WO2017024552A1 - 利用红土镍矿制备羰基镍粉的方法和系统 - Google Patents

利用红土镍矿制备羰基镍粉的方法和系统 Download PDF

Info

Publication number
WO2017024552A1
WO2017024552A1 PCT/CN2015/086747 CN2015086747W WO2017024552A1 WO 2017024552 A1 WO2017024552 A1 WO 2017024552A1 CN 2015086747 W CN2015086747 W CN 2015086747W WO 2017024552 A1 WO2017024552 A1 WO 2017024552A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
carbonyl
carbon monoxide
iron
outlet
Prior art date
Application number
PCT/CN2015/086747
Other languages
English (en)
French (fr)
Inventor
吴道洪
宋文臣
王静静
李红科
曹志成
薛逊
Original Assignee
北京神雾环境能源科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京神雾环境能源科技集团股份有限公司 filed Critical 北京神雾环境能源科技集团股份有限公司
Priority to PCT/CN2015/086747 priority Critical patent/WO2017024552A1/zh
Publication of WO2017024552A1 publication Critical patent/WO2017024552A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/02Carbonyls
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals

Definitions

  • the invention belongs to the technical field of metallurgy, in particular, the invention relates to a method and a system for preparing nickel carbonyl powder by using laterite nickel ore.
  • Nickel carbonyl was discovered by Mond and Rankine in 1889. They found that four molecules of CO react with one molecule of active nickel at atmospheric pressure and 40 to 100 ° C to form a colorless gas, nickel carbonyl, and they further prove This reaction is reversible, and the nickel carbonyl is decomposed into nickel and CO by heating the nickel carbonyl to 150 to 300 °C.
  • the carbonyl process produces pure metals that not only selectively form carbonyl products, but also readily separate and decompose into high purity metals under appropriate conditions. For example, nickel and iron carbonyl compounds can be separated by simple methods because of their large difference in boiling points, 43 ° C and 103 ° C, respectively.
  • Canadian International Nickel Company reported that copper-nickel alloy with a certain sulfur content can obtain high-activity oxo synthesis raw materials after atomization and granulation. The raw material composition is 65-70% Ni, Cu 15%, Fe 1%, S 4 ⁇ 5%.
  • Chinese patent CN 1603240A discloses a method for synthesizing nickel carbonyl.
  • the method comprises placing a nickel-copper alloy or a nickel-copper primary alloy in a fixed-bed reactor, introducing carbon monoxide to carry out a carbonylation reaction, and the pressure of the carbonylation reaction is 5-15 MPa.
  • the nickel carbonyl product is obtained at a temperature of 150 to 250 °C.
  • the disadvantage of this method is that nickel in the nickel-copper alloy is not activated, nickel has low reactivity, and the alloy is not granulated, and the contact area with CO is limited, which will seriously affect the synthesis of nickel carbonyl.
  • Cida 1775695A discloses a method for synthesizing nickel carbonyl by atomizing a nickel-copper alloy in a molten state, and performing a carbonylation reaction in a 10-liter autoclave.
  • the carbonylation conditions CO content ⁇ 92 %; CO gas in the oxo synthesis system circulation speed 8 ⁇ 12 times / hour, pressure: 5 ⁇ 12Mpa; temperature: 100 ⁇ 150 ° C; synthesis time: 24 ⁇ 32 hours.
  • the disadvantage of this method is that the nickel in the nickel-copper alloy is not subjected to activation treatment, and the reactivity of nickel is low, which is disadvantageous for the synthesis of nickel carbonyl.
  • an object of the present invention is to provide a method and system for preparing nickel carbonyl powder by using laterite nickel ore, which can effectively obtain high-purity nickel carbonyl powder by using low-cost laterite nickel ore, and has a simple process. Environmentally friendly.
  • the invention provides a method of preparing nickel carbonyl powder using laterite nickel ore, according to an embodiment of the invention, the method comprising:
  • the method for preparing nickel carbonyl powder by using laterite nickel ore according to the embodiment of the invention can effectively prepare high-purity nickel carbonyl powder by using low-cost laterite nickel ore, and the process is simple and environmentally friendly.
  • the method for preparing nickel carbonyl powder using laterite nickel ore according to the above embodiment of the present invention may further have the following additional technical features:
  • the sulfur content of the high sulfur coal is greater than 3 wt%.
  • the additive is at least one selected from the group consisting of an alkali metal oxide, an alkali metal salt, an alkaline earth metal oxide, and an alkaline earth metal salt.
  • the invention provides a system for preparing nickel carbonyl powder from laterite nickel ore, according to an embodiment of the invention, the system comprising:
  • a mixing pelletizing device having a laterite nickel ore inlet, a high sulfur coal inlet, an additive inlet, and a mixing pellet outlet, and is suitable for mixing a laterite nickel ore, a high sulfur coal, and an additive to obtain Mixed pellets;
  • a reduction-melting device having a mixed pellet inlet, a nickel-containing molten iron outlet, and a tailings outlet, the mixed pellet inlet being connected to the mixing pellet outlet, and adapted to mix The pellet is subjected to a reduction-melting treatment to obtain nickel-containing molten iron and tailings;
  • a granulating device having a nickel-containing molten iron inlet and a nickel-iron-iron alloy outlet, the nickel-containing molten iron inlet being connected to the nickel-containing molten iron outlet, and adapted to granulate the nickel-containing molten iron so that Obtaining nickel-iron alloy particles;
  • An oxo synthesis apparatus having a carbon monoxide inlet, a nickel-iron alloy particle inlet, and a gaseous mixture And an iron powder outlet, the nickel-iron alloy particle inlet connected to the nickel-iron alloy particle outlet, and adapted to contact the nickel-iron alloy particles with carbon monoxide to obtain a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide, and iron powder;
  • a purification apparatus having a gaseous mixture inlet, a gaseous nickel carbonyl outlet, and a first carbon monoxide outlet, said gaseous mixture inlet being connected to said gaseous mixture outlet, and adapted to vaporize said nickel carbonyl, carbonyl iron and carbon monoxide
  • the mixture is subjected to a purification treatment to obtain gaseous nickel carbonyl and first carbon monoxide;
  • a decomposition apparatus having a gaseous nickel carbonyl inlet, a nickel carbonyl powder outlet, and a second carbon monoxide outlet, the gaseous nickel carbonyl inlet being connected to the gaseous nickel carbonyl outlet, and adapted to decompose the gaseous nickel carbonyl In order to obtain nickel carbonyl powder and second carbon monoxide, respectively.
  • the system for preparing nickel carbonyl powder by using laterite nickel ore according to the embodiment of the present invention can effectively obtain high-purity nickel carbonyl powder by using low-cost laterite nickel ore, and the process is simple and environmentally friendly.
  • system for preparing nickel carbonyl powder using laterite nickel ore may further have the following additional technical features:
  • the first carbon monoxide outlet is connected to the carbon monoxide inlet and is adapted to return the first carbon monoxide to the oxo synthesis unit in contact with the nickel-iron alloy particles.
  • the second carbon monoxide outlet is connected to the carbon monoxide inlet and is adapted to return the second carbon monoxide to the oxo synthesis unit in contact with the nickel-iron alloy particles. Thereby, the recycling rate of carbon monoxide can be further improved.
  • FIG. 1 is a schematic flow chart of a method for preparing nickel carbonyl powder by using laterite nickel ore according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for preparing nickel carbonyl powder by using laterite nickel ore according to still another embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for preparing nickel carbonyl powder by using laterite nickel ore according to still another embodiment of the present invention
  • FIG. 4 is a schematic structural view of a system for preparing nickel carbonyl powder by using laterite nickel ore according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a system for preparing nickel carbonyl powder by using laterite nickel ore according to still another embodiment of the present invention.
  • FIG. 6 is a schematic view showing the structure of a system for preparing nickel carbonyl powder using laterite nickel ore according to still another embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the invention provides a method of preparing nickel carbonyl powder from laterite nickel ore.
  • the method comprises: (1) mixing a laterite nickel ore, a high sulfur coal, and an additive to obtain a mixed pellet; (2) performing a reduction-melting treatment of the mixed pellet In order to obtain nickel-containing molten iron and tailings; (3) granulating the nickel-containing molten iron to obtain nickel-iron alloy particles; (4) contacting the nickel-iron alloy particles with carbon monoxide to obtain nickel-containing carbonyl, carbonyl a gaseous mixture of iron and carbon monoxide and iron powder; (5) purifying the gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide to obtain gaseous nickel carbonyl and first carbon monoxide; and (6) the gaseous carbonyl group Nickel is subjected to decomposition treatment to obtain nickel carbonyl powder and second carbon monoxide, respectively.
  • the laterite nickel ore is used as a raw material for preparing nickel carbonyl powder.
  • the grade of nickel in the laterite nickel ore is low, the high purity nickel carbonyl powder can be prepared by the method of the present invention, thereby broadening the source of the raw material.
  • high sulfur coal is used as a reducing agent, not only can nickel and iron oxides in laterite nickel ore be effectively reduced, but also sulfur can be introduced into nickel-containing molten iron to activate nickel by melting treatment.
  • the highly active nickel-iron alloy particles are obtained, so that they can react with carbon monoxide to react to form a carbonyl compound, and the carbonyl compound has a high synthesis rate, and the present invention does not need to be synthesized in the carbonyl compound synthesis process compared with the prior art.
  • the process is shortened, and secondly, by granulating the obtained nickel-containing molten iron, the contact area with carbon monoxide can be remarkably increased, thereby further increasing the synthesis rate of the carbonyl compound, and using inexpensive high-sulfur coal as a reducing agent, not only The production cost can be effectively reduced, and sulfur can be applied as a beneficial component to the synthesis process of the carbonyl compound, and no gaseous sulfur content is generated during the synthesis of the carbonyl compound, and no air pollution is caused.
  • the method comprises:
  • the laterite nickel ore, the high sulfur coal, and the additive are mixed and pelletized, whereby a mixed pellet can be obtained.
  • the inventors have found that the use of laterite nickel ore as a raw material for preparing nickel carbonyl powder, although the grade of nickel in the laterite nickel ore is relatively low, the high purity nickel carbonyl powder can be prepared by the method of the invention (the nickel content is higher than 99%).
  • the present invention is synthesized in a carbonyl compound.
  • the present invention uses high-sulfur coal.
  • As a reducing agent not only can the production cost be effectively reduced, but high-sulfur coal does not need to undergo desulfurization technology.
  • the treatment can, on the contrary, be applied to the synthesis process of the carbonyl compound as a beneficial component, and no gaseous sulfur-containing substance is generated during the synthesis of the carbonyl compound, and no air pollution is caused.
  • the mixing ratio of laterite nickel ore, high-sulfur coal and additives is not particularly limited, and those skilled in the art can select according to actual needs.
  • laterite nickel ore, high The sulfur coal and the additive may be mixed at a mass ratio of 100:5 to 25:3 to 15. The inventors have found that if the amount of high-sulfur coal added is too low, it affects the reduction effect of the metallized pellets on the one hand, and on the other hand, the low-sulfur content of the nickel-iron alloy particles affects the carbonylation activity, which is disadvantageous for oxo synthesis.
  • the reaction proceeds, and if the amount of high-sulfur coal added is too high, it will not improve the technical specifications of the final product, and will result in waste of high-sulfur coal resources and increase production costs, and the amount of additives is intended to assist the reduction of nickel in laterite nickel ore. Excessive or too low an amount found in the test will reduce the reduction effect of nickel.
  • the laterite nickel ore, high sulfur coal, and additives are pulverized before the laterite nickel ore, high sulfur coal, and additives are mixed.
  • the nickel content in the laterite nickel ore is not particularly limited, and those skilled in the art may
  • the nickel content in the laterite nickel ore is 0.5 to 3.0% by weight. Therefore, in order to obtain high-purity nickel carbonyl powder in the existing synthesis process, it is generally required to use a nickel ore having a high nickel content, resulting in high raw material production cost and difficulty in procurement, and the nickel grade requirement of the present invention for the medium nickel ore.
  • the threshold is low, and the laterite nickel ore having a nickel content of only 0.5 to 3.0 wt% is used as a raw material for preparing the nickel carbonyl powder, and a high-purity nickel carbonyl powder can be prepared, thereby significantly reducing the raw material cost while broadening the source of the nickel production raw material.
  • the sulfur content in the high sulfur coal is not particularly limited, and those skilled in the art can select according to actual needs.
  • the sulfur content in the high sulfur coal can be high. At 3wt%.
  • the inventors have found that high-activity nickel-iron alloy particles can be prepared by using this type of high-sulfur coal, so that it can react with carbon monoxide to react to form a carbonyl compound, and the carbonyl compound has a high synthesis rate, compared with the prior art.
  • the invention does not require the addition of a catalyst during the synthesis of the carbonyl compound, thereby shortening the process flow.
  • the specific type of the additive is not particularly limited, and those skilled in the art may select according to actual needs.
  • the additive may be selected from the group consisting of alkali metal oxides and alkali metals. At least one of a salt, an alkaline earth metal oxide, and an alkaline earth metal salt.
  • the additive can replace NiO from forsterite or fayalite to increase the activity of NiO, thereby significantly reducing the reduction smelting temperature and reducing the laterite nickel ore. The conditions are greatly improved and the reduction reaction is promoted.
  • the mixed pellets are subjected to a reduction-melting treatment, whereby nickel-containing molten iron and tailings can be obtained.
  • the inventors have found that by melting, sulfur can be activated into nickel-containing molten iron to obtain nickel, which is a highly active nickel-iron alloy particle, so that it can react with carbon monoxide to form a carbonyl compound, and the carbonyl compound has a high synthesis rate.
  • the present invention does not require the addition of a catalyst during the synthesis of the carbonyl compound, thereby shortening the process flow.
  • the reduction-melting treatment of the mixed pellets may be carried out by using a combination of a reduction device and a melting device.
  • the reduction device may be selected from a rotary hearth furnace. At least one of a rotary kiln, a car bottom furnace and a tunnel kiln, the melting device may be an electric arc furnace, a submerged arc furnace and a non-electrothermal melting furnace.
