WO2017025036A1 - 绝缘管及带有这种绝缘管的绝缘套管 - Google Patents

绝缘管及带有这种绝缘管的绝缘套管 Download PDF

Info

Publication number
WO2017025036A1
WO2017025036A1 PCT/CN2016/094406 CN2016094406W WO2017025036A1 WO 2017025036 A1 WO2017025036 A1 WO 2017025036A1 CN 2016094406 W CN2016094406 W CN 2016094406W WO 2017025036 A1 WO2017025036 A1 WO 2017025036A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
insulating
oil
insulator
inner tube
Prior art date
Application number
PCT/CN2016/094406
Other languages
English (en)
French (fr)
Inventor
马斌
方江
朱兴祥
杨礼斌
Original Assignee
江苏神马电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏神马电力股份有限公司 filed Critical 江苏神马电力股份有限公司
Priority to US15/751,390 priority Critical patent/US10468162B2/en
Priority to EP16834660.9A priority patent/EP3336860A4/en
Publication of WO2017025036A1 publication Critical patent/WO2017025036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/38Fittings, e.g. caps; Fastenings therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/32Single insulators consisting of two or more dissimilar insulating bodies
    • H01B17/325Single insulators consisting of two or more dissimilar insulating bodies comprising a fibre-reinforced insulating core member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/34Insulators containing liquid, e.g. oil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • H01B17/583Grommets; Bushings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/66Joining insulating bodies together, e.g. by bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type

