WO2017024533A1 - 一种评价致密气藏储层应力敏感性方法 - Google Patents

一种评价致密气藏储层应力敏感性方法 Download PDF

Info

Publication number
WO2017024533A1
WO2017024533A1 PCT/CN2015/086681 CN2015086681W WO2017024533A1 WO 2017024533 A1 WO2017024533 A1 WO 2017024533A1 CN 2015086681 W CN2015086681 W CN 2015086681W WO 2017024533 A1 WO2017024533 A1 WO 2017024533A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
effective permeability
gas
tight gas
gas reservoir
Prior art date
Application number
PCT/CN2015/086681
Other languages
English (en)
French (fr)
Inventor
赵龙
Original Assignee
深圳朝伟达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳朝伟达科技有限公司 filed Critical 深圳朝伟达科技有限公司
Priority to PCT/CN2015/086681 priority Critical patent/WO2017024533A1/zh
Publication of WO2017024533A1 publication Critical patent/WO2017024533A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the invention relates to the field of crude oil pipelines, and in particular to a method for evaluating stress sensitivity of tight gas reservoirs.
  • Tight gas reservoirs have complex compact lithology, variable gas-bearing strata, strong stress sensitivity, high cost of conventional coring, high difficulty and poor accuracy, and pressure release during coring does not represent the original state.
  • Aiming at the problem of stress sensitivity evaluation of tight gas reservoirs a research method for stress sensitivity assessment of reservoirs based on pressure recovery well test interpretation + production data dynamic analysis + well test formula is proposed for the first time. It opened a new situation in the evaluation of stress sensitivity of tight gas reservoirs. Improve the reliability and evaluation efficiency of stress sensitivity assessment methods for tight gas reservoirs.
  • the object of the present invention is to provide a new method for stress sensitivity assessment of tight gas reservoirs in oil and gas exploration and development, to solve the key technical problems in the stress sensitivity evaluation of tight gas reservoirs, and to use the test data to evaluate tight gas.
  • the reservoir stress sensitivity is more accurate and effective, and it is a comprehensive evaluation of the gas layer and gas test, providing a scientific theoretical basis for the exploration and development of tight gas layers. Thereby improving the economic benefits of exploration and development of tight gas reservoirs.
  • the stress sensitivity is strong and the permeability is low.
  • its effective permeability reaches the maximum value.
  • the formation pressure is greater than or less than this value, the effective permeability will decrease.
  • the pressure profile is interpreted by the pressure recovery well test and the dynamic interpretation of the Topaze software gas well; the effective permeability is calculated from the gas production in the production dynamic data by the slope formula of the radial flow straight line segment and the inverse of the plane radial flow production formula.
  • a series of formation pressures and effective permeability maps From the figure, a certain formation pressure is used as the boundary point; and because the gas well adopts exhaustive mining, the data of less than one formation pressure is selected for linear regression analysis to obtain the regression formula.
  • the formula is calculated and predicted, and compared with the actual effective permeability.
  • the test formula predicts the rational permeability and determines the average relative error. Gradually establish the relationship between formation pressure and effective permeability, and continuously improve the reliability of stress sensitivity caused by tight gas reservoirs. Finally, the regression formula is used to predict the effective permeability.
  • the invention has the beneficial effects that the quantitative sensitivity of the tight gas reservoir is evaluated by using the quantitative sensitivity assessment of the tight gas reservoir, the method is scientific, reasonable and practical, and the tight gas layer is more accurate and meets the tight gas layer. Discover and evaluate the production needs of the gas layer.
  • Figure 1 is a plot of formation pressure and effective permeability for a tight gas reservoir.
  • the critical state determination and safety margin determination method of the crude oil pipeline during operation are shown in Fig. 2.
  • a crude oil pipeline in China is evaluated below the critical mass probability, and the method is adapted to the on-site production. The conclusion.
  • the average value of the fluctuation stop time, pipeline output, and outbound temperature is traversed within the upper and lower limits of the sampling according to the step size.
  • the outbound temperature should not be lower than 77.65. °C, which is the critical value of the outbound temperature.
  • Sensitivity analysis was carried out for each influencing factor, and the change of each factor was compared by 10% and 20%, corresponding to the change range of the probability of lower than the critical mass, so as to determine the contribution of each factor to the flow safety.
  • the results are shown in Table 3 and Table 4. .
  • the comparative analysis shows that the influence of outbound temperature change on the probability of lower than the critical mass is the most significant.
  • the influence of the change of ground temperature on the probability of lower than the critical mass is second, and the influence of the change of wax thickness on the probability of lower than the critical mass. small;
  • the outbound temperature of the pipeline in March is 75 °C, the ground temperature is 4.3 °C, and the waxing thickness is 2.587 mm. From this, the probability that the operating loss is lower than the critical mass is predicted to be 0.0964, and the probability that the operating transmission is lower than the critical mass is less than 0.01.
  • the safety production requirements require that the pipeline is in a low-load operation state, and the pipeline is likely to enter an unstable working area. It is recommended to take measures to adjust the current conveying process parameters.
  • the invention can determine whether the pipeline is in a critical state during operation, thereby obtaining a safety margin of each influencing factor, and providing technical support for the fluidity safety evaluation. It can reliably and accurately determine the critical state of crude oil pipeline operation and determine the safety margin.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pipeline Systems (AREA)

