WO2017022915A1 - 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더 - Google Patents

티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더 Download PDF

Info

Publication number
WO2017022915A1
WO2017022915A1 PCT/KR2016/001698 KR2016001698W WO2017022915A1 WO 2017022915 A1 WO2017022915 A1 WO 2017022915A1 KR 2016001698 W KR2016001698 W KR 2016001698W WO 2017022915 A1 WO2017022915 A1 WO 2017022915A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
titanium
strength
magic
threaded portion
Prior art date
Application number
PCT/KR2016/001698
Other languages
English (en)
French (fr)
Inventor
왕제원
Original Assignee
왕제원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201680045309.XA priority Critical patent/CN107847304B/zh
Priority to JP2018505414A priority patent/JP6725643B2/ja
Priority to RU2018107659A priority patent/RU2685685C1/ru
Priority to MYPI2018700398A priority patent/MY193238A/en
Priority to CA2994523A priority patent/CA2994523C/en
Priority to MX2018001463A priority patent/MX2018001463A/es
Priority to ES16833152T priority patent/ES2879865T3/es
Priority to PL16833152T priority patent/PL3332734T3/pl
Application filed by 왕제원 filed Critical 왕제원
Priority to EP16833152.8A priority patent/EP3332734B1/en
Priority to BR112018002322-1A priority patent/BR112018002322B1/pt
Priority to DK16833152.8T priority patent/DK3332734T3/da
Priority to US15/749,318 priority patent/US10433937B2/en
Publication of WO2017022915A1 publication Critical patent/WO2017022915A1/ko
Priority to SA518390857A priority patent/SA518390857B1/ar

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0037Details of the shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/225Fastening prostheses in the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0022Self-screwing

