurately detect movement in two directions with a single magnet.
図1は、本発明の実施の形態に係る磁気検出装置が搭載された車両内部を示す説明図である。FIG. 1 is an explanatory diagram showing the interior of a vehicle on which a magnetic detection device according to an embodiment of the present invention is mounted. 図2は、磁気検出装置を内部に含むレバーコンビネーションスイッチの外観を示す斜視図である。FIG. 2 is a perspective view showing an appearance of a lever combination switch including a magnetic detection device. 図3Aは、本発明の第1の実施の形態に係る磁気検出装置を示す、第1の回転軸の方向からみた平面図である。FIG. 3A is a plan view of the magnetic detection device according to the first embodiment of the present invention as seen from the direction of the first rotation axis. 図3Bは、第2の回転軸の方向からみた、磁気検出装置を示す正面図である。FIG. 3B is a front view showing the magnetic detection device as seen from the direction of the second rotation axis. 図4は、本発明の実施の形態に係る磁気検出装置の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the magnetic detection device according to the embodiment of the present invention. 図5Aは、マグネットの着磁方向、磁束の状態、回転検出センサの位置関係を示す斜視図である。FIG. 5A is a perspective view showing the magnetizing direction of the magnet, the state of magnetic flux, and the positional relationship of the rotation detection sensor. 図5Bは、図5AのE-E線に沿った断面図である。FIG. 5B is a cross-sectional view taken along line EE of FIG. 5A. 図5Cは、図5AのF方向から見た、磁束の状態と回転検出センサの位置関係を示す平面図である。FIG. 5C is a plan view illustrating the positional relationship between the state of magnetic flux and the rotation detection sensor as viewed from the direction F of FIG. 5A. 図6Aは、マグネットの着磁方向、磁束の状態、傾動検出センサの位置関係を示す斜視図である。FIG. 6A is a perspective view illustrating the magnetizing direction, the state of magnetic flux, and the positional relationship of the tilt detection sensor. 図6Bは、図6AのE-E線に沿った断面図である。6B is a cross-sectional view taken along line EE of FIG. 6A. 図6Cは、図6AのF方向から見た、磁束の状態と傾動検出センサの位置関係を示す平面図である。FIG. 6C is a plan view showing the positional relationship between the state of magnetic flux and the tilt detection sensor as seen from the direction F of FIG. 6A. 図7Aは、磁気センサの例を示す回路図である。FIG. 7A is a circuit diagram illustrating an example of a magnetic sensor. 図7Bは、第1MRブリッジと第2MRブリッジにより検出される検出信号S1、S2を示す信号波形図である。FIG. 7B is a signal waveform diagram showing detection signals S1 and S2 detected by the first MR bridge and the second MR bridge. 図8Aは、本発明の第2の実施の形態に係る磁気検出装置を示す、第1の回転軸の方向からみた平面図である。FIG. 8A is a plan view showing the magnetic detection device according to the second embodiment of the present invention as seen from the direction of the first rotation axis. 図8Bは、第2の回転軸の方向からみた、磁気検出装置を示す正面図である。FIG. 8B is a front view showing the magnetic detection device as seen from the direction of the second rotation axis.
(本発明の実施の形態の要約)
本発明の実施の形態に係る磁気検出装置100は、操作部により第1の回転軸L1の回りに回転操作されると共に、第2の回転軸L2の回りに傾動操作されるマグネット120と、マグネット120の第1の回転軸L1の回りの磁界の変化を検出する第1の磁気検出部である回転検出センサ140と、マグネットの第2の回転軸L2の回りの磁界の変化を検出する第2の磁気検出部である傾動検出センサ160と、を有し、第1の回転軸L1と第2の回転軸L2とは直交し、回転検出センサ140と傾動検出センサ160は、マグネット120の回転操作及び傾動操作の動作を独立に検出するものである。この磁気検出装置100は、例えば、車両5のウインカー操作等を行なうレバーコンビネーションスイッチ10等に内蔵された構成で使用される。したがって、本実施の形態では、操作部が上記示したレバーコンビネーションスイッチ10の操作レバー20であるものとして説明する。なお、操作部は、第1及び第2の回転軸の回りに操作できるものであればよく、また、車両に搭載されるものには限られない。
(Summary of Embodiments of the Present Invention)
A magnetism detection device 100 according to an embodiment of the present invention includes a magnet 120 that is rotated around a first rotation axis L1 and tilted around a second rotation axis L2 by an operation unit, and a magnet A rotation detection sensor 140 that is a first magnetic detection unit that detects a change in magnetic field around the first rotation axis L1 of 120, and a second that detects a change in the magnetic field around the second rotation axis L2 of the magnet. The first rotation axis L1 and the second rotation axis L2 are orthogonal to each other, and the rotation detection sensor 140 and the tilt detection sensor 160 are used to rotate the magnet 120. And the operation of the tilting operation is detected independently. This magnetic detection device 100 is used, for example, in a configuration built in a lever combination switch 10 or the like for operating a winker of the vehicle 5 or the like. Therefore, in the present embodiment, the operation unit will be described as the operation lever 20 of the lever combination switch 10 shown above. In addition, the operation part should just be able to operate around the 1st and 2nd rotating shaft, and is not restricted to what is mounted in a vehicle.