  • the non-electric melting furnace may be a natural gas melting furnace or a coal gas. Melting furnace or fuel melting furnace.
  • the nickel content in the nickel-containing iron water is not particularly limited, and those skilled in the art may select according to actual needs.
  • the nickel content in the nickel-containing iron water may be 5 to 45wt%.
  • the inventors have found that in order to obtain high-purity nickel carbonyl powder in the existing nickel carbonyl synthesis process, it is generally required to use a copper-nickel alloy or a high-purity nickel oxide containing more than 50% by weight of nickel, resulting in high raw material production cost and difficulty in procurement.
  • the invention has low threshold for the nickel grade in the raw material, and uses nickel-iron alloy particles with a nickel content of only 5 to 45 wt% as a synthetic raw material of the nickel carbonyl powder. In this way, high-purity nickel carbonyl powder can be prepared, thereby significantly reducing the raw material cost while broadening the source of nickel production raw materials.
  • the sulfur content in the nickel-iron alloy particles is not particularly limited, and those skilled in the art may select according to actual needs.
  • the sulfur content in the nickel-iron alloy particles may be 2 to 5wt%.
  • the inventors have found that the higher the sulfur content in the nickel-containing alloy particles, the higher the nickel activity in the obtained nickel-iron alloy particles, which is more favorable for the rapid progress of the nickel carbonyl synthesis reaction, and the nickel carbonyl synthesis rate is also higher, compared with the prior art.
  • the present invention does not require additional catalyst addition, thereby shortening the preparation process.
  • the nickel-iron alloy particles have too high sulfur content, and the nickel activity is not significantly improved.
  • too high sulfur content will increase the amount of coal, which will reduce the nickel content of the nickel-iron alloy on the one hand, and waste the raw coal on the other hand.
  • the nickel-containing molten iron obtained above is subjected to a granulation treatment to obtain nickel-iron alloy particles.
  • the inventors have found that by granulating the obtained nickel-containing molten iron, the contact area with carbon monoxide can be remarkably increased, and the synthesis rate of the carbonyl compound can be further improved.
  • the particle size of the nickel-iron alloy particles is not particularly limited, and those skilled in the art can select according to actual needs. According to a specific embodiment of the present invention, the particle size of the nickel-iron alloy particles is not more than 0.5 mm. The inventors have found that the nickel-iron alloy having a high particle size range has a high activity and a large contact area with carbon monoxide during the synthesis of nickel carbonyl, so that the synthesis rate of nickel carbonyl can be remarkably improved.
  • the nickel-iron alloy particles are brought into countercurrent contact with carbon monoxide, whereby iron powder and a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide can be obtained.
  • the inventors have found that the high activity nickel-iron alloy particles can be reacted directly with carbon monoxide to form a carbonyl compound, and the carbonyl compound has a high synthesis rate.
  • the present invention does not require the addition of a catalyst during the synthesis of the carbonyl compound. , thus shortening the process flow.
  • the reaction conditions of the nickel-iron alloy particles and the carbon monoxide are not particularly limited, and those skilled in the art can select according to actual needs.
  • the nickel-iron alloy particles can be contacted with carbon monoxide at 100 ⁇ . It is carried out for 24 to 48 hours under conditions of 200 ° C and 5 to 15 MPa. Thereby, the synthesis rate of nickel carbonyl can be remarkably improved.
  • the reaction of the nickel-iron alloy particles with carbon monoxide is carried out in an oxo synthesis apparatus, and according to a specific embodiment of the present invention, the volume of carbon monoxide in the oxo synthesis apparatus is not less than 90%.
  • the inventors have found that the reaction for forming a carbonyl compound is a reversible reaction, and the addition of an excess of carbon monoxide shifts the chemical equilibrium of the reaction toward the formation of the carbonyl compound, thereby further increasing the rate of synthesis of the carbonyl compound.
  • a gaseous mixture containing nickel carbonyl, iron carbonyl and carbon monoxide is subjected to purification treatment, whereby gaseous nickel carbonyl and first carbon monoxide can be obtained.
  • purification treatment whereby gaseous nickel carbonyl and first carbon monoxide can be obtained.
  • a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide is first subjected to condensation treatment, so that nickel carbonyl and iron carbonyl in the gaseous mixture are condensed into a liquid, and carbon monoxide therein is present as a gas, and then The obtained liquid mixture containing nickel carbonyl and iron carbonyl is subjected to rectification treatment, whereby high purity gaseous nickel carbonyl can be isolated.
  • condensation treatment so that nickel carbonyl and iron carbonyl in the gaseous mixture are condensed into a liquid, and carbon monoxide therein is present as a gas
  • the obtained liquid mixture containing nickel carbonyl and iron carbonyl is subjected to rectification treatment, whereby high purity gaseous nickel carbonyl can be isolated.
  • the gaseous nickel carbonyl is subjected to decomposition treatment, whereby nickel carbonyl powder and second carbon monoxide can be obtained, respectively.
  • the nickel carbonyl is unstable, and can be rapidly decomposed into nickel carbonyl powder and carbon monoxide upon heating, thereby obtaining high-purity nickel carbonyl nickel powder.
  • the conditions of the decomposition treatment are not particularly limited, and those skilled in the art may select according to actual needs.
  • the decomposition treatment may be 230-300 degrees Celsius and 0.01-0.05 MPa. Under the conditions. The inventors have found that the decomposition conditions can be significantly superior to those of other nickel carbonyl decomposing efficiencies, so that the purity of the carbonyl nickel powder can be obtained.
  • the method for preparing nickel carbonyl powder by using laterite nickel ore uses laterite nickel ore as a raw material for preparing nickel carbonyl powder. Although the grade of nickel in the laterite nickel ore is low, the method of the present invention can still be prepared high.
  • Purity of nickel carbonyl powder thereby reducing the production cost of nickel carbonyl powder while broadening the source of raw materials, and by using high sulfur coal as a reducing agent, not only can effectively reduce nickel and iron oxides in laterite nickel ore, but also through melting
  • the treatment can make the sulfur enter the nickel-containing iron-iron water to activate the nickel, thereby obtaining the highly active nickel-iron alloy particles, so that the direct contact with the carbon monoxide can react to form a carbonyl compound, and the carbonyl compound has a high synthesis rate, which is compared with the prior art.
  • the present invention does not require the addition of a catalyst during the synthesis of the carbonyl compound, thereby shortening the process flow, and secondly, by granulating the obtained nickel-containing molten iron, the contact area with carbon monoxide can be remarkably increased, thereby further increasing the synthesis rate of the carbonyl compound.
  • cheap high-sulfur coal is used as a reducing agent, not only Reduce production costs, but also such as the beneficial ingredients wherein the sulfur is applied to the synthesis of carbonyl compounds, and does not generate gaseous sulfur containing carbonyl compound in the synthesis process, will not cause air pollution.
  • a method for preparing nickel carbonyl powder using laterite nickel ore according to an embodiment of the present invention further includes:
  • the first carbon monoxide obtained by the purification treatment is returned to S400 in contact with the nickel-iron alloy particles, so that the carbon monoxide cycle utilization ratio can be remarkably improved.
  • a method for preparing nickel carbonyl powder using laterite nickel ore according to an embodiment of the present invention further includes:
  • the second carbon monoxide obtained by the decomposition treatment is returned to S400 to be in contact with the nickel-iron alloy particles, thereby further improving the carbon monoxide cycle utilization.
  • the invention provides a system for preparing nickel carbonyl powder from laterite nickel ore.
  • the system comprises: a mixing pelletizing device having a laterite nickel ore inlet, a high sulfur coal inlet, an additive inlet, and a mixing pellet outlet, and is suitable for laterite nickel ore, high The sulfur coal and the additive are mixed and pelletized to obtain a mixed pellet; a reduction-melting device having a mixed pellet inlet, a nickel-containing molten iron outlet, and a tailings outlet, the mixed pellet inlet and The mixing pellet outlets are connected and adapted to subject the mixing pellets to a reduction-melting treatment to obtain nickel-containing molten iron and tailings; a granulating device having a nickel-containing molten iron inlet and a nickel-iron alloy a particle outlet, the nickel-containing molten iron inlet connected to the nickel-containing molten iron outlet, and suitable for granulating the nickel-containing molten iron to obtain nickel-
  • the laterite nickel ore is used as a raw material for preparing nickel carbonyl powder.
  • the grade of nickel in the laterite nickel ore is low, the high purity nickel carbonyl powder can be prepared by using the system of the present invention, thereby broadening the raw material source.
  • the production cost of nickel carbonyl powder is reduced, and by using high-sulfur coal as a reducing agent, not only nickel and iron oxides in laterite nickel ore can be effectively reduced, but also sulfur can be activated by melting into nickel-containing iron-iron water.
  • Nickel that is, the highly active nickel-iron alloy particles are obtained, so that they can react with carbon monoxide to react to form a carbonyl compound, and the carbonyl compound has a high synthesis rate.
  • the present invention is not in the synthesis process of the carbonyl compound. It is necessary to add a catalyst, thereby shortening the process flow, and secondly, by granulating the obtained nickel-containing molten iron, the contact area with carbon monoxide can be remarkably increased, thereby further increasing the synthesis rate of the carbonyl compound, and using inexpensive high-sulfur coal as a reducing agent. Not only can it effectively reduce production costs, but it can also make sulfur Beneficial component is applied to the synthesis of carbonyl compounds, and does not generate gaseous sulfur containing carbonyl compound in the synthesis process, will not cause air pollution.
  • the system comprises:
  • hybrid pelletizing device 100 has a laterite nickel ore inlet 101, a high sulfur coal inlet 102, an additive inlet 103, and a mixing pellet outlet 104, and is suitable for laterite nickel ore, high Sulfur coal and addition The mixture is mixed and pelletized so that a mixed pellet can be obtained.
  • the inventors have found that the laterite nickel ore is used as a raw material for preparing nickel carbonyl powder. Although the grade of nickel in the laterite nickel ore is low, the high purity nickel carbonyl powder can be prepared by using the system of the present invention (the nickel content is higher than 99%).
  • the present invention is synthesized in a carbonyl compound.
  • the hybrid pelletizing device used in the present invention may be a combination device of the mixing device and the pelletizing device.
  • the mixing ratio of laterite nickel ore, high-sulfur coal and additives is not particularly limited, and those skilled in the art can select according to actual needs.
  • laterite nickel ore, high The sulfur coal and the additive may be mixed at a mass ratio of 100:5 to 25:3 to 15. The inventors have found that if the amount of high-sulfur coal added is too low, it affects the reduction effect of the metallized pellets on the one hand, and on the other hand, the low-sulfur content of the nickel-iron alloy particles affects the carbonylation activity, which is disadvantageous for oxo synthesis.
  • the reaction proceeds, and if the amount of high-sulfur coal added is too high, it will not improve the technical specifications of the final product, and will result in waste of high-sulfur coal resources and increase production costs, and the amount of additives is intended to assist the reduction of nickel in laterite nickel ore. Excessive or too low an amount found in the test will reduce the reduction effect of nickel.
  • the laterite nickel ore, high sulfur coal, and additives are pulverized before the laterite nickel ore, high sulfur coal, and additives are mixed.
  • the nickel content in the laterite nickel ore is not particularly limited, and those skilled in the art can select according to actual needs.
  • the nickel content in the laterite nickel ore is 0.5-3.0. Wt%. Therefore, in order to obtain high-purity nickel carbonyl powder in the existing synthesis process, it is generally required to use a nickel ore having a high nickel content, resulting in high raw material production cost and difficulty in procurement, and the nickel grade requirement of the present invention for the medium nickel ore.
  • the threshold is low, and the laterite nickel ore having a nickel content of only 0.5 to 3.0 wt% is used as a raw material for preparing the nickel carbonyl powder, and a high-purity nickel carbonyl powder can be prepared, thereby significantly reducing the raw material cost while broadening the source of the nickel production raw material.
  • the sulfur content in the high sulfur coal is not particularly limited, and those skilled in the art can select according to actual needs.
  • the sulfur content in the high sulfur coal can be high. At 3wt%.
  • the inventors have found that high-activity nickel-iron alloy particles can be prepared by using this type of high-sulfur coal, so that it can react with carbon monoxide to react to form a carbonyl compound, and the carbonyl compound has a high synthesis rate, compared with the prior art.
  • the invention does not require the addition of a catalyst during the synthesis of the carbonyl compound, thereby shortening the process flow.
  • the specific type of the additive is not particularly limited, and those skilled in the art may
  • the additive may be at least one selected from the group consisting of alkali metal oxides, alkali metal salts, alkaline earth metal oxides, and alkaline earth metal salts.
  • the inventors found that in the reduction process of laterite nickel ore, the additive can replace NiO from forsterite or fayalite to increase the activity of NiO, thereby significantly reducing the reduction smelting temperature and reducing the laterite nickel ore. The conditions are greatly improved and the reduction reaction is promoted.
  • the reduction-melting device 200 has a mixing pellet inlet 201, a nickel-containing molten iron outlet 202 and a tailings outlet 203, and the mixing pellet inlet 201 is connected to the mixing pellet outlet 104. And suitable for the reduction-melting treatment of the mixed pellets, so that nickel-containing molten iron and tailings can be obtained.
  • the inventors have found that by melting, sulfur can be activated into nickel-containing molten iron to obtain nickel, which is a highly active nickel-iron alloy particle, so that it can react with carbon monoxide to form a carbonyl compound, and the carbonyl compound has a high synthesis rate.
  • the present invention does not require the addition of a catalyst during the synthesis of the carbonyl compound, thereby shortening the process flow.