Abstract

一种评价致密气藏储层应力敏感性方法,包括:对油气井模型进行压力恢复试井解释,获取致密气藏储层的压力模型;以及获取气井模型的有效渗透率;对压力模型和气井模型的有效渗透率进行线性回归分析,获取压力与有效渗透率对应的回归模型;根据回归模型,预测出需要评价的致密气藏储层的有效渗透率;基于致密气藏储层的有效渗透率,对致密气藏储层进行评估。

Description

一种评价致密气藏储层应力敏感性方法 技术领域
本发明涉及原油管道领域,具体涉及一种评价致密气藏储层应力敏感性方法。
背景技术
致密气藏储层致密岩性复杂,含气层系多变,应力敏感性较强,常规取心成本高、难度大、准确性差,并在取心过程中存在压力释放不能代表原始状态。针对致密气藏储层应力敏感性评价难题,首次提出并建立一套基于压力恢复试井解释+生产数据动态分析+试井公式三位一体致密气藏储层应力敏感性评价研究方法,该方法的提出,打开了致密气藏储层应力敏感性评价新局面。提高致密气藏储层应力敏感性评价方法可靠性及评价效率。
发明内容
本发明的目的是提供油气勘探开发中一种新的致密气藏储层应力敏感性评价的方法,解决致密气藏储层应力敏感性评价中存在的关键技术问题,使运用测试资料评价致密气藏储层应力敏感性更精确有效,为气层综合评价、试气试采,为致密气层勘探开发提供科学理论依据。从而提高致密气藏勘探开发的经济效益。
对于气田储层应力敏感性较强,渗透性较低,当平均地层压力达到某一个数值时,它的有效渗透率达到最大值,地层压力大于或小于这个数值时,有效渗透率都会下降,因此,要找到这个地层压力值,把地层压力控制在这个区间内进行生产,确保气田正常开发。
1.压力恢复试井解释和Topaze软件气井动态解释
由压力恢复试井解释和Topaze软件气井动态解释的压力剖面;有效渗透率由生产动态数据中的产气量通过径向流动直线段的斜率公式和平面径向流产量公式反求的平均值,作一系列地层压力和有效渗透率图。从图中以某一个地层压力作为分界点;又因气井采用衰竭式开采,所以选择小于一个地层压力的数据进行线性回归分析,得出回归公式。
2.有效渗透率检验
对公式计算预测结果进行评估,与实际有效渗透率进行对比,检验公式预测有效渗透率合理性,求出平均相对误差。逐步建立地层压力与有效渗透率关系,不断提高致密气藏储层致的应力敏感性可靠性。最后利用回归公式进行有效渗透率预测。
本发明的有益效果是:采用定量致密气藏储层应力敏感性评价,解决了致密气层应力敏感性评价的定量难题,方法科学、合理、实用,致密气层评价更精确,满足致密气层发现和评价气层的生产需要。
附图说明
图1为致密气藏储层地层压力与有效渗透率图。
具体实施方式
本原油管道运行时临界状态判定及安全裕量确定方法如图2所示,通过本发明提出的方法,对国内某条原油管线进行了低于临界输量概率的评价,得出适应于现场生产的结论。
(1)参数报表的自动化提取及分析
收集并分析输量、进出站温度、压力、管外地温、总传热系数、管道埋深、等不确定性数据。
(2)分析各因素分布规律,确定影响因素的概率分布函数
某管道3月份数据规律分析结果如下:
Figure PCTCN2015086681-appb-000001
表1 某管道3月份数据分布规律分析结果
统计结果表明,出站温度、输量、地温等参数并非始终恒定不变,而是在某一数值附近小幅波动,并且基本服从正态分布规律;以出站温度为例,其概率分布函数为:
Figure PCTCN2015086681-appb-000002
(3)数值模拟次数设定及参数随机取样
首先设定模拟取样次数为20000次;设定输量上下限为其均值加减3倍方差,进出站温度上下限为0℃-90℃,地温上下限为-10℃-20℃,管道埋深上下限为0m-2.5m,总传热系数上下限为2W/(m2·℃)2-3W/(m2·℃);
之后从各影响因素概率分布函数生成相应的数值中随机取样。
(4)针对各影响因素,依次设定变量
以管道运行工况为基础,按阶梯大小在取样上下限范围内遍历波动停输时间、管道输量、出站温度等的平均值。
(5)通过数值模拟计算各个目标影响因素参数值下的低于临界输量概率
计算不同停输时间、管道输量、出站温度等参数下对应的低于临界输量概率,以出站温度为例,不同出站温度对应的低于临界输量概率计算结果见表2与图3。
Figure PCTCN2015086681-appb-000003
表2 低于临界输量概率随出站温度变化计算结果
(6)得出各影响因素变量的临界值
由上述预测计算结果可知,运行输量低于临界输量概率随出站温度的增加呈现单调递减趋势,根据低于临界输量概率不高于0.01的安全生产要求,出站温度不得低于77.65℃,即为出站温度的临界值。
(7)计算各影响因素的安全裕量
对各影响因素进行敏感性分析,比较各因素变化10%、20%,对应低于临界输量概率的变化幅度,以此确定各因素对流动安全性的贡献值,结果见表3与表4。
Figure PCTCN2015086681-appb-000004
表3 低于临界输量概率影响因素变化范围
Figure PCTCN2015086681-appb-000005
Figure PCTCN2015086681-appb-000006
表4 低于临界输量概率受各因素影响的敏感性计算结果
对比分析得到,出站温度变化对低于临界输量概率的影响最显著,地温的变化对低于临界输量概率的影响次之,结蜡厚度的变化对低于临界输量概率的影响较小;
根据各因素当前值与其临界值的差距,由公式(7)确定各个影响因素的安全裕量,结果见表5。
Figure PCTCN2015086681-appb-000007
表5 各参数安全裕量计算结果
(8)输出计算结果(管道运行临界值及安全裕量)
根据计算得到的运行临界值及安全裕量,判定原油管道运行时各影响参数的安全性,提出参数调整方案,结果如下:
该管道3月份出站温度75℃、地温4.3℃、结蜡厚度2.587㎜,由此预测出运行输量低于临界输量的概率为0.0964,不满足运行输量低于临界输量概率小于0.01的安全生产要求,该管道处于低输量运行状态,该管道运行进入不稳定工作区的可能性较大,建议尽量采取措施调整当前输送工艺参数。
经试验,本发明能判定管道运行时是否处于临界状态,从而得到各影响因素的安全裕量,为流动性安全性评价提供技术支持。能可靠、准确地判定原油管道运行时临界状态,并判定安全裕量。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (3)