(第1の実施の形態)
(磁気検出装置100の全体構成)
図1は、本発明の実施の形態に係る磁気検出装置が搭載された車両内部を示す説明図である。図2は、磁気検出装置を内部に含むレバーコンビネーションスイッチの外観を示す斜視図である。図3Aは、本発明の第1の実施の形態に係る磁気検出装置を示す、第1の回転軸の方向からみた平面図であり、図3Bは、第2の回転軸の方向からみた、磁気検出装置を示す正面図である。また、図4は、本発明の実施の形態に係る磁気検出装置の構成を示すブロック図である。
(First embodiment)
(Whole structure of the magnetic detection apparatus 100)
FIG. 1 is an explanatory diagram showing the interior of a vehicle on which a magnetic detection device according to an embodiment of the present invention is mounted. FIG. 2 is a perspective view showing an appearance of a lever combination switch including a magnetic detection device. FIG. 3A is a plan view showing the magnetic detection device according to the first embodiment of the present invention viewed from the direction of the first rotation axis, and FIG. 3B is a magnetic view viewed from the direction of the second rotation axis. It is a front view which shows a detection apparatus. FIG. 4 is a block diagram showing the configuration of the magnetic detection device according to the embodiment of the present invention.
レバーコンビネーションスイッチ10は、例えば、車両5のウインカー(方向指示器)やヘッドランプを操作することが可能な操作装置である。このレバーコンビネーションスイッチ10は、図1に示すように、車両のステアリング6の近傍に装着され、ステアリングコラムを覆うステアリングコラムカバー7から突出するように配置されている。 The lever combination switch 10 is an operation device capable of operating a turn signal (direction indicator) or a headlamp of the vehicle 5, for example. As shown in FIG. 1, the lever combination switch 10 is mounted in the vicinity of the steering 6 of the vehicle, and is disposed so as to protrude from a steering column cover 7 that covers the steering column.
また、図2に示すように、レバーコンビネーションスイッチ10は、レバー操作を行なう操作レバー20と、操作レバー20による回転操作、傾動操作による操作量を検出するための磁気検出装置100を内部に収容する本体部30から構成されている。図1の紙面において右側に突出して配置されたレバーコンビネーションスイッチ10は、例えば、方向指示器及びヘッドランプ等を操作するものである。本実施の形態では、操作部としての操作レバー20により、第1の回転軸L1の回りの回転操作、及び、第2の回転軸L2の回りの傾動操作がされる磁気検出装置の構成、動作について説明する。 As shown in FIG. 2, the lever combination switch 10 accommodates therein an operation lever 20 that performs a lever operation and a magnetic detection device 100 that detects an operation amount by a rotation operation and a tilt operation by the operation lever 20. The main unit 30 is configured. A lever combination switch 10 that protrudes to the right side in FIG. 1 operates, for example, a direction indicator and a headlamp. In the present embodiment, the configuration and operation of the magnetic detection device in which the operation lever 20 as the operation unit performs the rotation operation around the first rotation axis L1 and the tilting operation around the second rotation axis L2. Will be described.
図2に示すように、操作レバー20をTL、TR方向に操作すると第1の回転軸の回りに操作される。この第1の回転軸L1の回りの操作は、図3Aで示す磁気検出装置100における回転軸L1回りの回転操作である。 As shown in FIG. 2, when the operation lever 20 is operated in the TL and TR directions, it is operated around the first rotation axis. The operation around the first rotation axis L1 is a rotation operation around the rotation axis L1 in the magnetic detection device 100 shown in FIG. 3A.
また、図2に示すように、操作レバー20をP、D方向に操作すると第2の回転軸の回りに操作される。この第2の回転軸L2の回りの操作は、図3Bで示す磁気検出装置100における回転軸L2回りの傾動操作である。なお、第2の回転軸L2は、第1の回転軸L1と直交する。 Further, as shown in FIG. 2, when the operation lever 20 is operated in the P and D directions, it is operated around the second rotation axis. The operation around the second rotation axis L2 is a tilting operation around the rotation axis L2 in the magnetic detection device 100 shown in FIG. 3B. The second rotation axis L2 is orthogonal to the first rotation axis L1.
磁気検出装置100は、図2、3A、3Bに示すように、本体部30の内部に収容され、操作部である操作レバー20により、マグネット120が第1の回転軸L1の回りに回転操作され、又は、第2の回転軸L2の回りに傾動操作される。第1の回転軸L1の回りの回転と、第2の回転軸L2の回りの傾動とは独立に動作することができる。なお、操作レバー20からマグネット120までの駆動力の伝達は、リンク機構、ギア機構、カム機構等の公知の機構、構成が採りうる。 As shown in FIGS. 2, 3A, and 3B, the magnetic detection device 100 is accommodated in the main body 30, and the magnet 120 is rotated around the first rotation axis L1 by the operation lever 20 that is an operation unit. Alternatively, the tilting operation is performed around the second rotation axis L2. The rotation around the first rotation axis L1 and the tilting around the second rotation axis L2 can operate independently. In addition, transmission of the driving force from the operation lever 20 to the magnet 120 can take a known mechanism and configuration such as a link mechanism, a gear mechanism, and a cam mechanism.
(マグネット120の構成)
マグネット120は、図3A、3Bに示すように、円板状に形成され、例えば、アルニコマグネット、フェライトマグネット、ネオジムマグネット等の永久磁石、又は、フェライト系、ネオジム系、サマコバ系、サマリウム鉄窒素系等の磁性体材料と、ポリスチレン系、ポリエチレン系、ポリアミド系、アクリロニトリル/ブタジエン/スチレン(ABS)等の合成樹脂材料と、を混合して所望の形状に成形したプラスチックマグネットである。
(Configuration of magnet 120)
As shown in FIGS. 3A and 3B, the magnet 120 is formed in a disk shape, for example, a permanent magnet such as an alnico magnet, a ferrite magnet, or a neodymium magnet, or a ferrite, neodymium, samakoba, or samarium iron nitrogen system. And a magnetic material such as polystyrene, polyethylene, polyamide, and a synthetic resin material such as acrylonitrile / butadiene / styrene (ABS) and mixed to form a desired shape.
