WO2017022601A1 - Charging device - Google Patents

Charging device Download PDF

Info

Publication number
WO2017022601A1
WO2017022601A1 PCT/JP2016/072096 JP2016072096W WO2017022601A1 WO 2017022601 A1 WO2017022601 A1 WO 2017022601A1 JP 2016072096 W JP2016072096 W JP 2016072096W WO 2017022601 A1 WO2017022601 A1 WO 2017022601A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
output
power
charging
Prior art date
Application number
PCT/JP2016/072096
Other languages
French (fr)
Japanese (ja)
Inventor
永呉 岸本
庄司 浩幸
尊衛 嶋田
高橋 直也
史宏 佐藤
門田 圭司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017532532A priority Critical patent/JPWO2017022601A1/en
Publication of WO2017022601A1 publication Critical patent/WO2017022601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a charging device.
  • Patent Document 1 discloses a charging device that includes an AC-DC converter and a resonant DC-DC converter, and aims to improve conversion efficiency by increasing the input voltage of the resonant DC-DC converter as the battery voltage increases. Has been.
  • the output power difference between the first converter that converts the input power to a DC voltage and outputs it, and the second converter that steps down the DC voltage on the output side of the first converter and supplies it to the battery As a result, the voltage between the first converter and the second converter increases, and the reliability of the first converter and the second converter may decrease.
  • the charging device includes a first converter that converts input power into a DC voltage and outputs the output, and a control unit that outputs a command value to the first converter and controls the power on the output side of the first converter.
  • a second converter that steps down the DC voltage on the output side of the first converter and supplies the DC voltage to the battery, and the control unit outputs a command value so that the voltage on the output side of the first converter drops to a predetermined voltage. Then, the first converter is controlled.
  • (A) is a graph which shows the factor by which a link voltage rises. It is a graph which shows suppression of a raise of a link voltage. It is a graph which shows suppression of a raise of a link voltage. It is a figure which shows control of a charge control apparatus. It is a system configuration figure in a 2nd embodiment.
  • FIG. 1 is a system configuration diagram in which the charging device 104 according to the first embodiment is applied to an electric vehicle 101.
  • the charging device 104 is supplied with AC power from the AC power source 100.
  • the AC power supply 100 is a power supply provided at a charging stand or at home.
  • Charging device 104 uses AC power supply 100 as a power source, converts AC power into DC power, and charges battery 102.
  • the electric vehicle 101 is a vehicle using the battery 102 as a power source. Although not shown, the electric power of the battery 102 is supplied to the inverter device, and the inverter device converts the electric power of the battery 102 from direct current to alternating current and supplies it to the motor. The electric vehicle 101 travels using this motor as a power source.
  • Vehicle ECU 103 is a device that is mounted in electric vehicle 101 and controls the operation of the electric vehicle.
  • the vehicle ECU 103 sends operation command values such as a charging power command value Pchg *, a charging current limit value Ichglim *, and a charging voltage command value Vchg * to the charging control device 105 in the charging device 104.
  • the charging control device 105 is a device that controls the charging device 104, and based on a command value received from the vehicle ECU 103, the AC-DC converter 106, the first converter 107, and the second converter 108 that constitute the charging device 104. Take control.
  • the AC-DC converter 106 is a power converter that converts AC power into DC power.
  • the AC voltage supplied from the AC power supply 100 is full-wave rectified by diodes D11 to D14 connected in a bridge.
  • the diodes D11 and D12 and the diodes D13 and D14 are connected in series, and the diodes connected in series are connected in parallel to form a bridge connection.
  • a connection point between the diodes D11 and D12 connected in series and a connection point between the diodes D13 and D14 connected in series is an AC terminal.
  • the AC power supply 100 is connected to this AC terminal.
  • the connection points at both ends of the diodes D11 and D12 connected in series and the diodes D13 and D14 connected in series are DC terminals.
  • the full-wave rectified voltage is input to a booster circuit including a reactor L1 connected to a DC terminal, a switching element Q10, a diode D10, and a capacitor C1.
  • the switching element Q10 is switched on and off, and the full-wave rectified voltage is boosted and output as a smoothed DC voltage. Note that the switching operation signal of the switching element Q10 is output from the charge control device 105.
  • the first converter 107 is a power converter that converts a DC voltage obtained by boosting and smoothing a full-wave rectified voltage into an insulated DC voltage.
  • the first converter 107 includes switching elements Q1 to Q4 that are bridge-connected.
  • the switching elements Q1 to Q4 are bridge-connected by connecting in parallel a first arm in which switching elements Q1 and Q2 are connected in series and a second arm in which switching elements Q3 and Q4 are connected in series.
  • the both ends of the first arm are between the DC voltage terminals, and the series connection point of the switching elements Q1 and Q2 and the series connection point of the switching elements Q3 and Q4 are between the AC voltage terminals.
  • anti-parallel diodes D1 to D4 are connected to the switching elements Q1 to Q4, respectively.
  • the first converter 107 has a primary side winding in which a resonance capacitor Cr1 and a resonance reactor Lr1 are connected in series at a connection point between the switching element Q1 and the switching element Q2, and this primary side winding is magnetically coupled.
  • a transformer T1 including a secondary winding is provided.
  • the secondary winding of the transformer T1 is provided with bridge-connected diodes D21 to D24. Between the series connection point of the diodes D21 and D22 and the series connection point of the diodes D23 and D24 is connected between the AC terminals and connected to the secondary winding.
  • a first diode leg in which diodes D21 and D22 are connected in series and a second diode leg in which diodes D23 and D24 are connected in series are connected in parallel.
  • a voltage detector VT1 and a link capacitor Clink are connected in parallel between both terminals of the first and second diode legs connected in parallel. The voltage detector VT1 detects the output voltage of the rectifier circuit composed of the diodes D21 to D24 and outputs the detected voltage value to the charge control device 105.
  • the first converter 107 configured as described above receives the output voltage of the AC-DC converter 106, switches the switching elements Q1 to Q4 connected in a bridge with an ON / OFF ratio of about 50%, and the resonant reactor Lr1.
