WO2017026098A1 - Automatic fire alarm system child machine, automatic fire alarm system, and automatic fire alarm system parent machine - Google Patents

Automatic fire alarm system child machine, automatic fire alarm system, and automatic fire alarm system parent machine Download PDF

Info

Publication number
WO2017026098A1
WO2017026098A1 PCT/JP2016/003466 JP2016003466W WO2017026098A1 WO 2017026098 A1 WO2017026098 A1 WO 2017026098A1 JP 2016003466 W JP2016003466 W JP 2016003466W WO 2017026098 A1 WO2017026098 A1 WO 2017026098A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
state
automatic fire
reception
alarm system
Prior art date
Application number
PCT/JP2016/003466
Other languages
French (fr)
Japanese (ja)
Inventor
基弘 大井
享 伊藤
一彦 五所野尾
友昭 水田
冉 李
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16834801.9A priority Critical patent/EP3333817B1/en
Publication of WO2017026098A1 publication Critical patent/WO2017026098A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch

Definitions

  • the present invention generally relates to a slave unit of an automatic fire alarm system, an automatic fire alarm system, and a master unit of an automatic fire alarm system. More specifically, the present invention relates to a slave unit of an automatic fire alarm system electrically connected to a pair of electric wires led out from the master unit, an automatic fire alarm system having the same, and a master unit of the automatic fire alarm system .
  • an automatic fire alarm system configured by connecting a fire sensor (slave unit) to a sensor line (a pair of wires) derived from a fire receiver (master unit) is known.
  • the fire receiver of this automatic fire alarm system is configured to output a control signal to a fire detector via a sensor line.
  • the fire detector is configured to execute an abnormality detection mode when receiving a control signal from the fire receiver.
  • An object of the present invention is to provide a slave unit of an automatic fire alarm system, an automatic fire alarm system, and a master unit of an automatic fire alarm system that can reduce power consumption.
  • the slave unit of the automatic fire notification system includes a receiving unit and a control unit.
  • the receiving unit is electrically connected to a pair of electric wires and receives a signal transmitted by changing a voltage applied between the pair of electric wires from a parent device electrically connected to the pair of electric wires.
  • the control unit switches the state of the reception unit between a reception operation state in which the reception unit operates and a reception stop state in which the operation of the reception unit stops.
  • the control unit switches the state of the reception unit between the reception operation state and the reception stop state depending on whether or not to supply a power signal serving as operating power of the reception unit to the reception unit. Composed.
  • An automatic fire notification system includes a slave unit and a master unit of the automatic fire notification system.
  • the master unit is electrically connected to the pair of electric wires and applies a voltage between the pair of electric wires.
  • the parent device includes a transmission unit that transmits a signal to the child device by changing a voltage between the pair of electric wires.
  • the master unit of the automatic fire notification system according to one aspect of the present invention is used in the above automatic fire notification system.
  • FIG. 1 is a block diagram showing a schematic configuration of a slave unit of an automatic fire alarm system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the automatic fire alarm system according to the embodiment.
  • FIG. 3 is a schematic circuit diagram of a receiving unit in the slave unit of the automatic fire alarm system according to the embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of Modification 1 of the control unit in the slave unit of the automatic fire notification system according to the embodiment.
  • FIG. 5 is a block diagram showing a schematic configuration of Modification 1 of the control unit in which the oscillation unit is built in the microcomputer in the slave unit of the automatic fire alarm system according to the embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a slave unit of an automatic fire alarm system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the automatic fire alarm system according to the embodiment.
  • FIG. 3 is a schematic circuit diagram of a receiving
  • FIG. 6A is a block diagram illustrating a schematic configuration of Modification Example 2 of the control unit in the slave unit of the automatic fire notification system according to the embodiment.
  • FIG. 6B is a diagram illustrating a state of the processing circuit in the slave unit of the automatic fire notification system according to the embodiment.
  • FIG. 7 is an explanatory diagram of an operation example 1 of the slave unit of the automatic fire notification system according to the embodiment.
  • FIG. 8 is an explanatory diagram of an operation example 2 of the slave unit of the automatic fire alarm system according to the embodiment.
  • FIG. 9 is an explanatory diagram of an operation example 3 of the slave unit of the automatic fire notification system according to the embodiment.
  • the slave unit 1 of the automatic fire notification system 100 of the present embodiment includes a receiving unit 15 and a control unit 17 as shown in FIGS.
  • the receiving unit 15 is electrically connected to the pair of electric wires 31 and 32 and is applied between the pair of electric wires 31 and 32 from the base unit 2 electrically connected to the pair of electric wires 31 and 32 (standby voltage). )
  • a signal transmitted by changing V1 is received.
  • the control unit 17 switches the state of the reception unit 15 between a reception operation state in which the reception unit 15 operates and a reception stop state in which the operation of the reception unit 15 stops. Then, the control unit 17 switches the state of the reception unit 15 between the reception operation state and the reception stop state depending on whether or not the power supply signal PS1 serving as the operation power of the reception unit 15 is supplied to the reception unit 15. Configured.
  • the automatic fire notification system 100 includes the slave unit 1 and the master unit 2 that applies a voltage between the pair of electric wires 31 and 32.
  • the base unit 2 includes a transmission unit 24 that is electrically connected to the pair of electric wires 31 and 32 and transmits a signal to the child unit 1 by changing a voltage between the pair of electric wires 31 and 32.
  • the base unit 2 of the automatic fire notification system 100 of the present embodiment is used in the automatic fire notification system 100 of the present embodiment as shown in FIG.
  • the slave unit 1 of the automatic fire notification system 100 the master unit 2 of the automatic fire notification system 100, and the automatic fire notification system 100 according to the present embodiment will be described in detail.
  • the configuration described below is merely an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not limited to this embodiment.
  • Various changes can be made according to the design or the like as long as they do not deviate. Note that broken-line arrows in the drawings represent signal flows.
  • the automatic fire alarm system 100 of the present embodiment is used in an apartment house (apartment)
  • the automatic fire notification system 100 according to the present embodiment is not limited to a housing complex, and may be used in various buildings such as commercial facilities, hospitals, hotels, and residential buildings.
  • the basic configuration of the automatic fire notification system 100 of this embodiment is the same as a general automatic fire notification system.
  • the automatic fire notification system 100 is configured to detect the occurrence of a fire by the slave unit 1 and to notify the fire occurrence from the slave unit 1 to the master unit 2 (fire report).
  • mobile_unit 1 may be the structure containing not only the structure which detects generation
  • the transmitter means, for example, a device that has a push button switch and notifies the parent device 2 of the occurrence of a fire by manually operating the push button switch when a person detects a fire.
  • the automatic fire notification system 100 of the present embodiment when the master unit 2 receives a notification (interlock report) for interlocking other devices, other than smoke prevention equipment, emergency broadcasting equipment, etc. It has an interlocking function for interlocking devices. Therefore, the automatic fire notification system 100 according to the present embodiment may control the fire door of the smoke evacuation facility or notify the occurrence of the fire by sound or voice in the emergency broadcasting facility when a fire occurs. Is possible.
  • the automatic fire notification system 100 of this embodiment is based on a P-type (Proprietary-type) automatic fire notification system. And in the automatic fire alarm system 100 of this embodiment, in the housing complex in which the P-type automatic fire alarm system was introduced, the existing wiring was used as it was, and the master unit 2 and the plurality of slave units 1 were replaced. Assume a case. Note that the automatic fire notification system 100 of the present embodiment can also be adopted as a newly introduced automatic fire notification system.
  • Base unit 2 is a P-type receiver that receives fire reports and interlocking reports from slave unit 1.
  • Base unit 2 is installed in a management room of a building (a collective housing).
  • the master device 2 includes a resistor 22, a receiver 23, a transmitter 24, a display unit 25 for performing various displays, and an operation for receiving an operation input from a user, in addition to the application unit 21.
  • the unit 26 and a control unit 27 that controls each unit are provided.
  • the master unit 2 is electrically connected to the pair of electric wires 31 and 32.
  • the application unit 21 applies a predetermined voltage to the pair of electric wires 31 and 32.
  • the voltage applied between the pair of electric wires 31 and 32 by the applying unit 21 is 24V DC, but the present invention is not limited to this value.
  • the resistor 22 is connected between the applying unit 21 and at least one of the pair of electric wires 31 and 32.
  • the resistor 22 is inserted between one (high potential side) of the pair of electric wires 31 and 32 and the application unit 21.
  • the resistor 22 may be inserted between the other (low potential side) electric wire 32 and the application unit 21, or both the pair of electric wires 31 and 32 and the application unit 21. Between them.
  • the resistor 22 has a first function of converting a current flowing through the resistor 22 into a potential difference (voltage) between both ends of the resistor 22 due to a voltage drop, and a pair of wires 31 when the pair of wires 31 and 32 are short-circuited.
  • 32 has a second function of limiting the current flowing through the first and second currents.
  • the resistor 22 has both a first function as a current-voltage conversion element and a second function as a current limiting element.
  • the resistance value of the resistor 22 is 470 ⁇ , but the value is not limited to this value.
  • the receiving unit 23 is electrically connected between the resistor 22 and the pair of electric wires 31 and 32.
  • the receiving unit 23 receives the signal S2 transmitted from the child device 1 based on the voltage (standby voltage) V1 between the pair of electric wires 31 and 32. Specifically, as will be described later, when the handset 1 draws the current flowing through the pair of wires 31 and 32, the current value of the current flowing through the resistor 22 changes, and the standby voltage V1 changes.
  • the receiving unit 23 receives the signal S2 transmitted from the child device 1 by detecting the voltage value of the standby voltage V1.
  • the receiving part 23 receives the fire report and the interlocking report notified (transmitted) from the subunit
  • the transmission unit 24 is electrically connected between the resistor 22 and the pair of electric wires 31 and 32.
  • the transmission unit 24 transmits the signal S1 to the child device 1 by changing the current flowing through the pair of electric wires 31 and 32.
  • the standby voltage V1 changes. That is, the transmission unit 24 transmits the signal S1 to the child device 1 by changing the standby voltage V1 by drawing the current flowing from the application unit 21 to the resistor 22.
  • control unit 27 controls the transmission unit 24, for example, to switch the voltage value of the standby voltage V1 alternately between the first level and the second level ( ⁇ first level).
  • the signal S1 is transmitted to the slave unit 1.
  • the display unit 25 includes, for example, an LED (Light Emitting Diode), a liquid crystal display, an organic electroluminescence display, and the like.
  • the display part 25 displays the content according to the data contained in signal S2 received from the subunit
  • the display unit 25 displays, for example, the occurrence of a fire and the floor (floor) where the fire occurred.
  • the display part 25 can also display the installation place of the said subunit
  • the control unit 27 has a microcomputer as a main component and realizes a desired function by executing a program stored in the memory.
  • the program may be written in the memory in advance, but may be provided by being stored in a recording medium such as a memory card, or may be provided through an electric communication line.
  • the base unit 2 applies a voltage between the pair of electric wires 31 and 32 from the applying unit 21 as described above. Thereby, the main
  • the master unit 2 further includes a standby power source 28 using a storage battery so that a power source for operation of the automatic fire alarm system 100 can be secured even in the event of a power failure.
  • the main unit 2 uses a commercial power source, a private power generation facility, or the like as a main power source.
  • the application unit 21 automatically switches the power supply source from the main power source to the standby power source 28 when the main power source is interrupted, and automatically switches from the standby power source 28 to the main power source when the main power source is restored.
  • the slave unit 1 includes a diode bridge 11, a power supply unit 12, a detection unit 13, a notification unit 14, a reception unit 15, a transmission unit 16, a control unit 17, And a storage unit 18.
  • the diode bridge 11 has a pair of electric wires 31 and 32 electrically connected to an input end, and a power source unit 12, a notification unit 14, a receiving unit 15, and a transmitting unit 16 are electrically connected to an output end.
  • the power supply unit 12 generates power for operating the handset 1 by being supplied with power from the pair of electric wires 31 and 32.
  • the power supply unit 12 includes a current adjustment unit 121, a low loss regulator (Low Drop-Out regulator: LDO) 122, and a reset IC (Integrated Circuit) 123.
  • the current adjustment unit 121 is electrically connected to the pair of electric wires 31 and 32 and adjusts the upper limit value of the current flowing through the pair of electric wires 31 and 32.
  • the low-loss regulator 122 has an input terminal electrically connected to an output terminal of the current adjustment unit 121, and an output terminal electrically connected to a reset IC 123, a control unit 17, and an oscillation unit 172 (described later).
  • the low-loss regulator 122 operates so that the difference between the voltage input to the input terminal and the voltage output from the output terminal becomes small.
  • the output voltage of the low-loss regulator 122 is input to the power supply terminal (“Vcc” shown in FIG. 1) of the control unit 17 as the operation voltage of the control unit 17.
  • the reset IC 123 monitors the input voltage to the control unit 17 by monitoring the output voltage of the low loss regulator 122. Then, when the voltage value of the input voltage deviates from the range necessary for the operation of the control unit 17, the reset IC 123 inputs a reset signal to the reset terminal (“RESET” shown in FIG. 1) of the control unit 17, thereby The unit 17 is reset (initialized).
  • the detection unit 13 detects the occurrence of fire and smoke by detecting changes in smoke concentration, temperature, and gas concentrations such as carbon monoxide, for example.
  • the detection part 13 is provided with the smoke detection part 131 which detects the generation
  • the detection unit 13 detects the occurrence of a fire based on the detection results of the smoke detection unit 131 and the heat detection unit 132, the detection unit 13 transmits a detection signal to the control unit 17.
  • the detection unit 13 is controlled by the control unit 17.
  • the notification unit 14 includes, for example, a buzzer, a light emitting diode (LED), and the like, and is configured to notify the occurrence of a fire around.
  • the notification unit 14 is controlled by the control unit 17.
  • the receiving unit 15 receives the signal S1 transmitted from the parent device 2 based on the change in the standby voltage V1. Specifically, when the base unit 2 draws the current flowing through the pair of electric wires 31 and 32, the current value of the current flowing through the resistor 22 changes, and the standby voltage V1 changes.
  • the receiving unit 15 receives the signal S1 transmitted from the parent device 2 as a received signal by detecting the voltage value of the output voltage of the diode bridge 11 corresponding to the standby voltage V1.
  • the receiving unit 15 includes a filter capacitor 151, resistors 152 and 153, a semiconductor element 154, and a pull-up resistor 155.
  • the receiving unit 15 operates using the power signal PS1 supplied from the control unit 17 as a power source.
  • the semiconductor element 154 is an npn-type bipolar transistor.
  • the semiconductor element 154 may be composed of another semiconductor element such as a MOSFET (Metal-Oxide-Semiconductor field-effect transistor).
  • the emitter of the semiconductor element 154 is electrically connected to circuit ground (the output terminal on the low potential side of the diode bridge 11).
  • the base of the semiconductor element 154 is electrically connected to one of the pair of electric wires 31 and 32 (here, the electric wire 31) via the diode bridge 11, the capacitor 151, and the resistor 153.
  • the power supply signal PS1 flows into the collector of the semiconductor element 154 via the pull-up resistor 155. Further, the power supply signal PS1 flows into the connection point 15A between the capacitor 151 and the resistor 153 via the resistor 152.
  • connection point 15A is electrically connected to one of the pair of electric wires 31 and 32 (here, the electric wire 31) via the capacitor 151.
  • the potential at the connection point 15A changes as the standby voltage V1 changes.
  • the semiconductor element 154 is used in a so-called open collector method.
  • the collector-emitter voltage of the semiconductor element 154 becomes the received signal voltage V2.
  • the power signal PS1 is given to the receiving unit 15 from the control unit 17.
  • the voltage value of the standby voltage V1 is the first level
  • the potential at the connection point 15A exceeds the threshold value (VBE) of the semiconductor element 154.
  • the semiconductor element 154 is turned on
  • the voltage V2 of the reception signal becomes a low level.
  • the voltage value of the standby voltage V1 is the second level
  • the potential at the connection point 15A is lower than the threshold value (VBE) of the semiconductor element 154.
  • VBE is a base-emitter voltage of the semiconductor element 154.
  • the receiving unit 15 receives the signal S1 transmitted from the parent device 2 as a received signal when the semiconductor element 154 is switched on / off in accordance with the change in the standby voltage V1.
  • the transmission unit 16 is electrically connected to the pair of electric wires 31 and 32 via the diode bridge 11.
  • the transmission unit 16 transmits the signal S2 to the parent device 2 by changing the current flowing through the pair of electric wires 31 and 32.
  • the standby voltage V1 changes. That is, the transmission unit 16 transmits the signal S2 to the parent device 2 by changing the voltage (standby voltage) V1 between the pair of wires 31 and 32 by drawing the current flowing through the pair of wires 31 and 32.