マグネット120の着磁方向は、図3A、3Bに示すように、第1の回転軸L1と直交し、かつ、第2の回転軸L2と直交する方向である。この着磁により、マグネット120の傾動検出センサ160側がN極、反対側がS極となる。なお、逆極性での着磁も可能である。この着磁により、後述するように、図5A~5C、6A~6Cに示すように、代表的な磁束(磁界)は、マグネット120のN極からS極に向かって放射され、N極から半径方向外側に向かって放射された磁束がマグネット120の円板部121の上側、下側を通ってS極に収束される磁束500を形成する。 As shown in FIGS. 3A and 3B, the magnet 120 is magnetized in a direction perpendicular to the first rotation axis L1 and perpendicular to the second rotation axis L2. Due to this magnetization, the tilt detection sensor 160 side of the magnet 120 becomes the N pole and the opposite side becomes the S pole. Magnetization with reverse polarity is also possible. With this magnetization, as will be described later, as shown in FIGS. 5A to 5C and 6A to 6C, a typical magnetic flux (magnetic field) is radiated from the N pole of the magnet 120 toward the S pole, and from the N pole to the radius. The magnetic flux 500 radiated toward the outer side in the direction passes through the upper and lower sides of the disk portion 121 of the magnet 120 to form a magnetic flux 500 that converges to the S pole.
(制御部130の構成)
図4に示すように、制御部130は、例えば、記憶されたプログラムに従って、取得したデータに演算、加工などを行うCPU(Central Processing Unit)、半導体メモリであるRAM(Random Access Memory)及びROM(Read Only Memory)などから構成されるマイクロコンピュータである。このROMには、例えば、制御部130が動作するためのプログラム等が格納されている。RAMは、例えば、一時的に演算結果など格納する記憶領域として用いられる。
(Configuration of control unit 130)
As shown in FIG. 4, the control unit 130, for example, a CPU (Central Processing Unit) that performs operations and processes on acquired data according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, and a ROM ( Read only memory) and the like. In this ROM, for example, a program for operating the control unit 130 is stored. The RAM is used as a storage area for temporarily storing calculation results, for example.
制御部130は、回転検出センサ140から出力される検出信号S1、及び傾動検出センサ160から出力される検出信号S2に基づいて操作レバー20の第1の回転軸L1及び第2の回転軸L2回りの回転に基づく4つの操作位置を判定することができる。 The control unit 130 rotates around the first rotation axis L1 and the second rotation axis L2 of the operation lever 20 based on the detection signal S1 output from the rotation detection sensor 140 and the detection signal S2 output from the tilt detection sensor 160. The four operation positions based on the rotation of can be determined.
制御部130は、例えば、操作レバー20の操作位置を示す操作信号S3を生成し、車両5の車両制御部に出力することができる。 For example, the control unit 130 can generate an operation signal S3 indicating the operation position of the operation lever 20 and output the operation signal S3 to the vehicle control unit of the vehicle 5.
(磁気検出部の構成)
磁気検出装置100は磁気検出部として、回転検出センサ140、傾動検出センサ160を有している。回転検出センサ140、傾動検出センサ160は、共に、磁気抵抗素子を用いたMR(Magneto Resistive)センサが使用される。なお、他の磁気センサとして、ホール素子を用いたホールセンサ等も使用可能である。
(Configuration of magnetic detector)
The magnetic detection device 100 includes a rotation detection sensor 140 and a tilt detection sensor 160 as a magnetic detection unit. The rotation detection sensor 140 and the tilt detection sensor 160 are both MR (Magneto Resistive) sensors using magnetoresistive elements. As another magnetic sensor, a Hall sensor using a Hall element or the like can be used.
回転検出センサ140は、図3Bに示すように、第1の回転軸L1上でマグネット120の円板部121の下側に配置されている。図3Bに示すように、回転検出センサ140は、マグネット120の下面122から所定距離だけ離間した基板190上に実装された状態で位置決めされて固定されている。 As shown in FIG. 3B, the rotation detection sensor 140 is disposed below the disc portion 121 of the magnet 120 on the first rotation axis L1. As shown in FIG. 3B, the rotation detection sensor 140 is positioned and fixed in a state where it is mounted on a substrate 190 that is separated from the lower surface 122 of the magnet 120 by a predetermined distance.
図5Aは、マグネットの着磁方向、磁束の状態、回転検出センサの位置関係を示す斜視図、図5Bは、図5AのE-E線に沿った断面図、図5Cは、図5AのF方向から見た、磁束の状態と回転検出センサ140の位置関係を示す平面図である。 5A is a perspective view showing the magnetizing direction of the magnet, the state of magnetic flux, and the positional relationship of the rotation detection sensor, FIG. 5B is a cross-sectional view taken along the line EE of FIG. 5A, and FIG. It is a top view which shows the positional relationship of the state of magnetic flux and the rotation detection sensor 140 seen from the direction.
図5A~5Cに示すように、マグネット120の代表的な磁束は、マグネット120のN極からS極に向かって放射され、N極から半径方向に向かって放射された磁束がマグネット120の円板部の下側を通ってS極に収束される磁束500を形成する。回転検出センサ140は、磁束500の磁界の方向変化のみを検出できるように配置される。
すなわち、回転検出センサ140は、マグネット120の第1の回転軸L1の回りの回転操作に伴う磁界の方向変化を検出でき、かつ、マグネット120の第2の回転軸L2の回りの傾動操作に伴う磁界の方向が変化しない位置に配置される。回転検出センサ140は、後述するMR素子のブリッジで構成されており、このブリッジが構成される面が磁界の方向変化の検知面141となるように配置される。
As shown in FIGS. 5A to 5C, the typical magnetic flux of the magnet 120 is radiated from the N pole of the magnet 120 toward the S pole, and the magnetic flux radiated from the N pole in the radial direction is the disk of the magnet 120. A magnetic flux 500 that converges on the south pole through the lower side of the part is formed. The rotation detection sensor 140 is arranged so as to detect only a change in the direction of the magnetic field of the magnetic flux 500.