Definitions

  • the invention relates to a power transmission device, in particular to an insulation tube and an insulation sleeve with such an insulation tube.
  • the insulating sleeve is a connecting component of the power transmission and transformation equipment and the external circuit.
  • the voltage level and operating current of the insulating sleeve are determined by the rated voltage and current value of the power transmission and transformation equipment, and at the same time, the insulating sleeve
  • the structure should have good electrical performance and sufficient mechanical strength to ensure long-term normal operation of power transmission and transformation equipment.
  • the insulating sleeve includes an insulator and a transformer tube at the lower end of the insulator, and an oil immersed tube inside the power transmission and transformation device.
  • the transformer tube is used to install a transformer coil.
  • the existing transformer tube is an aluminum alloy tube
  • the oil-immersed tube is a porcelain tube.
  • the common connection method is spring compression type, and the transformer tube, the oil-immersed tube and the insulator are pressed together by the strong spring of the electric conductor, and the connection force provided by the spring is between 25 and 70 kN.
  • a sealing groove is formed on the lower end of the insulator and the transformer tube, and is sealed by an O-ring.
  • connection structure is characterized by a relatively complicated structure and is manually assembled, and cannot be automated, so the efficiency is not high.
  • one of the objects of the present invention is to provide an insulating tube that solves the problem of connection of the transformer tube and material cost.
  • an insulating tube for an insulating sleeve comprising: an insulator including an intermediate skirt portion and a lower end portion of the umbrella skirt portion a lower flange; a head comprising a oil pillow connected to an upper end of the insulator and a terminal connected to the oil pillow; the insulating tube connected to the lower flange, the insulating tube including an upper transformer a tube and a lower oil immersed tube; the transformer tube includes an inner tube and a conductive layer disposed outside the inner tube, the conductive layer being grounded.
  • the insulating tube is divided into a conductive layer outside the inner tube and the inner tube through the transformer tube, and the inner tube does not need to have electrical conductivity, so the material of the inner tube can be the same as or similar to the material of the oil-immersed tube at the lower end.
  • the freedom of choice of the inner tube material makes it difficult to connect the inner tube to the oil immersed tube.
  • the transformer tube is connected with the oil-immersed tube. Because the oil-immersed tube cannot be made of aluminum alloy, it is difficult to connect and seal each other, and the design of the inner tube in this case is perfectly solved. This connection and sealing problem.
  • the conductive layer is responsible for the conductive effect of the transformer tube, the freedom of the inner tube material allows the inner tube to be selected at a cost much lower than that of the aluminum alloy material, which greatly reduces the material cost of the transformer tube.
  • the inner tube is integrally formed with the oil immersed tube.
  • the inner tube and the oil-immersed tube are made of the same material, and the two are integrally molded, and there is no need to additionally connect the two, and the sealing property is effectively ensured.
  • the inner tube and the oil immersed tube are formed by filament winding.
  • the fiber may be a glass fiber or an aramid fiber.
  • the inner tube and the oil-immersed tube may be formed by winding a fiber impregnated resin, that is, wet-wound molding; or may be formed by dry winding, that is, casting the resin after completion of the fiber winding, and solidifying and molding.
  • the insulating tube produced by the above method has good seismic performance and no brittle fracture compared with the prior art porcelain tube; and can be easily connected with other components. In the manufacturing process, compared with the prior art firing process, the manufacturing is simple and the time cost is saved.
  • the insulator further includes an inner core tube supporting the shed portion, the inner core tube is formed by filament winding, and the inner core tube is integrally formed with the inner tube.
  • the inner core tube and the inner tube are integrally formed, thereby avoiding the installation of the inner tube and the flange again during installation, and the sealing between the two is not required, thereby effectively ensuring the sealing performance of the insulating sleeve.
  • the inner core tube and the inner tube are integrally formed with the oil immersed tube. All three are integrally formed to further ensure the sealing performance of the insulating sleeve, and no additional assembly is required, which improves the integrity of the insulating sleeve and avoids damage to the external force caused by the installation between the components.
  • the above conductive layer is grounded through the lower flange. Since the lower flange connection is usually connected to the outer casing of the device, the conductive layer can be grounded by simply electrically connecting the conductive layer to the lower flange. The conductive layer is grounded to maintain the conductive layer at zero potential, effectively shielding the interference caused by partial discharge or electrical particles in the conductive layer to the transformer coils disposed outside the conductive layer.
  • the above conductive layer is a metal cylinder.
  • the metal tube is sleeved outside the inner tube, and the upper end of the metal tube can be fixed to the lower flange by screws and grounded through the lower flange.
  • the thickness of the metal cylinder need not be too thick, as long as the electrical conductivity requirement of the transformer tube is satisfied, the material cost is greatly saved compared with the prior art transformer tube having the same wall thickness and the thickness of the oil-immersed tube;
  • the mechanical properties of the metal cylinder are low; in addition, the metal cylinder and the lower flange need only be connected so that the metal cylinder does not fall off, and the electric conduction is good, and no sealing connection is required.
  • the arrangement of the metal tube makes the structure of the insulating tube simple, easy to install, and greatly reduces the cost.
  • the conductive layer is a conductive paint applied outside the inner tube.
  • the inner tube coated with the conductive paint portion can be grounded through a lead connection flange or other component.
  • the arrangement of the conductive paint further saves materials, reduces the cost, and reduces the complexity of the structure of the insulating sleeve, and at the same time has the full function of the above metal cylinder.
  • an inner liner layer is disposed in the insulating tube.
  • the inner liner can effectively prevent the oil in the equipment from corroding the insulating tube, and also prevent the corroded dissolved matter from polluting the oil.