  • the reduction-melting treatment of the mixed pellets may be carried out by using a combination of a reduction device and a melting device.
  • the reduction device may be selected from a rotary hearth furnace. At least one of a rotary kiln, a car bottom furnace and a tunnel kiln, the melting device may be an electric arc furnace, a submerged arc furnace and a non-electrothermal melting furnace.
  • the non-electric melting furnace may be a natural gas melting furnace or a coal gas. Melting furnace or fuel melting furnace.
  • the nickel content in the nickel-containing iron water is not particularly limited, and those skilled in the art may select according to actual needs.
  • the nickel content in the nickel-containing iron water may be 5 to 45wt%.
  • the inventors have found that in order to obtain high-purity nickel carbonyl powder in the existing nickel carbonyl synthesis process, it is generally required to use a copper-nickel alloy or a high-purity nickel oxide containing more than 50% by weight of nickel, resulting in high raw material production cost and difficulty in procurement.
  • the invention has low threshold for nickel grade in raw materials, and nickel-iron alloy particles with nickel content of only 5 to 45 wt% are used as synthetic raw materials of nickel carbonyl powder, and high-purity nickel carbonyl powder can be prepared, thereby broadening the source of raw materials for nickel production. At the same time significantly reduce the cost of raw materials.
  • the sulfur content in the nickel-iron alloy particles is not particularly limited, and those skilled in the art may select according to actual needs.
  • the sulfur content in the nickel-iron alloy particles may be 2 to 5wt%.
  • the inventors have found that the higher the sulfur content in the nickel-containing alloy particles, the higher the nickel activity in the obtained nickel-iron alloy particles, which is more favorable for the rapid progress of the nickel carbonyl synthesis reaction, and the nickel carbonyl synthesis rate is also higher, compared with the prior art.
  • the present invention does not require additional catalyst addition, thereby shortening the preparation process.
  • the nickel-iron alloy particles have too high sulfur content, and the nickel activity is not significantly improved.
  • too high sulfur content will increase the amount of coal, which will reduce the nickel content of the nickel-iron alloy on the one hand, and waste the raw coal on the other hand.
  • the granulation apparatus 300 has a nickel-containing molten iron inlet 301 and a nickel-iron alloy The particle outlet 302, the nickel-containing molten iron inlet 301 is connected to the nickel-containing molten iron outlet 202, and is suitable for granulating the obtained nickel-containing molten iron to obtain nickel-iron alloy particles.
  • the inventors have found that by granulating the obtained nickel-containing molten iron, the contact area with carbon monoxide can be remarkably increased, and the synthesis rate of the carbonyl compound can be further improved.
  • the particle size of the nickel-iron alloy particles is not particularly limited, and those skilled in the art can select according to actual needs. According to a specific embodiment of the present invention, the particle size of the nickel-iron alloy particles is not more than 0.5 mm. The inventors have found that the nickel-iron alloy having a high particle size range has a high activity and a large contact area with carbon monoxide during the synthesis of nickel carbonyl, so that the synthesis rate of nickel carbonyl can be remarkably improved.
  • the oxo synthesis unit 400 has a carbon monoxide inlet 401, a nickel-iron alloy particle inlet 402, a gaseous mixture outlet 403, and an iron powder outlet 404, the nickel-iron alloy particle inlet 402 and the nickel-iron alloy particle outlet 302 being connected, And suitable for countercurrent contact of the nickel-iron alloy particles with carbon monoxide, thereby obtaining iron powder and a gaseous mixture containing nickel carbonyl, iron carbonyl and carbon monoxide.
  • the inventors have found that the high activity nickel-iron alloy particles can be reacted directly with carbon monoxide to form a carbonyl compound, and the carbonyl compound has a high synthesis rate.
  • the present invention does not require the addition of a catalyst during the synthesis of the carbonyl compound. , thus shortening the process flow.
  • the reaction conditions of the nickel-iron alloy particles and the carbon monoxide are not particularly limited, and those skilled in the art can select according to actual needs.
  • the nickel-iron alloy particles can be contacted with carbon monoxide at 100 ⁇ . It is carried out for 24 to 48 hours under conditions of 200 ° C and 5 to 15 MPa. Thereby, the synthesis rate of nickel carbonyl can be remarkably improved.
  • the reaction of the nickel-iron alloy particles with carbon monoxide is carried out in an oxo synthesis apparatus, and according to a specific embodiment of the present invention, the volume of carbon monoxide in the oxo synthesis apparatus is not less than 90%.
  • the inventors have found that the reaction for forming a carbonyl compound is a reversible reaction, and the addition of an excess of carbon monoxide shifts the chemical equilibrium of the reaction toward the formation of the carbonyl compound, thereby further increasing the rate of synthesis of the carbonyl compound.
  • purification apparatus 500 has a gaseous mixture inlet 501, a gaseous nickel carbonyl outlet 502, and a first carbon monoxide outlet 503, and a gaseous mixture inlet 501 is coupled to the gaseous mixture outlet 403 and is adapted to contain nickel carbonyl A gaseous mixture of carbonyl iron and carbon monoxide is subjected to purification treatment to obtain gaseous nickel carbonyl and first carbon monoxide. Thereby, the purity of the subsequently obtained nickel carbonyl powder can be remarkably improved.
  • a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide is first subjected to condensation treatment, so that nickel carbonyl and iron carbonyl in the gaseous mixture are condensed into a liquid, and carbon monoxide therein is present as a gas, and then The obtained liquid mixture containing nickel carbonyl and iron carbonyl is subjected to rectification treatment, whereby high purity gaseous nickel carbonyl can be isolated.
  • condensation treatment so that nickel carbonyl and iron carbonyl in the gaseous mixture are condensed into a liquid, and carbon monoxide therein is present as a gas
  • the obtained liquid mixture containing nickel carbonyl and iron carbonyl is subjected to rectification treatment, whereby high purity gaseous nickel carbonyl can be isolated.
  • the decomposition device 600 has a gaseous nickel carbonyl inlet 601, a nickel-iron alloy outlet 602 and a second carbon monoxide outlet 603, the gaseous nickel carbonyl inlet 601 and the gaseous nickel carbonyl outlet 502 are connected, and It is suitable for decomposing the gaseous nickel carbonyl so that nickel carbonyl powder and carbon monoxide can be obtained separately.
  • the nickel carbonyl is unstable, and can be rapidly decomposed into nickel carbonyl powder and carbon monoxide upon heating, thereby obtaining high-purity nickel carbonyl nickel powder.
  • the conditions of the decomposition treatment are not particularly limited, and those skilled in the art may select according to actual needs.
  • the decomposition treatment may be 230-300 degrees Celsius and 0.01-0.05 MPa. Under the conditions. The inventors have found that the decomposition conditions can be significantly superior to those of other nickel carbonyl decomposing efficiencies, so that the purity of the carbonyl nickel powder can be obtained.
  • the system for preparing nickel carbonyl powder by using laterite nickel ore uses laterite nickel ore as a raw material for preparing nickel carbonyl powder. Although the grade of nickel in the laterite nickel ore is low, the system of the present invention can still be prepared high.
  • Purity of nickel carbonyl powder thereby reducing the production cost of nickel carbonyl powder while broadening the source of raw materials, and by using high sulfur coal as a reducing agent, not only can effectively reduce nickel and iron oxides in laterite nickel ore, but also through melting
  • the treatment can make the sulfur enter the nickel-containing iron-iron water to activate the nickel, thereby obtaining the highly active nickel-iron alloy particles, so that the direct contact with the carbon monoxide can react to form a carbonyl compound, and the carbonyl compound has a high synthesis rate, which is compared with the prior art.
  • the present invention does not require the addition of a catalyst during the synthesis of the carbonyl compound, thereby shortening the process flow, and secondly, by granulating the obtained nickel-containing molten iron, the contact area with carbon monoxide can be remarkably increased, thereby further increasing the synthesis rate of the carbonyl compound.
  • cheap high-sulfur coal is used as a reducing agent, not only Reduce production costs, but also such as the beneficial ingredients wherein the sulfur is applied to the synthesis of carbonyl compounds, and does not generate gaseous sulfur containing carbonyl compound in the synthesis process, will not cause air pollution.
  • the first carbon monoxide outlet 503 is connected to the carbon monoxide inlet 401, and is adapted to return the first carbon monoxide obtained by the purification device 500 to the oxo synthesis device 400 in contact with the nickel-iron alloy particles, thereby being significantly improved. Carbon monoxide cycle utilization.
  • the second carbon monoxide outlet 603 is connected to the carbon monoxide inlet 401, and is adapted to return the second carbon monoxide obtained by the decomposition device 600 to the oxo synthesis device 300 in contact with the nickel-iron alloy particles, thereby being remarkable Improve the recycling rate of carbon monoxide.
  • the laterite nickel ore with the composition shown in Table 1 is blended with high-sulfur coal and limestone with a sulfur content of 3.5%, and then ball-dried and dried.
  • the mixed mass ratio of laterite nickel ore, high-sulfur coal and limestone is 100:
  • the dried mixed pellets are placed in a rotary hearth furnace for reduction, and the reducing conditions are 1300 ° C for 35 minutes.
  • the reduced metallized pellets are directly sent to the gas melting furnace, and the melting temperature is 1550 ° C.
  • Nickel-containing molten iron (components shown in Table 2), and then the resulting nickel-containing molten iron in the granulator
  • the nickel-iron alloy particles having an average particle diameter of 0.25 mm are prepared and stored as a carbonyl raw material, and then the nickel-iron alloy particles are reacted with CO in a countercurrent to form a carbonylation reaction to form a nickel-containing carbonyl, a carbonyl iron and a carbon monoxide in a carbonyl reactor.
  • the gaseous mixture has a carbonylation condition of: pressure 7.5 MPa, temperature 185 ° C, time 35 h, CO gas concentration 90.5%, and a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide is sent to a condenser for condensation treatment, wherein nickel carbonyl And the carbonyl iron is condensed into a liquid state, and the carbon monoxide is present in a gaseous form, and the separated carbon monoxide is returned to the carbonyl reactor for further use, and the obtained liquid mixture containing the nickel carbonyl and the carbonyl iron is sent to the rectification column for rectification.
  • High-purity gaseous nickel carbonyl and finally the gaseous nickel carbonyl is sent to a decomposition device for decomposition to obtain nickel carbonyl powder with carbon monoxide and nickel content of 99.82 wt%, wherein the main impurities in the nickel carbonyl powder are C and Fe, and the carbon monoxide obtained by decomposition is returned to the carbonyl group.
  • a decomposition device for decomposition to obtain nickel carbonyl powder with carbon monoxide and nickel content of 99.82 wt%, wherein the main impurities in the nickel carbonyl powder are C and Fe, and the carbon monoxide obtained by decomposition is returned to the carbonyl group.
  • the laterite nickel ore with the composition shown in Table 1 is blended with high-sulfur coal with a sulfur content of 4.5% and sodium carbonate, and then ball is prepared and dried.
  • the mixed mass ratio of laterite nickel ore, high-sulfur coal and sodium carbonate is 100:10:15, the dried mixed pellets are placed in a rotary kiln for reduction, and the reduction condition is 900 ° C for 65 minutes.
  • the reduced metallized pellets are directly sent to the electric furnace for melting, and the melting temperature is 1550 ° C.
  • Nickel-containing molten iron (components are shown in Table 2), and then the obtained nickel-containing molten iron is made into nickel-iron alloy particles having an average particle diameter of 0.15 mm in a granulator, and dried and stored as a carbonyl raw material, and then in a carbonyl reactor.
  • the nickel-iron alloy particles are reacted with CO in a countercurrent flow to form a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide.
  • the carbonylation conditions are: pressure 12.5 MPa, temperature 135 ° C, time 46 h, CO gas concentration 92%, which will contain
  • a gaseous mixture of nickel carbonyl, carbonyl iron and carbon monoxide is sent to a condenser for condensation treatment, wherein nickel carbonyl and iron carbonyl are condensed into a liquid state, and carbon monoxide is present in a gaseous form, and the resulting oxygen is separated.
  • the carbon is returned to the carbonyl reactor for further use, and the obtained liquid mixture containing nickel carbonyl and carbonyl iron is sent to a rectification column for rectification to obtain a high-purity gaseous nickel carbonyl.
  • the gaseous nickel carbonyl is sent to a decomposition device for decomposition to obtain carbon monoxide and
  • the laterite nickel ore with the composition shown in Table 1 is blended with high-sulfur coal and sodium carbonate with a sulfur content of 6% to form a ball and dried.
  • the mixed mass ratio of laterite nickel ore, high-sulfur coal and sodium carbonate is 100:20:5, the dried mixed pellets are placed in the tunnel kiln for reduction, the reducing condition is 1220 ° C, the time is 40 min, and the reduced metallized pellets are directly sent to the gas melting furnace, and the melting temperature is 1550 ° C.
  • the nickel-containing molten iron (the composition is shown in Table 2) is obtained, and then the obtained nickel-containing molten iron is made into a nickel-iron alloy particle having an average particle diameter of 0.05 mm in a granulator, and dried and stored as a carbonyl raw material, and then in a carbonyl reactor. Internally, the nickel-iron alloy particles are reacted with CO in a countercurrent flow to form a gaseous mixture containing nickel carbonyl, carbonyl iron and carbon monoxide.
  • the carbonylation conditions are: pressure 15 MPa, temperature 155 ° C, time 29 h, CO gas concentration 90.0%, which will contain a gaseous mixture of nickel carbonyl, carbonyl iron and carbon monoxide is sent to a condenser for condensation treatment, wherein nickel carbonyl and The carbonyl iron is condensed into a liquid state, and the carbon monoxide is present in a gaseous form, and the separated carbon monoxide is returned to the carbonyl reactor for further use, and the resulting liquid mixture containing nickel carbonyl and carbonyl iron is sent to the rectification column for rectification to obtain high Pure gaseous nickel carbonyl, finally the gaseous nickel carbonyl is sent to the decomposition device for decomposition to obtain nickel carbonyl powder with carbon monoxide and nickel content of 99.82wt%, wherein the main impurities in the nickel carbonyl powder are C and Fe, and the carbon monoxide which is decomposed is returned to the carbonyl reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种利用红土镍矿制备羟基镍粉的方法和系统,该方法包括:(1)将红土镍矿、高硫煤和添加剂进行混合造球得到球团;(2)对球团进行还原;(3)对还原的金属化球团进行水淬-磨矿-磁选处理,得到镍铁粉和尾矿;(4)将镍铁粉和一氧化碳接触进行反应,之后进行净化和分解处理,从而得到羟基镍粉,并回收利用一氧化碳。其中高硫煤的采用得到了高活性的镍铁粉,在羟基镍粉生产过程中无需加入催化剂,且合成效率高。