That is, the rotation detection sensor 140 can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet 120 around the first rotation axis L1 and is accompanied by a tilting operation of the magnet 120 around the second rotation axis L2. It is arranged at a position where the direction of the magnetic field does not change. The rotation detection sensor 140 is configured by a bridge of MR elements to be described later, and is arranged so that a surface on which the bridge is configured becomes a detection surface 141 for detecting a change in magnetic field direction.
傾動検出センサ160は、図3Bに示すように、マグネット120の中立位置(傾動操作していない位置)における円板部121の厚み中央で、マグネット120の外周に近接した位置に配置されている。図3Bに示すように、傾動検出センサ160は、基板190に立設した垂直基板191に実装される。 As shown in FIG. 3B, the tilt detection sensor 160 is arranged at a position close to the outer periphery of the magnet 120 at the center of the thickness of the disc portion 121 at the neutral position of the magnet 120 (a position where the tilt operation is not performed). As shown in FIG. 3B, the tilt detection sensor 160 is mounted on a vertical board 191 erected on the board 190.
図6Aは、マグネットの着磁方向、磁束の状態、傾動検出センサの位置関係を示す斜視図、図6Bは、図6AのE-E線に沿った断面図、図6Cは、図6AのF方向から見た磁束の状態と傾動検出センサ160の位置関係を示す平面図である。 6A is a perspective view showing the magnetization direction of the magnet, the state of magnetic flux, and the positional relationship of the tilt detection sensor, FIG. 6B is a cross-sectional view taken along line EE of FIG. 6A, and FIG. It is a top view which shows the state of the magnetic flux seen from the direction, and the positional relationship of the tilt detection sensor 160. FIG.
図6A~6Cに示すように、マグネット120の代表的な磁束は、マグネット120のN極からS極に向かって放射される磁束500を形成すると共に、N極から半径方向外側に向かって放射された磁束501を形成する。傾動検出センサ160は、N極側の磁束501の磁界の方向変化のみを検出できるように配置される。すなわち、傾動検出センサ160は、マグネット120の傾動操作に伴う磁界の方向変化を検出でき、かつ、マグネット120の回転操作に伴う磁界の方向が変化しない位置に配置される。傾動検出センサ160は、後述するMR素子のブリッジで構成されており、このブリッジが構成される面が磁界の方向変化の検知面161となるように配置される。 As shown in FIGS. 6A to 6C, the typical magnetic flux of the magnet 120 forms a magnetic flux 500 radiated from the N pole to the S pole of the magnet 120 and is radiated radially outward from the N pole. The magnetic flux 501 is formed. The tilt detection sensor 160 is arranged so as to detect only a change in the direction of the magnetic field of the magnetic flux 501 on the N pole side. In other words, the tilt detection sensor 160 can detect a change in the direction of the magnetic field associated with the tilting operation of the magnet 120 and is disposed at a position where the direction of the magnetic field associated with the rotating operation of the magnet 120 does not change. The tilt detection sensor 160 is configured by a bridge of MR elements, which will be described later, and is arranged so that a surface on which the bridge is configured becomes a detection surface 161 for changing the direction of the magnetic field.
(磁気検出装置100の動作と検出動作)
以下に、磁気検出装置100の動作について各図を参照しながら説明する。すなわち、第1の回転軸L1の回りに回転操作された場合のマグネット120の回転移動による回転検出センサ140の検出動作、第2の回転軸L2の回りに回転操作された場合のマグネット120の回転移動による傾動検出センサ160の検出動作について説明する。
(Operation and detection operation of the magnetic detection device 100)
Below, operation | movement of the magnetic detection apparatus 100 is demonstrated, referring each figure. That is, the detection operation of the rotation detection sensor 140 based on the rotational movement of the magnet 120 when it is rotated around the first rotation axis L1, and the rotation of the magnet 120 when it is rotated around the second rotation axis L2. The detection operation of the tilt detection sensor 160 due to movement will be described.
操作レバー20を第1の回転軸L1の回りに回転操作すると、マグネット120は、第1の回転軸L1の回りに回転操作する。これにより、図5A、5Cで示す回転検出センサ140を通過する磁束500の磁界の方向が変化する。この磁界の方向の変化は、図3B、5A、5Bで示す回転検出センサ140の検知面141上での変化であるので、回転検出センサ140により磁界の方向変化を検出可能である。一方、図3B、6A、6Bで示すように、傾動検出センサ160の検知面161と略直交する変化であるので、傾動検出センサ160は回転操作による磁界の方向変化を検出しない。 When the operation lever 20 is rotated around the first rotation axis L1, the magnet 120 is rotated around the first rotation axis L1. As a result, the direction of the magnetic field of the magnetic flux 500 passing through the rotation detection sensor 140 shown in FIGS. 5A and 5C changes. This change in the direction of the magnetic field is a change on the detection surface 141 of the rotation detection sensor 140 shown in FIGS. 3B, 5A, and 5B, so that the change in the direction of the magnetic field can be detected by the rotation detection sensor 140. On the other hand, as shown in FIGS. 3B, 6A, and 6B, since the change is substantially perpendicular to the detection surface 161 of the tilt detection sensor 160, the tilt detection sensor 160 does not detect a change in the direction of the magnetic field due to the rotation operation.