  • the control unit 17 has a microcomputer 170 as a main component, and implements a desired function by executing a program stored in the memory.
  • the program may be written in the memory in advance, but may be provided by being stored in a recording medium such as a memory card, or may be provided through an electric communication line.
  • the main configuration of the control unit 17 is not limited to the microcomputer 170, and the control unit 17 may have, for example, an FPGA (Field-Programmable Gate Array) as the main configuration.
  • the control unit 17 includes a GPI (General Purpose Input) terminal 41, GPO (General Purpose Output) terminals 42 to 44, A / D (Analog To Digital) terminals 45 and 46, an SCI (Serial Communication Interface) terminal 47, It has.
  • the control unit 17 acquires data included in the received signal from the received signal input to the GPI terminal 41. Further, the control unit 17 outputs a power signal PS1 from the GPO terminal 42 to the receiving unit 15.
  • the control unit 17 controls the operation of the transmission unit 16 by outputting a control signal from the GPO terminal 43 to the transmission unit 16.
  • the control unit 17 controls the operation of the notification unit 14 by outputting a control signal from the GPO terminal 44 to the notification unit 14.
  • the control unit 17 acquires the detection value of the smoke detection unit 131 input to the A / D terminal 45.
  • the A / D terminal 45 receives a voltage signal that changes according to the smoke concentration.
  • the control unit 17 acquires the detection value of the heat detection unit 132 that is input to the A / D terminal 46.
  • a voltage signal that changes according to the ambient temperature of the heat detection unit 132 is input to the A / D terminal 46.
  • the control unit 17 acquires data stored in the storage unit 18 or rewrites data stored in the storage unit 18 via the SCI terminal 47.
  • the control unit 17 further includes a processing circuit 171 that executes processing (program) according to the clock signal.
  • the processing circuit 171 is a CPU (Central Processing Unit).
  • a clock signal supplied to the processing circuit 171 is generated by the oscillation unit 172.
  • the oscillation unit 172 includes, for example, a crystal resonator. Needless to say, the oscillation unit 172 may be configured to generate a clock signal supplied to the processing circuit 171 and is not limited to a configuration including a crystal resonator.
  • mobile_unit 1 of this embodiment although the oscillation part 172 is provided separately from the microcomputer 170, you may incorporate in the microcomputer 170.
  • the control unit 17 controls the receiving unit 15 and the transmitting unit 16. Specifically, the control unit 17 controls the reception unit 15 to cause the reception unit 15 to receive a signal S1 such as a synchronization signal transmitted from the parent device 2. Moreover, the control part 17 reads the output of the detection part 13 regularly, and will judge that it is a fire if the output of the detection part 13 exceeds a 1st reference value. And the control part 17 changes the standby voltage V1 to a fire alert level by controlling the transmission part 16 and adjusting the drawing-in amount of the electric current which flows through a pair of electric wires 31 and 32. FIG. As a result, the control unit 17 notifies (transmits) the fire report to the parent device 2. At this time, the control unit 17 controls the notification unit 14 to notify the surroundings of the occurrence of a fire.
  • a signal S1 such as a synchronization signal transmitted from the parent device 2.
  • the control part 17 reads the output of the detection part 13 regularly, and will judge that it is a fire if the output of
  • the control unit 17 determines that the other device is linked. Then, the control unit 17 controls the transmission unit 16 to adjust the amount of current drawn through the pair of electric wires 31 and 32, thereby changing the standby voltage V1 to the interlocking report level ( ⁇ fire report level). Thereby, the control unit 17 notifies (transmits) the interlocking report to the parent device 2.
  • control unit 17 controls the transmission unit 16 to transmit the signal S2 to the parent device 2 by alternately switching the voltage value of the standby voltage V1 between the first level and the second level.
  • the signal S2 includes, for example, information (identification information) for specifying the issue source for each slave unit, information for automatic testing, and the like.
  • the items of the automatic test include, for example, survival confirmation (keep alive), self-diagnosis of the slave unit 1 and the like.
  • the storage unit 18 stores at least identification information (for example, an address) assigned in advance to the slave unit 1. That is, unique identification information is assigned to each of the plurality of slave units 1 included in the automatic fire notification system 100 of the present embodiment.
  • the identification information is registered in the parent device 2 in association with each installation location (for example, a room number) of the plurality of child devices 1.
  • the parent device 2 periodically transmits a synchronization signal to the plurality of child devices 1 connected to the same line (a pair of electric wires 31 and 32).
  • the synchronization signal is a signal that is used, for example, to define the timing at which the child device 1 performs an automatic test and the timing at which communication with the parent device 2 is performed.
  • the receiving unit 15 when the semiconductor element 154 is on, a current flows mainly through the resistor 153 and the pull-up resistor 155. In the receiving unit 15, when the semiconductor element 154 is off, a current flows through the capacitor 151 mainly through the resistor 152. That is, the receiving unit 15 consumes power by flowing a current not only during reception of the signal S1 from the parent device 2 but also during reception of the signal S1. Therefore, if the receiving unit 15 is always operating in order to wait for the signal S1 (here, the synchronization signal) transmitted from the base unit 2, extra power is consumed while the signal S1 is not received. There is a problem that power consumption increases.
  • the signal S1 here, the synchronization signal
  • the receiving units 15 of all the slave units 1 belonging to the automatic fire alarm system 100 of the present embodiment are always operating, a current is drawn from the pair of electric wires 31 and 32 to the receiving unit 15, so that the standby voltage V1 decreases. Then, although the fire has not occurred, the standby voltage V1 reaches the fire report level, and there is a possibility that the slave unit 1 erroneously notifies the master unit 2 of the fire report.
  • the control unit 17 determines the state of the reception unit 15 according to whether the power supply signal PS1 serving as the operating power of the reception unit 15 is given to the reception unit 15 or not. It is configured to switch to one of the stopped states.
  • the receiving operation state is a state in which the receiving unit 15 operates by receiving the power signal PS1.
  • the reception stop state is a state in which the operation of the receiving unit 15 is stopped when the power supply signal PS1 is not given.
  • the receiving unit 15 can operate while receiving the power signal PS1 from the control unit 17 and receive the signal S1. Further, the receiving unit 15 cannot receive the signal S1 because it does not operate while the power supply signal PS1 is not supplied from the control unit 17, but hardly consumes power because no current flows. .
  • control unit 17 can operate the receiving unit 15 when necessary, for example, when receiving a synchronization signal, and can stop the operation of the receiving unit 15 when not necessary. For this reason, in the subunit
  • control unit 17 is configured to switch the state of the processing circuit 171 between the processing operation state and the processing stop state depending on whether or not a clock signal is supplied to the processing circuit 171.
  • the processing operation state is a state in which the processing circuit 171 operates by receiving a clock signal.
  • the process stop state is a state in which the operation of the processing circuit 171 stops when no clock signal is given.
  • control unit 17 can operate the processing circuit 171 when processing by the processing circuit 171 is necessary, and can stop the operation of the processing circuit 171 when it is not necessary. In this configuration, not only the power consumption in the receiving unit 15 but also the power consumption in the processing circuit 171 can be reduced.
  • Modification 1 can be realized when the control unit 17 includes a timer 173 as shown in FIG.
  • a clock signal generated by the oscillation unit 172 is input to the timer 173.
  • the timer 173 periodically gives a clock signal to the processing circuit 171 by counting time. Therefore, the control unit 17 can switch the state of the processing circuit 171 between the processing operation state and the processing stop state.
  • the control unit 17 may have a configuration in which an oscillation unit 172 having a function of a timer 173 is built in the microcomputer 170. In this configuration, the oscillation unit 172 periodically provides a clock signal to the processing circuit 171 by the function of the built-in timer 173.
  • the control unit 17 is configured to switch the state of the processing circuit 171 between the first state and the second state.
  • the first state is a state where a first clock signal is given.
  • the second state is a state in which the second clock signal is given.
  • the second clock signal has a longer period than the first clock signal.
  • control unit 17 operates the processing circuit 171 at the first clock signal (normal speed) at the normal time, and executes the processing circuit 171 at the second clock signal when executing processing with a small load such as waiting for the synchronization signal. It can be operated at (low speed). In this configuration, the processing circuit 171 is operated with the second clock signal (low speed) as necessary, so that the processing circuit 171 is always operated with the first clock signal (normal speed) as compared with the processing circuit 171. The power consumption at 171 can be reduced.
  • Modification 2 can be realized when the control unit 17 includes a frequency divider 174 as shown in FIG. 6A, for example.
  • the frequency divider 174 receives a clock signal (here, the first clock signal) generated by the oscillation unit 172.
  • the frequency divider 174 supplies the clock signal (first clock signal) supplied from the oscillation unit 172 to the processing circuit 171 without frequency division (multiplication), or performs frequency division.
  • the control unit 17 can switch the state of the processing circuit 171 between the first state and the second state.
  • control unit 17 may be configured in combination with the first modification and the second modification. That is, as shown in FIG. 6B, the control unit 17 may be configured to switch the state of the processing circuit 171 to any one of the first state, the second state, and the processing stop state.
  • “enable” of the “processing circuit” indicates a processing operation state
  • “disable” indicates a processing stop state
  • “enable (first state)” of the “processing circuit” indicates that the processing operation state and the first state.
  • “enable (second state)” of the “processing circuit” represents the processing operation state and the second state.
  • control unit 17 includes a timer 173 and a frequency divider 174.
  • timer 173 and the frequency divider 174 may be provided separately from the microcomputer 170 or may be built in the microcomputer 170.
  • the control unit 17 switches the state of the reception unit 15 to the reception operation state during the period when the synchronization signal is transmitted from the base unit 2, and sets the state of the reception unit 15 to the reception stop state during other periods. Switching. That is, the reception unit 15 operates during a period in which the synchronization signal is transmitted from the parent device 2 to receive the synchronization signal, and stops operating in other periods. Therefore, in the operation example 1, the power consumption in the receiving unit 15 can be reduced compared to the case where the receiving unit 15 is always operated.
  • control unit 17 switches the state of the processing circuit 171 to the second state during the period when the synchronization signal is transmitted from the parent device 2, and switches the state of the processing circuit 171 to the first state during the other periods. . That is, the processing circuit 171 operates with the second clock signal (low speed) during a period when the synchronization signal is transmitted from the parent device 2, and operates with the first clock signal (normal speed) during other periods. Therefore, in the operation example 1, the power consumption in the processing circuit 171 can be reduced as compared with the case where the processing circuit 171 is always operated at the first clock signal (normal speed).
  • the “period in which the synchronization signal is transmitted” is not limited to the same period as the period in which the synchronization signal is transmitted. That is, the “period during which the synchronization signal is transmitted” may include a period that is slightly longer than the period.
  • the control part 17 is the receiving part 15 until it stops the notification (transmission) of a fire report or an interlocking report. This state may be maintained in the reception operation state.
  • the slave unit 1 can communicate with the master unit 2 in real time in an emergency such as a fire.
  • control unit 17 changes the state of the reception unit 15 between the reception operation state and the reception stop state for each minimum bit width W1 of the synchronization signal transmitted from the parent device 2. It is switched alternately several times (here twice). That is, the receiving unit 15 does not always operate but operates intermittently during a period in which the synchronization signal is transmitted from the parent device 2.
  • control unit 17 acquires the synchronization signal by sampling a plurality of times for each minimum bit width W1 of the synchronization signal. Therefore, in this configuration, it is possible to reduce power consumption in the receiving unit 15 as compared with a case where the receiving unit 15 is always operated during a period in which the synchronization signal is transmitted from the parent device 2.
  • control unit 17 may acquire the synchronization signal by sampling once every minimum bit width W1 of the synchronization signal. That is, the control unit 17 may be configured to switch the state of the reception unit 15 alternately once between the reception operation state and the reception stop state for each minimum bit width W1 of the synchronization signal.
  • the control unit 17 determines that the state of the processing circuit 171 is the processing operation state (here, the second state) and the state of the reception unit 15 is the reception stop state when the state of the reception unit 15 is the reception operation state. At this time, the state of the processing circuit 171 is switched to the processing stop state. That is, the processing circuit 171 operates with the second clock signal (low speed) when the receiving unit 15 is operating, and stops operating during other periods. In other words, the processing circuit 171 does not always operate but operates intermittently.
  • the power consumption in the processing circuit 171 can be reduced as compared with the case where the processing circuit 171 is always operated during the period in which the synchronization signal is transmitted from the parent device 2. Note that the processing circuit 171 only needs to be operating when the receiving unit 15 is operating, and thus may be operating at the first clock signal (normal speed).
  • the operation period W2 of the receiving unit 15 and the operation period W3 of the processing circuit 171 may not match. Good.
  • the operation period W3 of the processing circuit 171 is longer than the operation period W2 of the receiving unit 15.
  • the slave (1) of the automatic fire alarm system (100) includes the receiving unit (15) and the control unit (17). .
  • the receiving unit (15) is electrically connected to the pair of electric wires (31, 32).
  • a receiving part (15) changes the voltage (V1) applied between a pair of electric wires (31, 32) from the main
  • the control unit (17) switches the state of the reception unit (15) between a reception operation state in which the reception unit (15) operates and a reception stop state in which the operation of the reception unit (15) stops.
  • control unit (17) determines the state of the reception unit (15) as the reception operation state depending on whether or not to supply the power supply signal (PS1) as the operation power of the reception unit (15) to the reception unit (15). It is configured to switch to either the reception stop state.
  • PS1 power supply signal
  • the control unit (17) is configured as follows. That is, the control unit (17) switches the state of the reception unit (15) to the reception operation state during a period in which the synchronization signal is transmitted from the parent device (2), and the reception unit (15) during other periods. Is configured to switch to the reception stopped state.
  • mobile_unit (1) of the automatic fire alarm system (100) which concerns on the 3rd aspect of this invention is a 1st or 2nd aspect.
  • WHEREIN A control part (17) performs a process according to a clock signal.
  • control unit (17) in the slave unit (1) of the automatic fire alarm system (100) according to the fourth aspect of the present invention, in the third aspect, is configured as follows. That is, the control unit (17) changes the state of the processing circuit (171) between the first state to which the first clock signal is applied and the second state to which the second clock signal having a longer cycle than the first clock signal is applied. It is comprised so that it may switch to either.
  • control unit (17) is configured as follows. That is, the control unit (17) switches the state of the processing circuit (171) to the second state during the period when the synchronization signal is transmitted, and changes the state of the processing circuit (171) to the first state during the other periods. Configured to switch to
  • control unit (17) is configured as follows in any of the first to fifth aspects. Is done. That is, the control unit (17) alternately changes the state of the reception unit (15) between the reception operation state and the reception stop state for each minimum bit width (W1) of the synchronization signal transmitted from the base unit (2). Configured to switch multiple times.
  • the control unit (17) is configured as follows. That is, in the control unit (17), when the state of the reception unit (15) is the reception operation state, the processing circuit (171) operates the state of the processing circuit (171) that executes processing according to the clock signal. It is configured to switch to an operating state.
  • the control unit (17) is configured to switch the state of the processing circuit (171) to a processing stop state in which the operation of the processing circuit (171) is stopped when the state of the receiving unit (15) is a reception stop state. Is done.
  • An automatic fire notification system (100) includes a slave unit (1) of the automatic fire notification system (100) according to any one of the first to seventh aspects, 2).
  • the base unit (2) is electrically connected to the pair of electric wires (31, 32), and applies a voltage between the pair of electric wires (31, 32).
  • base station (2) is provided with the transmission part (24) which transmits a signal to a subunit
  • the base unit (2) of the automatic fire notification system (100) according to the ninth aspect of the present invention is used for the automatic fire notification system (100) according to the eighth aspect.
  • the slave unit (1) of the automatic fire notification system (100), the automatic fire notification system (100), and the master unit (2) of the automatic fire notification system (100) can reduce power consumption.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Alarm Systems (AREA)