Description

利用红土镍矿制备羰基镍粉的方法和系统 技术领域
本发明属于冶金技术领域,具体而言,本发明涉及一种利用红土镍矿制备羰基镍粉的方法和系统。
背景技术
近年来,随着高品位硫化镍矿的枯竭及国内不锈钢产业的快速发展,低品位红土镍矿已经成为生产镍铁产品的主要原料。为了解决红土镍矿的合理利用问题,以红土镍矿为原料,煤粉为还原剂,采用直接还原法将矿石中的铁镍氧化物还原成金属铁和金属镍,再经过熔分炉使镍富集到镍铁合金中。目前对镍铁合金的工业应用,对其研究也仅仅停留在将其作为冶炼不锈钢的原料的层面上,产品的附加值不高。
羰基镍是1889年由蒙德和兰基发现的,他们发现四个分子的CO在常压和40~100℃内能与一个分子的活性镍反应生成无色气体即羰基镍,并且他们进一步证明这个反应是可逆的,加热羰基镍到150~300℃便分解成镍和CO。羰基法生产纯金属,不仅能选择性地生成羰基产物,而且能在适当的条件下容易分离和分解成高纯度的金属。例如,镍和铁的羰基化合物由于它们的沸点相差很大,分别为43℃及103℃,可用简单方法加以分离。加拿大国际镍公司报道,具有一定硫含量的铜镍合金,经过雾化制粒后,可获得高活性的羰基合成原料,原料成分Ni 65~70%,Cu 15%,Fe 1%,S 4~5%。
中国研究羰化冶金技术也有50多年的历史,但都没有形成系统化和产业化,且原料选自电解镍,这都造成了生产羰基镍镍粉成本居高不下,利用其它含镍物料生产羰基镍仍是一个技术难题。
中国专利CN 1603240A公开了一种羰基镍的合成方法,该方法将镍铜合金或镍铜一次合金置于固定床反应器内,通入一氧化碳进行羰化反应,在羰化反应条件压力5~15MPa,温度150~250℃下得到羰基镍产品。然而该方法的缺点是镍铜合金中的镍没有被活化,镍的反应活性低,此外合金也没有粒化,与CO的接触面积有限,这些将严重影响羰基镍的合成。
中国专利CN 1775695A公开了一种羰基镍的合成方法,该方法将镍铜合金在熔融态进行雾化处理制粒,在10升的高压釜内进行羰基化反应,羰基合成条件:CO含量≥92%;CO气体在羰基合成的系统中循环速度8~12次/小时,压力:5~12Mpa;温度:100~150℃;合成时间:24~32小时。然而该方法的缺点是镍铜合金中的镍没有经过活化处理,镍的反应活性低,不利于羰基镍的合成。
因此,现有的制备镍的技术有待进一步改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种利用红土镍矿制备羰基镍粉的方法和系统,该方法可以有效利用价格低廉的红土镍矿制备得到高纯度的羰基镍粉,并且工艺流程简单、环境友好。
在本发明的一个方面,本发明提出了一种利用红土镍矿制备羰基镍粉的方法,根据本发明的实施例,该方法包括:
(1)将红土镍矿、高硫煤和添加剂进行混合造球,以便得到混合球团;
(2)将所述混合球团进行还原-熔分处理,以便得到含镍铁水和尾渣;
(3)将所述含镍铁水进行制粒处理,以便得到镍铁合金颗粒;
(4)将所述镍铁合金颗粒与一氧化碳接触,以便得到含有羰基镍、羰基铁和一氧化碳的气态混合物以及铁粉;
(5)将所述含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,以便得到气态羰基镍和第一一氧化碳;以及
(6)将所述气态羰基镍进行分解处理,以便分别得到羰基镍粉和第二一氧化碳。
由此,根据本发明实施例的利用红土镍矿制备羰基镍粉的方法可以有效利用价格低廉的红土镍矿制备得到高纯度的羰基镍粉,并且工艺流程简单、环境友好。
另外,根据本发明上述实施例的利用红土镍矿制备羰基镍粉的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,在步骤(1)中,所述高硫煤中硫含量高于3wt%。由此,不仅可以降低还原剂成本,而且可以显著简化后续羰基合成工艺流程。
在本发明的一些实施例中,在步骤(1)中,所述添加剂为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。
在本发明的另一个方面,本发明提出了一种利用红土镍矿制备羰基镍粉的系统,根据本发明的实施例,该系统包括:
混合造球装置,所述混合造球装置具有红土镍矿入口、高硫煤入口、添加剂入口和混合球团出口,且适于将红土镍矿、高硫煤和添加剂进行混合造球,以便得到混合球团;
还原-熔分装置,所述还原-熔分装置具有混合球团入口、含镍铁水出口和尾渣出口,所述混合球团入口和所述混合球团出口相连,且适于将所述混合球团进行还原-熔分处理,以便得到含镍铁水和尾渣;
制粒装置,所述制粒装置具有含镍铁水入口和镍铁合金颗粒出口,所述含镍铁水入口与所述含镍铁水出口相连,且适于将所述含镍铁水进行制粒处理,以便得到镍铁合金颗粒;
羰基合成装置,所述羰基合成装置具有一氧化碳入口、镍铁合金颗粒入口、气态混合 物出口和铁粉出口,所述镍铁合金颗粒入口和所述镍铁合金颗粒出口相连,且适于将所述镍铁合金颗粒与一氧化碳接触,以便得到含有羰基镍、羰基铁和一氧化碳的气态混合物以及铁粉;
提纯装置,所述提纯装置具有气态混合物入口、气态羰基镍出口和第一一氧化碳出口所述气态混合物入口与所述气态混合物出口相连,且适于将所述含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,以便得到气态羰基镍和第一一氧化碳;以及
分解装置,所述分解装置具有气态羰基镍入口、羰基镍粉出口和第二一氧化碳出口,所述气态羰基镍入口和所述气态羰基镍出口相连,且适于将所述气态羰基镍进行分解处理,以便分别得到羰基镍粉和第二一氧化碳。
由此,根据本发明实施例的利用红土镍矿制备羰基镍粉的系统可以有效利用价格低廉的红土镍矿制备得到高纯度的羰基镍粉,并且工艺流程简单、环境友好。
另外,根据本发明上述实施例的利用红土镍矿制备羰基镍粉的系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述第一一氧化碳出口与所述一氧化碳入口相连,且适于将所述第一一氧化碳返回所述羰基合成装置与所述镍铁合金颗粒接触。由此,可以显著提高一氧化碳的循环利用率。
在本发明的一些实施例中,所述第二一氧化碳出口与所述一氧化碳入口相连,且适于将所述第二一氧化碳返回所述羰基合成装置与所述镍铁合金颗粒接触。由此,可以进一步提高一氧化碳的循环利用率。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的利用红土镍矿制备羰基镍粉的方法流程示意图;
图2是根据本发明再一个实施例的利用红土镍矿制备羰基镍粉的方法流程示意图;
图3是根据本发明又一个实施例的利用红土镍矿制备羰基镍粉的方法流程示意图;
图4是根据本发明一个实施例的利用红土镍矿制备羰基镍粉的系统结构示意图;
图5是根据本发明再一个实施例的利用红土镍矿制备羰基镍粉的系统结构示意图;
图6是根据本发明又一个实施例的利用红土镍矿制备羰基镍粉的系统结构示意图。
发明详细描述
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明的一个方面,本发明提出了一种利用红土镍矿制备羰基镍粉的方法。根据本发明的实施例,该方法包括:(1)将红土镍矿、高硫煤和添加剂进行混合造球,以便得到混合球团;(2)将所述混合球团进行还原-熔分处理,以便得到含镍铁水和尾渣;(3)将所述含镍铁水进行制粒处理,以便得到镍铁合金颗粒;(4)将所述镍铁合金颗粒与一氧化碳接触,以便得到含有羰基镍、羰基铁和一氧化碳的气态混合物以及铁粉;(5)将所述含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,以便得到气态羰基镍和第一一氧化碳;以及(6)将所述气态羰基镍进行分解处理,以便分别得到羰基镍粉和第二一氧化碳。发明人发现,采用红土镍矿作为制备羰基镍粉的原料,虽然红土镍矿中镍的品位较低,但是采用本发明的方法仍可以制备得到高纯度的羰基镍粉,从而在拓宽原料来源的同 时降低羰基镍粉的生产成本,同时通过采用高硫煤作为还原剂,不仅可以有效还原红土镍矿中的镍、铁氧化物,而且通过熔分处理可以使得硫进入含镍铁水中而活化镍,即得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程,其次通过对所得含镍铁水进行制粒,可以显著提高其与一氧化碳的接触面积,从而进一步提高羰基化合物合成率,另外采用廉价的高硫煤作为还原剂,不仅可以有效降低生产成本,而且可以使得其中的硫作为有益成分被应用到羰基化合物合成过程中,且在羰基化合物合成过程中不产生气态含硫物,不会造成大气污染。
下面参考图1-3对本发明实施例的利用红土镍矿制备羰基镍粉的方法进行详细描述。根据本发明的实施例,该方法包括:
S100:将红土镍矿、高硫煤和添加剂进行混合造球
根据本发明的实施例,将红土镍矿、高硫煤和添加剂进行混合造球,从而可以得到混合球团。发明人发现,采用红土镍矿作为制备羰基镍粉的原料,虽然红土镍矿中镍的品位较低,但是采用本发明的方法仍可以制备得到高纯度的羰基镍粉(镍含量高于99%以上),从而在拓宽原料来源的同时降低羰基镍粉的生产成本,并且所得铁粉中铁含量高达85~99wt%,同时通过采用高硫煤作为还原剂,不仅可以有效还原红土镍矿中的镍、铁氧化物,而且可以得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程,另外高硫煤资源储量丰富,但由于其会引发严重的硫污染和酸雨等环境问题而难以得到有效的利用,而本发明采用高硫煤作为还原剂,不仅可以有效降低生产成本,而且高硫煤不需要经过脱硫技术处理,反而可以使得其中的硫作为有益成分被应用到羰基化合物合成过程中,且在羰基化合物合成过程中不产生气态含硫物,不会造成大气污染。
根据本发明的一个实施例,红土镍矿、高硫煤和添加剂的混合比例并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,红土镍矿、高硫煤和添加剂可以按照质量比为100:5~25:3~15进行混合。发明人发现,若高硫煤的添加量过低,则一方面影响金属化球团的还原效果,另一方面,会导致镍铁合金颗粒的硫含量低而影响其羰化活性,不利于羰基合成反应进行,而若高硫煤的添加量过高,并不能提高最终产品技术指标,且会造成高硫煤资源浪费,提高生产成本,而添加剂的用量旨在辅助红土镍矿中镍的还原,试验中发现过高或过低的用量都会降低镍的还原效果。具体的,在将红土镍矿、高硫煤和添加剂混合之前,预先对红土镍矿、高硫煤和添加剂进行粉碎。
根据本发明的再一个实施例,红土镍矿中镍含量并不受特别限制,本领域技术人员可 以根据实际需要进行选择,根据本发明的具体实施例,红土镍矿中镍含量为0.5~3.0wt%。由此,现有合成工艺中为了得到高纯度的羰基镍粉,通常需要采用含镍含量较高的镍矿,导致原料生产成本较高,不易采购,而本发明对中镍矿中镍品位要求门槛较低,采用镍含量仅为0.5~3.0wt%的红土镍矿作为制备羰基镍粉的原料,可以制备得到高纯度的羰基镍粉,从而在拓宽镍生产原料来源的同时显著降低原料成本。
根据本发明的又一个实施例,高硫煤的中的硫含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,高硫煤中硫含量可以高于3wt%。发明人发现,采用该类型的高硫煤可以制备得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程。
根据本发明的又一个实施例,添加剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,添加剂可以为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。发明人发现,在红土镍矿的还原过程中,该类添加剂能从镁橄榄石或铁橄榄石中置换出NiO,以提高NiO的活度,从而显著降低还原冶炼温度,使得红土镍矿的还原条件大为改善,促进还原反应进行。
S200:将混合球团进行还原-熔分处理
根据本发明的实施例,将混合球团进行还原-熔分处理,从而可以得到含镍铁水和尾渣。发明人发现,通过熔分处理可以使得硫进入含镍铁水中而活化镍,即得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程。