  • a resonance current is passed through the primary side of the resonance capacitor Cr1 and the transformer T1.
  • the current generated on the secondary side of the transformer T1 is full-wave rectified by the bridge-connected diodes D21 to D24, smoothed by the link capacitor Clink, and DC voltage Outputs Vlink.
  • the first converter 107 is an isolated resonance converter, and the first converter 107 fixes the duty ratio of the gate signal applied to the switching elements Q1 to Q4 to about 50% and changes the switching frequency to change the output voltage.
  • the charging control device 105 outputs power corresponding to the charging power command value Pchg1 * by controlling the switching elements Q1 to Q4 based on a charging power command value Pchg1 * described later.
  • a current detector CT1 for detecting a current that is full-wave rectified by the diodes D21 to D24 is provided. The current detector CT1 outputs the detected current value to the charge control device 105.
  • the second converter 108 is a power converter that steps down the DC voltage Vlink output from the first converter 107 and outputs a DC voltage.
  • the DC voltage Vlink is applied to the switching elements Q5 and Q6 connected in series.
  • Switching elements Q5 and Q6 are ON / OFF controlled by a control signal from charge control device 105.
  • anti-parallel diodes D4 and D5 are connected to the switching elements Q5 and Q6, respectively.
  • a reactor L2 and a capacitor C2 are connected to a connection point between the switching elements Q5 and Q6, and together with the switching elements Q5 and Q6, a step-down circuit is configured.
  • the battery 102 is charged by the output voltage of the step-down circuit.
  • Voltage detector VT ⁇ b> 2 detects voltage Vbatt of battery 102 and outputs the detected voltage value to charge control device 105.
  • a current detector CT2 that detects the current of the battery 102 is provided.
  • the current detector CT ⁇ b> 2 outputs the detected current value to the charging control device 105.
  • the second converter 108 configured in this way performs switching operation by controlling the switching elements Q5 and Q6 to turn on and off, and makes the output voltage of the first converter 107 rectangular.
  • the rectangular wave voltage is smoothed by the reactor L2 and the capacitor C2, and a DC voltage is output.
  • the input voltage of the second converter 108 and the output voltage of the second converter 108 can be made substantially equal by fixing the switching element Q5 to ON and fixing the switching element Q6 to OFF.
  • the charging control device 105 receives the charging power command value Pchg *, the charging current limit value Ichglim *, and the charging voltage command value Vchg * from the vehicle ECU 103, and operates the first converter 107 and the second converter 108.
  • the charging power command value Pchg * and the charging voltage command value Vchg * are target values for causing the charging device 104 to follow these values
  • the charging current limit value Ichglim * is a battery 102, a relay, or the like. It means the maximum current value that can be passed from the viewpoint of protection.
  • the charging device 104 converts AC power input from the AC power supply 100 into DC power by the AC-DC converter 106, and outputs the AC-DC converter 106 to DC power by the first converter 107. Convert to The output of the first converter 107 is converted to DC power by the second converter 108 and the battery 102 is charged.
  • the first converter 107 performs constant power control of charging power and constant voltage control of the battery voltage Vbatt
  • the second converter 108 performs constant current control of charging current and constant voltage control of the link voltage Vlink.
  • Fig. 2 (a) and (b) are graphs showing factors that increase the link voltage.
  • the horizontal axis represents the battery voltage Vbatt
  • the vertical axis represents power.
  • the solid line indicates the power P1out output from the first converter 107
  • the broken line indicates the power P2out output from the second converter.
  • the electric power P1out output from the first converter 107 is constant so as to follow the charging power command value Pchg *, whereas the electric power P2out output from the second converter 108 includes the battery voltage Vbatt and the charging current limit value Ichglim. Determined by the product of *.
  • the power P2out output from the second converter 108 is determined by the charging current that can flow to the maximum with respect to the current battery voltage Vbatt.
  • the power P2out output by the second converter 108 which is a broken line
  • the power P1out output by the first converter 107 which is a solid line
  • a power difference ⁇ P occurs during
  • the maximum battery voltage VbattL at which the power difference ⁇ P occurs is a value obtained by dividing the charging power command value Pchg * by the charging current limit value Ichglim *.
  • This power difference ⁇ P becomes surplus power Pdump of the output of the first converter 107 with respect to the output of the second converter 108, and increases the link voltage Vlink of the output of the first converter 107.
  • FIG. 2B shows the battery voltage Vbatt on the horizontal axis and the link voltage Vlink on the vertical axis.
  • the rising voltage Vraise of the link voltage Vlink due to the surplus power Pdump is expressed by the following equation (1).
  • Clink represents the capacitance of the link capacitor Clink
  • t represents time.
  • the switching elements Q5 and Q6 of the second converter 108 are switched in a range where the battery voltage is low, and the link voltage Vlink which is the output of the first converter 107 is stepped down to reduce the battery 102. Charge the battery. In the range where the battery voltage is high, the switching element Q5 of the second converter 108 is fixed on, the switching element Q6 is fixed off, and the output of the first converter 107 is passed through to charge the battery 102. Since there is an operation in a range where the battery voltage is high, the first converter 107 needs to perform constant power control of the charging power.
  • FIG. 3 (a) and 3 (b) are graphs showing that an increase in link voltage is suppressed.
  • FIG. 3A shows the battery voltage Vbatt on the horizontal axis and the power on the vertical axis.
  • the solid line indicates the power P1out output from the first converter 107
  • the broken line indicates the power P2out output from the second converter 108.
  • FIG. 3B shows the battery voltage Vbatt on the horizontal axis and the link voltage Vlink on the vertical axis.
  • the power P1out of the first converter is represented by a dotted line in FIG. 2 (indicated by a dotted line) so that the power difference ⁇ P (surplus power Pdump) does not occur.
  • the value is reduced as indicated by the solid line from the value of a), and the power P2out of the second converter indicated by the broken line is followed.