Definitions

  • the present invention relates to a magic threader for dental implants.
  • the thickness of the threaded portion, the thread height, and the pitch are specified in consideration of the difference between the strength and elasticity of titanium and bone, so that when the bite force is applied to the threaded portion,
  • the threaded portion By reducing the stress of the alveolar bone by the maximum, preventing the damage to the alveolar bone as much as possible to increase the bonding strength under a stable structure, by forming the threaded portion into a rectangular flat plate shape, by specifying the thread angle within a specific numerical range, Compression is performed only in one direction (A direction) of the rod part, and in the B direction or C direction inclined with respect to the A direction, the compression can be minimized, and a dental implant ladder for dental implants capable of maximizing stress distribution can be obtained. will be.
  • Dental implant refers to the procedure of implanting artificial teeth.
  • the tooth is pulled out of the fixture, which is a tooth root made of titanium, which is not rejected by the human body to replace the lost root (root).
  • After implanting in the alveolar bone it is a procedure to fix the artificial teeth to restore the function of the teeth.They do not damage the surrounding tissues, and they can be used semi-permanently because they have the same function and shape as natural teeth but do not cause tooth decay. The procedure is soaring.
  • the implant includes a fixture placed as an artificial root, an abutment coupled to the fixture, an abutment screw fixing the abutment to the fixture, and an artificial tooth coupled to the abutment.
  • the healing abutment (not shown) may be coupled to the fixture and remain coupled before the abutment is bonded to the fixture, i.e., until the fixture is bone fused to the alveolar bone.
  • the fixture serves as an artificial tooth root as a part to be placed in an implantation hole formed in the alveolar bone using a drill at a position where the implant is to be treated, and a fixture body and a screw portion (corresponding to the threader of the present invention) on the outer surface of the fixture body. ) Is formed.
  • Such a screw portion is inserted into the alveolar bone so that the fixture and the alveolar bone can be firmly coupled, and serves to enhance the fixing force of the fixture to the alveolar bone by increasing the contact area between the fixture and the alveolar bone.
  • the implant fixture 100 has a body portion 110 in which threads 111 of the same size are formed from an upper end to a lower end, and is disposed below the body portion 110, and a cutting groove 121 is formed outside. It consists of an entry part 120.
  • the implant fixture according to the prior art has a problem that the torque pattern appears during the insertion by repeated rotation is initially increased and then gradually decreases, so that the initial fixation force is lowered. This is because when bone healing is delayed and when bite force is generated after bone healing, shear force is generated between the thread and alveolar bone, so that the alveolar bone is easily destroyed, and the alveolar bone fracture is not considered because the difference between the strength and elasticity of the thread and alveolar bone is not considered. Most likely.
  • the cross section of the thread is made of a pointed triangular shape is easy to insert during rotation, while the compressive strength to the alveolar bone is pressed in the vertical direction as well as the horizontal direction, the alveolar bone may be damaged. There is a problem that a large amount of bone fragments occur.
  • the present invention has been made to solve the above problems, an object of the present invention by specifying the thickness, thread height and pitch of the thread in consideration of the difference in strength and elasticity of titanium and bone, By reducing the stress of the alveolar bone by the maximum, to prevent the damage to the alveolar bone as possible to provide a magic implant ladder for dental implants that can increase the bond strength under a stable structure.
  • an object of the present invention is to configure the threaded portion in a rectangular flat plate shape, and by specifying the thread angle within a specific numerical range, only compression to one side (A direction) of the threaded portion with respect to the alveolar bone, and to the A direction Compression can be minimized in the inclined B or C direction and to provide a magic ladder for dental implants that can maximize stress distribution.
  • the dental implant magic ladder considering the difference in strength and elasticity of titanium and bone is made of titanium and is formed spirally around the outer periphery of the fixture body,
  • the threader is a structure cut in the axial direction of the fixture body, a plurality of threaded parts having a thin rectangular cross section are arranged at a pitch interval of 500-1,500 ⁇ m, and each threaded part is from the fixture body to the distal part.
  • It is flat plate shape which has thickness t, The thickness t is 50-200 micrometers, and height is 200-2,000 micrometers, It is characterized by the above-mentioned.
  • the thread portion is characterized in that the thread angle (thread angle) of 0.1 ⁇ 5 °.
  • the length ratio of the thickness (t) and the pitch is 1: 5 to 12.
  • the length ratio of pitch and thread height is characterized in that 1: 0.3 to 1.5.
  • each vertex of the threaded portion on the fixture body is characterized by forming a corresponding tapered structure.
  • the pitch spacing of the adjacent threaded portion is characterized in that the same.
  • the pitch spacing of the adjacent threaded portion is characterized in that the narrower toward the lower side of the fixture body.
  • the alveolar bone by the threaded portion by specifying the thickness, thread height, and pitch of the threaded portion in consideration of the difference in strength and elasticity of titanium and bone
  • the thickness of the threaded portion is thin and the placement and fixing force regardless of the bone quality of the alveolar bone Excellent effect.
  • the magic implant ladder for dental implants by forming the threaded portion in the shape of a rectangular flat plate and specifying the thread angle within a specific numerical range, only the compression in one direction (A direction) of the threaded portion to the alveolar bone is achieved. In the B direction or the C direction inclined with respect to the A direction, the compression can be minimized, and the stress dispersion can be maximized.
  • FIG. 1 is a perspective view showing an embodiment of a magic ladder for dental implants considering the strength of titanium and bone according to the present invention.
  • Figure 2 is a cross-sectional view showing an embodiment of the magic ladder for dental implants considering the strength of titanium and bone according to the present invention.
  • FIG 3 is a conceptual diagram showing a compression direction with respect to the alveolar bone in the ladder and the conventional ladder of the present invention.
  • FIG. 4 is a view illustrating an implant fixture according to the prior art.
  • FIG. 1 is a perspective view showing an embodiment of a magic threader for dental implants considering the strength and elasticity of titanium and bone according to the present invention
  • Figure 2 is a dental implant considering the strength and elasticity of titanium and bone according to the present invention
  • 3 is a cross-sectional view showing an embodiment of a dragon magic ladder
  • FIG. 3 is a conceptual diagram showing a compression direction with respect to the alveolar bone in the ladder and the conventional ladder of the present invention.