根据本发明的一个实施例,将混合球团的还原-熔分处理可以采用还原装置和熔分装置的联用装置进行的,根据本发明的具体实施例,还原装置可以为选自转底炉、回转窑、车底炉和隧道窑中的至少一种,熔分装置可以为电弧炉、矿热炉和非电熔分炉,例如非电熔分炉可以为天然气熔分炉、煤制气熔分炉或燃油熔分炉。由此,可以使得硫进入含镍铁水中而活化镍,即得到高活性的镍铁合金颗粒。需要说明的是,本领域技术人员可以根据实际需要对还原和熔分处理的条件进行选择。
根据本发明的再一个实施例,含镍铁水中镍含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,含镍铁水中镍含量可以为5~45wt%。发明人发现,现有羰基镍合成工艺中为了得到高纯度的羰基镍粉,通常需要采用含镍量超过50wt%的铜镍合金或高纯氧化镍,导致原料生产成本较高,不易采购,而本发明对原料中镍品位要求门槛较低,采用镍含量仅为5~45wt%的镍铁合金颗粒作为羰基镍粉的合成原 料,可以制备得到高纯度的羰基镍粉,从而在拓宽镍生产原料来源的同时显著降低原料成本。
根据本发明的又一个实施例,镍铁合金颗粒中硫含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,镍铁合金颗粒中硫含量可以为2~5wt%。发明人发现,含镍合金颗粒中硫含量越高,使得所得镍铁合金颗粒中镍活性越高,从而越有利于羰基镍合成反应的快速进行,并且羰基镍合成率也较高,较现有技术在羰基镍合成步骤中加入气态含硫物作为催化剂相比,本发明并不需要额外加入催化剂,从而缩短了制备工艺流程,然而镍铁合金颗粒含硫量过高,对镍活性提高的不明显,此外,过高的硫含量会相应的提高配煤量,一方面会降低镍铁合金中镍的含量,另一方面也会造成原料煤的浪费。
S300:将含镍铁水进行制粒处理
根据本发明的实施例,将上述所得含镍铁水进行制粒处理,从而得到镍铁合金颗粒。发明人发现,通过对所得含镍铁水进行制粒,从而可以显著提高与一氧化碳的接触面积,进而进一步提高羰基化合物合成率。
根据本发明的又一个实施例,镍铁合金颗粒粒度并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,镍铁合金颗粒的粒径不大于0.5毫米。发明人发现,该粒径范围的镍铁合金活性较高,且在羰基镍合成过程中与一氧化碳接触面积较大,从而可以显著提高羰基镍的合成率。
S400:将镍铁合金颗粒与一氧化碳接触
根据本发明的实施例,将镍铁合金颗粒与一氧化碳逆流接触,从而可以得到铁粉以及含有羰基镍、羰基铁和一氧化碳的气态混合物。发明人发现,采用高活性的镍铁合金颗粒与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程。
根据本发明的一个实施例,镍铁合金颗粒与一氧化碳反应条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,镍铁合金颗粒与一氧化碳接触可以在100~200摄氏度和5~15MPa的条件下进行24~48小时。由此,可以显著提高羰基镍的合成率。
根据本发明的再一个实施例,镍铁合金颗粒与一氧化碳反应是在羰基合成装置中进行的,根据本发明的具体实施例,羰基合成装置中一氧化碳的体积含量不低于90%。发明人发现,生成羰基化合物的反应为可逆反应,而加入过量的一氧化碳使得反应的化学平衡向生成羰基化合物的方向移动,从而进一步提高羰基化合物合成率。
S500:将含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理
根据本发明的实施例,将含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,从而可以得到气态羰基镍和第一一氧化碳。由此,可以显著提高后续所得羰基镍粉的纯度。该步骤中,具体的,首先将含有羰基镍、羰基铁和一氧化碳的气态混合物进行冷凝处理,使得气态混合物中的羰基镍和羰基铁冷凝变为液体,而其中的一氧化碳则以气体形式存在,然后对所得含有羰基镍和羰基铁的液态混合物进行精馏处理,从而可以分离得到高纯度的气态羰基镍。需要说明的是,本领域技术人员可以根据实际需要对所采用冷凝和精馏的具体操作条件进行选择。
S600:将气态羰基镍进行分解处理
根据本发明的实施例,将气态羰基镍进行分解处理,从而可以分别得到羰基镍粉和第二一氧化碳。具体的,羰基镍不稳定,在加热时可以迅速分解为羰基镍粉和一氧化碳,从而可以得到高纯度的羰基镍粉镍。
根据本发明的一个实施例,分解处理的条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,分解处理可以在230~300摄氏度和0.01~0.05MPa的条件下进行的。发明人发现,该分解条件可以显著优于其他提高羰基镍的分解效率,从而可以得到羰基镍粉的纯度。
根据本发明实施例的利用红土镍矿制备羰基镍粉的方法采用红土镍矿作为制备羰基镍粉的原料,虽然红土镍矿中镍的品位较低,但是采用本发明的方法仍可以制备得到高纯度的羰基镍粉,从而在拓宽原料来源的同时降低羰基镍粉的生产成本,同时通过采用高硫煤作为还原剂,不仅可以有效还原红土镍矿中的镍、铁氧化物,而且通过熔分处理可以使得硫进入含镍铁铁水中而活化镍,即得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程,其次通过对所得含镍铁水进行制粒,可以显著提高其与一氧化碳的接触面积,从而进一步提高羰基化合物合成率,另外采用廉价的高硫煤作为还原剂,不仅可以有效降低生产成本,而且可以使得其中的硫作为有益成分被应用到羰基化合物合成过程中,且在羰基化合物合成过程中不产生气态含硫物,不会造成大气污染。
参考图2,根据本发明实施例的利用红土镍矿制备羰基镍粉的方法进一步包括:
S700:将第一一氧化碳返回S400与镍铁合金颗粒接触。
根据本发明的实施例,将提纯处理所得第一一氧化碳返回至S400与镍铁合金颗粒接触,从而可以显著提高一氧化碳循环利用率。
参考图3,根据本发明实施例的利用红土镍矿制备羰基镍粉的方法进一步包括:
S800:将第二一氧化碳返回S400与镍铁合金颗粒接触
根据本发明的实施例,将分解处理所得第二一氧化碳返回至S400与镍铁合金颗粒接触,从而进一步提高一氧化碳循环利用率。
在本发明的另一个方面,本发明提出了一种利用红土镍矿制备羰基镍粉的系统。根据本发明的实施例,该系统包括:混合造球装置,所述混合造球装置具有红土镍矿入口、高硫煤入口、添加剂入口和混合球团出口,且适于将红土镍矿、高硫煤和添加剂进行混合造球,以便得到混合球团;还原-熔分装置,所述还原-熔分装置具有混合球团入口、含镍铁水出口和尾渣出口,所述混合球团入口和所述混合球团出口相连,且适于将所述混合球团进行还原-熔分处理,以便得到含镍铁水和尾渣;制粒装置,所述制粒装置具有含镍铁水入口和镍铁合金颗粒出口,所述含镍铁水入口与所述含镍铁水出口相连,且适于将所述含镍铁水进行制粒处理,以便得到镍铁合金颗粒;羰基合成装置,所述羰基合成装置具有一氧化碳入口、镍铁合金颗粒入口和气态混合物出口,所述镍铁合金颗粒入口和所述镍铁合金颗粒出口相连,且适于将所述镍铁合金颗粒与一氧化碳接触,以便得到含有羰基镍、羰基铁和一氧化碳的气态混合物以及铁粉;提纯装置,所述提纯装置具有气态混合物入口、气态羰基镍出口和第一一氧化碳出口所述气态混合物入口与所述气态混合物出口相连,且适于将所述含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,以便得到气态羰基镍和第一一氧化碳;以及分解装置,所述分解装置具有气态羰基镍入口、羰基镍粉出口和第二一氧化碳出口,所述气态羰基镍入口和所述气态羰基镍出口相连,且适于将所述气态羰基镍进行分解处理,以便分别得到羰基镍粉和第二一氧化碳。发明人发现,采用红土镍矿作为制备羰基镍粉的原料,虽然红土镍矿中镍的品位较低,但是采用本发明的系统仍可以制备得到高纯度的羰基镍粉,从而在拓宽原料来源的同时降低羰基镍粉的生产成本,同时通过采用高硫煤作为还原剂,不仅可以有效还原红土镍矿中的镍、铁氧化物,而且通过熔分处理可以使得硫进入含镍铁铁水中而活化镍,即得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程,其次通过对所得含镍铁水进行制粒,可以显著提高其与一氧化碳的接触面积,从而进一步提高羰基化合物合成率,另外采用廉价的高硫煤作为还原剂,不仅可以有效降低生产成本,而且可以使得其中的硫作为有益成分被应用到羰基化合物合成过程中,且在羰基化合物合成过程中不产生气态含硫物,不会造成大气污染。
下面参考图4-6对本发明实施例的利用红土镍矿制备羰基镍粉的系统进行详细描述。根据本发明的实施例,该系统包括:
混合造球装置100:根据本发明的实施例,混合造球装置100具有红土镍矿入口101、高硫煤入口102、添加剂入口103和混合球团出口104,且适于将红土镍矿、高硫煤和添加 剂进行混合造球,从而可以得到混合球团。发明人发现,采用红土镍矿作为制备羰基镍粉的原料,虽然红土镍矿中镍的品位较低,但是采用本发明的系统仍可以制备得到高纯度的羰基镍粉(镍含量高于99%以上),从而在拓宽原料来源的同时降低羰基镍粉的生产成本,并且所得铁粉中铁含量高达85~99wt%,同时通过采用高硫煤作为还原剂,不仅可以有效还原红土镍矿中的镍、铁氧化物,而且可以得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程,另外高硫煤资源储量丰富,但由于其会引发严重的硫污染和酸雨等环境问题而难以得到有效的利用,而本发明采用高硫煤作为还原剂,不仅可以有效降低生产成本,而且高硫煤不需要经过脱硫技术处理,反而可以使得其中的硫作为有益成分被应用到羰基化合物合成过程中,且在羰基化合物合成过程中不产生气态含硫物,不会造成大气污染。具体的,本发明中所采用的混合造球装置可以为混合装置和造球装置的联用装置。
根据本发明的一个实施例,红土镍矿、高硫煤和添加剂的混合比例并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,红土镍矿、高硫煤和添加剂可以按照质量比为100:5~25:3~15进行混合。发明人发现,若高硫煤的添加量过低,则一方面影响金属化球团的还原效果,另一方面,会导致镍铁合金颗粒的硫含量低而影响其羰化活性,不利于羰基合成反应进行,而若高硫煤的添加量过高,并不能提高最终产品技术指标,且会造成高硫煤资源浪费,提高生产成本,而添加剂的用量旨在辅助红土镍矿中镍的还原,试验中发现过高或过低的用量都会降低镍的还原效果。具体的,在将红土镍矿、高硫煤和添加剂混合之前,预先对红土镍矿、高硫煤和添加剂进行粉碎。
根据本发明的再一个实施例,红土镍矿中镍含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,红土镍矿中镍含量为0.5~3.0wt%。由此,现有合成工艺中为了得到高纯度的羰基镍粉,通常需要采用含镍含量较高的镍矿,导致原料生产成本较高,不易采购,而本发明对中镍矿中镍品位要求门槛较低,采用镍含量仅为0.5~3.0wt%的红土镍矿作为制备羰基镍粉的原料,可以制备得到高纯度的羰基镍粉,从而在拓宽镍生产原料来源的同时显著降低原料成本。
根据本发明的又一个实施例,高硫煤的中的硫含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,高硫煤中硫含量可以高于3wt%。发明人发现,采用该类型的高硫煤可以制备得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程。
根据本发明的又一个实施例,添加剂的具体类型并不受特别限制,本领域技术人员可 以根据实际需要进行选择,根据本发明的具体实施例,添加剂可以为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。发明人发现,在红土镍矿的还原过程中,该类添加剂能从镁橄榄石或铁橄榄石中置换出NiO,以提高NiO的活度,从而显著降低还原冶炼温度,使得红土镍矿的还原条件大为改善,促进还原反应进行。