  • FIG. 3B By suppressing the surplus power Pdump in this way, as shown in FIG. 3B, the rise of the link voltage Vlink is suppressed, and the link voltage Vlink is changed from the original state of FIG. 2B shown by the dotted line to the solid line. As shown, it can be reduced to follow the link voltage Vlink *. Thereby, the charging apparatus 104 can be continuously operated safely.
  • the surplus power Pdump is reduced by reducing the power P1out output from the first converter 107.
  • the power P1out output from the first converter 107 is changed from a state indicated by a dotted line to a state indicated by a solid line.
  • the charge control device 105 controls the power command value to the first converter 107.
  • the electric power P1out output from the first converter 107 follows the electric power P2out output from the second converter 108.
  • the rise of the link voltage Vlink can be suppressed so as to change from the state indicated by the dotted line to the state indicated by the solid line.
  • FIG. 4 is a diagram illustrating control of the charging control device 105 by functional blocks.
  • the link voltage suppression control unit 301 includes an FF control unit 302 and an FB control unit 303.
  • the FF control unit 302 calculates the power that can be output from the second converter 108 that is equivalent to the power that can be output from the first converter 107.
  • the electric power that can be output from the second converter 108 is obtained by integrating the battery voltage Vbatt detected by the voltage detector VT2 (see FIG. 1) and the charging current limit value Ichglim * by the integrator 304 and calculating the value Pchglink__ff.
  • the FB control unit 303 obtains the power of the first converter 107 to be reduced with respect to the increase of the link voltage Vlink.
  • An adder / subtractor 306 obtains a deviation between the link voltage command value Vlink * and the link voltage Vlink detected by the voltage detector VT1 (see FIG. 1). This deviation is calculated by the PI controller 307, converted into the amount of power to be reduced, and the power Plink_fb to be reduced is obtained.
  • the link voltage suppression control amount Pchglink is obtained by subtracting the power Plink_fb to be reduced obtained by the FB control unit 302 by the adder / subtractor 305 from the outputtable power Pchglink_ff obtained by the FF control unit 302.
  • the electric power correction control unit 311 calculates electric power to compensate for the shortage of the charging power Pchg output from the charging device 104 with respect to the charging power command value Pchg * given from the vehicle ECU 103.
  • Charging power Pchg output from charging device 104 is obtained from the product of battery voltage Vbatt detected by voltage detector VT2 (see FIG. 1) and charging current Ichg detected by current detector CT2 (see FIG. 1). .
  • the charging power Pchg is subtracted from the charging power command value Pchg * given from the vehicle ECU 103 by the adder / subtractor 313 to obtain a deviation.
  • the obtained deviation is converted into electric power by the PI controller 314, and the upper / lower limiter 315 performs the upper limit with the maximum power loss of the second converter 108 and the lower limit with 0 to obtain the power correction amount Pcomp.
  • the charge power command value Pchg2 * is obtained by adding the power correction amount Pcomp to the charge power command value Pchg * using the adder / subtractor 316.
  • the upper and lower limiter 308 limits the charging power command value Pchg2 * to the upper limit based on the link voltage suppression control amount Pchglink determined by the link voltage suppression control unit 301, and determines the final charging power command value Pchg1 *.
  • the charge power command value Pchg1 * subjected to link voltage suppression is when the link voltage suppression control does not work, that is, when the battery voltage Vbatt and the charge current limit value Ichglim * are equal to or greater than the charge power command value Pchg * provided from the vehicle ECU 103.
  • the charging power command value Pchg * given from the vehicle ECU 103 is obtained.
  • the charging power command value Pchg1 * subjected to link voltage suppression is received by the link voltage suppression control unit 301.
  • the obtained value Pchg1 * is obtained.
  • the charging control device 105 controls the switching elements Q1 to Q4 of the first converter 107 based on the charging power command value Pchg1 *. Thereby, the first converter 107 outputs power corresponding to the charging power command value Pchg1 *.
  • the power P1out output from the first converter 107 changes from the state indicated by the dotted line to the state indicated by the solid line.
  • the power command value to the first converter 107 is controlled.
  • a raise can be suppressed so that link voltage Vlink may be in the state shown with a continuous line from the state shown with a dotted line.
  • FIG. 5 is a system configuration diagram in the second embodiment.
  • a first converter 107a is shown instead of the first converter 107 shown in FIG. 1, and the other configurations are the same as those in FIG.
  • the first converter 107a converts the DC voltage into an insulated DC voltage by controlling the phase of the first arm Leg1 composed of the switching elements Q1a and Q2a and the second arm Leg2 composed of the switching elements Q3a and Q4a. To do.
  • the ON / OFF ratio of the switching elements Q1a to Q4a is about 50%, and the ON / OFF states of the switches of the switching elements Q1a and Q2a and Q3a and Q4a are in a complementary relationship.
  • the output of the first converter 107a is increased by increasing the time during which the switching elements Q1a and Q4a and the switching elements Q2a and Q3a are simultaneously turned ON, and the output of the first converter 107a is decreased by decreasing the ON time. .
  • the first converter 107a switches the switching elements Q1a to Q4a with respect to the input voltage Vin, thereby causing a current to flow on the primary side of the transformer T1a and generating a current on the secondary side of T1a.
  • the current generated on the secondary side of the transformer T1a is full-wave rectified by the bridge-connected diodes D21a to D24a, and smoothed by the reactor L1a and the capacitor Clinka to generate the output voltage Vout.
  • the first converter 107 in the first embodiment shown in FIG. 1 may have poor control characteristics because the relationship between the switching frequency and the input / output ratio of the first converter 107 is non-linear. For example, this is the case when the output voltage is lowered at light load.
  • the first converter 107a in the second embodiment shown in FIG. 5 fixes the switching frequency of the gate signal applied to the switching elements Q1a to Q4a to an arbitrary frequency, and sets the duty ratio of the switching period of the switching element. The output is controlled by changing it. In this duty control, since the relationship between the duty ratio and the input / output ratio of the first converter 107a is linear, the control characteristics are good.