  • the dental implant magic threader 10 (hereinafter referred to as a ladder) in consideration of the strength of the titanium and bone according to the present invention is formed spirally around the outer surface of the fixture body (f) is the alveolar bone Screw on (b).
  • the fixture body (f) is inserted into the alveolar bone (b) to form an artificial tooth is formed integrally with the ladder (10), it can be exemplified that made of a titanium material without a rejection reaction to the human body.
  • Ladders provided in the conventional implant fixture has a sharp triangular end of the tip has a disadvantage in that the compression strength and stress to the alveolar bone is increased, the bonding strength is lowered and structural breakage is easy.
  • the ladder 10 according to the present invention is composed of a plurality of threaded portions 11 having a thin rectangular cross section when viewed in the axially cut structure of the fixture body f, the alveolar bone b The compressive strength and stress on the bond can be reduced to improve the bond strength.
  • FIG. 2 (b) since the compression is performed only in the a direction orthogonal to the rotation axis, the compressive strength and the stress can be reduced.
  • the alveolar bone (b) since the alveolar bone (b) has a smaller strength than the threaded portion made of titanium, the strength of the alveolar bone is improved when a large amount of alveolar bone is filled in the space (s) provided between the adjacent threaded portions (11). In addition, the difference between the strength and elasticity of the thread and alveolar bone is reduced, resulting in a stable structure that can easily hold the occlusal force.
  • the conventional threaded section having a triangular cross section has a smaller spacing space than the titanium threaded portion, and the amount of the alveolar bone filled is smaller.
  • the threaded portion of the present invention made of a thin plate shape is sufficiently secured spaced space is filled with a relatively large amount of alveolar bone compared to the threaded portion, the threaded portion of the alveolar bone reduces the difference in strength and elasticity When the occlusal force is applied, it becomes a stable structure.
  • a plurality of threaded portions 11 having a thin rectangular cross section are arranged at a pitch interval of 500 to 2,000 ⁇ m, and each threaded portion 11 is distal from the fixture body f. 13) is a flat plate shape having the same thickness (t), the thickness (t) is 50 ⁇ 200 ⁇ m, can be illustrated that the height is 500 ⁇ 2,000 ⁇ m, these numerical ranges are bone density and alveolar bone of the alveolar bone (b) It can be determined according to various circumstances such as the size of the insertion hole formed in the hole.
  • the length ratio of the thickness t and the pitch p of each threaded part 11 is 1: 5-15, but when the length ratio of the thickness t and the pitch p is less than 1: 5.
  • the thickness exceeds 1: 15 pitch (t) This is because p) becomes so large that the number of turns decreases and the bonding strength becomes smaller.
  • the length ratio between the pitch p and the thread height h is preferably 1: 0.8 to 1.2, more preferably 1: 1.
  • the pitch p with the adjacent threaded part is 1,000 micrometers
  • the height h of a thread is 1,000 micrometers, and is spaced apart.
  • a thread of an equilateral triangle cross section has a cross-sectional area of 0.4-0.6 mm 2 , which is half of that.
  • the thread portion 11 is preferably a thread angle of 0.1 ⁇ 5 °.
  • the thread angle of declination a is less than 0.1 °, the structure of the threaded portion 11 may be weakened and thus may cause fracture at the time of implantation. That is, since the compressive strength in the B direction or the C direction increases to increase the stress, the shear force is generated, thereby increasing the possibility of fracture of the alveolar bone.
  • the alveolar bone is very weak compared to titanium, while the elastic force has about six times more elastic force than titanium. Because of this general property, there is an effect of preventing the interfacial phenomenon that the fixture placed in the alveolar bone is separated from the alveolar bone by external pressure (low force).
  • the fixture body (f) is a tapered structure that narrows toward the lower side or a tapered structure formed by the threaded portion, each vertex 15 of the threaded portion 11 forms a tapered structure corresponding to the fixture body
  • the pitch p of the threaded part 11 is preferably the same.
  • the initial coupling process is easy to be inserted into the insertion hole, and the thread is disposed on the upper side according to the guide of the screw groove formed by the lowermost threaded part is screwed This is because the amount of bone powder can be minimized.
  • the side section of the threaded portion may be configured as a straight line as shown, or may be rounded.
  • the fixture body may be configured to narrow the pitch toward the lower side.
  • a plurality of threaded portions are formed along the outer circumference of the cylindrical fixture body which is made of titanium and becomes narrower toward the lower side.
  • Each threaded part has a thickness of 110 mu m, a height of 1,000 mu m, and a thread angle of 2.5 deg. And the pitch spacing with the adjacent threaded part is 1,200 micrometers.
  • the ratio of thickness to pitch length is 1: 10.91, the ratio of pitch to height length is 1: 1.2, and the number of turns is 10 times.
  • the error range of the thickness, height, and thread angle of the threaded portion is within ⁇ 5%.
  • Example 1 the threaded portion is formed in the same structure except that the thickness ratio of the threaded portion and the pitch length are 1: 10.72.
  • Example 1 the threaded portion is formed in the same structure except that the thickness ratio of the threaded portion and the pitch length are 1: 13.30.
  • Example 1 the threaded portion is formed in the same structure except that the thickness of the threaded portion is 250 ⁇ m and the length ratio of pitch and thread height is 1: 0.69.
  • Example 1 the thickness of the threaded portion is 250 ⁇ m, and the threaded portion is formed in the same structure except that the pitch ratio of the threaded portion and the height of the thread height is 1: 1.42.
  • the cross section of the threaded portion has an equilateral triangle shape
  • the pitch interval is 1,200 ⁇ m
  • the thickness ratio of the threaded portion and the pitch length is 1: 11.4
  • the length ratio of the pitch and the thread height of the threaded portion is 1: 1. Except for 1.5, the threads of the same structure are formed.
  • Table 1 below shows the maximum stress acting when the threaded portion of Example 1 to Comparative Example 5 is bonded to the artificial alveolar bone.
  • Example 1 When Example 1 is compared with Comparative Example 1, when the thickness ratio of the thickness of the threaded portion and the pitch length is less than 1: 8, the stress increases by about 20% in Comparative Example 1, and compared with Comparative Example 2, the stress is 10 It can be seen that the percentage increases.
  • Example 1 when the thickness of a thread part is 250 micrometers, it turns out that a stress becomes large even if the length ratio of a pitch and a thread height is small.
  • the magic implant ladder for dental implants by specifying the thickness and the thread height and pitch of the thread in consideration of the difference between the strength and elasticity of the titanium and bone, the stress of the alveolar bone by the thread When the occlusal force (lower force) is applied to prevent damage to the alveolar bone as much as possible, there is an effect of increasing the bonding strength under a stable structure. awards are available.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dental Prosthetics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)