操作レバー20を第2の回転軸L2の回りに傾動操作すると、マグネット120は、第2の回転軸L2の回りに傾動操作する。これにより、図6A、6Cで示す傾動検出センサ160を通過する磁束501の磁界の方向が変化する。この磁界の方向の変化は、図3B、6A、6Bで示す傾動検出センサ160の検知面161上での変化であるので、傾動検出センサ160により磁界の方向変化を検出可能である。一方、図3B、5A、5Bで示したように、回転検出センサ140の検知面141と略直交する変化であるので、回転検出センサ140は傾動操作による磁界の方向変化を検出しない。 When the operation lever 20 is tilted around the second rotation axis L2, the magnet 120 is tilted around the second rotation axis L2. As a result, the direction of the magnetic field of the magnetic flux 501 passing through the tilt detection sensor 160 shown in FIGS. 6A and 6C changes. Since the change in the direction of the magnetic field is a change on the detection surface 161 of the tilt detection sensor 160 shown in FIGS. 3B, 6A, and 6B, the change in the direction of the magnetic field can be detected by the tilt detection sensor 160. On the other hand, as shown in FIGS. 3B, 5A, and 5B, the rotation detection sensor 140 does not detect a change in the direction of the magnetic field due to the tilting operation because the change is substantially orthogonal to the detection surface 141 of the rotation detection sensor 140.
(回転検出動作)
図7Aは、磁気センサの例を示す回路図であり、図7Bは、第1MRブリッジと第2MRブリッジにより検出される検出信号S1、S2を示す信号波形図である。
(Rotation detection operation)
FIG. 7A is a circuit diagram showing an example of a magnetic sensor, and FIG. 7B is a signal waveform diagram showing detection signals S1 and S2 detected by the first MR bridge and the second MR bridge.
図7Aは、2つのフルブリッジが45°の回転角度を有して配置されている構成を示している。第1MRブリッジ210(MR素子211、212,213、214)のノード215b、215dからは中間電圧がオペアンプ(差動アンプ)OP1に入力されて、検出信号S1が差動信号として検出できる構成とされている。同様に、第2MRブリッジ220(MR素子221、222,223、224)のノード225b、225dからは中間電圧がオペアンプ(差動アンプ)OP2に入力されて、検出信号S2が差動信号として検出できる構成とされている。なお、ノード215a、225aには、基準電圧Vccが印加され、ノード215c、225cは、接地(GND)されている。また、検出信号S1及び検出信号S1は、例えば、車両5の車両制御部に出力される。 FIG. 7A shows a configuration in which two full bridges are arranged with a rotation angle of 45 °. An intermediate voltage is input to the operational amplifier (differential amplifier) OP1 from the nodes 215b and 215d of the first MR bridge 210 ( MR elements 211, 212, 213, and 214), and the detection signal S1 can be detected as a differential signal. ing. Similarly, intermediate voltages are input to the operational amplifier (differential amplifier) OP2 from the nodes 225b and 225d of the second MR bridge 220 ( MR elements 221, 222, 223, and 224), and the detection signal S2 can be detected as a differential signal. It is configured. Note that the reference voltage Vcc is applied to the nodes 215a and 225a, and the nodes 215c and 225c are grounded (GND). Moreover, the detection signal S1 and the detection signal S1 are output to the vehicle control unit of the vehicle 5, for example.
上記のように構成された磁気センサである回転検出センサ140は、この回転検出センサ140に対向して配置されたマグネット120の磁界の方向変化として検出信号S1、S2を出力し、図7Bに示すように、45°の位相差を有して検出することができる。例えば、この2つの検出信号S1、S2を割算してアークタンジェントをとるArctan処理を行なうことにより、例えば、記憶部にテーブルとして記憶されたArctan表を参照して、磁界の方向位置を算出することができる。この算出された磁界の方向位置は、操作レバー20の回転操作位置に対応する。したがって、操作レバー20が第1の回転軸L1の回りにどのような回転操作(例えば、矢印TL方向の左折操作、または、矢印TR方向の右折操作)が行われたかを検出することができる。 The rotation detection sensor 140, which is a magnetic sensor configured as described above, outputs detection signals S1 and S2 as changes in the direction of the magnetic field of the magnet 120 disposed facing the rotation detection sensor 140, and is shown in FIG. 7B. Thus, it is possible to detect with a phase difference of 45 °. For example, by performing an Arctan process that takes the arc tangent by dividing the two detection signals S1 and S2, for example, the direction position of the magnetic field is calculated with reference to the Arctan table stored as a table in the storage unit. be able to. The calculated direction position of the magnetic field corresponds to the rotational operation position of the operation lever 20. Therefore, it is possible to detect what kind of rotation operation (for example, a left turn operation in the direction of arrow TL or a right turn operation in the direction of arrow TR) is performed around the first rotation axis L1.
同様にして、上記のように構成された磁気センサである傾動検出センサ160は、この傾動検出センサ160に対向して配置されたマグネット120の磁界の方向変化として検出信号S1、S2を出力し、図7Bに示すように、45°の位相差を有して検出することができる。例えば、この2つの検出信号S1、S2を割算してアークタンジェントをとるArctan処理を行なうことにより、例えば、記憶部にテーブルとして記憶されたArctan表を参照して、磁界の方向位置を算出することができる。この算出された磁界の方向位置は、操作レバー20の傾動操作位置に対応する。したがって、操作レバー20が第2の回転軸L2の回りにどのような傾動操作(例えば、矢印P方向のパッシング操作、または、矢印D方向のディマ操作)が行われたかを検出することができる。 Similarly, the tilt detection sensor 160, which is a magnetic sensor configured as described above, outputs detection signals S1 and S2 as a change in the direction of the magnetic field of the magnet 120 disposed opposite to the tilt detection sensor 160, As shown in FIG. 7B, detection can be performed with a phase difference of 45 °. For example, by performing an Arctan process that takes the arc tangent by dividing the two detection signals S1 and S2, for example, the direction position of the magnetic field is calculated with reference to the Arctan table stored as a table in the storage unit. be able to. The calculated direction position of the magnetic field corresponds to the tilting operation position of the operation lever 20. Therefore, it is possible to detect what kind of tilting operation (for example, a passing operation in the direction of arrow P or a dimmer operation in the direction of arrow D) is performed around the second rotation axis L2.