Abstract

The present invention addresses the problem of reducing power consumption. An automatic fire alarm system child machine (1) is provided with a receiving unit (15) and a control unit (17). The receiving unit (15) is electrically connected to a pair of electric wires (31, 32), and receives a signal sent, from a parent machine 2, by changing the voltage (V1) applied between the pair of electric wires (31, 32). The control unit (17) switches the state of the receiving unit (15) to either of a receiving operative state in which the receiving unit (15) operates, and a receiving stopped state in which operation of the receiving unit (15) is stopped. Additionally, the control unit (17) is configured so as to switch the state of the receiving unit (15) to either of the receiving operative state and the receiving stopped state, depending on whether or not a power signal (PS1) which is to be the operation power of the receiving unit (15) is given to the receiving unit (15).

Description

自動火災報知システムの子機、自動火災報知システム、および自動火災報知システムの親機Automatic fire alarm system slave unit, automatic fire alarm system, and automatic fire alarm system master unit
 本発明は、一般に、自動火災報知システムの子機、自動火災報知システム、および自動火災報知システムの親機に関する。より詳細には、本発明は、親機から導出された一対の電線に電気的に接続される自動火災報知システムの子機、それを有する自動火災報知システム、および自動火災報知システムの親機に関する。 The present invention generally relates to a slave unit of an automatic fire alarm system, an automatic fire alarm system, and a master unit of an automatic fire alarm system. More specifically, the present invention relates to a slave unit of an automatic fire alarm system electrically connected to a pair of electric wires led out from the master unit, an automatic fire alarm system having the same, and a master unit of the automatic fire alarm system .
 従来、火災受信機(親機)から導出された感知器回線(一対の電線)に火災感知器(子機)を接続して構成された自動火災報知システムが知られており、たとえば特許文献1に開示されている。この自動火災報知システムの火災受信機は、火災感知器に感知器回線を介して制御信号を出力するように構成されている。また、火災感知器は、火災受信機からの制御信号を受けたとき、異常検知モードを実行するように構成されている。 Conventionally, an automatic fire alarm system configured by connecting a fire sensor (slave unit) to a sensor line (a pair of wires) derived from a fire receiver (master unit) is known. Is disclosed. The fire receiver of this automatic fire alarm system is configured to output a control signal to a fire detector via a sensor line. The fire detector is configured to execute an abnormality detection mode when receiving a control signal from the fire receiver.
 ところで、上記従来例のような自動火災報知システムでは、消費電力の低減が望まれている。 By the way, in the automatic fire alarm system as in the above conventional example, reduction of power consumption is desired.
特開2002-8154号公報Japanese Patent Laid-Open No. 2002-8154
 本発明は、消費電力を低減することのできる自動火災報知システムの子機、自動火災報知システム、および自動火災報知システムの親機を提供することを目的とする。 An object of the present invention is to provide a slave unit of an automatic fire alarm system, an automatic fire alarm system, and a master unit of an automatic fire alarm system that can reduce power consumption.
 本発明の一態様に係る自動火災報知システムの子機は、受信部と、制御部とを備える。前記受信部は、一対の電線に電気的に接続され、前記一対の電線に電気的に接続される親機から前記一対の電線間に印加される電圧を変化させることで送信される信号を受信する。前記制御部は、前記受信部の状態を、前記受信部が動作する受信動作状態と、前記受信部の動作が停止する受信停止状態とのいずれかに切り替える。前記制御部は、前記受信部の動作電力となる電源信号を前記受信部に与えるか否かにより、前記受信部の状態を、前記受信動作状態と前記受信停止状態とのいずれかに切り替えるように構成される。 The slave unit of the automatic fire notification system according to one aspect of the present invention includes a receiving unit and a control unit. The receiving unit is electrically connected to a pair of electric wires and receives a signal transmitted by changing a voltage applied between the pair of electric wires from a parent device electrically connected to the pair of electric wires. To do. The control unit switches the state of the reception unit between a reception operation state in which the reception unit operates and a reception stop state in which the operation of the reception unit stops. The control unit switches the state of the reception unit between the reception operation state and the reception stop state depending on whether or not to supply a power signal serving as operating power of the reception unit to the reception unit. Composed.
 本発明の一態様に係る自動火災報知システムは、上記の自動火災報知システムの子機と、親機とを備える。前記親機は、前記一対の電線に電気的に接続され、前記一対の電線間に電圧を印加する。前記親機は、前記一対の電線間の電圧を変化させることで前記子機に信号を送信する送信部を備える。 An automatic fire notification system according to one aspect of the present invention includes a slave unit and a master unit of the automatic fire notification system. The master unit is electrically connected to the pair of electric wires and applies a voltage between the pair of electric wires. The parent device includes a transmission unit that transmits a signal to the child device by changing a voltage between the pair of electric wires.
 本発明の一態様に係る自動火災報知システムの親機は、上記の自動火災報知システムに用いられる。 The master unit of the automatic fire notification system according to one aspect of the present invention is used in the above automatic fire notification system.
図1は、本発明の一実施形態に係る自動火災報知システムの子機の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a slave unit of an automatic fire alarm system according to an embodiment of the present invention. 図2は、上記実施形態に係る自動火災報知システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of the automatic fire alarm system according to the embodiment. 図3は、上記実施形態に係る自動火災報知システムの子機における、受信部の概略回路図である。FIG. 3 is a schematic circuit diagram of a receiving unit in the slave unit of the automatic fire alarm system according to the embodiment. 図4は、上記実施形態に係る自動火災報知システムの子機における、制御部の変形例1の概略構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of Modification 1 of the control unit in the slave unit of the automatic fire notification system according to the embodiment. 図5は、上記実施形態に係る自動火災報知システムの子機における、発振部をマイコンに内蔵した制御部の変形例1の概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of Modification 1 of the control unit in which the oscillation unit is built in the microcomputer in the slave unit of the automatic fire alarm system according to the embodiment. 図6Aは、上記実施形態に係る自動火災報知システムの子機における、制御部の変形例2の概略構成を示すブロック図である。図6Bは、上記実施形態に係る自動火災報知システムの子機における、処理回路の状態を示す図である。FIG. 6A is a block diagram illustrating a schematic configuration of Modification Example 2 of the control unit in the slave unit of the automatic fire notification system according to the embodiment. FIG. 6B is a diagram illustrating a state of the processing circuit in the slave unit of the automatic fire notification system according to the embodiment. 図7は、上記実施形態に係る自動火災報知システムの子機の動作例1の説明図である。FIG. 7 is an explanatory diagram of an operation example 1 of the slave unit of the automatic fire notification system according to the embodiment. 図8は、上記実施形態に係る自動火災報知システムの子機の動作例2の説明図である。FIG. 8 is an explanatory diagram of an operation example 2 of the slave unit of the automatic fire alarm system according to the embodiment. 図9は、上記実施形態に係る自動火災報知システムの子機の動作例3の説明図である。FIG. 9 is an explanatory diagram of an operation example 3 of the slave unit of the automatic fire notification system according to the embodiment.
 本実施形態の自動火災報知システム100の子機1は、図1および図2に示すように、受信部15と、制御部17とを備えている。受信部15は、一対の電線31,32に電気的に接続され、一対の電線31,32に電気的に接続される親機2から一対の電線31,32間に印加される電圧(待機電圧)V1を変化させることで送信される信号を受信する。制御部17は、受信部15の状態を、受信部15が動作する受信動作状態と、受信部15の動作が停止する受信停止状態とのいずれかに切り替える。そして、制御部17は、受信部15の動作電力となる電源信号PS1を受信部15に与えるか否かにより、受信部15の状態を、受信動作状態と受信停止状態とのいずれかに切り替えるように構成される。 The slave unit 1 of the automatic fire notification system 100 of the present embodiment includes a receiving unit 15 and a control unit 17 as shown in FIGS. The receiving unit 15 is electrically connected to the pair of electric wires 31 and 32 and is applied between the pair of electric wires 31 and 32 from the base unit 2 electrically connected to the pair of electric wires 31 and 32 (standby voltage). ) A signal transmitted by changing V1 is received. The control unit 17 switches the state of the reception unit 15 between a reception operation state in which the reception unit 15 operates and a reception stop state in which the operation of the reception unit 15 stops. Then, the control unit 17 switches the state of the reception unit 15 between the reception operation state and the reception stop state depending on whether or not the power supply signal PS1 serving as the operation power of the reception unit 15 is supplied to the reception unit 15. Configured.
 また、本実施形態の自動火災報知システム100は、図2に示すように、子機1と、一対の電線31,32間に電圧を印加する親機2とを備えている。親機2は、一対の電線31,32に電気的に接続され、一対の電線31,32間の電圧を変化させることで子機1に信号を送信する送信部24を備えている。 Moreover, as shown in FIG. 2, the automatic fire notification system 100 according to the present embodiment includes the slave unit 1 and the master unit 2 that applies a voltage between the pair of electric wires 31 and 32. The base unit 2 includes a transmission unit 24 that is electrically connected to the pair of electric wires 31 and 32 and transmits a signal to the child unit 1 by changing a voltage between the pair of electric wires 31 and 32.
 また、本実施形態の自動火災報知システム100の親機2は、図2に示すように、本実施形態の自動火災報知システム100に用いられる。 Further, the base unit 2 of the automatic fire notification system 100 of the present embodiment is used in the automatic fire notification system 100 of the present embodiment as shown in FIG.
 以下、本実施形態に係る自動火災報知システム100の子機1、自動火災報知システム100の親機2、および自動火災報知システム100について詳しく説明する。ただし、以下に説明する構成は、本発明の一例に過ぎず、本発明は、下記の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。なお、図面において破線の矢印は、信号の流れを表している。 Hereinafter, the slave unit 1 of the automatic fire notification system 100, the master unit 2 of the automatic fire notification system 100, and the automatic fire notification system 100 according to the present embodiment will be described in detail. However, the configuration described below is merely an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not limited to this embodiment. Various changes can be made according to the design or the like as long as they do not deviate. Note that broken-line arrows in the drawings represent signal flows.
 以下では、本実施形態の自動火災報知システム100が集合住宅(マンション)に用いられる場合を例示する。もちろん、本実施形態の自動火災報知システム100は、集合住宅に限らず、たとえば商業施設、病院、ホテル、雑居ビル等、様々な建物に用いられてもよい。 Hereinafter, a case where the automatic fire alarm system 100 of the present embodiment is used in an apartment house (apartment) will be exemplified. Of course, the automatic fire notification system 100 according to the present embodiment is not limited to a housing complex, and may be used in various buildings such as commercial facilities, hospitals, hotels, and residential buildings.
 本実施形態の自動火災報知システム100の基本構成は、一般的な自動火災報知システムと同じである。自動火災報知システム100は、たとえば、子機1により火災の発生を検知し、この子機1から親機2へ火災発生の通知(火災報)がなされるように構成されている。なお、子機1は、火災の発生を検知する構成に限らず、たとえば、発信機等を含む構成であってもよい。発信機とは、たとえば、押しボタンスイッチを有し、人が火災を発見した際に押しボタンスイッチを手動で操作することによって、親機2に対して火災発生の通知を行う装置を意味する。 The basic configuration of the automatic fire notification system 100 of this embodiment is the same as a general automatic fire notification system. For example, the automatic fire notification system 100 is configured to detect the occurrence of a fire by the slave unit 1 and to notify the fire occurrence from the slave unit 1 to the master unit 2 (fire report). In addition, the subunit | mobile_unit 1 may be the structure containing not only the structure which detects generation | occurrence | production of a fire but a transmitter etc., for example. The transmitter means, for example, a device that has a push button switch and notifies the parent device 2 of the occurrence of a fire by manually operating the push button switch when a person detects a fire.
 また、本実施形態の自動火災報知システム100は、他装置を連動させるための通知(連動報)を子機1から親機2が受けた際、防排煙設備や非常用放送設備等の他装置を連動させる連動機能を有している。そのため、本実施形態の自動火災報知システム100は、火災の発生時に、防排煙設備の防火扉を制御したり、非常用放送設備にて音響または音声により火災の発生を報知したりすることが可能である。 In addition, the automatic fire notification system 100 of the present embodiment, when the master unit 2 receives a notification (interlock report) for interlocking other devices, other than smoke prevention equipment, emergency broadcasting equipment, etc. It has an interlocking function for interlocking devices. Therefore, the automatic fire notification system 100 according to the present embodiment may control the fire door of the smoke evacuation facility or notify the occurrence of the fire by sound or voice in the emergency broadcasting facility when a fire occurs. Is possible.
 本実施形態の自動火災報知システム100は、P型(Proprietary-type)の自動火災報知システムを基本とする。そして、本実施形態の自動火災報知システム100では、P型の自動火災報知システムが導入されていた集合住宅において、既存の配線をそのまま使用し、親機2および複数台の子機1を入れ替えた場合を想定する。なお、本実施形態の自動火災報知システム100は、新規に導入される自動火災報知システムとして採用することも可能である。 The automatic fire notification system 100 of this embodiment is based on a P-type (Proprietary-type) automatic fire notification system. And in the automatic fire alarm system 100 of this embodiment, in the housing complex in which the P-type automatic fire alarm system was introduced, the existing wiring was used as it was, and the master unit 2 and the plurality of slave units 1 were replaced. Assume a case. Note that the automatic fire notification system 100 of the present embodiment can also be adopted as a newly introduced automatic fire notification system.
 以下、親機2および複数台の子機1の構成について詳細に説明する。なお、以下では、複数台の子機1のうち1台の子機1のみについて説明し、残りの子機1については、この1台の子機1と同じ構成であるため、説明を省略する。 Hereinafter, the configuration of the master unit 2 and the plurality of slave units 1 will be described in detail. In the following description, only one slave unit 1 among the plurality of slave units 1 will be described, and the remaining slave units 1 have the same configuration as the single slave unit 1, and thus description thereof will be omitted. .
 <親機の構成>
 親機2は、子機1から火災報、および連動報を受けるP型受信機である。親機2は、建物(集合住宅)の管理室に設置される。
<Configuration of base unit>
Base unit 2 is a P-type receiver that receives fire reports and interlocking reports from slave unit 1. Base unit 2 is installed in a management room of a building (a collective housing).
 親機2は、図2に示すように、印加部21の他、抵抗22と、受信部23と、送信部24と、各種の表示を行う表示部25と、ユーザからの操作入力を受け付ける操作部26と、各部を制御する制御部27とを備えている。また、親機2は、一対の電線31,32に電気的に接続されている。 As shown in FIG. 2, the master device 2 includes a resistor 22, a receiver 23, a transmitter 24, a display unit 25 for performing various displays, and an operation for receiving an operation input from a user, in addition to the application unit 21. The unit 26 and a control unit 27 that controls each unit are provided. The master unit 2 is electrically connected to the pair of electric wires 31 and 32.
 印加部21は、所定の電圧を一対の電線31,32に対して印加する。ここでは一例として、印加部21が一対の電線31,32間に印加する電圧は直流24Vとするが、この値に限定する趣旨ではない。 The application unit 21 applies a predetermined voltage to the pair of electric wires 31 and 32. Here, as an example, the voltage applied between the pair of electric wires 31 and 32 by the applying unit 21 is 24V DC, but the present invention is not limited to this value.
 抵抗22は、印加部21と一対の電線31,32の少なくとも一方との間に接続されている。図1の例では、抵抗22は、一対の電線31,32のうち一方(高電位側)の電線31と印加部21との間に挿入されている。ただし、この例に限らず、抵抗22は、他方(低電位側)の電線32と印加部21との間に挿入されていてもよいし、一対の電線31,32の両方と印加部21との間にそれぞれ挿入されていてもよい。 The resistor 22 is connected between the applying unit 21 and at least one of the pair of electric wires 31 and 32. In the example of FIG. 1, the resistor 22 is inserted between one (high potential side) of the pair of electric wires 31 and 32 and the application unit 21. However, not limited to this example, the resistor 22 may be inserted between the other (low potential side) electric wire 32 and the application unit 21, or both the pair of electric wires 31 and 32 and the application unit 21. Between them.
 また、抵抗22は、抵抗22を流れる電流を電圧降下により抵抗22の両端間の電位差(電圧)に変換する第1の機能と、一対の電線31,32間が短絡したときに一対の電線31,32に流れる電流を制限する第2の機能との2つの機能を有している。要するに、抵抗22は、電流-電圧変換素子としての第1の機能と、電流制限素子としての第2の機能とを兼ね備えている。ここでは一例として、抵抗22の抵抗値は470Ωとするが、この値に限定する趣旨ではない。 The resistor 22 has a first function of converting a current flowing through the resistor 22 into a potential difference (voltage) between both ends of the resistor 22 due to a voltage drop, and a pair of wires 31 when the pair of wires 31 and 32 are short-circuited. , 32 has a second function of limiting the current flowing through the first and second currents. In short, the resistor 22 has both a first function as a current-voltage conversion element and a second function as a current limiting element. Here, as an example, the resistance value of the resistor 22 is 470Ω, but the value is not limited to this value.