Abstract

본 발명은 치과 임플란트용 매직 스래더에 관한 것으로, 구체적으로 티타늄과 뼈의 강도 차이를 고려하여 스래드부의 두께와, 나사산 높이 및 피치를 특정함으로써, 스래드부에 의한 치조골의 응력을 최대한 줄이고, 치조골이 파손되는 것을 최대한 방지하여 안정된 구조 하에서 결합 강도를 높일 수 있으며, 스래드부를 사각 평판 형상으로 구성하고, 나사산 각을 특정 수치 범위 내로 특정함으로써, 치조골에 대한 스래드부의 일측 방향(A방향)에 대한 압축만 이루어지고, A방향에 대하여 경사진 B방향 또는 C방향에 대해서는 압축을 최소화할 수 있으며, 응력 분산을 극대화할 수 있는 치과 임플란트용 매직 스래더에 관한 것이다.

Description

티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더
본 발명은 치과 임플란트용 매직 스래더에 관한 것으로, 구체적으로 티타늄과 뼈의 강도와 탄성도의 차이를 고려하여 스래드부의 두께와, 나사산 높이 및 피치를 특정함으로써, 교합력이 가해질 때 스래드부에 의한 치조골의 응력을 최대한 줄이고, 치조골이 파손되는 것을 최대한 방지하여 안정된 구조 하에서 결합 강도를 높일 수 있으며, 스래드부를 사각 평판 형상으로 구성하고, 나사산 각을 특정 수치 범위 내로 특정함으로써, 치조골에 대한 스래드부의 일측 방향(A방향)에 대한 압축만 이루어지고, A방향에 대하여 경사진 B방향 또는 C방향에 대해서는 압축을 최소화할 수 있으며, 응력 분산을 극대화할 수 있는 치과 임플란트용 매직 스래더에 관한 것이다.
치과 임플란트는 인공으로 만든 치아를 이식하는 시술을 의미하는 것으로서, 상실된 치근(뿌리)을 대신할 수 있도록 인체에 거부반응이 없는 티타늄(titanium) 등으로 만든 치근인 픽스처(fixture)를 치아가 빠져나간 치조골에 심은 뒤, 인공치아를 고정시켜 치아의 기능을 회복하도록 하는 시술이며, 주변 치아조직을 상하지 않게 하며, 자연치아와 기능이나 모양이 같으면서도 충치가 생기지 않으므로 반영구적으로 사용할 수 있어, 최근에는 임플란트 시술이 급증하고 있는 실정이다.
이러한 임플란트는 픽스처의 종류에 따라 다양하지만 소정의 드릴을 사용하여 식립위치를 천공한 후 픽스처를 치조골에 식립하여 뼈에 골융합시킨 다음, 픽스처에 지대주(abutment)를 결합시킨 후에, 지대주에 최종 보철물을 씌움으로써 완료되는 것이 일반적이다.
임플란트는 인공 치근으로서 식립되는 픽스처(Fixture)와, 픽스처 상에 결합되는 지대주(Abutment)와, 지대주를 픽스처에 고정하는 지대주 스크류(Abutment Screw)와, 지대주에 결합되는 인공치아를 포함한다. 여기서, 지대주를 픽스처에 결합시키기 전에, 즉 치조골에 픽스처가 골융합되기까지의 기간 동안에 치유 지대주(미도시)가 픽스처에 결합되어 결합 상태를 유지하기도 한다.
그리고 상기 픽스처는 임플란트가 시술되는 위치에 드릴 등을 이용하여 치조골에 형성된 식립홀에 식립되는 부분으로서 인공 치근의 역할을 하는 것으로서, 픽스처 몸체와, 픽스처 몸체 외면에는 나사부(본 발명의 스래더에 해당함)가 형성된다.
이러한 나사부는 치조골에 인입되어 픽스처와 치조골이 견고히 결합될 수 있도록 할 뿐만 아니라 픽스처와 치조골의 접촉면적을 증대시킴으로써 치조골에 대한 픽스처의 고정력을 강화시키는 역할을 한다.
도 4에는 종래기술에 따른 임플란트 픽스처가 개시된다.
상기 임플란트 픽스처(100)는 상단으로부터 하단까지 동일한 크기의 나사산(111)이 형성되는 몸체부분(110)과, 그 몸체부분(110)의 하측에 배치되며 외부에 절삭홈(121)이 형성되어 있는 진입부(120)로 이루어진다. 이러한 종래기술에 따른 임플란트 픽스쳐는 반복회전에 의한 삽입시 나타나는 토크 양상이 초기에는 상승된 후에 점점 감소되는 경향을 보이게 되어 초기고정력이 낮아지게 되는 문제점이 있어 뼈를 압축 밀어서 고정을 해야한다. 이는 골치유가 늦어지고, 골치유 후 교합력(저작력)이 발생될 때 스래드와 치조골 사이에 전단력이 발생되어 치조골이 파괴되기 쉽고, 스래드와 치조골의 강도와 탄성도의 차이가 고려되지 않아 치조골 파절 가능성이 높다.
또한, 나사산의 단면이 끝이 뾰족한 삼각 형상으로 이루어지기 때문에 회전시 삽입이 용이한 반면, 치조골에 압축 강도가 수평 방향은 물론, 경사면에 의해 상하 방향으로도 가압이 이루어지기 때문에 치조골이 손상될 우려가 있으며, 많은 양의 뼈조각이 발생하는 문제가 있다.
따라서, 티타늄으로 이루어진 픽스처 나사산의 강도와 탄성도, 치조골의 강도와 탄성도 차이를 고려하여 교합력이 가해질 때 치조골의 파절을 방지하고, 압축 강도 및 응력 발생을 최소화할 수 있는 새로운 구조의 픽스처의 개발이 필요한 실정이다.
이에 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 티타늄과 뼈의 강도와 탄성도 차이를 고려하여 스래드부의 두께와, 나사산 높이 및 피치를 특정함으로써, 스래드부에 의한 치조골의 응력을 최대한 줄이고, 치조골이 파손되는 것을 최대한 방지하여 안정된 구조 하에서 결합 강도를 높일 수 있는 치과 임플란트용 매직 스래더를 제공하는 것이다.
또한, 본 발명의 목적은 스래드부를 사각 평판 형상으로 구성하고, 나사산 각을 특정 수치 범위 내로 특정함으로써, 치조골에 대한 스래드부의 일측 방향(A방향)에 대한 압축만 이루어지고, A방향에 대하여 경사진 B방향 또는 C방향에 대해서는 압축을 최소화할 수 있으며, 응력 분산을 극대화할 수 있는 치과 임플란트용 매직 스래더를 제공하는 것이다.
이러한 본 발명의 목적을 달성하기 위한 수단으로서, 본 발명에 따른 티타늄과 뼈의 강도와 탄성도 차이를 고려한 치과 임플란트용 매직 스래더는 티타늄으로 이루어지며 픽스처 몸체 외면 둘레를 따라 나선형으로 형성되는 것으로서, 스래더는 상기 픽스처 몸체 축방향으로 커팅된 구조로 볼 때, 얇은 사각 단면을 가지는 다수의 스래드부가 500~1,500㎛ 피치 간격으로 배치된 구조로 이루어지되, 각 스래드부는 상기 픽스처 몸체에서부터 원위부까지 두께(t)를 가지는 평판 형상이며, 그 두께(t)는 50~200㎛이고, 높이는 200~2,000㎛인 것을 특징으로 한다.
또한, 본 발명에 따른 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더에 있어서, 스래드부는 나사산의 편각(thread angle)이 0.1~5°인 것을 특징으로 한다.