(第1の実施の形態の効果)
本実施の形態に係る磁気検出装置によれば、次のような効果を有する。
(1)本実施の形態では、操作部により第1の回転軸L1の回りに回転操作されると共に、第2の回転軸L2の回りに傾動操作されるマグネット120と、マグネット120の第1の回転軸L1の回りの磁界の変化を検出する第1の磁気検出部である回転検出センサ140と、マグネットの第2の回転軸L2の回りの磁界の変化を検出する第2の磁気検出部である傾動検出センサ160と、を有し、第1の回転軸L1と第2の回転軸L2とは直交し、回転検出センサ140と傾動検出センサ160は、マグネット120の回転操作及び傾動操作の動作を独立に検出するように構成している。これにより、1つのマグネットで2方向の動きを独立して精度よく検出できる。
(2)回転検出センサ140は、マグネット120の回転操作に伴う磁界の方向変化を検出でき、かつ、マグネット120の傾動操作に伴う磁界の方向が変化しない位置に設けられている。すなわち、回転検出センサ140は、マグネット120の第1の回転軸L1の回りの回転操作に伴う磁界の方向変化を検出でき、かつ、マグネット120の第2の回転軸L2の回りの傾動操作に伴う磁界の方向が変化しない位置に配置される。回転検出センサ140は、前述のMR素子のブリッジで構成されており、このブリッジが構成される面が磁界の方向変化の検知面141となるように配置される。一方、傾動検出センサ160は、マグネット120の傾動操作に伴う磁界の方向変化を検出でき、かつ、マグネット120の回転操作に伴う磁界の方向が変化しない位置に設けられている。すなわち、傾動検出センサ160は、マグネット120の傾動操作に伴う磁界の方向変化を検出でき、かつ、マグネット120の回転操作に伴う磁界の方向が変化しない位置に配置される。傾動検出センサ160は、前述のMR素子のブリッジで構成されており、このブリッジが構成される面が磁界の方向変化の検知面161となるように配置される。このような構成により、1つのマグネットの2方向の動きによる検出信号のクロストークが低減され、1つのマグネットで2方向の動きを独立して精度よく検出できる。
(3)上記のようなマグネット120と回転検出センサ140、傾動検出センサ160の配置構成によれば、回転操作又は傾動操作の中立位置を初期位置として信号が出力されるので、それぞれの検出信号のレベル中心が一定であり、安定した検出動作が可能となる。
(4)1つのマグネットに対して2つの磁気センサで検出する構成により、従来のように2つのマグネットを使用する構成に比較して、低コストが可能である。また、マグネット数を削減することで、磁気検出装置の小型化が可能となる。
(Effects of the first embodiment)
The magnetic detection device according to the present embodiment has the following effects.
(1) In the present embodiment, a magnet 120 that is rotated around the first rotation axis L1 by the operation unit and is tilted around the second rotation axis L2, and the first of the magnet 120 A rotation detection sensor 140, which is a first magnetic detection unit that detects a change in the magnetic field around the rotation axis L1, and a second magnetic detection unit that detects a change in the magnetic field around the second rotation axis L2 of the magnet. A tilt detection sensor 160, and the first rotation axis L1 and the second rotation axis L2 are orthogonal to each other, and the rotation detection sensor 140 and the tilt detection sensor 160 are operations for rotating and tilting the magnet 120. Are detected independently. As a result, the movement in two directions can be independently and accurately detected with one magnet.
(2) The rotation detection sensor 140 is provided at a position that can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet 120 and that does not change the direction of the magnetic field associated with the tilting operation of the magnet 120. That is, the rotation detection sensor 140 can detect a change in the direction of the magnetic field associated with the rotation operation of the magnet 120 around the first rotation axis L1 and is accompanied by a tilting operation of the magnet 120 around the second rotation axis L2. It is arranged at a position where the direction of the magnetic field does not change. The rotation detection sensor 140 is constituted by a bridge of the above-described MR element, and is arranged so that a surface on which the bridge is formed becomes a detection surface 141 for detecting a change in magnetic field direction. On the other hand, the tilt detection sensor 160 can detect a change in the direction of the magnetic field accompanying the tilting operation of the magnet 120, and is provided at a position where the direction of the magnetic field accompanying the rotating operation of the magnet 120 does not change. In other words, the tilt detection sensor 160 can detect a change in the direction of the magnetic field associated with the tilting operation of the magnet 120 and is disposed at a position where the direction of the magnetic field associated with the rotating operation of the magnet 120 does not change. The tilt detection sensor 160 is configured by the bridge of the MR element described above, and is arranged so that the surface on which the bridge is configured becomes the detection surface 161 of the direction change of the magnetic field. With such a configuration, the crosstalk of the detection signal due to the movement of one magnet in two directions is reduced, and the movement in two directions can be independently and accurately detected with one magnet.
(3) According to the arrangement configuration of the magnet 120, the rotation detection sensor 140, and the tilt detection sensor 160 as described above, a signal is output with the neutral position of the rotation operation or tilt operation as an initial position. The center of the level is constant, and stable detection operation is possible.
(4) A configuration in which two magnetometers are used to detect one magnet can reduce the cost compared to a conventional configuration in which two magnets are used. Further, by reducing the number of magnets, it is possible to reduce the size of the magnetic detection device.
(第2の実施の形態)
図8Aは、本発明の第2の実施の形態に係る磁気検出装置を示す、第1の回転軸の方向からみた平面図であり、図8Bは、第2の回転軸の方向からみた、磁気検出装置を示す正面図である。
(Second Embodiment)
FIG. 8A is a plan view showing the magnetic detection device according to the second embodiment of the present invention viewed from the direction of the first rotation axis, and FIG. 8B is a magnetic view viewed from the direction of the second rotation axis. It is a front view which shows a detection apparatus.
