WO2017024853A1 - 一种基于频率在线自定义的多频电力线载波通信网络 - Google Patents

一种基于频率在线自定义的多频电力线载波通信网络 Download PDF

Info

Publication number
WO2017024853A1
WO2017024853A1 PCT/CN2016/083081 CN2016083081W WO2017024853A1 WO 2017024853 A1 WO2017024853 A1 WO 2017024853A1 CN 2016083081 W CN2016083081 W CN 2016083081W WO 2017024853 A1 WO2017024853 A1 WO 2017024853A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
node
communication network
power line
line carrier
Prior art date
Application number
PCT/CN2016/083081
Other languages
English (en)
French (fr)
Inventor
安春燕
李建岐
刘伟麟
高鸿坚
陆阳
赵勇
褚广斌
万凯
李超
Original Assignee
全球能源互联网研究院
国网河北省电力公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院, 国网河北省电力公司, 国家电网公司 filed Critical 全球能源互联网研究院
Publication of WO2017024853A1 publication Critical patent/WO2017024853A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to the field of communications, and more particularly to a multi-frequency power line carrier communication network based on frequency online customization.
  • the power line carrier communication network has the advantage of no wiring, which can greatly reduce the network preparation cost.
  • the power line carrier channel attenuation is affected by factors such as line length, network branch structure and impedance matching, and has the characteristics of large attenuation, large variation with local frequency, and frequency selective fading.
  • the noise experienced by the slave station in the power line carrier communication network is colored noise, including not only the noise generated by the home appliance connected to the power line, but also the noise that the space radio signal is loaded onto the power line, having a large noise, changing anytime and anywhere, and frequency.
  • selectivity In short, the power line carrier communication environment is harsh, resulting in poor reliability and limited network coverage of the PLC system.
  • Broadband PLC technology includes HomePlug 1.0, HomePlug AV, HomePlugAV2, etc., IEEE 1901, IEEE 1905, and ITU G.hn, etc. proposed by the HomePlug Alliance.
  • Broadband PLC is suitable for "last mile" broadband access or smart furniture network, pursuing high speed and reliable data transmission.
  • the broadband PLC MAC protocol has a limited transmission distance, and network expansion is difficult, and it cannot provide 100% coverage.
  • Narrowband PLCs include Meter&More, PRIME, G3, ITU G.hnem, IEEE 1901.2, and the like.
  • Meter&More has more than 40 million users, but it can only provide a few k, which is only used to support smart meter reading business.
  • the other narrowband PLC standards provide speeds of more than tens of k. They can be called narrowband high-speed PLC standards, and are mainly used to support smart meter reading, distributed control, energy management, grid monitoring, home automation control, and electric vehicles.
  • Another PLC technology is cross-band cognitive PLC technology, operating frequency range from 150kHz to 12MHz, speed from tens of k to 10Mbps, is a promising PLC technology to support smart distribution services.
  • the prior art has developed a new digital front-end technology that can flexibly change the center frequency and bandwidth of the physical layer, and plays an important role in countering the PLC channel that changes with time.
  • it is difficult for a single device to receive at two different frequencies. When it is applied to a PLC network, a corresponding mechanism is needed to ensure correct transmission and reception.
  • an online custom PLC network technology based on cross-band cognition is needed to extend the flexible digital front-end technology from point-to-point system to PLC network, to counter the time-dependent changes of PLC channel and improve the reliability of PLC network. Sex and stability.
  • the object of the present invention is to provide a multi-frequency power line carrier communication network based on frequency online customization, which counters the time-dependent changes of the PLC channel and improves the reliability and stability of the PLC network.
  • a multi-frequency power line carrier communication network based on frequency online customization, including one or more of a broadband node, a narrowband node, and a cross-band node; the network further includes One primary station and several secondary stations, the network communicating using the operating frequencies of one or more different nodes.
  • the node adopts a digital front-end technology, and the center frequency point can be adjusted, and the bandwidth configuration is implemented by adjusting the order of the filter.
  • the node selects a communication parameter according to the frequency cognition result, and the communication parameter includes an operating frequency, a transmission power, a transmission mode, and an access point, and implements online customization.
  • the uplink frequency and the downlink frequency between the two nodes may be different; when communicating by multiple hops, the frequencies of different hops may be different.