또한, 본 발명에 따른 티타늄과 뼈의 강도와 탄성도 차이를 고려한 치과 임플란트용 매직 스래더에 있어서, 두께(t)와 피치의 길이 비는 1 : 5~12인 것을 특징으로 한다.
또한, 본 발명에 따른 티타늄과 뼈의 강도와 탄성도 차이를 고려한 치과 임플란트용 매직 스래더에 있어서, 피치와 나사산 높이의 길이 비는 1 : 0.3~1.5인 것을 특징으로 한다.
또한, 본 발명에 따른 티타늄과 뼈의 강도와 탄성도 차이를 고려한 치과 임플란트용 매직 스래더에 있어서, 픽스처 몸체가 하측으로 갈수록 좁아지는 테이퍼 구조인 경우, 상기 스래드부의 각 정점이 상기 픽스처 몸체에 대응하는 테이퍼 구조를 이루는 것을 특징으로 한다.
또한, 본 발명에 따른 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더에 있어서, 인접하는 스래드부의 피치 간격은 동일한 것을 특징으로 한다.
또한, 본 발명에 따른 티타늄과 뼈의 강도와 탄성도 차이를 고려한 치과 임플란트용 매직 스래더에 있어서, 인접하는 스래드부의 피치 간격은 상기 픽스처 몸체의 하측으로 갈수록 좁아지는 것을 특징으로 한다.
이상과 같은 구성의 본 발명에 따른 치과 임플란트용 매직 스래더에 의하면, 티타늄과 뼈의 강도와 탄성도 차이를 고려하여 스래드부의 두께와, 나사산 높이 및 피치를 특정함으로써, 스래드부에 의한 치조골의 응력을 최대한 줄이고, 치조골이 파손되는 것을 최대한 방지하여 교합력(저작력)이 작용할 때 안정된 구조 하에서 결합 강도를 높일 수 있는 효과가 있으며, 스래드부의 두께가 얇아 치조골의 골질에 상관없이 식립성과 고정력이 우수한 효과가 있다.
본 발명에 따른 치과 임플란트용 매직 스래더에 의하면, 스래드부를 사각 평판 형상으로 구성하고, 나사산 각을 특정 수치 범위 내로 특정함으로써, 치조골에 대한 스래드부의 일측 방향(A방향)에 대한 압축만 이루어지고, A방향에 대하여 경사진 B방향 또는 C방향에 대해서는 압축을 최소화할 수 있으며, 응력 분산을 극대화할 수 있는 효과가 있다.
도 1은 본 발명에 따른 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더의 일실시예를 도시하는 사시도이다.
도 2는 본 발명에 따른 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더의 일실시예를 도시하는 단면도이다.
도 3은 본 발명의 스래더와 종래 스래더에 있어서, 치조골에 대한 압축 방향을 도시하는 개념도이다.
도 4는 종래기술에 따른 임플란트 픽스처를 도시한 도면이다.
10 : 스래더 11 : 스래드부
13 : 원위부 15 : 정점
t : 두께 h : 높이
a : 나사산의 편각 p : 피치
s : 이격공간 f : 픽스처 몸체
b : 치조골
이하, 첨부 도면을 참조하여 본 발명의 실시 예를 상세히 설명하면 다음과 같다.
본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자의 의도 또는 판례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 발명의 설명에서 동일 또는 유사한 구성요소는 동일 또는 유사한 도면번호를 부여하고, 그 자세한 설명은 생략하기로 한다.
도 1은 본 발명에 따른 티타늄과 뼈의 강도와 탄성력을 고려한 치과 임플란트용 매직 스래더의 일 실시예를 도시하는 사시도이고, 도 2는 본 발명에 따른 티타늄과 뼈의 강도와 탄성력을 고려한 치과 임플란트용 매직 스래더의 일실시예를 도시하는 단면도이고, 도 3은 본 발명의 스래더와 종래 스래더에 있어서, 치조골에 대한 압축 방향을 도시하는 개념도이다.
도 1을 참조하면, 본 발명에 따른 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더(10)(이하에서는, 스래더라 함)는 픽스처 몸체(f) 외면 둘레를 따라 나선형으로 형성되어 상기 치조골(b)에 나사 결합한다.
상기 픽스처 몸체(f)는 치조골(b)에 삽입하여 인공치근을 형성하는 것으로서 상기 스래더(10)와 일체로 형성되며, 인체에 거부반응이 없는 티타늄 소재로 이루어지는 것을 예시할 수 있다.
종래 임플란트용 픽스처에 마련된 스래더는 끝이 날카로운 삼각 단면을 가지기 때문에 치조골에 대한 압축강도 및 응력이 증가하여 결합 강도가 낮아지고 구조적으로 파손되기 쉬운 단점이 있다.
그에 반해 본 발명에 따른 스래더(10)는 상기 픽스처 몸체(f)의 축방향으로 커팅된 구조로 볼 때, 얇은 사각 단면을 가지는 다수의 스래드부(11)로 이루어지기 때문에 치조골(b)에 대한 압축강도 및 응력이 줄어들어 결합 강도를 향상시킬 수 있다.
구체적으로, 도 3의 (a)를 참조하면, 삼각 단면을 가지는 종래 임플란트용 픽스처의 경우에는 스래드부가 회전축에 직교하는 A방향은 물론, A방향을 기준으로 상하로 경사진 B방향 및 C방향으로도 압축이 이루어져 응력이 커지는데, 도 2의 (b)를 참조하면, 본 발명의 스래드부는 회전축에 직교하는 a방향에 대해서만 압축이 이루어지기 때문에 압축강도와 응력을 줄일 수 있다.
한편, 치조골(b)은 티타늄으로 이루어지는 스래드부에 비해 강도가 작기 때문에, 인접하는 스래드부(11) 사이에 마련되는 이격공간(s)에 많은 양의 치조골이 채워지면 치조골의 강도가 향상되고 스래드와 치조골의 강도와 탄성도의 차이가 줄어들어 교합력에 잘 견지는 안정된 구조가 되는데, 삼각 단면을 가지는 종래 스래드부는 티타늄 스래드부에 비해 이격 공간이 작고 채워지는 치조골의 양이 적어 교합력이 가해질 때 구조적으로 불안정한 반면, 얇은 평판 형상으로 이루어지는 본 발명의 스래드부는 이격공간을 충분히 확보하여 스래드부에 비해 상대적으로 많은 양의 치조골이 채워져 스래드부가 치조골의 강도와 탄성도 차이가 줄어들어 교합력이 가해질 때 안정된 구조가 된다.
이하에서는 본 발명의 스래더의 세부적인 구성을 보다 상세히 살펴본다.
본 발명의 스래더(10)는 얇은 사각 단면을 가지는 다수의 스래드부(11)가 500~2,000㎛ 피치 간격으로 배치되고, 각 스래드부(11)는 상기 픽스처 몸체(f)에서부터 원위부(13)까지 동일한 두께(t)를 가지는 평판 형상이며, 그 두께(t)는 50~200㎛이고, 높이는 500~2,000㎛인 것을 예시할 수 있으며, 이러한 수치 범위들은 치조골(b)의 골밀도 및 치조골에 형성된 식립홀의 크기 등 제반 사정에 따라 결정되어 질 수 있다.