 受信部23は、抵抗22と一対の電線31,32との間に電気的に接続されている。受信部23は、一対の電線31,32間の電圧(待機電圧)V1に基づいて、子機1から送信される信号S2を受信する。具体的には、後述するように子機1が一対の電線31,32を流れる電流を引き込むと、抵抗22を流れる電流の電流値が変化し、待機電圧V1が変化する。受信部23は、この待機電圧V1の電圧値を検知することにより、子機1から送信される信号S2を受信する。その他、受信部23は、待機電圧V1の電圧値を検知することにより、子機1から通知(送信)される火災報や連動報を受信する。 The receiving unit 23 is electrically connected between the resistor 22 and the pair of electric wires 31 and 32. The receiving unit 23 receives the signal S2 transmitted from the child device 1 based on the voltage (standby voltage) V1 between the pair of electric wires 31 and 32. Specifically, as will be described later, when the handset 1 draws the current flowing through the pair of wires 31 and 32, the current value of the current flowing through the resistor 22 changes, and the standby voltage V1 changes. The receiving unit 23 receives the signal S2 transmitted from the child device 1 by detecting the voltage value of the standby voltage V1. In addition, the receiving part 23 receives the fire report and the interlocking report notified (transmitted) from the subunit | mobile_unit 1 by detecting the voltage value of the standby voltage V1.
 送信部24は、抵抗22と一対の電線31,32との間に電気的に接続されている。送信部24は、一対の電線31,32を流れる電流を変化させることで、信号S1を子機1に送信する。具体的には、送信部24が印加部21から抵抗22に流れる電流を引き込むと、待機電圧V1が変化する。つまり、送信部24は、印加部21から抵抗22に流れる電流の引き込みにより、待機電圧V1を変化させることで、信号S1を子機1に送信する。 The transmission unit 24 is electrically connected between the resistor 22 and the pair of electric wires 31 and 32. The transmission unit 24 transmits the signal S1 to the child device 1 by changing the current flowing through the pair of electric wires 31 and 32. Specifically, when the transmission unit 24 draws a current flowing from the application unit 21 to the resistor 22, the standby voltage V1 changes. That is, the transmission unit 24 transmits the signal S1 to the child device 1 by changing the standby voltage V1 by drawing the current flowing from the application unit 21 to the resistor 22.
 本実施形態の親機2では、制御部27は、たとえば送信部24を制御して、待機電圧V1の電圧値を第1レベルと第2レベル(<第1レベル)とで交互に切り替えることにより、信号S1を子機1に送信する。 In the base unit 2 of the present embodiment, the control unit 27 controls the transmission unit 24, for example, to switch the voltage value of the standby voltage V1 alternately between the first level and the second level (<first level). The signal S1 is transmitted to the slave unit 1.
 表示部25は、たとえばLED(Light Emitting Diode)や液晶ディスプレイ、有機エレクトロルミネセンスディスプレイ等を備えている。表示部25は、制御部27に制御されることで、子機1から受信した信号S2に含まれるデータに応じた内容を表示する。表示部25は、たとえば火災の発生や、火災の発生した階(フロア)を表示する。また、表示部25は、火災を検知した子機1の固有の識別情報(たとえば、アドレス)を取得できる場合は、当該子機1の設置場所を表示することも可能である。 The display unit 25 includes, for example, an LED (Light Emitting Diode), a liquid crystal display, an organic electroluminescence display, and the like. The display part 25 displays the content according to the data contained in signal S2 received from the subunit | mobile_unit 1 by being controlled by the control part 27. FIG. The display unit 25 displays, for example, the occurrence of a fire and the floor (floor) where the fire occurred. Moreover, the display part 25 can also display the installation place of the said subunit | mobile_unit 1 when the specific identification information (for example, address) of the subunit | mobile_unit 1 which detected the fire can be acquired.
 制御部27は、マイコン(マイクロコンピュータ)を主構成とし、メモリに記憶されたプログラムを実行することにより所望の機能を実現する。なお、プログラムは、予めメモリに書き込まれていてもよいが、メモリカードのような記録媒体に記憶されて提供されてもよいし、電気通信回線を通じて提供されてもよい。 The control unit 27 has a microcomputer as a main component and realizes a desired function by executing a program stored in the memory. The program may be written in the memory in advance, but may be provided by being stored in a recording medium such as a memory card, or may be provided through an electric communication line.
 親機2は、上述したように、印加部21から一対の電線31,32間に電圧を印加する。これにより、親機2は、一対の電線31,32に接続されている子機1を含む自動火災報知システム100全体の動作用の電源として機能する。 The base unit 2 applies a voltage between the pair of electric wires 31 and 32 from the applying unit 21 as described above. Thereby, the main | base station 2 functions as a power supply for operation | movement of the automatic fire alarm system 100 whole containing the subunit | mobile_unit 1 connected to a pair of electric wires 31 and 32. FIG.
 また、親機2は、停電に際しても自動火災報知システム100の動作用の電源を確保できるように、蓄電池を用いた予備電源28をさらに備えている。親機2は、商用電源、自家発電設備等を主電源とする。印加部21は、電力の供給元を、主電源の停電時に主電源から予備電源28に自動的に切り替え、主電源の復旧時には予備電源28から主電源に自動的に切り替える。 The master unit 2 further includes a standby power source 28 using a storage battery so that a power source for operation of the automatic fire alarm system 100 can be secured even in the event of a power failure. The main unit 2 uses a commercial power source, a private power generation facility, or the like as a main power source. The application unit 21 automatically switches the power supply source from the main power source to the standby power source 28 when the main power source is interrupted, and automatically switches from the standby power source 28 to the main power source when the main power source is restored.
 <子機の構成>
 子機1は、図1,図2に示すように、ダイオードブリッジ11と、電源部12と、検知部13と、報知部14と、受信部15と、送信部16と、制御部17と、記憶部18とを備えている。
<Configuration of slave unit>
As shown in FIGS. 1 and 2, the slave unit 1 includes a diode bridge 11, a power supply unit 12, a detection unit 13, a notification unit 14, a reception unit 15, a transmission unit 16, a control unit 17, And a storage unit 18.
 ダイオードブリッジ11は、入力端に一対の電線31,32が電気的に接続され、出力端に電源部12、報知部14、受信部15、および送信部16が電気的に接続されている。 The diode bridge 11 has a pair of electric wires 31 and 32 electrically connected to an input end, and a power source unit 12, a notification unit 14, a receiving unit 15, and a transmitting unit 16 are electrically connected to an output end.
 電源部12は、一対の電線31,32から電力を供給されることで子機1の動作用の電力を生成する。電源部12は、電流調整部121と、低損失レギュレータ(Low Drop-Out regulator:LDO)122と、リセットIC(Integrated Circuit)123とを備えている。電流調整部121は、一対の電線31,32に電気的に接続され、一対の電線31,32を流れる電流の上限値を調整する。 The power supply unit 12 generates power for operating the handset 1 by being supplied with power from the pair of electric wires 31 and 32. The power supply unit 12 includes a current adjustment unit 121, a low loss regulator (Low Drop-Out regulator: LDO) 122, and a reset IC (Integrated Circuit) 123. The current adjustment unit 121 is electrically connected to the pair of electric wires 31 and 32 and adjusts the upper limit value of the current flowing through the pair of electric wires 31 and 32.
 低損失レギュレータ122は、入力端に電流調整部121の出力端が電気的に接続され、出力端にリセットIC123、制御部17、および発振部172(後述する)が電気的に接続されている。低損失レギュレータ122は、入力端に入力される電圧と、出力端から出力される電圧との差が小さくなるように動作する。低損失レギュレータ122の出力電圧は、制御部17の動作電圧として制御部17の電源端子(図1に示す「Vcc」)に入力される。 The low-loss regulator 122 has an input terminal electrically connected to an output terminal of the current adjustment unit 121, and an output terminal electrically connected to a reset IC 123, a control unit 17, and an oscillation unit 172 (described later). The low-loss regulator 122 operates so that the difference between the voltage input to the input terminal and the voltage output from the output terminal becomes small. The output voltage of the low-loss regulator 122 is input to the power supply terminal (“Vcc” shown in FIG. 1) of the control unit 17 as the operation voltage of the control unit 17.
 リセットIC123は、低損失レギュレータ122の出力電圧を監視することで、制御部17への入力電圧を監視する。そして、リセットIC123は、入力電圧の電圧値が制御部17の動作に必要な範囲から逸脱すると、リセット信号を制御部17のリセット端子(図1に示す「RESET」)に入力することで、制御部17をリセット(初期化)する。 The reset IC 123 monitors the input voltage to the control unit 17 by monitoring the output voltage of the low loss regulator 122. Then, when the voltage value of the input voltage deviates from the range necessary for the operation of the control unit 17, the reset IC 123 inputs a reset signal to the reset terminal (“RESET” shown in FIG. 1) of the control unit 17, thereby The unit 17 is reset (initialized).
 検知部13は、たとえば煙の濃度の変化、温度の変化、一酸化炭素等のガス濃度の変化を検知することで、火災や煙の発生を検知する。本実施形態の子機1では、検知部13は、煙の発生や煙の濃度の変化を検知する煙検知部131と、温度の変化を検知する熱検知部132とを備えている。検知部13は、煙検知部131および熱検知部132の検知結果に基づいて火災の発生を検知すると、制御部17に検知信号を送信する。検知部13は、制御部17により制御される。 The detection unit 13 detects the occurrence of fire and smoke by detecting changes in smoke concentration, temperature, and gas concentrations such as carbon monoxide, for example. In the subunit | mobile_unit 1 of this embodiment, the detection part 13 is provided with the smoke detection part 131 which detects the generation | occurrence | production of smoke and the density | concentration of smoke, and the heat detection part 132 which detects the change of temperature. When the detection unit 13 detects the occurrence of a fire based on the detection results of the smoke detection unit 131 and the heat detection unit 132, the detection unit 13 transmits a detection signal to the control unit 17. The detection unit 13 is controlled by the control unit 17.
 報知部14は、たとえばブザーや発光ダイオード(Light Emitting Diode:LED)などを備え、周囲に火災の発生を報知するように構成されている。報知部14は、制御部17により制御される。 The notification unit 14 includes, for example, a buzzer, a light emitting diode (LED), and the like, and is configured to notify the occurrence of a fire around. The notification unit 14 is controlled by the control unit 17.
 受信部15は、待機電圧V1の変化に基づいて、親機2から送信される信号S1を受信する。具体的には、親機2が一対の電線31,32を流れる電流を引き込むと、抵抗22を流れる電流の電流値が変化し、待機電圧V1が変化する。受信部15は、この待機電圧V1に対応するダイオードブリッジ11の出力電圧の電圧値を検知することにより、親機2から送信される信号S1を受信信号として受信する。 The receiving unit 15 receives the signal S1 transmitted from the parent device 2 based on the change in the standby voltage V1. Specifically, when the base unit 2 draws the current flowing through the pair of electric wires 31 and 32, the current value of the current flowing through the resistor 22 changes, and the standby voltage V1 changes. The receiving unit 15 receives the signal S1 transmitted from the parent device 2 as a received signal by detecting the voltage value of the output voltage of the diode bridge 11 corresponding to the standby voltage V1.
 ここで、受信部15の具体的な回路の一例について説明する。受信部15は、図3に示すように、フィルタ用のコンデンサ151と、抵抗152,153と、半導体素子154と、プルアップ抵抗155とを備えている。また、受信部15は、制御部17から与えられる電源信号PS1を電源として動作する。 Here, an example of a specific circuit of the receiving unit 15 will be described. As shown in FIG. 3, the receiving unit 15 includes a filter capacitor 151, resistors 152 and 153, a semiconductor element 154, and a pull-up resistor 155. The receiving unit 15 operates using the power signal PS1 supplied from the control unit 17 as a power source.
 半導体素子154は、npn型のバイポーラトランジスタである。もちろん、半導体素子154は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等の他の半導体素子で構成されていてもよい。半導体素子154のエミッタは、回路グランド(ダイオードブリッジ11の低電位側の出力端)に電気的に接続されている。半導体素子154のベースは、ダイオードブリッジ11、コンデンサ151および抵抗153を介して一対の電線31,32の一方(ここでは、電線31)に電気的に接続されている。半導体素子154のコレクタには、プルアップ抵抗155を介して電源信号PS1が流れ込むようになっている。また、コンデンサ151および抵抗153の接続点15Aには、抵抗152を介して電源信号PS1が流れ込むようになっている。 The semiconductor element 154 is an npn-type bipolar transistor. Of course, the semiconductor element 154 may be composed of another semiconductor element such as a MOSFET (Metal-Oxide-Semiconductor field-effect transistor). The emitter of the semiconductor element 154 is electrically connected to circuit ground (the output terminal on the low potential side of the diode bridge 11). The base of the semiconductor element 154 is electrically connected to one of the pair of electric wires 31 and 32 (here, the electric wire 31) via the diode bridge 11, the capacitor 151, and the resistor 153. The power supply signal PS1 flows into the collector of the semiconductor element 154 via the pull-up resistor 155. Further, the power supply signal PS1 flows into the connection point 15A between the capacitor 151 and the resistor 153 via the resistor 152.
 接続点15Aは、コンデンサ151を介して一対の電線31,32の一方(ここでは、電線31)に電気的に接続されている。接続点15Aの電位は、待機電圧V1の変化に伴って変化する。半導体素子154は、いわゆるオープンコレクタ方式で用いられている。この半導体素子154のコレクタ-エミッタ間電圧が、受信信号の電圧V2となる。 The connection point 15A is electrically connected to one of the pair of electric wires 31 and 32 (here, the electric wire 31) via the capacitor 151. The potential at the connection point 15A changes as the standby voltage V1 changes. The semiconductor element 154 is used in a so-called open collector method. The collector-emitter voltage of the semiconductor element 154 becomes the received signal voltage V2.
 以下、受信部15の動作について説明する。なお、以下の説明では、受信部15には、制御部17から電源信号PS1が与えられていると仮定する。待機電圧V1の電圧値が第1レベルのとき、接続点15Aの電位は、半導体素子154の閾値(VBE)を上回っている。このとき、半導体素子154はオンとなるので、受信信号の電圧V2はローレベルとなる。一方、待機電圧V1の電圧値が第2レベルのとき、接続点15Aの電位は、半導体素子154の閾値(VBE)を下回る。このとき、半導体素子154はオフとなるので、受信信号の電圧V2はハイレベルとなる。なお、「VBE」は、半導体素子154のベース-エミッタ間電圧である。 Hereinafter, the operation of the receiving unit 15 will be described. In the following description, it is assumed that the power signal PS1 is given to the receiving unit 15 from the control unit 17. When the voltage value of the standby voltage V1 is the first level, the potential at the connection point 15A exceeds the threshold value (VBE) of the semiconductor element 154. At this time, since the semiconductor element 154 is turned on, the voltage V2 of the reception signal becomes a low level. On the other hand, when the voltage value of the standby voltage V1 is the second level, the potential at the connection point 15A is lower than the threshold value (VBE) of the semiconductor element 154. At this time, since the semiconductor element 154 is turned off, the voltage V2 of the reception signal becomes a high level. “VBE” is a base-emitter voltage of the semiconductor element 154.
 このように、受信部15は、待機電圧V1の変化に応じて、半導体素子154のオン/オフが切り替わることにより、親機2から送信される信号S1を受信信号として受信する。 As described above, the receiving unit 15 receives the signal S1 transmitted from the parent device 2 as a received signal when the semiconductor element 154 is switched on / off in accordance with the change in the standby voltage V1.
 送信部16は、ダイオードブリッジ11を介して一対の電線31,32に電気的に接続されている。送信部16は、一対の電線31,32を流れる電流を変化させることで、信号S2を親機2に送信する。具体的には、送信部16が一対の電線31,32に流れる電流を引き込むと、待機電圧V1が変化する。つまり、送信部16は、一対の電線31,32に流れる電流の引き込みにより、一対の電線31,32間の電圧(待機電圧)V1を変化させることで、信号S2を親機2に送信する。 The transmission unit 16 is electrically connected to the pair of electric wires 31 and 32 via the diode bridge 11. The transmission unit 16 transmits the signal S2 to the parent device 2 by changing the current flowing through the pair of electric wires 31 and 32. Specifically, when the transmitter 16 draws a current flowing through the pair of electric wires 31 and 32, the standby voltage V1 changes. That is, the transmission unit 16 transmits the signal S2 to the parent device 2 by changing the voltage (standby voltage) V1 between the pair of wires 31 and 32 by drawing the current flowing through the pair of wires 31 and 32.
 制御部17は、マイコン(マイクロコンピュータ)170を主構成とし、メモリに記憶されたプログラムを実行することにより所望の機能を実現する。なお、プログラムは、予めメモリに書き込まれていてもよいが、メモリカードのような記録媒体に記憶されて提供されてもよいし、電気通信回線を通じて提供されてもよい。また、制御部17の主構成をマイコン170に限定する趣旨ではなく、制御部17は、たとえばFPGA(Field-Programmable Gate Array)を主構成としてもよい。 The control unit 17 has a microcomputer 170 as a main component, and implements a desired function by executing a program stored in the memory. The program may be written in the memory in advance, but may be provided by being stored in a recording medium such as a memory card, or may be provided through an electric communication line. In addition, the main configuration of the control unit 17 is not limited to the microcomputer 170, and the control unit 17 may have, for example, an FPGA (Field-Programmable Gate Array) as the main configuration.
 制御部17は、GPI(General Purpose Input)端子41と、GPO(General Purpose Output)端子42~44と、A/D(Analog to Digital)端子45,46と、SCI(Serial Communication Interface)端子47とを備えている。制御部17は、GPI端子41に入力された受信信号から、受信信号に含まれるデータを取得する。また、制御部17は、GPO端子42から受信部15に対して電源信号PS1を出力する。また、制御部17は、GPO端子43から送信部16に対して制御信号を出力することで、送信部16の動作を制御する。また、制御部17は、報知部14に対してGPO端子44から制御信号を出力することで、報知部14の動作を制御する。 The control unit 17 includes a GPI (General Purpose Input) terminal 41, GPO (General Purpose Output) terminals 42 to 44, A / D (Analog To Digital) terminals 45 and 46, an SCI (Serial Communication Interface) terminal 47, It has. The control unit 17 acquires data included in the received signal from the received signal input to the GPI terminal 41. Further, the control unit 17 outputs a power signal PS1 from the GPO terminal 42 to the receiving unit 15. The control unit 17 controls the operation of the transmission unit 16 by outputting a control signal from the GPO terminal 43 to the transmission unit 16. The control unit 17 controls the operation of the notification unit 14 by outputting a control signal from the GPO terminal 44 to the notification unit 14.