  • the slave station After the frequency cognition is completed, the slave station has only one upper frequency through which the primary station communicates directly or indirectly; the secondary station has one or more lower frequencies, and the other of the secondary stations Communication is performed by the slave station and the master station using a downlink frequency of some of the slave stations.
  • the node adjusts its working frequency to the upper frequency when it does not receive any message, and waits to receive data; when the node receives the data to be forwarded, it needs to forward according to the need
  • the destination address of the data selects the lower frequency, adjusts the working frequency to the lower frequency, forwards the data, and waits to receive the response data;
  • the node receives the response data within a predetermined time, then adjust the operating frequency to the upper frequency and forward the response data;
  • the operating frequency is adjusted to the upper frequency, and a negative acknowledgement message is sent;
  • the predetermined time is determined by the number of hops between the node and the destination node that needs to forward data and the bandwidth of each hop, and the value is greater than the sum of the transmission time of each hop and the processing time of each intermediate node.
  • the service of the power line carrier communication network is initiated by the primary station, and an end-to-end confirmation mechanism is adopted.
  • the network supports multi-frequency broadcasting; the multi-frequency broadcasting is hierarchical broadcasting, and each level of broadcasting is performed by using all frequency bands used by the network; when the node forwards a broadcast message, the broadcast data packet cannot be modified except for the broadcast level. Any data in .
  • the present invention provides the following technical effects with the following excellent effects.
  • the technical solution of the present invention simultaneously supports one or more of broadband, narrowband, and cross-band nodes.
  • the functions and prices of the three nodes are different, and can be deployed according to actual needs, and the network construction cost is reduced while meeting service requirements. ;
  • the technical solution of the present invention selects from across the frequency band by frequency cognition technology for the actual situation of different slave stations/links. Selecting different frequencies, expanding the available frequency range, increasing the probability that nodes can communicate, adapting to channel characteristics of power line carrier networks, and improving network coverage and reliability;
  • the technical solution of the present invention can select different working frequencies for uplink and downlink of two nodes, and adapt to channel conditions of power line carrier communication;
  • the technical solution of the invention realizes multi-frequency communication by using a single frequency device, and the cost is low;
  • the technical solution of the present invention supports multi-frequency multi-hop communication.
  • FIG. 1 is a structural diagram of a multi-frequency PLC network based on frequency online customization according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a working frequency of a multi-frequency PLC network based on frequency online customization according to an embodiment of the present invention
  • FIG. 3 is a flow chart of the operation of the slave station of the present invention.
  • FIG. 4 is a schematic diagram of a multi-frequency broadcast process according to an embodiment of the present invention.
  • nodes in the PLC network there are three types of nodes in the PLC network involved in the present invention: a broadband node, a narrowband node, and a cross-band node, and all three types of nodes support frequency cognition.
  • the physical layer digital front end of the three types of nodes can flexibly adjust the center frequency point and achieve flexible bandwidth configuration by adjusting the order of the filter.
  • the broadband node can arbitrarily switch the operating frequency in the high frequency range according to the frequency cognition result
  • the narrowband node can arbitrarily switch the working frequency in the low frequency range according to the frequency cognition result
  • the cross band node can be based on the frequency cognition result in the cross Switch the operating frequency arbitrarily within the frequency band.
  • Direct communication between broadband nodes and broadband nodes direct communication between narrowband nodes and narrowband nodes, direct communication between cross-band nodes and any node, and indirect communication between broadband nodes and narrowband nodes through cross-band nodes.
  • the network topology is a tree structure. Without loss of generality, the network is assumed to be a master-slave network, including a primary station and several slave stations.
  • the narrowband node operates in the low frequency range, ie the operating frequency is less than 500 kHz.