第2の実施の形態は、マグネットの形状が、第1の実施の形態で示した円板状ではなく、球状に形成されている。その他の構成は、第1の実施の形態と同じであるので、重複する説明は省略する。 In the second embodiment, the magnet is formed in a spherical shape instead of the disk shape shown in the first embodiment. The other configuration is the same as that of the first embodiment, and a duplicate description is omitted.
(マグネット125の構成)
マグネット125は、図8A、8Bに示すように、球状に形成され、例えば、アルニコマグネット、フェライトマグネット、ネオジムマグネット等の永久磁石、又は、フェライト系、ネオジム系、サマコバ系、サマリウム鉄窒素系等の磁性体材料と、ポリスチレン系、ポリエチレン系、ポリアミド系、アクリロニトリル/ブタジエン/スチレン(ABS)等の合成樹脂材料と、を混合して所望の形状に成形したプラスチックマグネットである。
(Configuration of magnet 125)
The magnet 125 is formed in a spherical shape as shown in FIGS. 8A and 8B, and is, for example, a permanent magnet such as an alnico magnet, a ferrite magnet, or a neodymium magnet, or a ferrite-based, neodymium-based, samakoba-based, samarium-iron-nitrogen-based, or the like. It is a plastic magnet formed by mixing a magnetic material and a synthetic resin material such as polystyrene, polyethylene, polyamide, acrylonitrile / butadiene / styrene (ABS), etc., into a desired shape.
マグネット125の着磁方向は、図8A、8Bに示すように、第1の回転軸L1と直交し、かつ、第2の回転軸L2と直交する方向である。この着磁により、マグネット125の傾動検出センサ160側がN極、反対側がS極となる。なお、逆極性での着磁も可能である。この着磁により、第1の実施の形態と同様に、図5A~5C、6A~6Cに示すように、代表的な磁束(磁界)は、マグネット125のN極からS極に向かって放射され、N極から半径方向に向かって放射された磁束がマグネット125の外周部126を通ってS極に収束される磁束を形成する。 As shown in FIGS. 8A and 8B, the magnet 125 is magnetized in a direction perpendicular to the first rotation axis L1 and perpendicular to the second rotation axis L2. Due to this magnetization, the tilt detection sensor 160 side of the magnet 125 becomes the N pole and the opposite side becomes the S pole. Magnetization with reverse polarity is also possible. Due to this magnetization, as in the first embodiment, as shown in FIGS. 5A to 5C and 6A to 6C, a typical magnetic flux (magnetic field) is radiated from the N pole of the magnet 125 toward the S pole. The magnetic flux radiated from the north pole in the radial direction passes through the outer peripheral portion 126 of the magnet 125 to form a magnetic flux that converges to the south pole.
(第2の実施の形態の効果)
第2の実施の形態によれば、第1の実施の形態の効果に加え、次のような効果を有する。すなわち、マグネット125の形状を球状に形成するので、第1の回転軸L1、第2の回転軸L2に対して同じ磁気回路を構成することができる。よって、理想的な磁気回路となり、回転検出センサ140と傾動検出センサ160の検出レベルが同じとなるので、より安定で高精度な検出が可能となる。
(Effect of the second embodiment)
According to the second embodiment, in addition to the effects of the first embodiment, the following effects are obtained. That is, since the magnet 125 is formed in a spherical shape, the same magnetic circuit can be configured with respect to the first rotation axis L1 and the second rotation axis L2. Therefore, an ideal magnetic circuit is obtained, and the detection levels of the rotation detection sensor 140 and the tilt detection sensor 160 are the same, so that more stable and highly accurate detection is possible.
以上、本発明の実施の形態を説明したが、これらの実施の形態は、一例に過ぎず、請求の範囲に係る発明を限定するものではない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更等を行うことができる。また、これら実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、これら実施の形態は、発明の範囲及び要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although embodiment of this invention was described, these embodiment is only an example and does not limit the invention which concerns on a claim. These novel embodiments can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the present invention. In addition, not all the combinations of features described in these embodiments are essential to the means for solving the problems of the invention. Furthermore, these embodiments are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
20 操作レバー
100 磁気検出装置
120 マグネット
140 回転検出センサ
160 傾動検出センサ
L1 第1の回転軸
L2 第2の回転軸
20 Operation lever 100 Magnetic detection device 120 Magnet 140 Rotation detection sensor 160 Tilt detection sensor L1 First rotation axis L2 Second rotation axis

Claims (8)

  1. 操作部により第1の回転軸の回りに回転操作されると共に、第2の回転軸の回りに傾動操作されるマグネットと、
    前記マグネットの前記第1の回転軸の回りの磁界の変化を検出する第1の磁気検出部と、
    前記マグネットの前記第2の回転軸の回りの磁界の変化を検出する第2の磁気検出部と、を有し、
    前記第1の回転軸と前記第2の回転軸とは直交し、
    前記第1の磁気検出部と前記第2の磁気検出部は、前記マグネットの前記回転操作及び前記傾動操作の動作を独立に検出する位置に配置される磁気検出装置。
    A magnet that is rotated around the first rotation axis by the operation unit and tilted around the second rotation axis;
    A first magnetic detection unit for detecting a change in a magnetic field around the first rotation axis of the magnet;
    A second magnetic detection unit that detects a change in the magnetic field around the second rotation axis of the magnet,
    The first rotation axis and the second rotation axis are orthogonal to each other,
    The first magnetic detection unit and the second magnetic detection unit are magnetic detection devices arranged at positions that independently detect the rotation operation and the tilting operation of the magnet.