  • the switching frequency of the gate signal applied to the switching elements Q1a to Q4a is fixed to an arbitrary frequency
  • the duty ratio is also fixed to 50%
  • the output is controlled by changing the phase difference between Leg1 and Leg2 that perform complementary switching. You can also.
  • the phase difference control since the relationship between the phase difference and the input / output ratio is linear, the control characteristics are good.
  • the charging device 104 converts the input power into a DC voltage and outputs it, and outputs a command value to the first converter 107 to control the power on the output side of the first converter 107.
  • a second converter 108 that steps down a DC voltage on the output side of the first converter 107 and supplies the DC voltage to the battery 102.
  • the charge control device 105 includes a voltage on the output side of the first converter 107.
  • the first converter 107 is controlled by outputting a command value so that the voltage drops to a predetermined voltage. Thereby, the charging device which charges with high efficiency can be provided.
  • the charging control device 105 controls the first converter 107 by outputting a command value so that the power output from the first converter 107 follows the power output from the second converter 108. Thereby, the rise in the voltage output from the first converter 107 can be suppressed.
  • the charging control device 105 A command value is output to control the first converter 107 so that the voltage on the output side of the converter 107 drops to a predetermined voltage. As a result, it is possible to suppress an increase in voltage output from the first converter 107 when the battery voltage is low.
  • the first converter 107a changes the duty ratio of the switching period of the switching elements constituting the first converter 107a to lower the output voltage to a predetermined voltage. Thereby, the voltage output from the first converter 107a can be controlled.
  • the first converter 107a is composed of a first arm Leg1 and a second arm Leg2 made of bridge-connected switching elements, and changes the phase difference between the first arm Leg1 and the second arm Leg2 based on the command value. Then, the output side voltage is lowered to a predetermined voltage. Thereby, the voltage output from the first converter 107a can be controlled.
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The objective of the present invention is to improve the reliability of a charging device while maintaining a high battery charging efficiency. When a battery voltage Vbatt is less than VbattL, a situation in which surplus power Pdump is generated, a voltage command value sent to a first converter 107 is controlled in such a way that a power output P1out output from the first converter 107 changes from the state indicated by the dotted line to the state indicated by the solid line. By this means, the power output P1out output by the first converter 107 tracks a power output P2out output by a second converter 108. As a result, a rise in a link voltage Vlink can be suppressed in such a way that the link voltage Vlink changes from the state indicated by the dotted line to the state indicated by the solid line.

Description

充電装置Charger
 本発明は、充電装置に関する。 The present invention relates to a charging device.
 近年、電気自動車やプラグインハイブリッド車が普及している。これらの車両には、車両の走行時にモータへ電力を供給するためのバッテリが搭載されている。このバッテリを商用の交流電源から充電するときは、より少ない電力で安全に充電するために、変換効率が高く、交流電源とバッテリとを絶縁する機能を備えた充電装置が必要になる。特許文献1には、AC-DCコンバータと共振形DC-DCコンバータを備え、バッテリ電圧の上昇に伴い共振形DC-DCコンバータの入力電圧を上昇させて変換効率の向上を狙った充電装置が開示されている。 In recent years, electric vehicles and plug-in hybrid vehicles have become widespread. These vehicles are equipped with a battery for supplying electric power to the motor when the vehicle is running. When charging this battery from a commercial AC power source, a charging device having a high conversion efficiency and a function of insulating the AC power source and the battery is required to safely charge with less power. Patent Document 1 discloses a charging device that includes an AC-DC converter and a resonant DC-DC converter, and aims to improve conversion efficiency by increasing the input voltage of the resonant DC-DC converter as the battery voltage increases. Has been.
特開2012-85378号公報JP 2012-85378 A
 バッテリ電圧が低い時、入力された電力を直流電圧へ変換して出力する第1コンバータと、第1コンバータの出力側の直流電圧を降圧してバッテリへ供給する第2コンバータと、の出力電力差により、第1コンバータと第2コンバータ間の電圧が上昇し、第1コンバータと第2コンバータの信頼性が低下する虞がある。 When the battery voltage is low, the output power difference between the first converter that converts the input power to a DC voltage and outputs it, and the second converter that steps down the DC voltage on the output side of the first converter and supplies it to the battery As a result, the voltage between the first converter and the second converter increases, and the reliability of the first converter and the second converter may decrease.
 本発明による充電装置は、入力された電力を直流電圧へ変換して出力する第1コンバータと、第1コンバータへ指令値を出力して、第1コンバータの出力側の電力を制御する制御部と、第1コンバータの出力側の直流電圧を降圧してバッテリへ供給する第2コンバータと、を備え、制御部は、第1コンバータの出力側の電圧が所定電圧まで下がるように、指令値を出力して第1コンバータを制御する。 The charging device according to the present invention includes a first converter that converts input power into a DC voltage and outputs the output, and a control unit that outputs a command value to the first converter and controls the power on the output side of the first converter. A second converter that steps down the DC voltage on the output side of the first converter and supplies the DC voltage to the battery, and the control unit outputs a command value so that the voltage on the output side of the first converter drops to a predetermined voltage. Then, the first converter is controlled.
 本発明によれば、バッテリの充電を高効率に維持しながら、充電装置の信頼性を向上させることができる。 According to the present invention, it is possible to improve the reliability of the charging device while maintaining the charging of the battery with high efficiency.
充電装置を電動車両に適用したシステム構成図である。It is a system block diagram which applied the charging device to the electric vehicle. (a)(b)は、リンク電圧が上昇する要因を示すグラフである。(A) (b) is a graph which shows the factor by which a link voltage rises. リンク電圧の上昇の抑制を示すグラフである。It is a graph which shows suppression of a raise of a link voltage. リンク電圧の上昇の抑制を示すグラフである。It is a graph which shows suppression of a raise of a link voltage. 充電制御装置の制御を示す図である。It is a figure which shows control of a charge control apparatus. 第2の実施形態におけるシステム構成図である。It is a system configuration figure in a 2nd embodiment.