  1. 一种评价致密气藏储层应力敏感性方法,其特征在于,包括:
    对油气井模型进行压力恢复试井解释,获取所述致密气藏储层的压力模型;以及
    获取所述气井模型的有效渗透率;
    对所述压力模型和气井模型的有效渗透率进行线性回归分析,获取压力与有效渗透率对应的回归模型;
    根据所述回归模型,预测出需要评价的致密气藏储层的有效渗透率;
    基于所述致密气藏储层的有效渗透率,对所述致密气藏储层进行评估。
  2. 如权利要求1所述的方法,其特征在于,所述对油气井模型进行压力恢复试井解释,获取所述气井模型的有效渗透率,具体包括:
    基于所述油气井模型的产气量代入径向流动直线段的斜率公式和平面径向流产量公式中,获取所述气井模型的有效渗透率。
  3. 如权利要求2所述的方法,其特征在于,所述回归模型,具体为:
    K(i)=0.0018pR(i)-0.0161,其中,K(i)表示气井有效渗透率;pR(i)表示气井地层压力。
PCT/CN2015/086681 2015-08-11 2015-08-11 一种评价致密气藏储层应力敏感性方法 WO2017024533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086681 WO2017024533A1 (zh) 2015-08-11 2015-08-11 一种评价致密气藏储层应力敏感性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086681 WO2017024533A1 (zh) 2015-08-11 2015-08-11 一种评价致密气藏储层应力敏感性方法

Publications (1)

Publication Number Publication Date
WO2017024533A1 true WO2017024533A1 (zh) 2017-02-16

Family

ID=57983871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086681 WO2017024533A1 (zh) 2015-08-11 2015-08-11 一种评价致密气藏储层应力敏感性方法

Country Status (1)