  • the broadband node operates in the high frequency range, ie the operating frequency is greater than 500 kHz.
  • the operating frequency range of the cross-band node includes low frequency, intermediate frequency, high frequency, for example, 150 kHz to 12 MHz.
  • the nodes in the PLC network of the present invention select the uplink and downlink working frequencies between the two nodes based on the specific condition of the link through frequency cognition technology. Specific frequency cognition algorithms are not within the scope of the present invention.
  • 2 is a frequency usage of the PLC network of the present invention.
  • the operating frequency of a node is uniquely represented by the center frequency and bandwidth.
  • the operating frequencies between different nodes may be different, and the uplink and downlink operating frequencies between the two nodes may also be different.
  • the difference between two frequencies means that the center frequencies of the two frequencies are different, the bandwidth is different, or the center frequency and bandwidth are different.
  • the present invention customizes power line carrier communication parameters based on frequency cognition results.
  • the parameters of the sense include the operating frequency, the transmission power, the transmission mode, and the transmission path.
  • the invention relates to a multi-frequency power line carrier communication network working process based on frequency online customization, which comprises the following four steps:
  • frequency cognition is performed.
  • the narrowband node only has the ability to operate in the low frequency range, so it can only perform frequency recognition in the low frequency range.
  • the broadband node only has the ability to work in the high frequency range, so it can only recognize the frequency in the high frequency range. It is known that cross-band nodes have the ability to operate in the low frequency, intermediate frequency, and high frequency ranges, and frequency perception can be performed across frequency bands. Specific frequency cognition algorithms are not within the scope of the present invention.
  • the node selects the best operating frequency based on the frequency cognition result.
  • the operating frequency between any two nodes is represented by (f 1 , f 2 ), and f 1 and f 2 may be the same or different.
  • the operating frequencies between different nodes may be the same or different. Specific frequency selection algorithms are not within the scope of the present invention.
  • the result of frequency selection is that each hop may use a different operating frequency when communicating between two nodes. Since the node is a single-frequency device, it must be ensured that the network can achieve multi-frequency communication through a single-frequency device. Without loss of generality, it is assumed that the PLC network service is initiated by the primary station and uses an end-to-end acknowledgment mechanism. Then, when the node does not receive any message, the node adjusts the working frequency to the upper frequency, and waits to receive the data from the primary station; when receiving the data to be forwarded, selects the lower frequency according to the destination address of the data to be forwarded, and the operating frequency is Adjust to the lower frequency, forward the data out, and wait to receive the response message.
  • the operating frequency is adjusted to the upper frequency, and the response message is forwarded; if the predetermined time is over but the response message is not received, the working frequency is adjusted to the upper frequency, and the negative acknowledgement is forwarded. Message.
  • the working flow chart of the slave node in the communication process is shown in Fig. 3.
  • the PLC network of the present invention supports multi-frequency broadcasting.
  • Multi-frequency broadcasting is hierarchical broadcasting, and each level of broadcasting is performed through all frequency bands used by the network, and nodes operating at any frequency can receive broadcast messages of the network.
  • the intermediate node cannot modify any data in the broadcast packet except for the broadcast level when forwarding the broadcast message.
  • the broadcast flow chart is shown in Figure 4.
  • the invention is based on the frequency online customization technology, and selects communication parameters for the node according to the actual channel condition of the network, and plays an important role in adapting to the PLC communication environment, improving the coverage of the PLC network, and solving the reliability and stability of the PLC network, and adapting to the PLC carrier network. Future direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明涉及一种基于频率在线自定义的多频电力线载波通信网络,包括宽带节点、窄带节点和跨频带节点中的一种或多种;所述节点采用灵活数字前端技术,通过频率认知实现频率在线自定义,构成多频通信网络;所述多频通信网络使用多个不同的工作频率进行通信,端到端的两个所述节点间不同跳使用的频率可能不相同,同一链路上下行频率可能不相同;所述多频通信网络支持宽带节点和窄带节点间的通信。本申请的技术方案将灵活数字前端技术从点到点系统中扩展到电力线载波通信网络中,对抗电力线载波信道的因时因地变化,提高电力线载波通信网络的可靠性和稳定性。