(第1の実施形態)
 図1は第1の実施形態における充電装置104を電動車両101に適用したシステム構成図である。
 充電装置104は、交流電源100より交流電力が供給される。交流電源100は、充電スタンドや家庭に設けられている電源である。充電装置104は、交流電源100を電源として、交流電力を直流電力に変換し、バッテリ102の充電を行う。
(First embodiment)
FIG. 1 is a system configuration diagram in which the charging device 104 according to the first embodiment is applied to an electric vehicle 101.
The charging device 104 is supplied with AC power from the AC power source 100. The AC power supply 100 is a power supply provided at a charging stand or at home. Charging device 104 uses AC power supply 100 as a power source, converts AC power into DC power, and charges battery 102.
 電動車両101は、バッテリ102を電力源にした車両である。図示省略するが、バッテリ102の電力はインバータ装置に供給され、インバータ装置はバッテリ102の電力を直流から交流に変換してモータに供給する。電動車両101は、このモータを動力源にして走行する。 The electric vehicle 101 is a vehicle using the battery 102 as a power source. Although not shown, the electric power of the battery 102 is supplied to the inverter device, and the inverter device converts the electric power of the battery 102 from direct current to alternating current and supplies it to the motor. The electric vehicle 101 travels using this motor as a power source.
 車両ECU103は、電動車両101内に搭載され、電動車両の動作を制御する装置である。車両ECU103は、充電装置104内の充電制御装置105に対して充電電力指令値Pchg* 、充電電流制限値Ichglim*、および充電電圧指令値Vchg*等の動作指令値を送る。 Vehicle ECU 103 is a device that is mounted in electric vehicle 101 and controls the operation of the electric vehicle. The vehicle ECU 103 sends operation command values such as a charging power command value Pchg *, a charging current limit value Ichglim *, and a charging voltage command value Vchg * to the charging control device 105 in the charging device 104.
 充電制御装置105は、充電装置104の制御を行う装置で、車両ECU103から受けた指令値に基づいて、充電装置104を構成するAC-DC変換器106、第1コンバータ107、第2コンバータ108の制御を行う。 The charging control device 105 is a device that controls the charging device 104, and based on a command value received from the vehicle ECU 103, the AC-DC converter 106, the first converter 107, and the second converter 108 that constitute the charging device 104. Take control.
 AC-DC変換器106は、交流電力を直流電力に変換する電力変換器である。交流電源100より供給された交流電圧をブリッジ接続されたダイオードD11~D14により全波整流を行う。本実施形態ではダイオードD11とD12、ダイオードD13とD14がそれぞれ直列に接続され、直列に接続されたダイオードがそれぞれ並列に接続されることでブリッジ接続されている。直列接続されたダイオードD11とD12の間の接続点と直列接続されたダイオードD13とD14の間の接続点が交流端子となっている。交流電源100はこの交流端子に接続されている。直列接続されたダイオードD11とD12及び直列接続されたダイオードD13とD14の両端部の接続点が直流端子となっている。全波整流された電圧は、直流端子に接続されたリアクトルL1と、スイッチング素子Q10と、ダイオードD10と、コンデンサC1により構成された昇圧回路に入力されている。この昇圧回路でスイッチング素子Q10をON/OFFスイッチング動作させ、全波整流された電圧を昇圧し平滑化した直流電圧として出力する。なお、スイッチング素子Q10のスイッチング動作信号は充電制御装置105より出力される。 The AC-DC converter 106 is a power converter that converts AC power into DC power. The AC voltage supplied from the AC power supply 100 is full-wave rectified by diodes D11 to D14 connected in a bridge. In the present embodiment, the diodes D11 and D12 and the diodes D13 and D14 are connected in series, and the diodes connected in series are connected in parallel to form a bridge connection. A connection point between the diodes D11 and D12 connected in series and a connection point between the diodes D13 and D14 connected in series is an AC terminal. The AC power supply 100 is connected to this AC terminal. The connection points at both ends of the diodes D11 and D12 connected in series and the diodes D13 and D14 connected in series are DC terminals. The full-wave rectified voltage is input to a booster circuit including a reactor L1 connected to a DC terminal, a switching element Q10, a diode D10, and a capacitor C1. With this booster circuit, the switching element Q10 is switched on and off, and the full-wave rectified voltage is boosted and output as a smoothed DC voltage. Note that the switching operation signal of the switching element Q10 is output from the charge control device 105.
 第1コンバータ107は、全波整流された電圧を昇圧し平滑化した直流電圧を、絶縁した直流電圧に変換する電力変換器である。第1コンバータ107は、ブリッジ接続されたスイッチング素子Q1~Q4を備えている。スイッチング素子Q1~Q4は、スイッチング素子Q1、Q2を直列接続した第1アームと、スイッチング素子Q3、Q4を直列接続した第2アームを並列に接続してブリッジ接続されている。そして、第1アームの両端間を直流電圧の端子間とし、スイッチング素子Q1、Q2の直列接続点とスイッチング素子Q3、Q4の直列接続点との間を交流電圧端子間としている。なお、スイッチング素子Q1~Q4には、それぞれ逆並列ダイオードD1~D4が接続されている。 The first converter 107 is a power converter that converts a DC voltage obtained by boosting and smoothing a full-wave rectified voltage into an insulated DC voltage. The first converter 107 includes switching elements Q1 to Q4 that are bridge-connected. The switching elements Q1 to Q4 are bridge-connected by connecting in parallel a first arm in which switching elements Q1 and Q2 are connected in series and a second arm in which switching elements Q3 and Q4 are connected in series. The both ends of the first arm are between the DC voltage terminals, and the series connection point of the switching elements Q1 and Q2 and the series connection point of the switching elements Q3 and Q4 are between the AC voltage terminals. Note that anti-parallel diodes D1 to D4 are connected to the switching elements Q1 to Q4, respectively.