 制御部17は、A/D端子45に入力される煙検知部131の検知値を取得する。たとえば、A/D端子45には、煙の濃度に応じて変化する電圧信号が入力される。また、制御部17は、A/D端子46に入力される熱検知部132の検知値を取得する。たとえば、A/D端子46には、熱検知部132の周囲の温度に応じて変化する電圧信号が入力される。制御部17は、SCI端子47を介して、記憶部18に記憶されたデータを取得したり、記憶部18に記憶されたデータを書き換えたりする。 The control unit 17 acquires the detection value of the smoke detection unit 131 input to the A / D terminal 45. For example, the A / D terminal 45 receives a voltage signal that changes according to the smoke concentration. In addition, the control unit 17 acquires the detection value of the heat detection unit 132 that is input to the A / D terminal 46. For example, a voltage signal that changes according to the ambient temperature of the heat detection unit 132 is input to the A / D terminal 46. The control unit 17 acquires data stored in the storage unit 18 or rewrites data stored in the storage unit 18 via the SCI terminal 47.
 制御部17は、クロック信号に応じて処理(プログラム)を実行する処理回路171をさらに備えている。ここでは、処理回路171は、CPU(Central Processing Unit)である。処理回路171に与えられるクロック信号は、発振部172で生成される。発振部172は、たとえば水晶振動子を備えて構成される。もちろん、発振部172は、処理回路171に与えるクロック信号を生成する構成であればよく、水晶振動子を備えた構成に限定されない。本実施形態の子機1では、発振部172は、マイコン170とは別に設けられているが、マイコン170に内蔵されていてもよい。 The control unit 17 further includes a processing circuit 171 that executes processing (program) according to the clock signal. Here, the processing circuit 171 is a CPU (Central Processing Unit). A clock signal supplied to the processing circuit 171 is generated by the oscillation unit 172. The oscillation unit 172 includes, for example, a crystal resonator. Needless to say, the oscillation unit 172 may be configured to generate a clock signal supplied to the processing circuit 171 and is not limited to a configuration including a crystal resonator. In the subunit | mobile_unit 1 of this embodiment, although the oscillation part 172 is provided separately from the microcomputer 170, you may incorporate in the microcomputer 170. FIG.
 制御部17は、受信部15および送信部16を制御する。具体的には、制御部17は、受信部15を制御することで、親機2から送信される同期信号といった信号S1を受信部15で受信させる。また、制御部17は、検知部13の出力を定期的に読み込み、検知部13の出力が第1基準値を超えると、火災と判断する。そして、制御部17は、送信部16を制御して一対の電線31,32を流れる電流の引き込み量を調節することにより、待機電圧V1を火災報レベルに変化させる。これにより、制御部17は、火災報を親機2に通知(送信)する。このとき、制御部17は、報知部14を制御して火災の発生を周囲に知らせる。 The control unit 17 controls the receiving unit 15 and the transmitting unit 16. Specifically, the control unit 17 controls the reception unit 15 to cause the reception unit 15 to receive a signal S1 such as a synchronization signal transmitted from the parent device 2. Moreover, the control part 17 reads the output of the detection part 13 regularly, and will judge that it is a fire if the output of the detection part 13 exceeds a 1st reference value. And the control part 17 changes the standby voltage V1 to a fire alert level by controlling the transmission part 16 and adjusting the drawing-in amount of the electric current which flows through a pair of electric wires 31 and 32. FIG. As a result, the control unit 17 notifies (transmits) the fire report to the parent device 2. At this time, the control unit 17 controls the notification unit 14 to notify the surroundings of the occurrence of a fire.
 また、制御部17は、検知部13の出力が第2基準値(>第1基準値)を超えると、他装置を連動させると判断する。そして、制御部17は、送信部16を制御して一対の電線31,32を流れる電流の引き込み量を調節することにより、待機電圧V1を連動報レベル(<火災報レベル)に変化させる。これにより、制御部17は、連動報を親機2に通知(送信)する。 Further, when the output of the detection unit 13 exceeds the second reference value (> first reference value), the control unit 17 determines that the other device is linked. Then, the control unit 17 controls the transmission unit 16 to adjust the amount of current drawn through the pair of electric wires 31 and 32, thereby changing the standby voltage V1 to the interlocking report level (<fire report level). Thereby, the control unit 17 notifies (transmits) the interlocking report to the parent device 2.
 また、制御部17は、送信部16を制御して、待機電圧V1の電圧値を第1レベルと第2レベルとで交互に切り替えることにより、親機2に信号S2を送信する。信号S2には、たとえば子機1単位で発報元を特定するための情報(識別情報)や、自動試験のための情報などが含まれる。なお、自動試験の項目としては、たとえば生存確認(キープアライブ)、子機1の自己診断等が含まれている。 Further, the control unit 17 controls the transmission unit 16 to transmit the signal S2 to the parent device 2 by alternately switching the voltage value of the standby voltage V1 between the first level and the second level. The signal S2 includes, for example, information (identification information) for specifying the issue source for each slave unit, information for automatic testing, and the like. The items of the automatic test include, for example, survival confirmation (keep alive), self-diagnosis of the slave unit 1 and the like.
 記憶部18は、子機1に予め割り当てられている識別情報(たとえば、アドレス)を少なくとも記憶する。つまり、本実施形態の自動火災報知システム100の有する複数台の子機1には、それぞれ固有の識別情報が割り当てられている。識別情報は、複数台の子機1の各々の設置場所(たとえば部屋番号)と対応付けられて親機2に登録される。 The storage unit 18 stores at least identification information (for example, an address) assigned in advance to the slave unit 1. That is, unique identification information is assigned to each of the plurality of slave units 1 included in the automatic fire notification system 100 of the present embodiment. The identification information is registered in the parent device 2 in association with each installation location (for example, a room number) of the plurality of child devices 1.
 <受信部について>
 本実施形態の自動火災報知システム100では、親機2は、同じ回線(一対の電線31,32)に接続されている複数台の子機1に対して、定期的に同期信号を送信する。同期信号は、たとえば子機1が自動試験を行うタイミングや、親機2との間で通信を行うタイミングを規定するために用いられる信号である。
<About the receiver>
In the automatic fire alarm system 100 of the present embodiment, the parent device 2 periodically transmits a synchronization signal to the plurality of child devices 1 connected to the same line (a pair of electric wires 31 and 32). The synchronization signal is a signal that is used, for example, to define the timing at which the child device 1 performs an automatic test and the timing at which communication with the parent device 2 is performed.
 ここで、受信部15において、半導体素子154がオンのときには、主に抵抗153およびプルアップ抵抗155に電流が流れる。また、受信部15において、半導体素子154がオフのときには、主に抵抗152を介してコンデンサ151に電流が流れる。つまり、受信部15は、親機2からの信号S1を受信している間だけでなく、信号S1を受信していない間においても、電流が流れることで電力を消費する。したがって、親機2から送信される信号S1(ここでは、同期信号)を待ち受けるために受信部15が常に動作していると、信号S1を受信していない間に余計に電力を消費するため、消費電力が増大するという問題がある。 Here, in the receiving unit 15, when the semiconductor element 154 is on, a current flows mainly through the resistor 153 and the pull-up resistor 155. In the receiving unit 15, when the semiconductor element 154 is off, a current flows through the capacitor 151 mainly through the resistor 152. That is, the receiving unit 15 consumes power by flowing a current not only during reception of the signal S1 from the parent device 2 but also during reception of the signal S1. Therefore, if the receiving unit 15 is always operating in order to wait for the signal S1 (here, the synchronization signal) transmitted from the base unit 2, extra power is consumed while the signal S1 is not received. There is a problem that power consumption increases.
 また、本実施形態の自動火災報知システム100に属する全ての子機1の受信部15が常に動作していると、一対の電線31,32から受信部15に電流が引き込まれることで、待機電圧V1が低下する。すると、火災が発生していないにも関わらず、待機電圧V1が火災報レベルに達し、子機1が親機2に誤って火災報を通知するおそれがある。 In addition, when the receiving units 15 of all the slave units 1 belonging to the automatic fire alarm system 100 of the present embodiment are always operating, a current is drawn from the pair of electric wires 31 and 32 to the receiving unit 15, so that the standby voltage V1 decreases. Then, although the fire has not occurred, the standby voltage V1 reaches the fire report level, and there is a possibility that the slave unit 1 erroneously notifies the master unit 2 of the fire report.
 そこで、本実施形態の子機1では、制御部17は、受信部15の動作電力となる電源信号PS1を受信部15に与えるか否かにより、受信部15の状態を、受信動作状態と受信停止状態とのいずれかに切り替えるように構成されている。受信動作状態は、電源信号PS1を与えられることで受信部15が動作する状態である。また、受信停止状態は、電源信号PS1が与えられないことで受信部15の動作が停止する状態である。 Therefore, in the handset 1 of the present embodiment, the control unit 17 determines the state of the reception unit 15 according to whether the power supply signal PS1 serving as the operating power of the reception unit 15 is given to the reception unit 15 or not. It is configured to switch to one of the stopped states. The receiving operation state is a state in which the receiving unit 15 operates by receiving the power signal PS1. The reception stop state is a state in which the operation of the receiving unit 15 is stopped when the power supply signal PS1 is not given.
 つまり、受信部15は、制御部17から電源信号PS1を与えられている間に動作して信号S1を受信することができる。また、受信部15は、制御部17から電源信号PS1を与えられていない間は、動作しないために信号S1を受信することはできないが、電流が流れないことから殆ど電力を消費することがない。 That is, the receiving unit 15 can operate while receiving the power signal PS1 from the control unit 17 and receive the signal S1. Further, the receiving unit 15 cannot receive the signal S1 because it does not operate while the power supply signal PS1 is not supplied from the control unit 17, but hardly consumes power because no current flows. .
 したがって、制御部17は、たとえば同期信号の受信時などの必要なときに受信部15を動作させ、必要でないときには受信部15の動作を停止させることができる。このため、本実施形態の子機1では、受信部15が親機2からの信号S1(ここでは、同期信号)を常に待ち受けることがないので、消費電力を低減することができる。 Therefore, the control unit 17 can operate the receiving unit 15 when necessary, for example, when receiving a synchronization signal, and can stop the operation of the receiving unit 15 when not necessary. For this reason, in the subunit | mobile_unit 1 of this embodiment, since the receiving part 15 does not always wait for signal S1 (here synchronous signal) from the main | base station 2, power consumption can be reduced.
 <制御部の変形例1>
 以下、本実施形態の子機1における制御部17の変形例1について説明する。変形例1では、制御部17は、処理回路171にクロック信号を与えるか否かにより、処理回路171の状態を、処理動作状態と処理停止状態とのいずれかに切り替えるように構成されている。処理動作状態は、クロック信号を与えられることで処理回路171が動作する状態である。処理停止状態は、クロック信号を与えられないことで処理回路171の動作が停止する状態である。
<Modification Example 1 of Control Unit>
Hereinafter, the modification 1 of the control part 17 in the subunit | mobile_unit 1 of this embodiment is demonstrated. In the first modification, the control unit 17 is configured to switch the state of the processing circuit 171 between the processing operation state and the processing stop state depending on whether or not a clock signal is supplied to the processing circuit 171. The processing operation state is a state in which the processing circuit 171 operates by receiving a clock signal. The process stop state is a state in which the operation of the processing circuit 171 stops when no clock signal is given.
 つまり、制御部17は、処理回路171による処理が必要なときに処理回路171を動作させ、必要でないときには処理回路171の動作を停止させることができる。この構成では、受信部15での消費電力のみならず、処理回路171での消費電力も低減することができる。 That is, the control unit 17 can operate the processing circuit 171 when processing by the processing circuit 171 is necessary, and can stop the operation of the processing circuit 171 when it is not necessary. In this configuration, not only the power consumption in the receiving unit 15 but also the power consumption in the processing circuit 171 can be reduced.
 変形例1は、たとえば図4に示すように、制御部17がタイマ173を備えることで実現することができる。タイマ173には、発振部172が生成するクロック信号が入力される。そして、タイマ173は、計時することにより、処理回路171に定期的にクロック信号を与える。したがって、制御部17は、処理回路171の状態を、処理動作状態と処理停止状態とのいずれかに切り替えることができる。 Modification 1 can be realized when the control unit 17 includes a timer 173 as shown in FIG. A clock signal generated by the oscillation unit 172 is input to the timer 173. The timer 173 periodically gives a clock signal to the processing circuit 171 by counting time. Therefore, the control unit 17 can switch the state of the processing circuit 171 between the processing operation state and the processing stop state.
 なお、本実施形態の子機1では、タイマ173はマイコン170に内蔵されているが、発振部172と同様に、マイコン170とは別に設けられていてもよい。また、図5に示すように、制御部17は、タイマ173の機能を有する発振部172をマイコン170に内蔵する構成であってもよい。この構成では、発振部172は、内蔵したタイマ173の機能により、処理回路171に定期的にクロック信号を与える。 In addition, in the subunit | mobile_unit 1 of this embodiment, although the timer 173 is incorporated in the microcomputer 170, similarly to the oscillation part 172, you may provide separately from the microcomputer 170. FIG. Further, as shown in FIG. 5, the control unit 17 may have a configuration in which an oscillation unit 172 having a function of a timer 173 is built in the microcomputer 170. In this configuration, the oscillation unit 172 periodically provides a clock signal to the processing circuit 171 by the function of the built-in timer 173.
 <制御部の変形例2>
 以下、本実施形態の子機1における制御部17の変形例2について説明する。変形例2では、制御部17は、処理回路171の状態を、第1状態と第2状態とのいずれかに切り替えるように構成されている。第1状態は、第1クロック信号が与えられる状態である。また、第2状態は、第2クロック信号が与えられる状態である。第2クロック信号は、第1クロック信号よりも周期が長い。
<Modification Example 2 of Control Unit>
Hereinafter, Modification 2 of the control unit 17 in the slave unit 1 of the present embodiment will be described. In the second modification, the control unit 17 is configured to switch the state of the processing circuit 171 between the first state and the second state. The first state is a state where a first clock signal is given. The second state is a state in which the second clock signal is given. The second clock signal has a longer period than the first clock signal.
 つまり、制御部17は、たとえば通常時には処理回路171を第1クロック信号(通常の速度)で動作させ、同期信号を待ち受けるときなどの負荷の小さい処理を実行するときには処理回路171を第2クロック信号(低速)で動作させることができる。この構成では、必要に応じて処理回路171を第2クロック信号(低速)で動作させることにより、処理回路171を常に第1クロック信号(通常の速度)で動作させる場合と比較して、処理回路171での消費電力を低減することができる。 That is, for example, the control unit 17 operates the processing circuit 171 at the first clock signal (normal speed) at the normal time, and executes the processing circuit 171 at the second clock signal when executing processing with a small load such as waiting for the synchronization signal. It can be operated at (low speed). In this configuration, the processing circuit 171 is operated with the second clock signal (low speed) as necessary, so that the processing circuit 171 is always operated with the first clock signal (normal speed) as compared with the processing circuit 171. The power consumption at 171 can be reduced.
 変形例2は、たとえば図6Aに示すように、制御部17が分周器174を備えることで実現することができる。分周器174には、発振部172が生成するクロック信号(ここでは、第1クロック信号)が入力される。そして、分周器174は、処理回路171からの要求に応じて、発振部172から与えられるクロック信号(第1クロック信号)を分周(逓倍)せずに処理回路171に与えるか、分周して第2クロック信号を処理回路171に与えるかのいずれかの処理を実行する。したがって、制御部17は、処理回路171の状態を、第1状態と第2状態とのいずれかに切り替えることができる。 Modification 2 can be realized when the control unit 17 includes a frequency divider 174 as shown in FIG. 6A, for example. The frequency divider 174 receives a clock signal (here, the first clock signal) generated by the oscillation unit 172. In response to a request from the processing circuit 171, the frequency divider 174 supplies the clock signal (first clock signal) supplied from the oscillation unit 172 to the processing circuit 171 without frequency division (multiplication), or performs frequency division. Then, one of the processes of giving the second clock signal to the processing circuit 171 is executed. Therefore, the control unit 17 can switch the state of the processing circuit 171 between the first state and the second state.
 ここで、制御部17は、変形例1と変形例2と組み合わせて構成されていてもよい。つまり、制御部17は、図6Bに示すように、処理回路171の状態を、第1状態、第2状態、および処理停止状態のいずれかに切り替えるように構成されていてもよい。以下、図面(図6B,図7~図9)において、「処理回路」の「enable」は処理動作状態、「disable」は処理停止状態を表す。また、「処理回路」の「enable(第1状態)」は、処理動作状態であり、かつ第1状態であることを表す。さらに、「処理回路」の「enable(第2状態)」は、処理動作状態であり、かつ第2状態であることを表す。 Here, the control unit 17 may be configured in combination with the first modification and the second modification. That is, as shown in FIG. 6B, the control unit 17 may be configured to switch the state of the processing circuit 171 to any one of the first state, the second state, and the processing stop state. Hereinafter, in the drawings (FIG. 6B, FIGS. 7 to 9), “enable” of the “processing circuit” indicates a processing operation state, and “disable” indicates a processing stop state. Further, “enable (first state)” of the “processing circuit” indicates that the processing operation state and the first state. Further, “enable (second state)” of the “processing circuit” represents the processing operation state and the second state.