还原-熔分装置200:根据本发明的实施例,还原-熔分装置200具有混合球团入口201、含镍铁水出口202和尾渣出口203,混合球团入口201和混合球团出口104相连,且适于将混合球团进行还原-熔分处理,从而可以得到含镍铁水和尾渣。发明人发现,通过熔分处理可以使得硫进入含镍铁水中而活化镍,即得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程。
根据本发明的一个实施例,将混合球团的还原-熔分处理可以采用还原装置和熔分装置的联用装置进行的,根据本发明的具体实施例,还原装置可以为选自转底炉、回转窑、车底炉和隧道窑中的至少一种,熔分装置可以为电弧炉、矿热炉和非电熔分炉,例如非电熔分炉可以为天然气熔分炉、煤制气熔分炉或燃油熔分炉。由此,可以使得硫进入含镍铁水中而活化镍,即得到高活性的镍铁合金颗粒。需要说明的是,本领域技术人员可以根据实际需要对还原和熔分处理的条件进行选择。
根据本发明的再一个实施例,含镍铁水中镍含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,含镍铁水中镍含量可以为5~45wt%。发明人发现,现有羰基镍合成工艺中为了得到高纯度的羰基镍粉,通常需要采用含镍量超过50wt%的铜镍合金或高纯氧化镍,导致原料生产成本较高,不易采购,而本发明对原料中镍品位要求门槛较低,采用镍含量仅为5~45wt%的镍铁合金颗粒作为羰基镍粉的合成原料,可以制备得到高纯度的羰基镍粉,从而在拓宽镍生产原料来源的同时显著降低原料成本。
根据本发明的又一个实施例,镍铁合金颗粒中硫含量并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,镍铁合金颗粒中硫含量可以为2~5wt%。发明人发现,含镍合金颗粒中硫含量越高,使得所得镍铁合金颗粒中镍活性越高,从而越有利于羰基镍合成反应的快速进行,并且羰基镍合成率也较高,较现有技术在羰基镍合成步骤中加入气态含硫物作为催化剂相比,本发明并不需要额外加入催化剂,从而缩短了制备工艺流程,然而镍铁合金颗粒含硫量过高,对镍活性提高的不明显,此外,过高的硫含量会相应的提高配煤量,一方面会降低镍铁合金中镍的含量,另一方面也会造成原料煤的浪费。
制粒装置300:根据本发明的实施例,制粒装置300具有含镍铁水入口301和镍铁合金 颗粒出口302,含镍铁水入口301与含镍铁水出口202相连,且适于将上述所得含镍铁水进行制粒处理,从而得到镍铁合金颗粒。发明人发现,通过对所得含镍铁水进行制粒,从而可以显著提高与一氧化碳的接触面积,进而进一步提高羰基化合物合成率。
根据本发明的又一个实施例,镍铁合金颗粒粒度并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,镍铁合金颗粒的粒径不大于0.5毫米。发明人发现,该粒径范围的镍铁合金活性较高,且在羰基镍合成过程中与一氧化碳接触面积较大,从而可以显著提高羰基镍的合成率。
羰基合成装置400:根据本发明的实施例,羰基合成装置400具有一氧化碳入口401、镍铁合金颗粒入口402、气态混合物出口403和铁粉出口404,镍铁合金颗粒入口402和镍铁合金颗粒出口302相连,且适于将镍铁合金颗粒与一氧化碳逆流接触,从而可以得到铁粉以及含有羰基镍、羰基铁和一氧化碳的气态混合物。发明人发现,采用高活性的镍铁合金颗粒与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程。
根据本发明的一个实施例,镍铁合金颗粒与一氧化碳反应条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,镍铁合金颗粒与一氧化碳接触可以在100~200摄氏度和5~15MPa的条件下进行24~48小时。由此,可以显著提高羰基镍的合成率。
根据本发明的再一个实施例,镍铁合金颗粒与一氧化碳反应是在羰基合成装置中进行的,根据本发明的具体实施例,羰基合成装置中一氧化碳的体积含量不低于90%。发明人发现,生成羰基化合物的反应为可逆反应,而加入过量的一氧化碳使得反应的化学平衡向生成羰基化合物的方向移动,从而进一步提高羰基化合物合成率。
提纯装置500:根据本发明的实施例,提纯装置500具有气态混合物入口501、气态羰基镍出口502和第一一氧化碳出口503,气态混合物入口501与气态混合物出口403相连,且适于将含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,从而可以得到气态羰基镍和第一一氧化碳。由此,可以显著提高后续所得羰基镍粉的纯度。该步骤中,具体的,首先将含有羰基镍、羰基铁和一氧化碳的气态混合物进行冷凝处理,使得气态混合物中的羰基镍和羰基铁冷凝变为液体,而其中的一氧化碳则以气体形式存在,然后对所得含有羰基镍和羰基铁的液态混合物进行精馏处理,从而可以分离得到高纯度的气态羰基镍。需要说明的是,本领域技术人员可以根据实际需要对所采用冷凝和精馏的具体操作条件进行选择。
分解装置600:根据本发明的实施例,分解装置600具有气态羰基镍入口601、镍铁合金出口602和第二一氧化碳出口603,气态羰基镍入口601和气态羰基镍出口502相连,且 适于将气态羰基镍进行分解处理,从而可以分别得到羰基镍粉和一氧化碳。具体的,羰基镍不稳定,在加热时可以迅速分解为羰基镍粉和一氧化碳,从而可以得到高纯度的羰基镍粉镍。
根据本发明的一个实施例,分解处理的条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,分解处理可以在230~300摄氏度和0.01~0.05MPa的条件下进行的。发明人发现,该分解条件可以显著优于其他提高羰基镍的分解效率,从而可以得到羰基镍粉的纯度。
根据本发明实施例的利用红土镍矿制备羰基镍粉的系统采用红土镍矿作为制备羰基镍粉的原料,虽然红土镍矿中镍的品位较低,但是采用本发明的系统仍可以制备得到高纯度的羰基镍粉,从而在拓宽原料来源的同时降低羰基镍粉的生产成本,同时通过采用高硫煤作为还原剂,不仅可以有效还原红土镍矿中的镍、铁氧化物,而且通过熔分处理可以使得硫进入含镍铁铁水中而活化镍,即得到高活性的镍铁合金颗粒,从而使其与一氧化碳直接接触即可反应生成羰基化合物,并且羰基化合物合成率较高,与现有技术相比,本发明在羰基化合物合成过程中并不需要加入催化剂,从而缩短了工艺流程,其次通过对所得含镍铁水进行制粒,可以显著提高其与一氧化碳的接触面积,从而进一步提高羰基化合物合成率,另外采用廉价的高硫煤作为还原剂,不仅可以有效降低生产成本,而且可以使得其中的硫作为有益成分被应用到羰基化合物合成过程中,且在羰基化合物合成过程中不产生气态含硫物,不会造成大气污染。
参考图5,根据本发明的一个实施例,第一一氧化碳出口503与一氧化碳入口401相连,且适于将提纯装置500所得第一一氧化碳返回至羰基合成装置400与镍铁合金颗粒接触,从而可以显著提高一氧化碳循环利用率。
参考图6,根据本发明的再一个实施例,第二一氧化碳出口603与一氧化碳入口401相连,且适于将分解装置600所得第二一氧化碳返回至羰基合成装置300与镍铁合金颗粒接触,从而可以显著提高一氧化碳循环利用率。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
取表1所示成分的红土镍矿,配入硫含量为3.5%的高硫煤、石灰石混匀后制球并烘干,其中,红土镍矿、高硫煤和石灰石的混合质量比例为100:15:10,干燥后的混合球团布入转底炉进行还原,还原条件1300℃,时间35min,还原后的金属化球团直接热送至燃气熔分炉,熔分温度为1550℃,得到含镍铁水(成分如表2所示),然后将所得含镍铁水在制粒器 内制成平均粒径为0.25mm的镍铁合金颗粒,并进行干燥储存作为羰基原料,然后在羰基反应器内,将镍铁合金颗粒与CO逆流接触发生羰化反应生成含有羰基镍、羰基铁和一氧化碳的气态混合物,羰化条件为:压力7.5MPa,温度185℃,时间35h,CO气体浓度90.5%,将含有羰基镍、羰基铁和一氧化碳的气态混合物输送至冷凝器内进行冷凝处理,其中羰基镍和羰基铁被冷凝为液态,而一氧化碳以气态形式存在,并将分离所得的一氧化碳返回羰基反应器内继续使用,而将所得含有羰基镍和羰基铁的液态混合物再送入精馏塔进行精馏得到高纯气态羰基镍,最后将气态羰基镍送入分解装置进行分解得到一氧化碳和镍含量为99.82wt%的羰基镍粉,其中羰基镍粉中主要杂质为C和Fe,并将分解所得一氧化碳返回羰基反应器内继续使用。
实施例2
取表1所示成分的红土镍矿,配入硫含量为4.5%的高硫煤、碳酸钠混匀后制球并烘干,其中,红土镍矿、高硫煤和碳酸钠的混合质量比例为100:10:15,干燥后的混合球团布入回转窑进行还原,还原条件900℃,时间65min,还原后的金属化球团直接热送至电炉熔分,熔分温度为1550℃,得到含镍铁水(成分如表2所示),然后将所得含镍铁水在制粒器内制成平均粒径为0.15mm的镍铁合金颗粒,并进行干燥储存作为羰基原料,然后在羰基反应器内,将镍铁合金颗粒与CO逆流接触发生羰化反应生成含有羰基镍、羰基铁和一氧化碳的气态混合物,羰化条件为:压力12.5MPa,温度135℃,时间46h,CO气体浓度92%,将含有羰基镍、羰基铁和一氧化碳的气态混合物输送至冷凝器内进行冷凝处理,其中羰基镍和羰基铁被冷凝为液态,而一氧化碳以气态形式存在,并将分离所得的一氧化碳返回羰基反应器内继续使用,而将所得含有羰基镍和羰基铁的液态混合物再送入精馏塔进行精馏得到高纯气态羰基镍,最后将气态羰基镍送入分解装置进行分解得到一氧化碳和镍含量为99.54wt%的羰基镍粉,其中羰基镍粉中主要杂质为C和Fe,并将分解所得一氧化碳返回羰基反应器内继续使用。
实施例3
取表1所示成分的红土镍矿,配入硫含量为6%的高硫煤、碳酸钠混匀后制球并烘干,其中,红土镍矿、高硫煤和碳酸钠的混合质量比例为100:20:5,干燥后的混合球团布入隧道窑进行还原,还原条件1220℃,时间40min,还原后的金属化球团直接热送至燃气熔分炉,熔分温度为1550℃,得到含镍铁水(成分如表2所示),然后将所得含镍铁水在制粒器内制成平均粒径为0.05mm的镍铁合金颗粒,并进行干燥储存作为羰基原料,然后在羰基反应器内,将镍铁合金颗粒与CO逆流接触发生羰化反应生成含有羰基镍、羰基铁和一氧化碳的气态混合物,羰化条件为:压力15MPa,温度155℃,时间29h,CO气体浓度90.0%,将含有羰基镍、羰基铁和一氧化碳的气态混合物输送至冷凝器内进行冷凝处理,其中羰基镍和 羰基铁被冷凝为液态,而一氧化碳以气态形式存在,并将分离所得的一氧化碳返回羰基反应器内继续使用,而将所得含有羰基镍和羰基铁的液态混合物再送入精馏塔进行精馏得到高纯气态羰基镍,最后将气态羰基镍送入分解装置进行分解得到一氧化碳和镍含量为99.82wt%的羰基镍粉,其中羰基镍粉中主要杂质为C和Fe,并将分解所得一氧化碳返回羰基反应器内继续使用。
表1 实施例1~3红土镍矿主要成分,wt.%
实施例 TFe FeO CaO MgO SiO2 Al2O3 MnO Cr2O3 Ni Co
1 16.71 0.37 0.87 20.17 36.28 3.73 1.15 1.11 1.87 0.054
2 19.34 0.34 3.80 9.66 35.19 6.09 0.55 1.51 1.78 0.063
3 13.33 0.76 0.12 25.31 38.26 2.30 0.35 1.12 1.85 0.055
表2 实施例1~3含镍铁水成分主要成分,wt.%
实施例 TFe Ni Co S Si Cr Mn P C
1 75.99 22.57 0.93 2.53 0.01 0.06 0.01 0.051 0.05
2 78.19 20.28 0.63 3.28 0.35 0.08 0.01 0.046 0.11
3 73.15 24.19 0.60 4.37 0.19 0.09 0.04 0.039 0.09
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