  • the insulating tube is coated with an insulating varnish.
  • the insulating varnish can prevent the outer surface of the insulating tube from coming into contact with the oil in the equipment, causing corrosion and avoiding contamination of the oil by the dissolved dissolved matter.
  • the second object of the present invention is to provide an insulating sleeve that solves the problem of connection of the transformer tube and the material cost.
  • an insulating sleeve including an insulator including an intermediate shed portion and a lower flange disposed at a lower end of the shed portion; the head portion including the connection An oil pillow at an upper end of the insulator and a terminal connected to the oil pillow; an insulating tube connected to the lower flange; the insulating tube is any one of the above-mentioned insulating tubes of the present invention.
  • the insulating sleeve of the present invention is divided into a conductive layer outside the inner tube and the inner tube through the transformer tube, and the inner tube does not need to have electrical conductivity, so the material of the inner tube can be the same as or similar to the material of the oil-immersed tube at the lower end.
  • the freedom of choice of the inner tube material makes it difficult to connect the inner tube to the oil immersed tube.
  • the transformer tube is connected with the oil-immersed tube. Because the oil-immersed tube cannot be made of aluminum alloy, it is difficult to connect and seal each other, and the design of the inner tube in this case is perfectly solved. This connection and sealing problem.
  • the conductive layer is responsible for the conductive effect of the transformer tube, the freedom of the inner tube material allows the inner tube to be selected at a cost much lower than that of the aluminum alloy material, which greatly reduces the material cost of the transformer tube.
  • FIG. 1 is a half cross-sectional view showing an insulating sleeve 1000 according to an embodiment of the present invention
  • Figure 2 is a half cross-sectional view showing an insulating tube 100 with a lower flange 114 according to a first embodiment of the present invention
  • Figure 3 is a half cross-sectional view of the insulating tube 200 with the lower flange 214 of the second embodiment of the present invention
  • Fig. 4 is a half cross-sectional view showing an insulating tube 300 with a partial insulator according to a third embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the insulating sleeve 1000 of the embodiment includes an insulator 110.
  • a head 120 connected to the upper end of the insulator, and an insulating tube 100 connected to the lower end of the insulator 110.
  • the insulator 110 includes an inner core barrel 111, a shed portion 112 that covers the outer side of the inner core tube 111, and an upper flange 113 that is coupled to the upper end of the shed portion 112 and a lower flange 114 that is connected to the lower end.
  • the inner core tube 111 is a hollow tube made of glass fiber reinforced plastic, and can be wound by glass fiber impregnated epoxy resin to be solidified. In addition, those skilled in the art can also manufacture the inner core tube 111 by using other fibers, such as aramid fibers, with a resin by molding or other processes according to actual conditions.
  • the umbrella skirt portion 112 is integrally molded of silicone rubber by vacuum injection.
  • the upper flange 113 and the lower flange 114 are metal flanges.
  • the upper flange 113 and the lower flange 114 in this embodiment are made of aluminum alloy, and may be made of other metal materials such as iron.
  • the insulator 110 of this embodiment is a composite insulator, and those skilled in the art can select porcelain insulators or other types of insulators according to actual needs and the like.
  • the head 120 includes a oil pillow 121 attached to the upper flange 113, and a terminal 122 connected to the oil pillow 121.
  • the oil level of the oil in the insulating sleeve 1000 reaches the position of the oil pillow 121, and the oil level can be monitored by the oil pillow 121.
  • the terminal block 122 is used to lead the lead wires of the device to be connected to other external devices.
  • the terminal 122 of this embodiment is made of copper.
  • the insulating tube 100 includes an upper transformer tube 101 and a lower oil immersion tube 102.
  • the transformer tube 101 includes an inner tube 103 and a metal barrel 104 outside the inner tube 103.
  • a lower terminal 105 is connected to the lower end of the oil immersed tube 102, and a pressure equalizing ball 106 is provided on the lower end of the lower terminal 105.
  • the inner tube 103 and the oil immersed tube 102 are integrally formed of FRP material.
  • the inner tube 103 and the oil dip tube 102 in this embodiment are wound by glass fiber impregnated epoxy resin.
  • the inner tube 103 and the oil immersed tube 102 may be formed by other suitable molding methods such as die casting.
  • the conductive layer metal cylinder 104 and the metal cylinder 104 are made of aluminum alloy. In practical applications, other metal materials may also be selected according to actual conditions.
  • the metal cylinder 104 has a thickness of 2 mm.
  • the lower terminal 105 is made of aluminum alloy
  • the pressure equalizing ball 106 is made of aluminum alloy
  • the equalizing ball 106 is fixed to the lower terminal 105 by internal bolts.
  • the upper end of the metal cylinder 104 is provided with a connecting portion 107.
  • the shape of the connecting portion 107 matches the shape of the lower end of the lower flange 114.
  • the end of the connecting portion 107 abuts against the surface of the lower flange 114, and the metal cylinder 104 is fixed by screws.
  • the connecting portion 107 is electrically connected to the lower flange 114, and the metal can 104 is grounded through the lower flange 114.
  • the upper end of the inner tube 103 is attached to the lower flange 114 by means of a glue.
  • the lower terminal 105 is attached to the lower end of the oil immersed tube 102 by means of glue.
  • the insulating sleeve 1000 further includes an electrical conductor 1001 and a capacitor core 1002.
  • the conductor 1001 is a columnar conductor, and is generally made of an aluminum alloy or other metal such as copper.
  • Conductor 1001 It can be a solid cylinder or a hollow tube.
  • the upper end of the conductor 1001 is connected to the terminal 122, and the lower end is connected to the lower terminal 105.
  • a layered capacitor core 1002 is further disposed in the inner core tube 111 and the insulating tube 100.
  • the lead of the outermost layer of the capacitor core 1002 is grounded.
  • the cavity in the middle of the insulating sleeve 1000 is filled with oil (not shown) in the applied equipment.
  • the oil level of the oil reaches the oil pillow 121, and both the capacitor core 1002 and the conductor 1001 are immersed in the oil.
  • the insulating sleeve 1000 of the present embodiment can be used as an outlet bushing for a transformer or a reactor.
  • a lining (not shown) is also disposed in the insulating tube 100, and the lining is a polyester lining for preventing oil from corroding the inner tube 103 and the oil immersing tube 102 of the glass reinforced plastic material, and also avoiding the oil being affected by the glass reinforced plastic.