Description

一种基于频率在线自定义的多频电力线载波通信网络 技术领域:
本发明涉及通信领域,更具体涉及一种基于频率在线自定义的多频电力线载波通信网络。
背景技术:
电力线载波通信网络具有无需布线的优点,可大大减少网络筹建费用。然而,电力线载波信道衰减受线路长度、网络分支结构及阻抗匹配等因素的影响,具有衰减大,随地变化大、及频率选择性衰落等特点。此外,电力线载波通信网络中从站经历的噪声是有色噪声,不仅包括连接到电力线上家用电器产生的噪声,还包括空间无线电信号加载到电力线上的噪声,具有噪声大、随时随地变化、及频率选择性等特点。总之,电力线载波通信环境恶劣,造成了PLC系统可靠性稳定性差、网络覆盖范围有限。
传统的PLC技术分为窄带PLC技术和宽带PLC技术。宽带PLC技术有HomePlug联盟提出的HomePlug 1.0、HomePlug AV、HomePlugAV2等,IEEE 1901、IEEE 1905,以及ITU G.hn等。宽带PLC适用于“最后一公里”宽带接入或智能家具网络,追求高速可靠的数据传输。然而,宽带PLC MAC协议传输距离有限,网络扩张比较困难,不能够提供100%的覆盖。窄带PLC包括Meter&More、PRIME、G3、ITU G.hnem、IEEE 1901.2、等。其中Meter&More的用户数目已超过4000万,但其能够提供的速率只有几k,只用来支持智能抄表业务。其余几种窄带PLC标准提供几十k以上的速率,可以称为窄带高速PLC标准,主要用来支持智能抄表、分布式控制、能源管理、电网监测、家庭自动化控制以及电动汽车等业务。另一种PLC技术为跨频带认知PLC技术,工作频率范围从150kHz到12MHz,速率从几十k到10Mbps,是支撑智能配用电业务的一种具有前景的PLC技术。
此外,现有技术已研发了一种新型数字前端技术,可灵活改变物理层中心频点和带宽,对于对抗因时因地变化的PLC信道具有重要的作用。但是单一设备难以实现在两个不同频率的接收,当将其应用于PLC网络中时,还需要相应的机制来保证正确的收发。
因此,需要一种基于跨频带认知的在线自定义PLC网络技术,将灵活数字前端技术从点到点系统中扩展到PLC网络中,对抗PLC信道的因时因地变化,提高PLC网络的可靠性和稳定性。
发明内容:
本发明的目的是提供一种基于频率在线自定义的多频电力线载波通信网络,对抗PLC信道的因时因地变化,提高PLC网络的可靠性和稳定性。
为实现上述目的,本发明采用以下技术方案:一种基于频率在线自定义的多频电力线载波通信网络,包括宽带节点、窄带节点和跨频带节点中的一种或多种;所述网络还包括1个主站和若干个从站,所述网络使用一个或多个不同的节点的工作频率进行通信。
所述节点采用数字前端技术,可调整中心频点,且通过调整滤波器的阶数实现带宽配置。
所述节点根据频率认知结果选择通信参数,所述通信参数包括工作频率、发送功率、发送模式和接入点,实现在线自定义。
两所述节点间的上行频率和下行频率可不相同;经过多跳进行通信的,不同跳的频率可不相同。
在所述频率认知完成后,所述从站仅有一个对上频率,通过该频率直接或间接和主站进行通信;所述从站有一个或者多个对下频率,其它所述从站采用某个该所述从站的对下频率通过该所述从站和主站进行通信。
在所述频率认知完成后,所述节点在没有收到任何消息时将其所述工作频率调至对上频率,等待接收数据;当所述节点收到需转发的数据时,根据需转发数据的目的地址选择对下频率,将其所述工作频率调至所述对下频率,将数据转发出去,并等待接收响应数据;
若所述节点在预定时间内接收到响应数据,则将其所述工作频率调至所述对上频率,并转发所述响应数据;
若预定时间结束但所述节点没有收到响应数据,则将其所述工作频率调至所述对上频率,发送否定确认消息;
所述预定时间由所述节点到需转发数据的目的节点间的跳数和每一跳的带宽决定,其值大于每一跳的传输时间与各中间节点处理时间之和。
所述电力线载波通信网络的业务由主站发起,采用端到端确认机制。
所述网络支持多频广播;所述多频广播为分级广播,每一级广播通过所述网络使用的所有频段进行;所述节点在转发广播消息时除了广播级别外,不能够修改广播数据包中的任何数据。
和最接近的现有技术比,本发明提供技术方案具有以下优异效果
1、本发明技术方案同时支持宽带、窄带、跨频带节点中的一种或多种,三种节点功能、价格均不相同,可根据实际需求进行部署,在满足业务需求的同时降低建网成本;