  1. 一种利用红土镍矿制备羰基镍粉的方法,其特征在于,包括:
    (1)将红土镍矿、高硫煤和添加剂进行混合造球,以便得到混合球团;
    (2)将所述混合球团进行还原-熔分处理,以便得到含镍铁水和尾渣;
    (3)将所述含镍铁水进行制粒处理,以便得到镍铁合金颗粒;
    (4)将所述镍铁合金颗粒与一氧化碳接触,以便得到含有羰基镍、羰基铁和一氧化碳的气态混合物以及铁粉;
    (5)将所述含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,以便得到气态羰基镍和第一一氧化碳;以及
    (6)将所述气态羰基镍进行分解处理,以便分别得到羰基镍粉和第二一氧化碳。
  2. 根据权利要求1所述的方法,其特征在于,进一步包括:
    (7)将所述第一一氧化碳返回步骤(4)与所述镍铁合金颗粒接触。
  3. 根据权利要求1所述的方法,其特征在于,进一步包括:
    (8)将所述第二一氧化碳返回至步骤(4)与所述镍铁合金颗粒接触。
  4. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述高硫煤中硫含量高于3wt%。
  5. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述添加剂为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。
  6. 一种利用红土镍矿制备羰基镍粉的系统,其特征在于,包括:
    混合造球装置,所述混合造球装置具有红土镍矿入口、高硫煤入口、添加剂入口和混合球团出口,且适于将红土镍矿、高硫煤和添加剂进行混合造球,以便得到混合球团;
    还原-熔分装置,所述还原-熔分装置具有混合球团入口、含镍铁水出口和尾渣出口,所述混合球团入口和所述混合球团出口相连,且适于将所述混合球团进行还原-熔分处理,以便得到含镍铁水和尾渣;
    制粒装置,所述制粒装置具有含镍铁水入口和镍铁合金颗粒出口,所述含镍铁水入口与所述含镍铁水出口相连,且适于将所述含镍铁水进行制粒处理,以便得到镍铁合金颗粒;
    羰基合成装置,所述羰基合成装置具有一氧化碳入口、镍铁合金颗粒入口、气态混合物出口和铁粉出口,所述镍铁合金颗粒入口和所述镍铁合金颗粒出口相连,且适于将所述镍铁合金颗粒与一氧化碳接触,以便得到含有羰基镍、羰基铁和一氧化碳的气态混合物以及铁粉;
    提纯装置,所述提纯装置具有气态混合物入口、气态羰基镍出口和第一一氧化碳出口 所述气态混合物入口与所述气态混合物出口相连,且适于将所述含有羰基镍、羰基铁和一氧化碳的气态混合物进行提纯处理,以便得到气态羰基镍和第一一氧化碳;以及
    分解装置,所述分解装置具有气态羰基镍入口、羰基镍粉出口和第二一氧化碳出口,所述气态羰基镍入口和所述气态羰基镍出口相连,且适于将所述气态羰基镍进行分解处理,以便分别得到羰基镍粉和第二一氧化碳。
  7. 根据权利要求6所述的系统,其特征在于,所述第一一氧化碳出口与所述一氧化碳入口相连,且适于将所述第一一氧化碳返回所述羰基合成装置与所述镍铁合金颗粒接触。
  8. 根据权利要求6所述的系统,其特征在于,所述第二一氧化碳出口与所述一氧化碳入口相连,且适于将所述第二一氧化碳返回所述羰基合成装置与所述镍铁合金颗粒接触。
PCT/CN2015/086747 2015-08-12 2015-08-12 利用红土镍矿制备羰基镍粉的方法和系统 WO2017024552A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086747 WO2017024552A1 (zh) 2015-08-12 2015-08-12 利用红土镍矿制备羰基镍粉的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086747 WO2017024552A1 (zh) 2015-08-12 2015-08-12 利用红土镍矿制备羰基镍粉的方法和系统