  • the dissolved product causes contamination.
  • an insulating varnish (not shown) is applied.
  • the insulating varnish is epoxy lacquer or polyurethane, which can also avoid corrosion of the oil-impregnated tube 102 of the FRP material and prevent the oil from being dissolved by the FRP. create pollution.
  • the material of the inner tube 103 can be selected, so that the inner tube 103 can be conveniently arranged.
  • the oil immersed tube 102 is connected and achieves a good sealing effect.
  • the conductive layer that is, the metal can 104 of the present embodiment, only needs to have a conductive shielding effect, so the thickness can be thin, and the thickness of the metal can is the same as that of the prior art.
  • the material of the metal cylinder 104 is greatly saved, and the material cost is reduced.
  • the inner tube 103 is made of the same material as the oil-immersed tube 102, and the inner tube 103 and the oil-immersed tube 102 are integrally formed, so that the transformer tube 101 and the oil-immersed tube 102 are not connected, and it is not required.
  • the joint between the two is sealed; and only the metal cannula 104 of 2 mm can be used as the conductive portion of the transformer tube 101, which is the same as the thickness of the aluminum alloy tube and the thickness of the oil-immersed tube in the prior art.
  • the material cost of the transformer tube 101 is saved.
  • the metal cylinder 104 is grounded through the lower flange 114 to maintain the metal cylinder 104 at zero potential, thereby effectively shielding the partial discharge or charged particles in the metal cylinder 104 from interfering with the transformer coil outside the metal cylinder 104.
  • the insulating sleeve 1000 of the present embodiment solves the problem that the transformer tube connection and sealing in the prior art is difficult and material is wasted.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the insulating tube 200 of the present embodiment includes an upper transformer tube 201 and a lower oil immersing tube 202.
  • the transformer tube 201 includes an inner tube 203 and a conductive paint 204 outside the inner tube 203. Oil
  • the lower end of the dip tube 202 is connected with a lower terminal 205, and the lower end 205 is provided with a pressure equalizing ball 206.
  • the inner tube 203 and the oil immersed tube 202 are made of glass fiber reinforced plastic.
  • the inner tube 203 and the oil immersed tube 202 in this embodiment are wound by glass fiber impregnated epoxy resin.
  • the inner tube 203 and the oil dip tube 202 may be formed by other suitable molding methods such as die casting.
  • the upper end of the inner tube 203 is connected to the lower flange 214 by means of glue, and the lower end is connected to the oil dip tube 202 by means of glue.
  • the lower end of the oil immersed tube 202 is connected to the lower terminal 205 by means of a glue.
  • the conductive layer of this embodiment is a conductive paint 204, and the conductive paint 204 is formed by spraying copper outside the inner tube 203.
  • the conductive paint can be formed by other methods such as aluminum plating, tin plating, silver plating, etc. inside the inner tube.
  • a conductive varnish 204 and a lower flange 214 are provided on the upper portion of the inner tube 203 to communicate with the surface of the inner tube 203, and are then grounded through the lower flange 214.
  • the insulating tube 200 of the present embodiment has all the advantages of the insulating tube 100 of the first embodiment of the present invention, and the inner tube 203 and the oil-immersed tube 202 of the present embodiment are not integrally formed with respect to the insulating tube 100 of the first embodiment, but The two are separately fabricated and then joined by a glued joint. Although this increases the insulating tube 100 whose sealing surface needs to be sealed and the sealing performance is relatively inferior to that of the first embodiment of the present invention, the inner tube 203 and the oil immersed tube 202 are segmented in this embodiment.
  • the manufacturing difficulty is reduced; and the segmented inner tube 203 and the oil dip tube 202 are also conveniently disposed in the insulating sleeve 2000 for the capacitor core and the electrical conductor and the like. installation.
  • the conductive layer outside the inner tube 203 of the embodiment is a conductive paint 204.
  • the conductive paint 204 realizes the function of the metal cylinder 104, and further saves materials and reduces Material costs.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the insulating tube 300 of the present embodiment includes an upper transformer tube 301 and a lower oil immersion tube 302.
  • the transformer tube 301 includes an inner tube 303 and a metal tube 304 outside the inner tube 303.
  • a lower terminal 305 is connected to the lower end of the oil immersed tube 302.
  • the insulating tube 300 of the present embodiment is applied to a device of a low voltage level, so that a pressure equalizing ball may not be disposed outside the lower terminal 305.
  • the upper end of the insulating tube 300 is provided with an insulator 310.
  • the insulator 310 includes an inner core barrel 311, a shed portion 312 covering the outer core tube 311, and a lower flange 314 connected to the lower end of the shed portion 312.
  • the inner core tube 311, the inner tube 303, and the oil immersed tube 302 are all formed by wet-wound glass fiber, and the three are integrally formed.
  • the lower flange 314 is sleeved on the integrally formed fiberglass tube and is fixed between the inner core barrel 311 and the inner tube 303.
  • the insulating tube 300 of the present embodiment has substantially the same structure as the insulating tube 100 of the first embodiment of the present invention.
  • the insulating tube 300 of the embodiment does not need to be connected again at the time of installation, and does not need to be provided with a sealing structure, since the three are integrally formed, the occurrence of the three is completely avoided.
  • the problem of poor sealing and the integrity of the insulating sleeve are improved, and the installation between the members is prevented from being damaged by external forces.
  • the insulating tube 300 of the present invention has all the advantages of the insulating tube 100 of the embodiment of the present invention.
  • the insulating tube 300 of the present embodiment is applied to the outlet bushing of the device of a low voltage level.
  • the insulating tube 300 of the present embodiment is also suitable for a high voltage class of equipment.
  • the oil pillow and the upper flange are separately arranged. It is worth noting that the oil pillow and the upper flange can also be integrated, and the upper end of the umbrella skirt is directly connected with the oil pillow.
  • the insulator of the present invention can also be a porcelain insulator or other material insulator according to the description of the embodiments of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Insulators (AREA)
  • Insulating Of Coils (AREA)