 この構成は、たとえば制御部17がタイマ173および分周器174を備えることで実現することができる。なお、タイマ173および分周器174は、マイコン170とは別に設けられていてもよいし、マイコン170に内蔵されていてもよい。 This configuration can be realized, for example, when the control unit 17 includes a timer 173 and a frequency divider 174. Note that the timer 173 and the frequency divider 174 may be provided separately from the microcomputer 170 or may be built in the microcomputer 170.
 <動作例1>
 以下、同期信号を受信する場合における本実施形態の子機1の動作例1について図7を用いて説明する。以下、図面(図7~図9)において、「受信部」の「enable」は受信動作状態、「disable」は受信停止状態を表す。また、「同期信号」の「H」はハイレベル、「L」はローレベルを表す。ここでは、たとえばハイレベルは待機電圧V1の第1レベルの電圧値、ローレベルは待機電圧V1の第2レベルの電圧値である。
<Operation example 1>
Hereinafter, an operation example 1 of the handset 1 of this embodiment when receiving a synchronization signal will be described with reference to FIG. Hereinafter, in the drawings (FIGS. 7 to 9), “enable” of the “reception unit” represents a reception operation state, and “disable” represents a reception stop state. In addition, “H” of the “synchronization signal” represents a high level and “L” represents a low level. Here, for example, the high level is a voltage value of the first level of the standby voltage V1, and the low level is a voltage value of the second level of the standby voltage V1.
 動作例1では、制御部17は、親機2から同期信号が送信されている期間に受信部15の状態を受信動作状態に切り替え、それ以外の期間では受信部15の状態を受信停止状態に切り替えている。つまり、受信部15は、親機2から同期信号が送信されている期間に動作して同期信号を受信し、それ以外の期間では動作を停止する。したがって、動作例1では、受信部15を常に動作させる場合と比較して、受信部15での消費電力を低減することができる。 In the operation example 1, the control unit 17 switches the state of the reception unit 15 to the reception operation state during the period when the synchronization signal is transmitted from the base unit 2, and sets the state of the reception unit 15 to the reception stop state during other periods. Switching. That is, the reception unit 15 operates during a period in which the synchronization signal is transmitted from the parent device 2 to receive the synchronization signal, and stops operating in other periods. Therefore, in the operation example 1, the power consumption in the receiving unit 15 can be reduced compared to the case where the receiving unit 15 is always operated.
 また、制御部17は、親機2から同期信号が送信されている期間に処理回路171の状態を第2状態に切り替え、それ以外の期間では処理回路171の状態を第1状態に切り替えている。つまり、処理回路171は、親機2から同期信号が送信されている期間に第2クロック信号(低速)で動作し、それ以外の期間では第1クロック信号(通常の速度)で動作する。したがって、動作例1では、処理回路171を常に第1クロック信号(通常の速度)で動作させる場合と比較して、処理回路171での消費電力を低減することができる。 Further, the control unit 17 switches the state of the processing circuit 171 to the second state during the period when the synchronization signal is transmitted from the parent device 2, and switches the state of the processing circuit 171 to the first state during the other periods. . That is, the processing circuit 171 operates with the second clock signal (low speed) during a period when the synchronization signal is transmitted from the parent device 2, and operates with the first clock signal (normal speed) during other periods. Therefore, in the operation example 1, the power consumption in the processing circuit 171 can be reduced as compared with the case where the processing circuit 171 is always operated at the first clock signal (normal speed).
 ここで、上記の「同期信号が送信されている期間」は、同期信号が送信されている期間と全く同一の期間に限る趣旨ではない。つまり、「同期信号が送信されている期間」は、その期間を含み、その期間よりも多少長い期間であってもよい。 Here, the “period in which the synchronization signal is transmitted” is not limited to the same period as the period in which the synchronization signal is transmitted. That is, the “period during which the synchronization signal is transmitted” may include a period that is slightly longer than the period.
 なお、本実施形態の子機1が火災報や連動報を親機2に通知(送信)した場合、制御部17は、火災報や連動報の通知(送信)を停止するまで、受信部15の状態を受信動作状態に維持してもよい。この構成では、子機1は、火災の発生時などの緊急時において、親機2との間でリアルタイムに通信することができる。 In addition, when the subunit | mobile_unit 1 of this embodiment notifies (transmits) the fire report and the interlocking | reporting report to the master | base_unit 2, the control part 17 is the receiving part 15 until it stops the notification (transmission) of a fire report or an interlocking report. This state may be maintained in the reception operation state. In this configuration, the slave unit 1 can communicate with the master unit 2 in real time in an emergency such as a fire.
 <動作例2>
 以下、同期信号を受信する場合における本実施形態の子機1の動作例2について図8を用いて説明する。動作例2では、動作例1とは異なり、制御部17は、親機2から送信される同期信号の最小ビット幅W1ごとに、受信部15の状態を、受信動作状態と受信停止状態とで交互に複数回(ここでは2回)切り替えている。つまり、受信部15は、親機2から同期信号が送信されている期間において、常に動作するのではなく、間欠的に動作する。
<Operation example 2>
Hereinafter, an operation example 2 of the slave unit 1 of the present embodiment when receiving a synchronization signal will be described with reference to FIG. In the operation example 2, unlike the operation example 1, the control unit 17 changes the state of the reception unit 15 between the reception operation state and the reception stop state for each minimum bit width W1 of the synchronization signal transmitted from the parent device 2. It is switched alternately several times (here twice). That is, the receiving unit 15 does not always operate but operates intermittently during a period in which the synchronization signal is transmitted from the parent device 2.
 この構成では、制御部17は、同期信号の最小ビット幅W1ごとに複数回サンプリングすることで、同期信号を取得する。したがって、この構成では、親機2から同期信号が送信されている期間において常に受信部15を動作させる場合と比較して、受信部15での消費電力を低減することができる。 In this configuration, the control unit 17 acquires the synchronization signal by sampling a plurality of times for each minimum bit width W1 of the synchronization signal. Therefore, in this configuration, it is possible to reduce power consumption in the receiving unit 15 as compared with a case where the receiving unit 15 is always operated during a period in which the synchronization signal is transmitted from the parent device 2.
 なお、制御部17は、同期信号の最小ビット幅W1ごとに1回サンプリングすることで、同期信号を取得してもよい。つまり、制御部17は、同期信号の最小ビット幅W1ごとに、受信部15の状態を、受信動作状態と受信停止状態とで交互に1回切り替える構成であってもよい。 Note that the control unit 17 may acquire the synchronization signal by sampling once every minimum bit width W1 of the synchronization signal. That is, the control unit 17 may be configured to switch the state of the reception unit 15 alternately once between the reception operation state and the reception stop state for each minimum bit width W1 of the synchronization signal.
 <動作例3>
 以下、同期信号を受信する場合における本実施形態の子機1の動作例3について図9を用いて説明する。動作例3では、制御部17は、受信部15の状態が受信動作状態のときに処理回路171の状態が処理動作状態(ここでは、第2状態)に、受信部15の状態が受信停止状態のときに処理回路171の状態が処理停止状態となるように切り替えている。つまり、処理回路171は、受信部15が動作しているときに第2クロック信号(低速)で動作し、それ以外の期間では動作を停止する。言い換えれば、処理回路171は、常に動作するのではなく、間欠的に動作する。
<Operation example 3>
Hereinafter, an operation example 3 of the slave unit 1 of the present embodiment when receiving a synchronization signal will be described with reference to FIG. In the operation example 3, the control unit 17 determines that the state of the processing circuit 171 is the processing operation state (here, the second state) and the state of the reception unit 15 is the reception stop state when the state of the reception unit 15 is the reception operation state. At this time, the state of the processing circuit 171 is switched to the processing stop state. That is, the processing circuit 171 operates with the second clock signal (low speed) when the receiving unit 15 is operating, and stops operating during other periods. In other words, the processing circuit 171 does not always operate but operates intermittently.
 この構成では、親機2から同期信号が送信されている期間において常に処理回路171を動作させる場合と比較して、処理回路171での消費電力を低減することができる。なお、処理回路171は、受信部15が動作しているときに動作していればよいので、第1クロック信号(通常の速度)で動作していてもよい。 In this configuration, the power consumption in the processing circuit 171 can be reduced as compared with the case where the processing circuit 171 is always operated during the period in which the synchronization signal is transmitted from the parent device 2. Note that the processing circuit 171 only needs to be operating when the receiving unit 15 is operating, and thus may be operating at the first clock signal (normal speed).
 また、処理回路171は、少なくとも受信部15が動作しているときに動作していればよいので、受信部15の動作期間W2と処理回路171の動作期間W3とは、一致していなくてもよい。ここでは、処理回路171の動作期間W3は、受信部15の動作期間W2よりも長くなっている。 Since the processing circuit 171 only needs to operate at least when the receiving unit 15 is operating, the operation period W2 of the receiving unit 15 and the operation period W3 of the processing circuit 171 may not match. Good. Here, the operation period W3 of the processing circuit 171 is longer than the operation period W2 of the receiving unit 15.
 以上述べた実施形態から明らかなように、本発明の第1の態様に係る自動火災報知システム(100)の子機(1)は、受信部(15)と、制御部(17)とを備える。受信部(15)は、一対の電線(31,32)に電気的に接続される。受信部(15)は、一対の電線(31,32)に電気的に接続される親機(2)から一対の電線(31,32)間に印加される電圧(V1)を変化させることで送信される信号を受信する。制御部(17)は、受信部(15)の状態を、受信部(15)が動作する受信動作状態と、受信部(15)の動作が停止する受信停止状態とのいずれかに切り替える。そして、制御部(17)は、受信部(15)の動作電力となる電源信号(PS1)を受信部(15)に与えるか否かにより、受信部(15)の状態を、受信動作状態と受信停止状態とのいずれかに切り替えるように構成される。 As is clear from the embodiment described above, the slave (1) of the automatic fire alarm system (100) according to the first aspect of the present invention includes the receiving unit (15) and the control unit (17). . The receiving unit (15) is electrically connected to the pair of electric wires (31, 32). A receiving part (15) changes the voltage (V1) applied between a pair of electric wires (31, 32) from the main | base station (2) electrically connected to a pair of electric wires (31, 32). Receive the transmitted signal. The control unit (17) switches the state of the reception unit (15) between a reception operation state in which the reception unit (15) operates and a reception stop state in which the operation of the reception unit (15) stops. Then, the control unit (17) determines the state of the reception unit (15) as the reception operation state depending on whether or not to supply the power supply signal (PS1) as the operation power of the reception unit (15) to the reception unit (15). It is configured to switch to either the reception stop state.
 また、本発明の第2の態様に係る自動火災報知システム(100)の子機(1)は、第1の態様において、制御部(17)は、以下のように構成される。つまり、制御部(17)は、親機(2)から同期信号が送信されている期間に、受信部(15)の状態を受信動作状態に切り替え、それ以外の期間では、受信部(15)の状態を受信停止状態に切り替えるように構成される。 Further, in the slave unit (1) of the automatic fire alarm system (100) according to the second aspect of the present invention, in the first aspect, the control unit (17) is configured as follows. That is, the control unit (17) switches the state of the reception unit (15) to the reception operation state during a period in which the synchronization signal is transmitted from the parent device (2), and the reception unit (15) during other periods. Is configured to switch to the reception stopped state.
 また、本発明の第3の態様に係る自動火災報知システム(100)の子機(1)は、第1又は第2の態様において、制御部(17)は、クロック信号に応じて処理を実行する処理回路(171)をさらに備える。そして、制御部(17)は、処理回路(171)にクロック信号を与えるか否かにより、処理回路(171)の状態を、処理回路(171)が動作する処理動作状態と、処理回路(171)の動作が停止する処理停止状態とのいずれかに切り替えるように構成される。 Moreover, the subunit | mobile_unit (1) of the automatic fire alarm system (100) which concerns on the 3rd aspect of this invention is a 1st or 2nd aspect. WHEREIN: A control part (17) performs a process according to a clock signal. A processing circuit (171) for performing the processing. Then, the control unit (17) determines the state of the processing circuit (171), the processing operation state in which the processing circuit (171) operates, and the processing circuit (171) depending on whether or not to apply a clock signal to the processing circuit (171). ) Is switched to one of the process stop states where the operation stops.
 また、本発明の第4の態様に係る自動火災報知システム(100)の子機(1)は、第3の態様において、制御部(17)は、以下のように構成される。つまり、制御部(17)は、処理回路(171)の状態を、第1クロック信号が与えられる第1状態と、第1クロック信号よりも周期の長い第2クロック信号が与えられる第2状態とのいずれかに切り替えるように構成される。 Further, in the slave unit (1) of the automatic fire alarm system (100) according to the fourth aspect of the present invention, in the third aspect, the control unit (17) is configured as follows. That is, the control unit (17) changes the state of the processing circuit (171) between the first state to which the first clock signal is applied and the second state to which the second clock signal having a longer cycle than the first clock signal is applied. It is comprised so that it may switch to either.
 また、本発明の第5の態様に係る自動火災報知システム(100)の子機(1)は、第4の態様において、制御部(17)は、以下のように構成される。つまり、制御部(17)は、同期信号が送信されている期間に、処理回路(171)の状態を第2状態に切り替え、それ以外の期間では、処理回路(171)の状態を第1状態に切り替えるように構成される。 Further, in the slave unit (1) of the automatic fire alarm system (100) according to the fifth aspect of the present invention, in the fourth aspect, the control unit (17) is configured as follows. That is, the control unit (17) switches the state of the processing circuit (171) to the second state during the period when the synchronization signal is transmitted, and changes the state of the processing circuit (171) to the first state during the other periods. Configured to switch to
 また、本発明の第6の態様に係る自動火災報知システム(100)の子機(1)は、第1~第5のいずれかの態様において、制御部(17)は、以下のように構成される。つまり、制御部(17)は、親機(2)から送信される同期信号の最小ビット幅(W1)ごとに、受信部(15)の状態を、受信動作状態と受信停止状態とで交互に複数回切り替えるように構成される。 In the slave unit (1) of the automatic fire alarm system (100) according to the sixth aspect of the present invention, the control unit (17) is configured as follows in any of the first to fifth aspects. Is done. That is, the control unit (17) alternately changes the state of the reception unit (15) between the reception operation state and the reception stop state for each minimum bit width (W1) of the synchronization signal transmitted from the base unit (2). Configured to switch multiple times.
 また、本発明の第7の態様に係る自動火災報知システム(100)の子機(1)は、第6の態様において、制御部(17)は、以下のように構成される。つまり、制御部(17)は、受信部(15)の状態が受信動作状態のときに、クロック信号に応じて処理を実行する処理回路(171)の状態を処理回路(171)が動作する処理動作状態に切り替えるように構成される。また、制御部(17)は、受信部(15)の状態が受信停止状態のときに、処理回路(171)の状態を処理回路(171)の動作が停止する処理停止状態に切り替えるように構成される。 Further, in the slave unit (1) of the automatic fire alarm system (100) according to the seventh aspect of the present invention, in the sixth aspect, the control unit (17) is configured as follows. That is, in the control unit (17), when the state of the reception unit (15) is the reception operation state, the processing circuit (171) operates the state of the processing circuit (171) that executes processing according to the clock signal. It is configured to switch to an operating state. The control unit (17) is configured to switch the state of the processing circuit (171) to a processing stop state in which the operation of the processing circuit (171) is stopped when the state of the receiving unit (15) is a reception stop state. Is done.
 また、本発明の第8の態様に係る自動火災報知システム(100)は、第1~第7のいずれかの態様に係る自動火災報知システム(100)の子機(1)と、親機(2)とを備える。親機(2)は、一対の電線(31,32)に電気的に接続され、一対の電線(31,32)間に電圧を印加する。また、親機(2)は、一対の電線(31,32)間の電圧を変化させることで子機(1)に信号を送信する送信部(24)を備える。 An automatic fire notification system (100) according to an eighth aspect of the present invention includes a slave unit (1) of the automatic fire notification system (100) according to any one of the first to seventh aspects, 2). The base unit (2) is electrically connected to the pair of electric wires (31, 32), and applies a voltage between the pair of electric wires (31, 32). Moreover, the main | base station (2) is provided with the transmission part (24) which transmits a signal to a subunit | mobile_unit (1) by changing the voltage between a pair of electric wires (31, 32).
 また、本発明の第9の態様に係る自動火災報知システム(100)の親機(2)は、第8の態様に係る自動火災報知システム(100)に用いられる。 The base unit (2) of the automatic fire notification system (100) according to the ninth aspect of the present invention is used for the automatic fire notification system (100) according to the eighth aspect.
 自動火災報知システム(100)の子機(1)、自動火災報知システム(100)、および自動火災報知システム(100)の親機(2)は、消費電力を低減することができる。 The slave unit (1) of the automatic fire notification system (100), the automatic fire notification system (100), and the master unit (2) of the automatic fire notification system (100) can reduce power consumption.
 100 自動火災報知システム
 1 子機
 15 受信部
 17 制御部
 171 処理回路
 2 親機
 24 送信部
 31,32 一対の電線
 PS1 電源信号
 W1 最小ビット幅
DESCRIPTION OF SYMBOLS 100 Automatic fire alarm system 1 Slave unit 15 Receiving unit 17 Control unit 171 Processing circuit 2 Master unit 24 Transmitting unit 31, 32 Pair of electric wires PS1 Power signal W1 Minimum bit width