Publications (1)

Publication Number Publication Date
WO2017024552A1 true WO2017024552A1 (zh) 2017-02-16

Family

ID=57982998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086747 WO2017024552A1 (zh) 2015-08-12 2015-08-12 利用红土镍矿制备羰基镍粉的方法和系统

Country Status (1)

Country Link
WO (1) WO2017024552A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2354499A (en) * 1998-04-06 1999-10-14 Billiton S.A. Limited Upgrading of nickel laterite ores
CN102041378A (zh) * 2010-11-11 2011-05-04 中南大学 一种从镍红土矿富集镍钴的氯化离析方法
CN102094093A (zh) * 2011-03-04 2011-06-15 徐伟 一种回转窑直接还原红土镍矿生产镍铁合金粒的方法
CN102367512A (zh) * 2011-09-07 2012-03-07 王号德 一种红土镍矿含碳球团深还原磁选镍铁方法
CN102758085A (zh) * 2012-07-17 2012-10-31 中国钢研科技集团有限公司 用红土镍矿低温冶炼生产镍铁合金的方法
CN103695634A (zh) * 2014-01-10 2014-04-02 重庆大学 一种低品位红土镍矿半熔融态生产镍铁合金的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2354499A (en) * 1998-04-06 1999-10-14 Billiton S.A. Limited Upgrading of nickel laterite ores
CN102041378A (zh) * 2010-11-11 2011-05-04 中南大学 一种从镍红土矿富集镍钴的氯化离析方法
CN102094093A (zh) * 2011-03-04 2011-06-15 徐伟 一种回转窑直接还原红土镍矿生产镍铁合金粒的方法
CN102367512A (zh) * 2011-09-07 2012-03-07 王号德 一种红土镍矿含碳球团深还原磁选镍铁方法
CN102758085A (zh) * 2012-07-17 2012-10-31 中国钢研科技集团有限公司 用红土镍矿低温冶炼生产镍铁合金的方法
CN103695634A (zh) * 2014-01-10 2014-04-02 重庆大学 一种低品位红土镍矿半熔融态生产镍铁合金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, BINGGEN;: "The development, production and application of hydroxy nickel powder at home and abroad", SICHUAN NONFERROUS METALS, 31 August 1997 (1997-08-31), pages 7 *

Similar Documents

Publication Publication Date Title
CN105033269B (zh) 利用红土镍矿制备羰基镍粉的方法和系统
CN205011396U (zh) 利用红土镍矿制备羰基镍粉的系统
CN108384579B (zh) 一种生物质气化与直接还原铁联产用添加剂及其应用
CN105033264B (zh) 利用红土镍矿制备羰基镍粉的方法和系统
CN106086467A (zh) 一种利用红土镍矿提取氧化镍的方法及系统
EP3099830B1 (en) Composite iron pellets
CA3021243C (en) Composite iron pellets and methods of making same
CN102350355A (zh) 铁系水煤气变换催化剂及其制备方法
CN107999082A (zh) 一种铜系苯乙酮加氢催化剂的制备方法及其应用
WO2017024551A1 (zh) 利用红土镍矿制备羰基镍粉的方法和系统
CN105198008B (zh) 利用红土镍矿制备羰基镍粉的方法和系统
CN105170989A (zh) 利用镍铁合金制备羰基镍粉的方法和系统
CN102070205A (zh) 一种羰基镍粉的制备方法
CN105289624B (zh) 一种低压合成氨催化剂及其制备方法
CN101676026B (zh) 一种铁系氨合成催化剂及制备方法
CN204892962U (zh) 利用红土镍矿制备羰基镍粉的系统
CN103418406A (zh) 烯烃氨氧化反应的低温高负荷催化剂
CN105033262A (zh) 利用镍铁粉制备羰基镍粉的方法和系统
WO2017024552A1 (zh) 利用红土镍矿制备羰基镍粉的方法和系统
CN204892964U (zh) 利用镍铁合金制备羰基镍粉的系统
CN206143291U (zh) 一种利用红土镍矿提取氧化镍的系统
CN108658787A (zh) 乙胺的制备方法
CN204892961U (zh) 利用镍铁粉制备羰基镍粉的系统
CN103480368A (zh) 一种低碳混合气催化燃烧脱氧催化剂及其制备方法
CN102757324A (zh) 一种甲醇富氧生产甲醛及甲醛尾气利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900750

Country of ref document: EP

Kind code of ref document: A1