이때, 각 스래드부(11)의 두께(t)와 피치(p)의 길이 비는 1 : 5~15인 것이 바람직한데, 두께(t)와 피치(p)의 길이 비가 1 : 5 미만인 경우에는 상술한 이격공간(s) 및 상기 이격공간에 채워지는 치조골(b)의 양이 줄어들어 결합 강도 및 구조적 안정성을 충분히 확보하기 어렵고, 1 : 15를 초과하는 경우에는 두께(t)에 비해 피치(p)가 너무 커지기 때문에 턴수가 줄어들어 오히려 결합 강도가 작아지기 때문이다.
그리고, 피치(p)와 나사산 높이(h)의 길이 비는 1 : 0.8~1.2인 것이 바람직하고, 더욱 바람직하게는 1 : 1인 것이다.
예를 들어, 스래드부(11)의 두께(t)가 100㎛인 경우, 인접하는 스래드부와의 피치(p)는 1,000㎛이고, 나사산의 높이(h)는 1,000㎛로서, 이격공간(s)은 1,000㎛×1,000㎛=1×10-6㎛2=1㎟의 단면적을 가지는 반면, 정삼각 단면의 스래드의 경우 이의 절반 수준인 0.4~0.6㎟의 단면적을 가지게 된다.
또한, 상기 스래드부(11)는 나사산 각(thread angle)이 0.1~5°인 것이 바람직하다.
상기 나사산의 편각(a)이 0.1° 미만인 경우에는 스래드부(11)의 구조가 약해져서 식립시 파절이 될 수 있고, 5°를 초과하는 경우에는 피치 간격이 너무 멀어져 견고한 결합이 어렵기 때문이다. 즉, B방향 또는 C방향의 압축강도가 커져서 응력이 커지기 때문에 전단력이 발생되어 치조골의 파절 가능성이 높아지게 된다.
예를 들어, 치조골과 티타늄의 성질(性質)을 살펴보면, 치조골은 티타늄에 비해 강도가 매우 약한 반면, 탄성력에 있어서는 티타늄보다 약 6배 이상의 탄성력을 갖고 있다. 이러한 일반적인 성질 때문에 치조골에 식립되어 있는 픽스쳐가 외부의 압력(저작력)에 의해 치조골로부터 이탈하는 계면 현상이 일어나는 것을 방지하는 효과가 있다.
한편, 픽스처 몸체(f)는 하측으로 갈수록 좁아지는 테이퍼 구조이거나 스래드 원부가 이루는 형상이 테이퍼 구조이고, 스래드부(11)의 각 정점(15)이 상기 픽스처 몸체에 대응하는 테이퍼 구조를 이루며, 스래드부(11)의 피치(p)는 동일한 것이 바람직하다.
왜냐하면, 상기 픽스처 몸체의 하단부가 좁기 때문에 식립홀에 삽입되는 초기 결합 과정이 용이해지고, 최하단의 스래드부에 의해 형성되는 나사홈의 안내에 따라 상측에 배치된 스래드부가 나사 결합하기 때문에 분쇄되는 뼈가루의 양을 최소화할 수 있기 때문이다.
만일, 피치 간격이 상하로 달라지는 경우에는 최하단의 스래드부에 의해 형성되는 나사홈을 따라 상측에 배치된 스래드부가 결합하지 않고, 상측에 배치된 스래드부에 의해 새로운 나사홈이 형성되어 구조적으로 취약해지기 때문이다.
그리고 스래드부의 측단면은 도시된 바와 같이 직선으로 구성할 수도 있고, 라운드처리할 수도 있다.
또한, 치조골의 밀도, 스래드의 두께 및 픽스처 몸체의 길이를 고려하여, 상기 픽스처 몸체가 하측으로 갈수록 피치가 좁아지도록 구성할 수도 있다.
이하에서는 본 발명에 따른 스래더의 보다 바람직한 실시예를 통해 상세히 설명한다.
[실시예 1]
티타늄 소재로 이루어지고 하측으로 갈수록 좁아지는 원통 형상의 픽스처 몸체의 외면 둘레를 따라 다수의 스래드부를 형성한다.
각 스래드부는 그 두께가 110㎛이고, 높이는 1,000㎛이며, 나사산 각(thread angle)이 2.5°이다. 그리고 인접하는 스래드부와의 피치 간격은 1,200㎛이다.
그리고 두께와 피치의 길이 비는 1 : 10.91이 되며, 피치와 높이의 길이 비는 1 : 1.2가 되며, 턴수(회전수)는 10회이다.
여기서, 스래드부의 두께, 높이, 나사산 각의 오차 범위는 ±5% 이내이다.
[비교예 1]
상기 실시예 1에서, 스래드부의 두께와 피치의 길이 비가 1 : 10.72인 것을 제외하고, 동일한 구조로 스래드부를 형성한다.
[비교예 2]
상기 실시예 1에서, 스래드부의 두께와 피치의 길이 비가 1 : 13.30인 것을 제외하고, 동일한 구조로 스래드부를 형성한다.
[비교예 3]
상기 실시예 1에서, 스래드부의 두께가 250㎛이며, 피치와 나사산 높이의 길이 비가 1 : 0.69인 것을 제외하고, 동일한 구조로 스래드부를 형성한다.
[비교예 4]
상기 실시예 1에서, 스래드부의 두께가 250㎛이며, 스래드부의 피치와 나사산 높이의 길이 비가 1 : 1.42인 것을 제외하고, 동일한 구조로 스래드부를 형성한다.
[비교예 5]
상기 실시예 1과 달리, 스래드부의 단면이 정삼각 형상이며, 피치 간격이 1,200㎛이며, 스래드부의 두께와 피치의 길이 비가 1 : 11.4이고, 스래드부의 피치와 나사산 높이의 길이 비가 1 : 1.5인 것을 제외하고, 동일한 구조의 스래드부를 형성한다.
아래 표 1은 실시예 1 내지 비교예 5의 스래드부를 인공 치조골에 결합시킨 경우 작용하는 최대응력을 나타낸 것이다.
구분 실시예 1 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
응력 79 97 86 98 103 127
실시예 1과 비교예 1을 비교하면, 스래드부의 두께와 피치의 길이 비가 1 : 8 미만인 경우에는 응력이 비교예 1의 응력이 20% 정도 증가하고, 비교예 2와 비교하면, 응력이 10%정도 증가한다는 것을 알 수 있다.
그리고, 실시예 1과 비교예 3을 비교하면, 스래드부의 두께가 250㎛인 경우에는 피치와 나사산 높이의 길이 비가 작더라도 응력이 커진다는 것을 알 수 있다.
그리고, 비교예 5를 보면, 실시예 1과 피치 간격, 스래드부의 두께와 피치의 길이 비 및 피치와 나사산 높이의 길이 비가 비슷하더라도 삼각 단면으로 이루어지면 응력이 1.6배 정도 커진다는 것을 확인할 수 있다.
본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에 따른 치과 임플란트용 매직 스래더에 의하면, 티타늄과 뼈의 강도와 탄성도 차이를 고려하여 스래드부의 두께와, 나사산 높이 및 피치를 특정함으로써, 스래드부에 의한 치조골의 응력을 최대한 줄이고, 치조골이 파손되는 것을 최대한 방지하여 교합력(저작력)이 작용할 때 안정된 구조 하에서 결합 강도를 높일 수 있는 효과가 있으며, 스래드부의 두께가 얇아 치조골의 골질에 상관없이 식립성과 고정력이 우수한 효과가 있어 산업상 이용가능성이 있습니다.