Abstract

一种绝缘管及绝缘套管,绝缘套管(1000)包括绝缘子(110),该绝缘子包括中间的伞裙部(112),及该伞裙部下端的下法兰(114);头部(120),连接在该绝缘子的上端,该头部包括连接在该绝缘子的上端的油枕(121),及连接在该油枕上的接线端子(122);绝缘管(100),连接在该下法兰上,该绝缘管包括上部的互感器管(101)及下部的油浸管(102);该互感器管包括内管(103)和设置在该内管外的导电层,该导电层接地设置。该绝缘管及绝缘套管解决了连接和密封问题,且节省了材料成本。

Description

绝缘管及带有这种绝缘管的绝缘套管 技术领域
本发明涉及一种输电设备,具体是一种绝缘管及带有这种绝缘管的绝缘套管。
背景技术
在输电设备中,绝缘套管是一种输变电设备与外部线路的连接部件,绝缘套管的电压等级和工作电流决定于输变电设备的额定电压和电流值,同时,绝缘套管的结构应具有良好的电气性能和足够的机械强度,保证输变电设备的长期正常运行。
绝缘套管包括绝缘子和位于绝缘子下端的互感器管,以及位于输变电设备内部的油浸管。其中,互感器管用于装设互感器线圈。现有的互感器管为铝合金管,油浸管为瓷质管。常见的连接方式为弹簧压紧式,通过导电体用强力弹簧将互感器管、油浸管、绝缘子紧压在一起,弹簧提供的连接力在25~70kN之间。在绝缘子下端和互感器管上开设密封槽,用O形密封圈进行密封。这种连接结构特点是结构较为复杂,且为人工装配,无法实现自动化生产,因此效率不高。另外,由于多处采用密封圈进行密封,存在密封隐患,而且互感器管的壁厚和油浸管的壁厚需保持一致,导致互感器管壁厚比较大,浪费了材料,使材料成本比较高。
发明内容
针对现有技术的不足,本发明的目的之一是提供一种绝缘管,该绝缘管解决了互感器管的连接问题和材料成本问题。
为实现上述发明目的,本发明所采用的技术手段如下:一种绝缘管,用于绝缘套管,该绝缘套管包括:绝缘子,该绝缘子包括中间的伞裙部和设置在该伞裙部下端的下法兰;头部,该头部包括连接在该绝缘子的上端的油枕和连接在该油枕上的接线端子;该绝缘管,连接在该下法兰上,该绝缘管包括上部的互感器管和下部的油浸管;该互感器管包括内管和设置在该内管外的导电层,该导电层接地设置。
上述绝缘管,通过上述互感器管分为内管和内管外的导电层,内管不需要有导电性能,因此内管的材质可以和下端的油浸管的材质相同或相近。 内管材质选择的自由性可以使内管和油浸管的连接不存在困难。相对于现有技术中铝合金材质的互感器管与油浸管连接,因为油浸管不可能为铝合金材质,因此相互连接和密封都比较困难,而本案的内管的设计完美的解决了这一连接和密封的问题。另外由于导电层负责互感器管的导电效果,内管材质的自由性使得内管可以选择成本远远低于铝合金材质的材料,大量降低了互感器管的材料成本。
优选地,上述内管与上述油浸管一体成型。将上述内管与油浸管用相同的材料制作,并且将两者一体成型,不需要额外对两者之间进行连接,且密封性得到了有效的保证。
优选地,上述内管和上述油浸管为纤维缠绕成型。该纤维可以为玻璃纤维,也可为芳纶纤维。该内管和油浸管可以通过纤维浸渍树脂缠绕成型,即湿法缠绕成型;也可通过干法缠绕成型,即将纤维缠绕完成后浇注树脂,并固化成型。通过上述方法制成的绝缘管,相对于现有技术的瓷质管,抗震性能好,不会发生脆断;且可方便的与其他部件连接。在制造工艺上,相对于现有技术的烧瓷工艺,制造简便,节省了时间成本。
更为优选地,上述绝缘子还包括支撑上述伞裙部的内芯筒,该内芯筒为纤维缠绕成型,该内芯筒与该内管一体成型。该内芯筒与该内管一体成型,避免了安装时再次将内管与法兰进行安装,且两者之间无需使用密封圈等部件进行密封,有效保证了绝缘套管的密封性能。更为优选地,该内芯筒与该内管与上述油浸管均一体成型。三者均一体成型,进一步保证了绝缘套管的密封性能,且无需额外的组装,提高了绝缘套管的整体性,避免了在构件之间的安装处受到外部力量产生损坏。
优选地,上述导电层通过上述下法兰接地设置。由于下法兰连接通常连接设备的外壳,因此只需将该导电层与该下法兰电性连接,即可对导电层接地。导电层接地设置使导电层保持零电位,有效屏蔽了导电层内的局部放电或电性粒子对导电层外装设的互感器线圈产生的干扰。
优选地,上述导电层为金属筒。该金属筒套设在上述内管外,金属筒的上端可通过螺钉固定在上述下法兰上,并通过下法兰接地。该金属筒的厚度无需太厚,只要满足互感器管的导电性能要求即可,相对于现有技术壁厚与油浸管厚度相同的互感器管,大大节省了材料成本;且由于有内管 起支撑作用,金属筒机械性能要求低;此外金属筒与下法兰只需连接使金属筒不会脱落,且保持导电良好即可,无需进行密封连接。金属筒的设置,使绝缘管结构简单,便于安装,并大大降低了成本。
优选地,上述导电层为涂覆在该内管外的导电漆。可将涂有导电漆部分的内管通过引线连接法兰或其他部件进行接地。导电漆的设置相对于上一实施方式的金属筒的设计,进一步节省了材料,降低了成本,且降低了绝缘套管结构的复杂程度,同时具有上述金属筒的全部功能。
优选地,上述绝缘管内设置有内衬层。该内衬层能有效防止设备中的油对绝缘管的腐蚀,也避免腐蚀的溶解物对油产生污染。
优选地,上述绝缘管外涂覆绝缘漆。该绝缘漆能避免绝缘管外表面与设备中的油接触,以致造成腐蚀,也避免腐蚀的溶解物对油造成污染。
针对现有技术的不足,本发明的目的之二是提供一种绝缘套管,该绝缘套管解决了互感器管的连接问题和材料成本问题。
为实现上述发明目的,本发明所采用的技术手段如下:一种绝缘套管,包括绝缘子,该绝缘子包括中间的伞裙部和设置在该伞裙部下端的下法兰;头部,包括连接在该绝缘子的上端的油枕和连接在该油枕上的接线端子;绝缘管,连接在该下法兰上;该绝缘管为本发明上述任意一种绝缘管。
本发明的绝缘套管,通过上述互感器管分为内管和内管外的导电层,内管不需要有导电性能,因此内管的材质可以和下端的油浸管的材质相同或相近。内管材质选择的自由性可以使内管和油浸管的连接不存在困难。相对于现有技术中铝合金材质的互感器管与油浸管连接,因为油浸管不可能为铝合金材质,因此相互连接和密封都比较困难,而本案的内管的设计完美的解决了这一连接和密封的问题。另外由于导电层负责互感器管的导电效果,内管材质的自由性使得内管可以成本选择远远低于铝合金材质的材料,大量降低了互感器管的材料成本。
附图说明
图1是本发明实施例一绝缘套管1000的半剖视示意图;
图2是本发明实施例一的带下法兰114的绝缘管100的半剖视图;
图3是本发明实施例二的带下法兰214的绝缘管200的半剖视图;
图4是本发明实施例三的带有部分绝缘子的绝缘管300的半剖视图。
其中,
1000——绝缘套管;
1001——导电体;
1002——电容芯子;
100、200、300——绝缘管;
101、201、301——互感器管;
102、202、302——油浸管;
103、203、303——内管;
104、304——金属筒;204——导电漆;
105、205、305——下端子;
106、206——均压球;
107——连接部;207——引线;
110、310——绝缘子;
111、311——内芯筒;
112、312——伞裙部;
113——上法兰;
114、214、314——下法兰;
120——头部;
121——油枕;
122——接线端子。
具体实施方式
根据要求,这里将披露本发明的具体实施方式。然而,应当理解的是,这里所披露的实施方式仅仅是本发明的典型例子而已,其可体现为各种形式。因此,这里披露的具体细节不被认为是限制性的,而仅仅是作为权利要求的基础以及作为用于教导本领域技术人员以实际中任何恰当的方式不同地应用本发明的代表性的基础,包括采用这里所披露的各种特征并结合这里可能没有明确披露的特征。
实施例一:
如图1、图2所示,本实施例的绝缘套管1000,包括绝缘子110,连 接在绝缘子上端的头部120,以及连接在绝缘子110下端的绝缘管100。