 更に、第1コンバータ107は、スイッチング素子Q1とスイッチング素子Q2の接続点に、共振コンデンサCr1と共振リアクトルLr1が直列接続された1次側巻線を有し、この1次側巻線と磁気結合する2次側巻線よりなるトランスT1を備えている。トランスT1の2次側巻線にはブリッジ接続されたダイオードD21~D24が設けられている。ダイオードD21、D22の直列接続点とダイオードD23、D24の直列接続点との間を交流端子間として2次側巻線に接続している。 Furthermore, the first converter 107 has a primary side winding in which a resonance capacitor Cr1 and a resonance reactor Lr1 are connected in series at a connection point between the switching element Q1 and the switching element Q2, and this primary side winding is magnetically coupled. A transformer T1 including a secondary winding is provided. The secondary winding of the transformer T1 is provided with bridge-connected diodes D21 to D24. Between the series connection point of the diodes D21 and D22 and the series connection point of the diodes D23 and D24 is connected between the AC terminals and connected to the secondary winding.
 ダイオードD21~D24で構成される整流回路は、ダイオードD21、D22を直列接続した第1のダイオードレッグと、ダイオードD23、D24を直列接続した第2のダイオードレッグを並列に接続している。そして、並列接続した第1及び第2のダイオードレッグの両端子間に電圧検出器VT1とリンクコンデンサClinkが並列に接続されている。電圧検出器VT1は、ダイオードD21~D24で構成される整流回路の出力電圧を検出し、検出した電圧値を充電制御装置105へ出力する。 In the rectifier circuit composed of diodes D21 to D24, a first diode leg in which diodes D21 and D22 are connected in series and a second diode leg in which diodes D23 and D24 are connected in series are connected in parallel. A voltage detector VT1 and a link capacitor Clink are connected in parallel between both terminals of the first and second diode legs connected in parallel. The voltage detector VT1 detects the output voltage of the rectifier circuit composed of the diodes D21 to D24 and outputs the detected voltage value to the charge control device 105.
 このように構成される第1コンバータ107は、AC-DC変換器106の出力電圧を受け、ブリッジ接続されたスイッチング素子Q1~Q4を約50%のON/OFF比でスイッチング動作させ、共振リアクトルLr1、共振コンデンサCr1、トランスT1の1次側に共振電流を流す。トランスT1の1次側に電流を流すことで、トランスT1の2次側に発生する電流を、ブリッジ接続されたダイオードD21~D24により全波整流し、リンクコンデンサClinkで平滑化を行い、直流電圧Vlinkを出力する。すなわち、第1コンバータ107は、絶縁型共振コンバータであり、第1コンバータ107は、スイッチング素子Q1~Q4に与えるゲート信号のデューティ比を約50%に固定し、スイッチング周波数を変化させて出力電圧の制御を行う。具体的には、充電制御装置105は、後述の充電電力指令値Pchg1*に基づいてスイッチング素子Q1~Q4を制御することにより、充電電力指令値Pchg1*に対応した電力を出力する。なお、ダイオードD21~D24により全波整流された電流を検出する電流検出器CT1が設けられている。電流検出器CT1は、検出した電流値を充電制御装置105へ出力する。 The first converter 107 configured as described above receives the output voltage of the AC-DC converter 106, switches the switching elements Q1 to Q4 connected in a bridge with an ON / OFF ratio of about 50%, and the resonant reactor Lr1. A resonance current is passed through the primary side of the resonance capacitor Cr1 and the transformer T1. By flowing current to the primary side of the transformer T1, the current generated on the secondary side of the transformer T1 is full-wave rectified by the bridge-connected diodes D21 to D24, smoothed by the link capacitor Clink, and DC voltage Outputs Vlink. That is, the first converter 107 is an isolated resonance converter, and the first converter 107 fixes the duty ratio of the gate signal applied to the switching elements Q1 to Q4 to about 50% and changes the switching frequency to change the output voltage. Take control. Specifically, the charging control device 105 outputs power corresponding to the charging power command value Pchg1 * by controlling the switching elements Q1 to Q4 based on a charging power command value Pchg1 * described later. Note that a current detector CT1 for detecting a current that is full-wave rectified by the diodes D21 to D24 is provided. The current detector CT1 outputs the detected current value to the charge control device 105.
 第2コンバータ108は、第1コンバータ107から出力された直流電圧Vlinkを降圧して直流電圧を出力する電力変換器である。直流電圧Vlinkは、直列接続されたスイッチング素子Q5、Q6に印加される。スイッチング素子Q5、Q6は、充電制御装置105からの制御信号によりON/OFF制御される。なお、スイッチング素子Q5、Q6には、それぞれ逆並列ダイオードD4、D5が接続されている。スイッチング素子Q5とスイッチング素子Q6の接続点に、リアクトルL2,コンデンサC2が接続され、スイッチング素子Q5,Q6と合わせて降圧回路を構成している。降圧回路の出力電圧によってバッテリ102が充電される。電圧検出器VT2は、バッテリ102の電圧Vbattを検出し、検出した電圧値を充電制御装置105へ出力する。また、バッテリ102の電流を検出する電流検出器CT2が設けられている。電流検出器CT2は、検出した電流値を充電制御装置105へ出力する。 The second converter 108 is a power converter that steps down the DC voltage Vlink output from the first converter 107 and outputs a DC voltage. The DC voltage Vlink is applied to the switching elements Q5 and Q6 connected in series. Switching elements Q5 and Q6 are ON / OFF controlled by a control signal from charge control device 105. Note that anti-parallel diodes D4 and D5 are connected to the switching elements Q5 and Q6, respectively. A reactor L2 and a capacitor C2 are connected to a connection point between the switching elements Q5 and Q6, and together with the switching elements Q5 and Q6, a step-down circuit is configured. The battery 102 is charged by the output voltage of the step-down circuit. Voltage detector VT <b> 2 detects voltage Vbatt of battery 102 and outputs the detected voltage value to charge control device 105. In addition, a current detector CT2 that detects the current of the battery 102 is provided. The current detector CT <b> 2 outputs the detected current value to the charging control device 105.