2、本发明技术方案通过频率认知技术针对不同从站/链路的实际情况从跨频带范围内选 择不同的频率,扩大了可用频率范围,增加了节点可通信的概率,适应电力线载波网络信道特性,改善网络覆盖范围及可靠性;
3、本发明技术方案可为两节点上下行选择不同的工作频率,适应电力线载波通信的信道条件;
4、本发明技术方案利用单频设备实现多频通信,成本低;
5、本发明技术方案支持多频多跳通信。
附图说明
图1为本发明实施例基于频率在线自定义的多频PLC网络构成图;
图2为本发明实施例基于频率在线自定义的多频PLC网络工作频率示意图;
图3为本发明从站的工作流程图;
图4为本发明实施例多频广播流程示意图。
具体实施方式
下面结合实施例对发明作进一步的详细说明。
实施例1:
如附图1所示,本发明所涉及的PLC网络中存在三类节点:宽带节点、窄带节点、跨频带节点,且三类节点均支持频率认知。三类节点的物理层数字前端均可灵活地调整中心频点,且通过调整滤波器的阶数实现灵活的带宽配置。具体来说,宽带节点可根据频率认知结果在高频范围内任意切换工作频率,窄带节点可根据频率认知结果在低频范围内任意切换工作频率,跨频带节点可根据频率认知结果在跨频带范围内任意切换工作频率。宽带节点和宽带节点间可实现直接通信、窄带节点和窄带节点间可实现直接通信,跨频带节点和任一节点间可实现直接通信,宽带节点和窄带节点间可通过跨频带节点实现间接通信。所述网络拓扑结构为树形结构。不失一般性,假设网络为主从网络,包含一个主站和若干个从站。窄带节点工作在低频范围,即工作频率小于500kHz。宽带节点工作在高频范围,即工作频率大于500kHz。跨频带节点的工作频率范围包含低频、中频、高频,例如150kHz~12MHz。
本发明PLC网络中的节点通过频率认知技术基于链路的具体情况为两节点间选择上下行工作频率。具体的频率认知算法不属于本发明的范畴。附图2为本发明所述PLC网络的频率使用情况。节点的工作频率用中心频点和带宽唯一表示。不同节点间的工作频率可能不同,两个节点间的上下行工作频率也可能不同。两个频率不同是指两个频率的中心频点不同、带宽不同或者中心频点和带宽均不相同。
在进行频率认知之后,本发明基于频率认知结果在线自定义电力线载波通信参数,可定 义的参数包括工作频率、发送功率、发送模式、发送路径。
本发明涉及的一种基于频率在线自定义的多频电力线载波通信网络工作过程包含以下四个步骤:
首先进行频率认知。窄带节点仅具备工作在低频范围内的能力,故其只能在低频范围内进行频率认知,宽带节点仅具备工作在高频范围内的能力,故其只能在高频范围内进行频率认知,跨频带节点具备工作在低频、中频、高频范围内的能力,可在跨频带范围内进行频率认知。具体的频率认知算法不属于本发明的范畴。
其次,在进行频率认知之后,节点根据频率认知结果选择最佳的工作频率。任意两节点间的工作频率用(f1,f2)表示,f1和f2可能相同,也可能不同。不同节点间的工作频率可能相同,也可能不同。具体的频率选择算法不属于本发明的范畴。
再次,频率选择的结果是两个节点之间通信时每一跳可能使用不同工作频率。由于节点为单频设备,须保证网络可以通过单频设备实现多频通信。不失一般性,假设PLC网络业务是由主站发起的,且采用端到端确认机制。那么节点在没有收到任何消息时将工作频率调至对上频率,等待接收来自主站的数据;当收到需转发的数据时,根据需转发数据的目的地址选择对下频率,将工作频率调至该对下频率,将数据转发出去,并等待接收响应消息。若节点在预定时间内接收到响应消息,则将工作频率调至对上频率,转发该响应消息;若预定时间结束但没有收到响应消息,则将工作频率调至对上频率,转发否定确认消息。通信过程中从站节点的工作流程图如附图3所示。
最后,本发明所述的PLC网络支持多频广播。多频广播为分级广播,每一级广播通过网络使用的所有频段进行,工作在任一频率的节点均能够接收到网络的广播消息。中间节点在转发广播消息时除了广播级别外,不能够修改广播数据包中的任何数据。广播流程图如附图4所示。
本发明基于频率在线自定义技术,根据网络实际信道条件为节点选择通信参数,对于适应PLC通信环境,改善PLC网络覆盖范围、解决PLC网络的可靠性和稳定性具有重要的作用,适应PLC载波网络未来发展方向。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员尽管参照上述实施例应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (8)