绝缘子110包括内芯筒111、包覆在内芯筒111外的伞裙部112,以及连接在伞裙部112上端的上法兰113和下端的下法兰114。内芯筒111为玻璃钢材质的空心管,可以通过玻璃纤维浸渍环氧树脂进行缠绕,进而固化成型。此外本领域技术人员还可以根据实际情况,通过模压或其他工艺,用其他纤维,如芳纶纤维,搭配树脂制造内芯筒111。伞裙部112为硅橡胶通过真空注射一体成型。上法兰113和下法兰114为金属法兰,本实施例中的上法兰113和下法兰114为铝合金材质,此外还可以为铁等其他金属材质。本实施例的绝缘子110为复合绝缘子,本领域技术人员可以根据实际需求等情况选用瓷绝缘子或其他类型的绝缘子。
头部120包括连接在上法兰113上的油枕121,以及连接在油枕121上的接线端子122。绝缘套管1000中的油的油位到达油枕121的位置,通过油枕121可监测油位。接线端子122用于将设备中引线引出,进而连接到其他外部设备上。本实施例的接线端子122为铜材质。
绝缘管100包括上部的互感器管101和下部的油浸管102。互感器管101包括内管103和内管103外的金属筒104。油浸管102下端连接有下端子105,下端子105外套设有均压球106。内管103和油浸管102为玻璃钢材质一体成型。本实施例中的内管103和油浸管102为玻璃纤维浸渍环氧树脂缠绕成型。除此之外,内管103和油浸管102还可以通过模铸成型等其他适合的成型方式。本实施例中的导电层位金属筒104,金属筒104为铝合金材质,在实际应用中,也可根据实际情况选用其他的金属材质。金属筒104的厚度为2mm。本实施例中,下端子105为铝合金材质,均压球106为铝合金材质,均压球106通过内部的螺栓固定在下端子105上。金属筒104上端设置有连接部107,连接部107的形状与下法兰114下端的形状相配合,连接部107的末端紧贴下法兰114的表面,并通过螺钉将金属筒104固定在下法兰114上,连接部107与下法兰114电性连接,进而通过下法兰114使金属筒104接地。内管103上端通过胶装的方式连接在下法兰114上。下端子105通过胶装的方式连接在油浸管102的下端。
绝缘套管1000还包括导电体1001和电容芯子1002。导电体1001为柱形的导体,一般为铝合金材质,也可以为铜等其他金属。导电体1001 可以为实心的柱体,也可以为空心的管。导电体1001的上端连接接线端子122,下端连接下端子105。在导电体1001外侧,内芯筒111和绝缘管100内还设置有层状的电容芯子1002。电容芯子1002最外侧的一层引出的引线接地设置。此外,在绝缘套管1000中间的空腔内充有所应用的设备中的油(未图示)。油的油位到达油枕121内,电容芯子1002和导电体1001均浸在油中。本实施例的绝缘套管1000可用作变压器或电抗器的出线套管。
在绝缘管100内还设置有内衬(未图示),该内衬为聚酯内衬,用于防止油对玻璃钢材质的内管103和油浸管102造成腐蚀,也同时避免油被玻璃钢溶解的产物造成污染。在油浸管102外还涂有绝缘漆(未图示),该绝缘漆为环氧漆或聚氨酯,同样能避免油对玻璃钢材质的油浸管102造成腐蚀,也防止油被玻璃钢溶解的产物造成污染。
本实施例的绝缘套管1000,通过将互感器管101分为内侧的内管103和在内管103外的金属筒104,内管103的材质可选择,使内管103可以很方便的与油浸管102进行连接,并且能达到很好的密封效果。导电层,也就是本实施例的金属筒104的只需有导电屏蔽效果即可,因此厚度可以很薄,相对于现有技术金属筒的厚度与油浸管的厚度相同的情况,本实施例大大节省了金属筒104部分的材料,降低了材料成本。
进一步的本实施例将内管103用和油浸管102相同的材质,且内管103和油浸管102一体成型,使互感器管101和油浸管102不存在连接的问题,也不需要对两者的连接处进行密封处理;并且可仅用2mm的金属筒104作为互感器管101的导电部分,相对于现有技术中需要铝合金筒的厚度和油浸管的厚度相同,本实施例节省了互感器管101的材料成本。金属筒104通过下法兰114接地设置,使金属筒104保持零电位,从而有效屏蔽了金属筒104内的局部放电或带电粒子对金属筒104外的互感器线圈造成干扰。综上,本实施例的绝缘套管1000解决了现有技术中互感器管连接和密封困难且浪费材料的问题。
实施例二:
如图3所示,本实施例的绝缘管200包括上部的互感器管201和下部的油浸管202。互感器管201包括内管203和内管203外的导电漆204。油 浸管202的下端连接有下端子205,下端子205外套设有均压球206。
内管203和油浸管202为玻璃钢材质,本实施例中的内管203和油浸管202为玻璃纤维浸渍环氧树脂缠绕成型。除此之外,内管203和油浸管202还可以通过模铸成型等其他适合的成型方式。内管203上端通过胶装的方式连接在下法兰214上,下端通过胶装的方式与油浸管202相连接。油浸管202的下端通过胶装的方式与下端子205连接。
本实施例的导电层为导电漆204,导电漆204通过在内管203外喷铜形成,除此之外导电漆还可以通过在内管外镀铝、镀锡、镀银等其他方式形成。在内管203的上部设置引线207连通内管203表面的导电漆204和下法兰214,进而通过下法兰214接地。
本实施例的绝缘管200具有本发明实施例一的绝缘管100的所有优点,且相对于实施例一的绝缘管100,本实施例的内管203和油浸管202并非一体成型,而是将二者分开制作再通过胶装连接,虽然这样增加了一个连接面需要密封,密封性能相对不如本发明实施例一的绝缘管100,但是本实施例分段制作内管203和油浸管202,特别是通过湿法缠绕的方式进行制造时,降低了制造难度;且分段设计的内管203和油浸管202也方便设置在绝缘套管2000内的电容芯子和导电体等部件的安装。此外,本实施例的内管203外的导电层是导电漆204,相对于本发明实施例一的金属筒104,导电漆204实现了金属筒104所具有的功能,同时进一步节省了材料,降低了材料成本。
实施例三:
如图4所示,本实施例的绝缘管300包括上部的互感器管301和下部的油浸管302。互感器管301包括内管303和内管303外的金属筒304。油浸管302的下端连接有下端子305。本实施例的绝缘管300应用于低电压等级的设备,因此在下端子305外可以不设置均压球。
绝缘管300上端设置有绝缘子310,绝缘子310包括内芯筒311、包覆在内芯筒311外的伞裙部312和连接在伞裙部312下端的下法兰314。
内芯筒311、内管303和油浸管302均为玻璃纤维湿法缠绕成型,且三者一体成型。下法兰314套设在该一体成型的玻璃纤维管上,并固定在内芯筒311和内管303之间。
除以上描述外,本实施例的绝缘管300与本发明实施例一的绝缘管100结构基本相同。
本实施例的绝缘管300由于内芯筒311、内管303和油浸管302一体成型,无需后续在安装的时候再次进行连接,且无需设置密封结构,由于三者一体成型,完全避免了出现密封不良的问题,且提高了绝缘套管的整体性,避免了构件之间的安装处受到外部力量产生损害。除此之外,本发明的绝缘管300具有本发明实施例一绝缘管100的全部优点。另外,由于本实施例的绝缘管300下端未设置均压球,因此本实施例的绝缘管300应用于低电压等级的设备的出线套管。本实施例的绝缘管300同样适用于高电压等级的设备。
本发明实施例中,油枕和上法兰分体设置,值得说明的是,油枕和上法兰还可以为一体,伞裙部上端直接连接油枕。
本发明的实施例虽然只描述了复合绝缘子的情况,但值得说明的是,本领域技术人员根据本发明实施例的描述,自然能够想到本发明的绝缘子还可以是瓷绝缘子或其他材质绝缘子。
本发明的技术内容及技术特点已揭示如上,然而可以理解,在本发明的创作思想下,本领域的技术人员可以对上述结构和材料作各种变化和改进,包括这里单独披露或要求保护的技术特征的组合,明显地包括这些特征的其它组合。这些变形和/或组合均落入本发明所涉及的技术领域内,并落入本发明权利要求的保护范围。