 このように構成される第2コンバータ108は、スイッチング素子Q5、Q6をON/OFF制御してスイッチング動作させ、第1コンバータ107の出力電圧を矩形波状にする。矩形波状にした電圧をリアクトルL2、コンデンサC2で平滑化し直流電圧を出力する。またスイッチング素子Q5をON固定、スイッチング素子Q6をOFF固定とすることで第2コンバータ108の入力電圧と、第2コンバータ108の出力電圧を概ね等しくすることができる。 The second converter 108 configured in this way performs switching operation by controlling the switching elements Q5 and Q6 to turn on and off, and makes the output voltage of the first converter 107 rectangular. The rectangular wave voltage is smoothed by the reactor L2 and the capacitor C2, and a DC voltage is output. In addition, the input voltage of the second converter 108 and the output voltage of the second converter 108 can be made substantially equal by fixing the switching element Q5 to ON and fixing the switching element Q6 to OFF.
 充電制御装置105は、車両ECU103より充電電力指令値Pchg* 、充電電流制限値Ichglim*、および充電電圧指令値Vchg*を受けとり、第1コンバータ107と第2コンバータ108を動作させる。ここで充電電力指令値Pchg* 、充電電圧指令値Vchg*は、充電装置104をこれらの値になるように追従させる目標となる指令値であり、充電電流制限値Ichglim*はバッテリ102やリレー等の保護の観点から流すことのできる最大電流値を意味する。 The charging control device 105 receives the charging power command value Pchg *, the charging current limit value Ichglim *, and the charging voltage command value Vchg * from the vehicle ECU 103, and operates the first converter 107 and the second converter 108. Here, the charging power command value Pchg * and the charging voltage command value Vchg * are target values for causing the charging device 104 to follow these values, and the charging current limit value Ichglim * is a battery 102, a relay, or the like. It means the maximum current value that can be passed from the viewpoint of protection.
 以上のように、充電装置104は、交流電源100から入力された交流電力をAC-DC変換器106で直流電力に変換を行い、AC-DC変換器106の出力を第1コンバータ107で直流電力に変換を行う。そして第1コンバータ107の出力を第2コンバータ108により直流電力に変換を行い、バッテリ102の充電を行う。第1コンバータ107は充電電力の定電力制御とバッテリ電圧Vbattの定電圧制御を行い、第2コンバータ108は充電電流の定電流制御とリンク電圧Vlinkの定電圧制御を行う。 As described above, the charging device 104 converts AC power input from the AC power supply 100 into DC power by the AC-DC converter 106, and outputs the AC-DC converter 106 to DC power by the first converter 107. Convert to The output of the first converter 107 is converted to DC power by the second converter 108 and the battery 102 is charged. The first converter 107 performs constant power control of charging power and constant voltage control of the battery voltage Vbatt, and the second converter 108 performs constant current control of charging current and constant voltage control of the link voltage Vlink.
 図2 (a)(b)は、リンク電圧が上昇する要因を示すグラフである。図2 (a)は、横軸のバッテリ電圧Vbattに対して、縦軸は電力である。図2 (a)で、実線は第1コンバータ107が出力する電力P1out、破線は第2コンバータ108が出力する電力P2outを示す。 Fig. 2 (a) and (b) are graphs showing factors that increase the link voltage. In FIG. 2A, the horizontal axis represents the battery voltage Vbatt, and the vertical axis represents power. 2A, the solid line indicates the power P1out output from the first converter 107, and the broken line indicates the power P2out output from the second converter.
 第1コンバータ107が出力する電力P1outは、充電電力指令値Pchg*に追従するように一定であるのに対して、第2コンバータ108が出力する電力P2outは、バッテリ電圧Vbattと充電電流制限値Ichglim*の積により決定する。言い換えると第2コンバータ108が出力する電力P2outは現在のバッテリ電圧Vbattに対して最大に流せる充電電流により決定する。 The electric power P1out output from the first converter 107 is constant so as to follow the charging power command value Pchg *, whereas the electric power P2out output from the second converter 108 includes the battery voltage Vbatt and the charging current limit value Ichglim. Determined by the product of *. In other words, the power P2out output from the second converter 108 is determined by the charging current that can flow to the maximum with respect to the current battery voltage Vbatt.
 図2(a)に示すように、バッテリ電圧VbattがVbattLよりも低い時は、破線である第2コンバータ108が出力する電力P2outも低くなり、実線である第1コンバータ107が出力する電力P1outとの間に電力差ΔPが発生する。ここで電力差ΔPが発生する最大のバッテリ電圧VbattLは、充電電力指令値Pchg*を充電電流制限値Ichglim*で除した値となる。この電力差ΔPは第2コンバータ108の出力に対する第1コンバータ107の出力の余剰電力Pdumpとなり、第1コンバータ107の出力のリンク電圧Vlinkを上昇させる。 As shown in FIG. 2A, when the battery voltage Vbatt is lower than VbattL, the power P2out output by the second converter 108, which is a broken line, is also low, and the power P1out output by the first converter 107, which is a solid line, A power difference ΔP occurs during Here, the maximum battery voltage VbattL at which the power difference ΔP occurs is a value obtained by dividing the charging power command value Pchg * by the charging current limit value Ichglim *. This power difference ΔP becomes surplus power Pdump of the output of the first converter 107 with respect to the output of the second converter 108, and increases the link voltage Vlink of the output of the first converter 107.
 図2(b)は、横軸にバッテリ電圧Vbattを示し、縦軸にリンク電圧Vlinkを示す。余剰電力Pdumpによるリンク電圧Vlinkの上昇電圧Vraiseは以下の式(1)にて表される。
Figure JPOXMLDOC01-appb-M000001
 この式で、Clinkは、リンクコンデンサClinkの容量、tは時間を表す。
FIG. 2B shows the battery voltage Vbatt on the horizontal axis and the link voltage Vlink on the vertical axis. The rising voltage Vraise of the link voltage Vlink due to the surplus power Pdump is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
In this equation, Clink represents the capacitance of the link capacitor Clink, and t represents time.