Country Link
WO (1) WO2017024533A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284879A (zh) * 2019-06-14 2019-09-27 西安石油大学 一种致密储层评价方法
CN111764890A (zh) * 2020-06-08 2020-10-13 中海石油(中国)有限公司深圳分公司 一种特低渗储层的试井分析方法
CN113622908A (zh) * 2021-09-13 2021-11-09 西南石油大学 一种水侵气藏废弃地层压力的确定方法
CN116223213A (zh) * 2023-02-23 2023-06-06 西南石油大学 一种基于声波响应的地层应力敏感性评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865059A (zh) * 2012-09-26 2013-01-09 中国石油天然气股份有限公司 一种对裂缝-孔隙型油藏产能进行预测的方法及装置
US20130317752A1 (en) * 2012-05-25 2013-11-28 Schlumberger Technology Corporation Automatic fluid coding and hydraulic zone determination
CN103528934A (zh) * 2013-10-29 2014-01-22 中国石油大学(北京) 一种测量超低渗岩石渗透率应力敏感性的互相关技术
CN104405374A (zh) * 2014-10-16 2015-03-11 中国石油天然气股份有限公司 一种致密气藏储层应力敏感性的测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130317752A1 (en) * 2012-05-25 2013-11-28 Schlumberger Technology Corporation Automatic fluid coding and hydraulic zone determination
CN102865059A (zh) * 2012-09-26 2013-01-09 中国石油天然气股份有限公司 一种对裂缝-孔隙型油藏产能进行预测的方法及装置
CN103528934A (zh) * 2013-10-29 2014-01-22 中国石油大学(北京) 一种测量超低渗岩石渗透率应力敏感性的互相关技术
CN104405374A (zh) * 2014-10-16 2015-03-11 中国石油天然气股份有限公司 一种致密气藏储层应力敏感性的测量方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284879A (zh) * 2019-06-14 2019-09-27 西安石油大学 一种致密储层评价方法
CN110284879B (zh) * 2019-06-14 2021-08-17 西安石油大学 一种致密储层评价方法
CN111764890A (zh) * 2020-06-08 2020-10-13 中海石油(中国)有限公司深圳分公司 一种特低渗储层的试井分析方法
CN111764890B (zh) * 2020-06-08 2021-12-28 中海石油(中国)有限公司深圳分公司 一种特低渗储层的试井分析方法
CN113622908A (zh) * 2021-09-13 2021-11-09 西南石油大学 一种水侵气藏废弃地层压力的确定方法
CN113622908B (zh) * 2021-09-13 2022-11-22 西南石油大学 一种水侵气藏废弃地层压力的确定方法
CN116223213A (zh) * 2023-02-23 2023-06-06 西南石油大学 一种基于声波响应的地层应力敏感性评价方法

Similar Documents

Publication Publication Date Title
WO2017024533A1 (zh) 一种评价致密气藏储层应力敏感性方法
CN107506948B (zh) 一种基于动态泄流体积的页岩油气综合产量分析方法
AU2007211294B2 (en) Methods, systems, and computer-readable media for real-time oil and gas field production optimization using a proxy simulator
CN111287740B (zh) 基于真实应变下的异常高压气藏动态储量计算方法
CN105510203B (zh) 一种确定不同温度梯度下砂岩油藏油水相对渗透率的方法
CN111852463B (zh) 气井产能评价方法及设备
WO2015034539A1 (en) Creating virtual production logging tool profiles for improved history matching
CN104504604A (zh) 一种定性气井井筒积液的方法
CA3094190A1 (en) Method and apparatus for predicting oil and gas yields in in-situ oil shale exploitation
Jamali et al. Application of capacitance resistance models to determining interwell connectivity of large-scale mature oil fields
CN108664679B (zh) 一种油气井生产数据分析方法
CN115030708A (zh) 一种基于不关井干扰试井的干扰井识别系统及方法
CN109184661B (zh) 用于底水油藏水平井高产液位置识别的监测方法及其系统
RU2478783C2 (ru) Способ добычи углеводородов из скважины, проходящей через многослойный резервуар с гидроразрывом
CN112302607B (zh) 一种致密气藏压裂水平井人工裂缝参数解释方法
CN113445988A (zh) 一种低渗碳酸盐岩气藏气井产能评价方法
CN116976519A (zh) 一种页岩油藏单井可采储量预测方法及系统
CN111460647A (zh) 用于多轮次吞吐后水平井分段靶向注汽量的定量调配方法
Aragón-Aguilar et al. Methodologies for analysis of productivity decline: A review and application
CN110610288A (zh) 一种油气井生产数据智能系统分析方法
CN110782100B (zh) 一种低渗透气藏产能快速预测方法
CN111488666A (zh) 一种气藏水平井产能预测模型建立、预测方法及装置
CN110500082B (zh) 一种固井水泥浆气侵危险时间的确定方法
RU2593287C1 (ru) Способ пошагового регулирования добычи газа
TW201833518A (zh) 即時預檢填料塔液泛現象的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900731

Country of ref document: EP

Kind code of ref document: A1