Claims (10)

  1. 一种绝缘管,用于绝缘套管,所述绝缘套管包括:
    绝缘子,所述绝缘子包括中间的伞裙部和设置在所述伞裙部下端的下法兰;
    头部,包括连接在所述绝缘子的上端的油枕和连接在所述油枕上的接线端子;
    所述绝缘管,连接在所述下法兰上,所述绝缘管包括上部的互感器管和下部的油浸管;
    其特征在于:所述互感器管包括内管和设置在所述内管外的导电层,所述导电层接地设置。
  2. 如权利要求1所述的绝缘管,其特征在于:所述内管与所述油浸管一体成型。
  3. 如权利要求1所述的绝缘管,其特征在于:所述内管和所述油浸管为纤维缠绕成型。
  4. 如权利要求3所述的绝缘管,其特征在于:所述绝缘子还包括支撑所述伞裙部的内芯筒,所述内芯筒为纤维缠绕成型,所述内芯筒与所述内管一体成型。
  5. 如权利要求1所述的绝缘管,其特征在于:所述导电层通过所述下法兰接地设置。
  6. 如权利要求1所述的绝缘管,其特征在于:所述导电层为金属筒。
  7. 如权利要求1所述的绝缘管,其特征在于:所述导电层为涂覆在所述内管外的导电漆。
  8. 如权利要求1所述的绝缘管,其特征在于:所述绝缘管内设置有内衬层。
  9. 如权利要求1所述的绝缘管,其特征在于:所述绝缘管外涂覆绝缘漆。
  10. 一种绝缘套管,包括:
    绝缘子,所述绝缘子包括中间的伞裙部和设置在所述伞裙部下端的下法 兰;
    头部,包括连接在所述绝缘子的上端的油枕和连接在所述油枕上的接线端子;
    绝缘管,连接在所述下法兰上;
    其特征在于:所述绝缘管为权利要求1-9任意一项所述的绝缘管。
PCT/CN2016/094406 2015-08-11 2016-08-10 绝缘管及带有这种绝缘管的绝缘套管 WO2017025036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/751,390 US10468162B2 (en) 2015-08-11 2016-08-10 Insulation pipe and insulation sleeve with such insulation pipe
EP16834660.9A EP3336860A4 (en) 2015-08-11 2016-08-10 INSULATION TUBE AND INSULATION SLEEVE WITH SUCH A TUBE OF INSULATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510489210.6A CN105139978A (zh) 2015-08-11 2015-08-11 绝缘管及带有这种绝缘管的绝缘套管
CN201510489210.6 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017025036A1 true WO2017025036A1 (zh) 2017-02-16

Family

ID=54725292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094406 WO2017025036A1 (zh) 2015-08-11 2016-08-10 绝缘管及带有这种绝缘管的绝缘套管

Country Status (4)