Claims (9)

  1.  一対の電線に電気的に接続され、前記一対の電線に電気的に接続された親機から前記一対の電線間に印加される電圧を変化させることで送信される信号を受信する受信部と、
     前記受信部の状態を、前記受信部が動作する受信動作状態と、前記受信部の動作が停止する受信停止状態とのいずれかに切り替える制御部とを備え、
     前記制御部は、前記受信部の動作電力となる電源信号を前記受信部に与えるか否かにより、前記受信部の状態を、前記受信動作状態と前記受信停止状態とのいずれかに切り替えるように構成されることを特徴とする自動火災報知システムの子機。
    A receiving unit that is electrically connected to the pair of electric wires and receives a signal transmitted by changing a voltage applied between the pair of electric wires from a base unit electrically connected to the pair of electric wires;
    A control unit that switches the state of the reception unit to either a reception operation state in which the reception unit operates or a reception stop state in which the operation of the reception unit stops;
    The control unit switches the state of the reception unit between the reception operation state and the reception stop state depending on whether or not to supply a power signal serving as operating power of the reception unit to the reception unit. A slave unit of an automatic fire alarm system characterized by comprising.
  2.  前記制御部は、前記親機から同期信号が送信されている期間に、前記受信部の状態を前記受信動作状態に切り替え、それ以外の期間では、前記受信部の状態を前記受信停止状態に切り替えるように構成されることを特徴とする請求項1記載の自動火災報知システムの子機。 The control unit switches the state of the reception unit to the reception operation state during a period when a synchronization signal is transmitted from the base unit, and switches the state of the reception unit to the reception stop state during other periods. The slave unit of the automatic fire alarm system according to claim 1, wherein the slave unit is configured as described above.
  3.  前記制御部は、クロック信号に応じて処理を実行する処理回路をさらに備え、
     前記制御部は、前記処理回路に前記クロック信号を与えるか否かにより、前記処理回路の状態を、前記処理回路が動作する処理動作状態と、前記処理回路の動作が停止する処理停止状態とのいずれかに切り替えるように構成されることを特徴とする請求項1又は2に記載の自動火災報知システムの子機。
    The control unit further includes a processing circuit that executes processing according to a clock signal,
    The control unit determines whether the processing circuit is in a processing operation state in which the processing circuit operates and a processing stop state in which the operation of the processing circuit is stopped, depending on whether the clock signal is supplied to the processing circuit. It is comprised so that it may switch to either, The subunit | mobile_unit of the automatic fire alarm system of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記制御部は、前記処理回路の状態を、第1クロック信号が与えられる第1状態と、前記第1クロック信号よりも周期の長い第2クロック信号が与えられる第2状態とのいずれかに切り替えるように構成されることを特徴とする請求項3記載の自動火災報知システムの子機。 The control unit switches the state of the processing circuit between a first state in which a first clock signal is applied and a second state in which a second clock signal having a longer cycle than the first clock signal is applied. 4. The slave unit of the automatic fire alarm system according to claim 3, wherein the slave unit is configured as described above.
  5.  前記制御部は、前記親機から同期信号が送信されている期間に、前記処理回路の状態を前記第2状態に切り替え、それ以外の期間では、前記処理回路の状態を前記第1状態に切り替えるように構成されることを特徴とする請求項4記載の自動火災報知システムの子機。 The control unit switches the state of the processing circuit to the second state during a period in which a synchronization signal is transmitted from the base unit, and switches the state of the processing circuit to the first state during other periods. The slave unit of the automatic fire alarm system according to claim 4, wherein the slave unit is configured as described above.
  6.  前記制御部は、前記親機から送信される同期信号の最小ビット幅ごとに、前記受信部の状態を、前記受信動作状態と前記受信停止状態とで交互に複数回切り替えるように構成されることを特徴とする請求項1乃至5のいずれか1項に記載の自動火災報知システムの子機。 The control unit is configured to alternately switch the state of the reception unit a plurality of times between the reception operation state and the reception stop state for each minimum bit width of a synchronization signal transmitted from the base unit. The slave of the automatic fire alarm system according to any one of claims 1 to 5.
  7.  前記制御部は、前記受信部の状態が前記受信動作状態のときに、クロック信号に応じて処理を実行する処理回路の状態を前記処理回路が動作する処理動作状態に切り替え、前記受信部の状態が前記受信停止状態のときに、前記処理回路の状態を前記処理回路の動作が停止する処理停止状態になるように切り替えるように構成されることを特徴とする請求項6記載の自動火災報知システムの子機。 The control unit switches the state of the processing circuit that executes processing according to a clock signal to the processing operation state in which the processing circuit operates when the state of the receiving unit is in the receiving operation state, and the state of the receiving unit The automatic fire alarm system according to claim 6, wherein the automatic fire alarm system is configured to switch the state of the processing circuit to a processing stop state in which the operation of the processing circuit stops when the reception is stopped. Child machine.
  8.  請求項1乃至7のいずれか1項に記載の自動火災報知システムの子機と、
     前記一対の電線に電気的に接続され、前記一対の電線間に電圧を印加する親機とを備え、
     前記親機は、前記一対の電線間の電圧を変化させることで前記子機に信号を送信する送信部を備えることを特徴とする自動火災報知システム。
    A slave of the automatic fire alarm system according to any one of claims 1 to 7,
    A main unit that is electrically connected to the pair of electric wires and applies a voltage between the pair of electric wires;
    The said main | base station is provided with the transmission part which transmits a signal to the said subunit | mobile_unit by changing the voltage between a pair of said electric wires, The automatic fire alarm system characterized by the above-mentioned.
  9.  請求項8に記載の自動火災報知システムに用いられることを特徴とする自動火災報知システムの親機。 9. A base unit of an automatic fire alarm system, characterized in that it is used in the automatic fire alarm system according to claim 8.
PCT/JP2016/003466 2015-08-07 2016-07-27 Automatic fire alarm system child machine, automatic fire alarm system, and automatic fire alarm system parent machine WO2017026098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16834801.9A EP3333817B1 (en) 2015-08-07 2016-07-27 Automatic fire alarm system slave device, automatic fire alarm system, and automatic fire alarm system master device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015157699A JP6566353B2 (en) 2015-08-07 2015-08-07 Automatic fire alarm system slave unit, automatic fire alarm system, and automatic fire alarm system master unit
JP2015-157699 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017026098A1 true WO2017026098A1 (en) 2017-02-16