  1. 一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:包括宽带节点、窄带节点和跨频带节点中的一种或多种;所述网络还包括1个主站和若干个从站,所述网络使用一个或多个不同的工作频率进行通信。
  2. 如权利要求1所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:所述节点采用数字前端技术,可调整中心频点,且通过调整滤波器的阶数实现带宽配置。
  3. 如权利要求1或2所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:所述节点根据频率认知结果选择通信参数;所述通信参数包括工作频率、发送功率、发送模式和接入点,实现在线自定义。
  4. 如权利要求3所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:两所述节点间的上行频率和下行频率可不相同;经过多跳进行通信的,不同跳的频率可不相同。
  5. 如权利要求3所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:在所述频率认知完成后,所述从站仅有一个对上频率,通过该对上频率直接或间接和主站进行通信;所述从站有一个或者多个对下频率,其它所述从站采用某个所述从站的对下频率通过所述从站和主站进行通信。
  6. 如权利要求5所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:在所述频率认知完成后,所述节点在没有收到任何消息时将其所述工作频率调至对上频率,等待接收数据;当所述节点收到需转发的数据时,根据需转发数据的目的地址选择对下频率,将其所述工作频率调至所述对下频率,将数据转发出去,并等待接收响应数据;
    若所述节点在预定时间内接收到响应数据,则将其所述工作频率调至所述对上频率,并转发所述响应数据;
    若预定时间结束但所述节点没有收到响应数据,则将其所述工作频率调至所述对上频率,发送否定确认消息;
    所述预定时间由所述节点到需转发数据的目的节点间的跳数和每一跳的带宽决定,其值大于每一跳的传输时间与各中间节点处理时间之和。
  7. 如权利要求1所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在于:所述电力线载波通信网络的业务由主站发起,采用端到端确认机制。
  8. 如权利要求1所述的一种基于频率在线自定义的多频电力线载波通信网络,其特征在 于:所述网络支持多频广播;所述多频广播为分级广播,每一级广播通过所述网络使用的所有频段进行;所述节点在转发广播消息时除了广播级别外,不能够修改广播数据包中的任何数据。
PCT/CN2016/083081 2015-08-07 2016-05-24 一种基于频率在线自定义的多频电力线载波通信网络 WO2017024853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510484650.2A CN106452504B (zh) 2015-08-07 2015-08-07 一种基于频率在线自定义的多频电力线载波通信网络
CN201510484650.2 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017024853A1 true WO2017024853A1 (zh) 2017-02-16

Family

ID=57982959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083081 WO2017024853A1 (zh) 2015-08-07 2016-05-24 一种基于频率在线自定义的多频电力线载波通信网络

Country Status (2)