Country Link
US (1) US10468162B2 (zh)
EP (1) EP3336860A4 (zh)
CN (1) CN105139978A (zh)
WO (1) WO2017025036A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139979A (zh) * 2015-08-11 2015-12-09 江苏神马电力股份有限公司 绝缘套管及绝缘管
CN105139978A (zh) 2015-08-11 2015-12-09 江苏神马电力股份有限公司 绝缘管及带有这种绝缘管的绝缘套管
DE102018201224A1 (de) * 2018-01-26 2019-08-01 Siemens Aktiengesellschaft Steckbare Hochspannungsdurchführung und elektrisches Gerät mit der steckbaren Hochspannungsdurchführung
CN208570227U (zh) * 2018-06-20 2019-03-01 江苏神马电力股份有限公司 一种法兰和绝缘子及绝缘支柱
CN108630361A (zh) * 2018-08-02 2018-10-09 江苏神马电力股份有限公司 一种绝缘套管
CN109253919A (zh) * 2018-12-03 2019-01-22 醴陵华鑫电瓷科技股份有限公司 一种长寿命高可靠性复合材料绝缘子结构及其试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123132A (zh) * 2006-08-11 2008-02-13 南通市神马电力科技有限公司 1100kv组合电器用空心复合绝缘子及其制造方法
JP2011083133A (ja) * 2009-10-08 2011-04-21 Viscas Corp 電力ケーブル終端接続部
CN103456473A (zh) * 2013-09-11 2013-12-18 江苏智达高压电气有限公司 一种整体式油浸纸高压套管
CN105139978A (zh) * 2015-08-11 2015-12-09 江苏神马电力股份有限公司 绝缘管及带有这种绝缘管的绝缘套管
CN205211506U (zh) * 2015-08-11 2016-05-04 江苏神马电力股份有限公司 绝缘管及带有这种绝缘管的绝缘套管

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB253189A (en) * 1925-03-10 1926-06-10 Reyrolle A & Co Ltd Improvements in or relating to insulating bushings for electrical apparatus
GB778560A (en) * 1955-04-18 1957-07-10 Gen Electric Improvements in high voltage electrical insulating bushing assemblies
US3883680A (en) * 1974-01-18 1975-05-13 Gen Electric High voltage electrical bushing incorporating a central conductor expandable expansion chamber
US4609775A (en) * 1982-06-14 1986-09-02 Interpace Corporation Bushing including an expansion compensation seal
CN2243114Y (zh) * 1996-01-12 1996-12-18 东北电力试验研究院 高电压复合绝缘管
US6340497B2 (en) * 1997-07-02 2002-01-22 The Regents Of The University Of California Method for improving performance of highly stressed electrical insulating structures
SE526713C2 (sv) * 2003-07-11 2005-10-25 Abb Research Ltd Genomföring samt förfarande för tillverkning av genomföringen
EP2039496A1 (en) * 2007-09-20 2009-03-25 ABB Research Ltd. A method of producing a rubber product
EP2053616A1 (en) * 2007-10-26 2009-04-29 ABB Research Ltd. High-voltage outdoor bushing
CN201689761U (zh) * 2010-05-17 2010-12-29 江苏思源赫兹互感器有限公司 电容式变压器套管
CN102568696B (zh) * 2012-02-22 2013-05-08 中国科学院电工研究所 一种超导电力装置用高电压绝缘电流引线
DE102012204052B4 (de) * 2012-03-15 2022-12-29 Siemens Energy Global GmbH & Co. KG Hochspannungsdurchführung mit leitenden Einlagen für Gleichspannung und Verfahren zu ihrer Herstellung
CN203415386U (zh) * 2013-09-09 2014-01-29 江苏智达高压电气有限公司 一种防进水防爆炸油纸电容式变压器套管
CN203941765U (zh) * 2014-07-10 2014-11-12 南京智达电气有限公司 一种电容式干式套管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123132A (zh) * 2006-08-11 2008-02-13 南通市神马电力科技有限公司 1100kv组合电器用空心复合绝缘子及其制造方法
JP2011083133A (ja) * 2009-10-08 2011-04-21 Viscas Corp 電力ケーブル終端接続部
CN103456473A (zh) * 2013-09-11 2013-12-18 江苏智达高压电气有限公司 一种整体式油浸纸高压套管
CN105139978A (zh) * 2015-08-11 2015-12-09 江苏神马电力股份有限公司 绝缘管及带有这种绝缘管的绝缘套管
CN205211506U (zh) * 2015-08-11 2016-05-04 江苏神马电力股份有限公司 绝缘管及带有这种绝缘管的绝缘套管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336860A4 *

Also Published As

Publication number Publication date
US10468162B2 (en) 2019-11-05
US20180301251A1 (en) 2018-10-18
EP3336860A4 (en) 2019-03-20
EP3336860A1 (en) 2018-06-20
CN105139978A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017025036A1 (zh) 绝缘管及带有这种绝缘管的绝缘套管
WO2017025037A1 (zh) 绝缘套管及绝缘管
CN205211506U (zh) 绝缘管及带有这种绝缘管的绝缘套管
US6677528B2 (en) Cable terminal
CN204011021U (zh) 环氧浇注式电压互感器
CN2591820Y (zh) 干式高压套管
CN107165466A (zh) 复合横担及输电杆
US3513253A (en) Cast condenser bushing having tubular metal coated mesh plates
CN207017750U (zh) 复合横担及输电杆
WO2020024819A1 (zh) 一种绝缘套管
CN105427969A (zh) 真空胶浸纤维空心注膏支柱绝缘子
CN112002504A (zh) 一种环氧树脂浸渍玻璃纤维直流套管研制方法
CN201549287U (zh) 一种三十五千伏级纯瓷套管
CN205565613U (zh) 环氧树脂干式穿墙套管
CN205211505U (zh) 绝缘套管及绝缘管
JP4637085B2 (ja) 気中終端接続部用套管ユニット
CN204760063U (zh) 环氧树脂干式套管
CA3134996A1 (en) Cable fitting
CN208954721U (zh) 一种便于固定的电阻器
CN215342160U (zh) 一种电力系统用新型干式套管
CN204516506U (zh) 液浸电力设备引出线用固体绝缘端子
CN205016344U (zh) 油浸式电力设备绝缘接线板
WO2019105126A1 (zh) 复合绝缘子及其制造方法、复合套管
CN201112040Y (zh) 隔爆型变压器套管
CN208570226U (zh) 一种绝缘套管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016834660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15751390

Country of ref document: US