Family

ID=57982983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003466 WO2017026098A1 (en) 2015-08-07 2016-07-27 Automatic fire alarm system child machine, automatic fire alarm system, and automatic fire alarm system parent machine

Country Status (3)

Country Link
EP (1) EP3333817B1 (en)
JP (1) JP6566353B2 (en)
WO (1) WO2017026098A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166806B2 (en) * 2018-06-26 2022-11-08 ニッタン株式会社 Light alarm control system, light alarm control method and light alarm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142889U (en) * 1983-03-11 1984-09-25 ホーチキ株式会社 analog alarm device
JPH11175863A (en) * 1997-12-16 1999-07-02 Nittan Co Ltd Sensor
WO2006131998A1 (en) * 2005-06-08 2006-12-14 Matsushita Electric Works, Ltd. Fire alarm system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551239B2 (en) * 1971-12-29 1980-12-23
JPS59151381U (en) * 1983-03-25 1984-10-09 ホーチキ株式会社 non-polar circuit
JP2579675B2 (en) * 1988-10-31 1997-02-05 ホーチキ株式会社 Fire detector
US5083107A (en) * 1989-05-01 1992-01-21 Nohmi Bosai Kabushiki Kaisha Fire alarm system
JP3029716B2 (en) * 1991-11-01 2000-04-04 ホーチキ株式会社 Wireless analog sensor
JP3116250B2 (en) * 1992-04-09 2000-12-11 能美防災株式会社 Fire alarm system
JPH0749988A (en) * 1993-06-15 1995-02-21 Hochiki Corp Radio alarm device
JPH076283A (en) * 1993-06-15 1995-01-10 Hochiki Corp Radio alarm equipment
JP3217918B2 (en) * 1993-12-16 2001-10-15 ホーチキ株式会社 Terminal equipment for fire alarm equipment
US6960987B2 (en) * 2001-09-21 2005-11-01 Hochiki Corporation Fire alarm system, fire sensor, fire receiver, and repeater
AU2009298996B2 (en) * 2008-10-02 2014-11-20 Hochiki Corporation Transmission input circuit
JP5865650B2 (en) * 2011-09-29 2016-02-17 能美防災株式会社 Terminal equipment
JP6388227B2 (en) * 2013-12-18 2018-09-12 パナソニックIpマネジメント株式会社 Wireless communication apparatus and wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142889U (en) * 1983-03-11 1984-09-25 ホーチキ株式会社 analog alarm device
JPH11175863A (en) * 1997-12-16 1999-07-02 Nittan Co Ltd Sensor
WO2006131998A1 (en) * 2005-06-08 2006-12-14 Matsushita Electric Works, Ltd. Fire alarm system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333817A4 *

Also Published As

Publication number Publication date
JP6566353B2 (en) 2019-08-28
EP3333817A4 (en) 2018-08-15
EP3333817A1 (en) 2018-06-13
JP2017037433A (en) 2017-02-16
EP3333817B1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
US8649883B2 (en) Power distribution system and method
US20160245538A1 (en) Smart ac controller with engery measurement capability
Adetiba et al. Automatic electrical appliances control panel based on infrared and Wi-Fi: A framework for electrical energy conservation
JP6566353B2 (en) Automatic fire alarm system slave unit, automatic fire alarm system, and automatic fire alarm system master unit
EP3133569B1 (en) A slave unit for automatic fire alarm system and an automatic fire alarm system
JP2019185271A (en) Disaster prevention receiver, disaster prevention system, and program
JP2017130048A (en) Fire receiver and disaster prevention system using the same
WO2016021115A1 (en) Slave unit for automatic fire alarm system, and automatic fire alarm system in which same is used
JP6575913B2 (en) Automatic fire alarm system
JP6471968B2 (en) Automatic fire alarm system slave unit and automatic fire alarm system using the same
JP6618003B2 (en) Automatic fire alarm system slave unit, master unit, and automatic fire alarm system using the same
JP2017084180A (en) Automatic fire alarm system
JP6655808B2 (en) Handset of automatic fire alarm system and automatic fire alarm system using the same
JP6365971B2 (en) Automatic fire alarm system
JP6481940B2 (en) Communication apparatus and communication system using the same
JP6646835B2 (en) Master unit and automatic fire alarm system
CN204302780U (en) Individualized intelligent system
JP6481933B2 (en) Automatic fire alarm system slave unit and automatic fire alarm system using the same
JP6814985B2 (en) Master unit and automatic fire alarm system
JP6558695B2 (en) Automatic fire alarm system
JP6579510B2 (en) Automatic fire alarm system slave unit, master unit, and automatic fire alarm system using the same
JP2016149029A (en) Slave machine and master machine of automatic fire alarm system, and automatic fire alarm system using them
JPWO2018003010A1 (en) Device control system control method and device control system
JP2018173893A (en) Communication processing system and communication system
JP2016192042A (en) Slave unit of automatic fire alarm system, master unit of automatic fire alarm system and automatic fire alarm system using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016834801

Country of ref document: EP