  2. 前記マグネットは、前記第1の回転軸及び前記第2の回転軸に直交する方向に着磁されている、請求項1に記載の磁気検出装置。 The magnetic detection apparatus according to claim 1, wherein the magnet is magnetized in a direction orthogonal to the first rotation axis and the second rotation axis.
  3. 前記第1の磁気検出部は、前記マグネットの前記回転操作に伴う磁界の方向変化を検出でき、かつ、前記マグネットの前記傾動操作に伴う磁界の方向が変化しない位置に配置される、請求項1又は2に記載の磁気検出装置。 2. The first magnetic detection unit is arranged at a position that can detect a change in the direction of a magnetic field associated with the rotation operation of the magnet and that does not change a direction of the magnetic field associated with the tilting operation of the magnet. Or the magnetic detection apparatus of 2.
  4. 前記第2の磁気検出部は、前記マグネットの前記傾動操作に伴う磁界の方向変化を検出でき、かつ、前記マグネットの前記回転操作に伴う磁界の方向が変化しない位置に配置される、請求項1又は2に記載の磁気検出装置。 2. The second magnetic detection unit is disposed at a position that can detect a change in the direction of a magnetic field associated with the tilting operation of the magnet and that does not change the direction of the magnetic field associated with the rotation operation of the magnet. Or the magnetic detection apparatus of 2.
  5. 前記マグネットは、円板状又は球状に形成されている、請求項1~4のいずれか1項に記載の磁気検出装置。 The magnetic detection device according to any one of claims 1 to 4, wherein the magnet is formed in a disk shape or a spherical shape.
  6. 前記第1の磁気検出部は、前記第1の回転軸と直交する第1の検知面を有し、
    前記第2の磁気検出部は、前記第2の回転軸と直交する平面上に形成される第2の検知面を有する、請求項1~5のいずれか1項に記載の磁気検出装置。
    The first magnetic detection unit has a first detection surface orthogonal to the first rotation axis,
    The magnetic detection device according to any one of claims 1 to 5, wherein the second magnetic detection unit includes a second detection surface formed on a plane orthogonal to the second rotation axis.
  7. 前記第1及び第2の検知面は、MR素子からなるブリッジの面として構成される、請求項6に記載の磁気検出装置。 The magnetic detection device according to claim 6, wherein the first and second detection surfaces are configured as surfaces of a bridge made of an MR element.
  8. 請求項1~7のいずれか1項に記載の磁気検出装置を有する車両用レバーコンビネーションスイッチ。
     
    A vehicle lever combination switch comprising the magnetic detection device according to any one of claims 1 to 7.
PCT/JP2016/068956 2015-08-07 2016-06-27 Magnetic detector WO2017026179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-157024 2015-08-07
JP2015157024A JP2017036949A (en) 2015-08-07 2015-08-07 Magnetic detection device

Publications (1)

Publication Number Publication Date
WO2017026179A1 true WO2017026179A1 (en) 2017-02-16

Family

ID=57983027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068956 WO2017026179A1 (en) 2015-08-07 2016-06-27 Magnetic detector

Country Status (2)

Country Link
JP (1) JP2017036949A (en)
WO (1) WO2017026179A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189189A (en) * 2018-04-27 2019-10-31 株式会社東海理化電機製作所 Shift device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939098Y1 (en) * 1969-07-10 1974-10-26
JP2008198413A (en) * 2007-02-09 2008-08-28 Tokai Rika Co Ltd Multidirectional operation device
JP2008218016A (en) * 2007-02-28 2008-09-18 Tokai Rika Co Ltd Lever combination switch
JP2009016262A (en) * 2007-07-06 2009-01-22 Tokai Rika Co Ltd Multidirectional operation device
JP2010040177A (en) * 2008-07-31 2010-02-18 Tokai Rika Co Ltd Lever switch device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939098Y1 (en) * 1969-07-10 1974-10-26
JP2008198413A (en) * 2007-02-09 2008-08-28 Tokai Rika Co Ltd Multidirectional operation device
JP2008218016A (en) * 2007-02-28 2008-09-18 Tokai Rika Co Ltd Lever combination switch
JP2009016262A (en) * 2007-07-06 2009-01-22 Tokai Rika Co Ltd Multidirectional operation device
JP2010040177A (en) * 2008-07-31 2010-02-18 Tokai Rika Co Ltd Lever switch device

Also Published As

Publication number Publication date
JP2017036949A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6049570B2 (en) Rotation detector
JP6550099B2 (en) Rotation angle detection device, attitude control device, automatic steering device and throttle device
US9268001B2 (en) Differential perpendicular on-axis angle sensor
JP2011191159A (en) Rotary angle and rotary torque sensing device
JP2019007846A (en) Rotation angle detector, attitude controller, automatic steering device, and throttle device
JP6242759B2 (en) Rotational movement detector
WO2017026179A1 (en) Magnetic detector
JP2010038765A (en) Rotation detector
JP6230069B2 (en) Lever switch device
JP5128416B2 (en) Magnetic sensor device
JP2009222518A (en) Magnetic position detection device
JP2009014544A (en) Angle sensor
JP2016012465A (en) Lever switch device
JP2017016920A (en) Lever switch apparatus
JP2018048870A (en) Rotation angle detector
JP2020024102A (en) Rotation detector
JP5479695B2 (en) Rotation detector
US20210396550A1 (en) Position detection device
JP6182401B2 (en) Magnetic position detector
JP2004361199A (en) Angle sensor
JP2014065367A (en) Rotation angle/rotational torque detecting device
JP2010114002A (en) Proximity sensor
JP2014052249A (en) Biaxial position sensor and shift position sensor including the same
WO2016002450A1 (en) Rotational movement detection device
JP2009222517A (en) Magnetic position detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834876

Country of ref document: EP

Kind code of ref document: A1