Country Link
CN (1) CN106452504B (zh)
WO (1) WO2017024853A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529688A (zh) * 2017-04-10 2018-01-02 华北电力大学(保定) 基于信道输入电抗的中压配网电力线载波通信频点优选方法
CN113992243A (zh) * 2021-10-29 2022-01-28 航天中电(重庆)微电子有限公司 基于hplc的表箱终端和户表跨网络通信方法
WO2022262492A1 (zh) * 2021-06-16 2022-12-22 荣耀终端有限公司 数据下载方法、装置和终端设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756245B (zh) * 2017-11-08 2020-07-28 杭州海兴电力科技股份有限公司 基于电力线载波的多频点跳频通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202640A1 (en) * 2006-06-05 2006-09-14 Alexandrov Felix I Arrangement and method for providing power line communication from an AC power source to a circuit for powering a load, and electronic ballasts therefor
US20110243157A1 (en) * 2008-12-09 2011-10-06 Hirokazu Oishi Communication system and method, and communication apparatus
CN103457636A (zh) * 2013-08-09 2013-12-18 国家电网公司 基于频率认知技术的跨频带电力线载波通信方法及系统
CN103607222A (zh) * 2013-11-27 2014-02-26 国家电网公司 一种跨频带电力线通信频率的自学习方法
CN104144002A (zh) * 2014-08-18 2014-11-12 国家电网公司 一种多频洪泛电力线载波通信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259754B (zh) * 2013-03-21 2017-06-23 国家电网公司 一种用于电力线载波通信的数字前端系统及其实现方法
CN103607218B (zh) * 2013-10-28 2016-04-20 国家电网公司 一种跨频带电力线载波通信系统及其通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202640A1 (en) * 2006-06-05 2006-09-14 Alexandrov Felix I Arrangement and method for providing power line communication from an AC power source to a circuit for powering a load, and electronic ballasts therefor
US20110243157A1 (en) * 2008-12-09 2011-10-06 Hirokazu Oishi Communication system and method, and communication apparatus
CN103457636A (zh) * 2013-08-09 2013-12-18 国家电网公司 基于频率认知技术的跨频带电力线载波通信方法及系统
CN103607222A (zh) * 2013-11-27 2014-02-26 国家电网公司 一种跨频带电力线通信频率的自学习方法
CN104144002A (zh) * 2014-08-18 2014-11-12 国家电网公司 一种多频洪泛电力线载波通信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529688A (zh) * 2017-04-10 2018-01-02 华北电力大学(保定) 基于信道输入电抗的中压配网电力线载波通信频点优选方法
WO2022262492A1 (zh) * 2021-06-16 2022-12-22 荣耀终端有限公司 数据下载方法、装置和终端设备
CN113992243A (zh) * 2021-10-29 2022-01-28 航天中电(重庆)微电子有限公司 基于hplc的表箱终端和户表跨网络通信方法
CN113992243B (zh) * 2021-10-29 2023-11-03 航天中电(重庆)微电子有限公司 基于hplc的表箱终端和户表跨网络通信方法

Also Published As

Publication number Publication date
CN106452504B (zh) 2019-08-06
CN106452504A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US9240913B2 (en) Full-duplex capacity allocation for OFDM-based communication
US11432368B2 (en) Network access method for hybrid networking, proxy coordination device, and station device
US8958356B2 (en) Routing protocols for power line communications (PLC)
US9288066B2 (en) Dynamic multicast mode selection in a communication network
US9602394B2 (en) Routing frame propagation in power line networks
WO2017024853A1 (zh) 一种基于频率在线自定义的多频电力线载波通信网络
WO2016026215A1 (zh) 一种多频洪泛电力线载波通信方法
CN113452587B (zh) 用于跳频系统的宽带信标信道
US20140092752A1 (en) Density-based power outage notification transmission scheduling in frequency-hopping networks
JPWO2009130905A1 (ja) 通信端末装置及び通信方法
CN105873169A (zh) 一种无线自组网通信方法
CN105099902A (zh) 一种用于量子Mesh网络的路由方法
CN106255169B (zh) 节点设备、数据包转发方法及应用其的网格网络系统
WO2015078035A1 (zh) 一种跨频带电力线通信频率的自学习方法
CN105591678B (zh) 一种基于系统频谱效率的多用户多中继选择方法
CN110351671A (zh) 一种双频切换式自组网通信方法
CN107181614B (zh) 一种wifi网络及其组网方法和数据传输方法
EP3310067B1 (en) Data path management system, controller unit and switch unit
US11641287B1 (en) Local communications network
Zhang et al. Multi-frequency PLC Networking Technology Based on Preamble Sequence
JP2005277633A (ja) 媒体アクセス制御方法及び電力線通信方法
EP4366271A1 (en) Address generation system for a wireless communication network
CN107274654A (zh) 一种电力载波网络的路由协议
EP2367295A1 (en) Multi-hop communication method for OFDMA/TDD system and transmission method of terminal
El‐Awamry Lightweight routing protocol for low‐tension narrowband powerline systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834478

Country of ref document: EP

Kind code of ref document: A1