Claims (7)

  1. 티타늄으로 이루어지며 픽스처 몸체 외면 둘레를 따라 나선형으로 형성되는 치과 임플란트용 매직 스래더에 있어서,
    상기 스래더는 상기 픽스처 몸체 축방향으로 커팅된 구조로 볼 때, 얇은 사각 단면을 가지는 다수의 스래드부가 500~1,500㎛ 피치 간격으로 배치된 구조로 이루어지되,
    각 스래드부는 상기 픽스처 몸체에서부터 원위부까지 두께(t)를 가지는 평판 형상이며, 그 두께(t)는 50~200㎛이고, 높이는 200~2,000㎛인 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
  2. 제1항에 있어서,
    상기 스래드부는 나사산의 편각(thread angle)이 0.1~5°인 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
  3. 제1항에 있어서,
    상기 두께(t)와 피치의 길이 비는 1 : 5~12인 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
  4. 제3항에 있어서,
    상기 피치와 나사산 높이의 길이 비는 1 : 0.3~1.5인 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
  5. 제1항에 있어서,
    상기 픽스처 몸체가 하측으로 갈수록 좁아지는 테이퍼 구조인 경우,
    상기 스래드부의 각 정점이 상기 픽스처 몸체에 대응하는 테이퍼 구조를 이루는 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
  6. 제5항에 있어서,
    인접하는 스래드부의 피치 간격은 동일한 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
  7. 제5항에 있어서,
    인접하는 스래드부의 피치 간격은 상기 픽스처 몸체의 하측으로 갈수록 좁아지는 것을 특징으로 하는 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 스래더.
PCT/KR2016/001698 2015-08-03 2016-02-22 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더 WO2017022915A1 (ko)

Priority Applications (13)

Application Number Priority Date Filing Date Title
ES16833152T ES2879865T3 (es) 2015-08-03 2016-02-22 Implante dental roscado
RU2018107659A RU2685685C1 (ru) 2015-08-03 2016-02-22 Зубной имплантат с резьбовой частью
MYPI2018700398A MY193238A (en) 2015-08-03 2016-02-22 Magic pin threader for dental implant, taking into account strength of titanium and bone
CA2994523A CA2994523C (en) 2015-08-03 2016-02-22 Magic pin threader for dental implant considering strengths of titanium and bone
MX2018001463A MX2018001463A (es) 2015-08-03 2016-02-22 Roscador de pasador magic para implante dental que considera las resistencias del titanio y el hueso.
CN201680045309.XA CN107847304B (zh) 2015-08-03 2016-02-22 考虑钛和骨骼强度的用于牙种植体的魔力螺纹销
PL16833152T PL3332734T3 (pl) 2015-08-03 2016-02-22 Gwintowany implant zębowy
JP2018505414A JP6725643B2 (ja) 2015-08-03 2016-02-22 チタンと骨の強度を考慮した歯科インプラント用マジックピンスレッダ
EP16833152.8A EP3332734B1 (en) 2015-08-03 2016-02-22 Threaded dental implant
BR112018002322-1A BR112018002322B1 (pt) 2015-08-03 2016-02-22 Inseridor para pino para implante dentário levando-se em consideração as resistências do titânio e de um osso
DK16833152.8T DK3332734T3 (da) 2015-08-03 2016-02-22 Tandimplantat med gevind
US15/749,318 US10433937B2 (en) 2015-08-03 2016-02-22 Magic pin threader for dental implant, taking into account strength of titanium and bone
SA518390857A SA518390857B1 (ar) 2015-08-03 2018-02-01 أداة تشكيل خيوط سلكية سحرية لنسيج سني مزروع مع الأخذ في الاعتبار قوى التيتانيوم والعظم

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0109361 2015-08-03
KR1020150109361A KR101586082B1 (ko) 2015-08-03 2015-08-03 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더

Publications (1)

Publication Number Publication Date
WO2017022915A1 true WO2017022915A1 (ko) 2017-02-09

Family

ID=55173574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001698 WO2017022915A1 (ko) 2015-08-03 2016-02-22 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더

Country Status (18)

Country Link
US (1) US10433937B2 (ko)
EP (1) EP3332734B1 (ko)
JP (1) JP6725643B2 (ko)
KR (1) KR101586082B1 (ko)
CN (1) CN107847304B (ko)
BR (1) BR112018002322B1 (ko)
CA (1) CA2994523C (ko)
DK (1) DK3332734T3 (ko)
ES (1) ES2879865T3 (ko)
HU (1) HUE055559T2 (ko)
MX (1) MX2018001463A (ko)
MY (1) MY193238A (ko)
PL (1) PL3332734T3 (ko)
PT (1) PT3332734T (ko)
RU (1) RU2685685C1 (ko)
SA (1) SA518390857B1 (ko)
TW (1) TWI610665B (ko)
WO (1) WO2017022915A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082120B1 (ko) * 2017-10-11 2020-02-28 학교법인 송원대학교 임플란트용 픽스쳐
RU2716460C1 (ru) * 2019-05-29 2020-03-11 Общество с ограниченной ответственностью "Практика доктора Купряхина" Способ изготовления адаптированных дентальных имплантатов
RU196212U1 (ru) * 2019-05-29 2020-02-19 Общество с ограниченной ответственностью "Практика доктора Купряхина" Индивидуальный дентальный нижнечелюстной имплантат
KR102234741B1 (ko) * 2020-07-30 2021-04-02 신세기메디텍(주) 더블 인터널 콜드웰딩 임플란트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200392276Y1 (ko) * 2005-05-25 2005-08-19 주식회사 메가젠 치과용 임플란트
KR100817642B1 (ko) * 2006-06-16 2008-03-27 허영구 임플란트
KR200443018Y1 (ko) * 2008-06-18 2009-01-07 주식회사 코텍 치과용 임플란트 픽스츄어
KR101144933B1 (ko) * 2011-02-11 2012-05-11 오스템임플란트 주식회사 임플란트 픽스쳐
US20140106304A1 (en) * 2012-05-30 2014-04-17 Gravity Implants Ltd. Compressive dental implant

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194847A (ja) 1987-10-05 1989-04-13 Noriyuki Nagai 歯科用インプラント部材
US8070786B2 (en) * 1993-01-21 2011-12-06 Acumed Llc System for fusing joints
US5642996A (en) * 1993-10-20 1997-07-01 Nikon Corporation Endosseous implant
RU2262324C2 (ru) * 2002-12-17 2005-10-20 Абдуллаев Фикрет Мавлудинович Стоматологический имплантат
US6997711B2 (en) * 2002-12-23 2006-02-14 Robert Jeffrey Miller Dental implant
US7819905B2 (en) * 2004-12-17 2010-10-26 Zimmer Spine, Inc. Self drilling bone screw
DE102005056119A1 (de) * 2005-11-27 2007-05-24 Zipprich, Holger, Dipl.-Ing. Temporäre Schraube für kieferorthopädische Anwendung mit gesteigerter Festigkeit im Knochen
WO2009054005A2 (en) 2007-10-26 2009-04-30 Council Of Scientific & Industrial Research Dental implant system
RU84214U1 (ru) * 2008-07-28 2009-07-10 ГОУ ВПО Иркутский государственный университет Зубной титановый имплантат
US8858230B2 (en) * 2008-10-13 2014-10-14 Biodenta Swiss Ag Artificial root for dental implantation and method for manufacturing the same
KR101067752B1 (ko) 2009-04-28 2011-09-28 김영재 임플란트용 픽스쳐
KR200457402Y1 (ko) 2009-07-27 2011-12-20 오스템임플란트 주식회사 치과용 임플란트 픽스쳐
US20130260339A1 (en) * 2009-11-17 2013-10-03 Uab Research Foundation High torque dental implant system
KR101122134B1 (ko) 2011-07-11 2012-03-16 주식회사 메가젠임플란트 치과용 임플란트의 픽스츄어
KR101470972B1 (ko) 2012-11-01 2014-12-09 주식회사 메가젠임플란트 임플란트용 픽스츄어 제작 시스템
KR101327655B1 (ko) 2013-03-08 2013-11-13 한림대학교 산학협력단 응력분산형 임플란트 고정체
CN204092239U (zh) * 2014-10-28 2015-01-14 重庆润泽医药有限公司 一体式种植牙

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200392276Y1 (ko) * 2005-05-25 2005-08-19 주식회사 메가젠 치과용 임플란트
KR100817642B1 (ko) * 2006-06-16 2008-03-27 허영구 임플란트
KR200443018Y1 (ko) * 2008-06-18 2009-01-07 주식회사 코텍 치과용 임플란트 픽스츄어
KR101144933B1 (ko) * 2011-02-11 2012-05-11 오스템임플란트 주식회사 임플란트 픽스쳐
US20140106304A1 (en) * 2012-05-30 2014-04-17 Gravity Implants Ltd. Compressive dental implant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3332734A4 *

Also Published As

Publication number Publication date
TWI610665B (zh) 2018-01-11
KR101586082B1 (ko) 2016-01-15
PT3332734T (pt) 2021-07-07
CA2994523A1 (en) 2017-02-09
SA518390857B1 (ar) 2021-10-28
EP3332734B1 (en) 2021-06-09
CN107847304A (zh) 2018-03-27
CA2994523C (en) 2021-01-19
HUE055559T2 (hu) 2021-12-28
TW201705922A (zh) 2017-02-16
US20180221116A1 (en) 2018-08-09
MY193238A (en) 2022-09-27
EP3332734A4 (en) 2019-04-10
CN107847304B (zh) 2022-04-05
JP2018521801A (ja) 2018-08-09
BR112018002322B1 (pt) 2021-11-03
BR112018002322A2 (pt) 2019-04-30
JP6725643B2 (ja) 2020-07-22
DK3332734T3 (da) 2021-07-12
RU2685685C1 (ru) 2019-04-22
PL3332734T3 (pl) 2021-12-13
MX2018001463A (es) 2018-06-22
ES2879865T3 (es) 2021-11-23
US10433937B2 (en) 2019-10-08
EP3332734A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
WO2017022915A1 (ko) 티타늄과 뼈의 강도를 고려한 치과 임플란트용 매직 핀 스래더
WO2011132843A2 (ko) 치과용 임플란트의 픽스츄어 및 그를 구비하는 임플란트 시스템
US8192199B2 (en) Dental implant for implanting an artificial tooth on the anterior portion of the mandible of a patient
WO2009142429A2 (ko) 치과용 임플란트 픽스쳐
WO2011013973A2 (en) Dental implant fixture
US4872839A (en) Spacer for dental implants
WO2010021478A2 (ko) 치과용 임플란트의 픽스츄어
WO2017204479A1 (ko) 나사풀림방지 구조를 갖춘 임플란트용 어버트먼트
WO2020179958A1 (ko) 치과용 임플란트
WO2011046294A2 (ko) 임플란트 시술용 드릴
WO2010147305A2 (ko) 치과용 임플란트의 픽스츄어
WO2022124666A1 (ko) 모래시계형 어버트먼트 및 이를 이용한 크라운 제작방법
WO2013151258A1 (ko) 각도조절과 위치조절이 자유로운 틀니 고정용 어태치먼트
WO2022085865A1 (ko) 교합력 완충기능을 갖는 치과 임플란트용 지대주
WO2010131879A2 (ko) 치과용 임플란트의 픽스츄어
US20050222634A1 (en) Connector systems and methods for implantable leads
WO2021020656A1 (ko) 이중 스파이럴 구조의 임플란트 시술용 콘덴싱 스크류
WO2010090399A2 (ko) 치과용 임플란트의 픽스츄어
WO2011027975A2 (en) Dental implant assembly having settlement-preventing step
WO2012108659A2 (ko) 임플란트 픽스쳐
WO2018106027A1 (ko) 치과용 임플란트
WO2015115692A1 (ko) 치과용 임플란트의 픽스츄어
KR102082120B1 (ko) 임플란트용 픽스쳐
WO2011132844A1 (ko) 포스트 스크루 및 그를 제거하기 위한 포스트 스크루용 리무버 드라이버
WO2014046383A1 (ko) 치과용 임플란트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15749318

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2994523

Country of ref document: CA

Ref document number: 2018505414

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001463

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201802171

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2018107659

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002322

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018002322

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180202