 式(1)から分かるように、余剰電力Pdumpの発生時に、リンク電圧Vlinkは時間tと余剰電力Pdumpの積の平方根に比例して上昇するため、過電圧となり、第1コンバータ107の出力側や、第2コンバータ108の入力側に接続される部品の故障を発生させる問題がある。 As can be seen from the equation (1), when the surplus power Pdump is generated, the link voltage Vlink increases in proportion to the square root of the product of the time t and the surplus power Pdump, and thus becomes an overvoltage, and the output side of the first converter 107, There is a problem of causing a failure of a component connected to the input side of the second converter 108.
 なお、第1コンバータ107がリンク電圧Vlinkの定電圧制御を行い、第2コンバータ108が充電電力の定電力制御を行えば上述の問題は発生しない。しかし、本実施形態では高効率化のため、バッテリ電圧が低い範囲では第2コンバータ108のスイッチング素子Q5、Q6をスイッチング動作させ、第1コンバータ107の出力であるリンク電圧Vlinkを降圧してバッテリ102の充電を行う。また、バッテリ電圧が高い範囲では第2コンバータ108のスイッチング素子Q5をオンに固定し、スイッチング素子Q6をオフに固定して第1コンバータ107の出力をスルーで通し、バッテリ102の充電を行う。このバッテリ電圧が高い範囲での動作があるため第1コンバータ107にて充電電力の定電力制御を行う必要がある。 Note that the above-described problem does not occur if the first converter 107 performs constant voltage control of the link voltage Vlink and the second converter 108 performs constant power control of the charging power. However, in this embodiment, in order to increase efficiency, the switching elements Q5 and Q6 of the second converter 108 are switched in a range where the battery voltage is low, and the link voltage Vlink which is the output of the first converter 107 is stepped down to reduce the battery 102. Charge the battery. In the range where the battery voltage is high, the switching element Q5 of the second converter 108 is fixed on, the switching element Q6 is fixed off, and the output of the first converter 107 is passed through to charge the battery 102. Since there is an operation in a range where the battery voltage is high, the first converter 107 needs to perform constant power control of the charging power.
 図3(a)(b)は、リンク電圧の上昇が抑制されることを示すグラフである。図3(a)は、横軸にバッテリ電圧Vbattを示し、縦軸に電力を示す。図3 (a)で、実線は第1コンバータ107が出力する電力P1out、破線は第2コンバータ108が出力する電力P2outを示す。図3(b)は、横軸にバッテリ電圧Vbattを示し、縦軸にリンク電圧Vlinkを示す。 3 (a) and 3 (b) are graphs showing that an increase in link voltage is suppressed. FIG. 3A shows the battery voltage Vbatt on the horizontal axis and the power on the vertical axis. In FIG. 3 (a), the solid line indicates the power P1out output from the first converter 107, and the broken line indicates the power P2out output from the second converter 108. FIG. 3B shows the battery voltage Vbatt on the horizontal axis and the link voltage Vlink on the vertical axis.
 図3(a)に示すように、バッテリ電圧VbattがVbattL以下の時には、電力差ΔP(余剰電力Pdump)が発生しないように、第1コンバータの電力P1outを、点線で示した元の図2(a)の値から実線で示すように低減させ、破線で示す第2コンバータの電力P2outに追従させる。こうして余剰電力Pdumpが抑制されることで、図3(b)に示すように、リンク電圧Vlinkの上昇を抑え、リンク電圧Vlinkを、点線で示した元の図2(b)の状態から実線で示すように低減させ、リンク電圧Vlink*に追従させることができる。これにより、充電装置104を安全に継続動作させることができる。 As shown in FIG. 3A, when the battery voltage Vbatt is equal to or lower than VbattL, the power P1out of the first converter is represented by a dotted line in FIG. 2 (indicated by a dotted line) so that the power difference ΔP (surplus power Pdump) does not occur. The value is reduced as indicated by the solid line from the value of a), and the power P2out of the second converter indicated by the broken line is followed. By suppressing the surplus power Pdump in this way, as shown in FIG. 3B, the rise of the link voltage Vlink is suppressed, and the link voltage Vlink is changed from the original state of FIG. 2B shown by the dotted line to the solid line. As shown, it can be reduced to follow the link voltage Vlink *. Thereby, the charging apparatus 104 can be continuously operated safely.
 このように、リンク電圧Vlinkの上昇を防ぐためには余剰電力Pdumpを低減する必要がある。余剰電力Pdumpを低減するためには、第1コンバータ107が出力する電力P1outを所定電力まで低減させるか、第2コンバータ108が出力する電力P2outを所定電力まで増加させる必要がある。第2コンバータ108が出力する電力P2outを増加させるにはバッテリ電圧Vbatt、充電電流制限値Ichglim*を増加させる必要があるが、バッテリ電圧Vbattを充電中に急に上げることは不可能であり、また充電電流制限値Ichglim*も保護の観点から上げることはできない。よって本実施形態では、第1コンバータ107が出力する電力P1outを低減することで余剰電力Pdumpを低減する。 Thus, it is necessary to reduce the surplus power Pdump in order to prevent the link voltage Vlink from rising. In order to reduce the surplus power Pdump, it is necessary to reduce the power P1out output from the first converter 107 to a predetermined power or increase the power P2out output from the second converter 108 to a predetermined power. In order to increase the electric power P2out output from the second converter 108, it is necessary to increase the battery voltage Vbatt and the charging current limit value Ichglim *. However, it is impossible to increase the battery voltage Vbatt suddenly during charging. The charging current limit value Ichglim * cannot be increased from the viewpoint of protection. Therefore, in this embodiment, the surplus power Pdump is reduced by reducing the power P1out output from the first converter 107.
 本実施形態では、図3(a)に示すように、バッテリ電圧Vbattが余剰電力Pdumpを発生するVbattL未満の時、第1コンバータ107が出力する電力P1outが点線で示す状態から実線で示す状態になるように、充電制御装置105が第1コンバータ107への電力指令値を制御する。これにより第1コンバータ107が出力する電力P1outは第2コンバータ108が出力する電力P2outに追従する。その結果、図3(b)に示すように、リンク電圧Vlinkを点線で示す状態から実線で示す状態になるように上昇を抑制することができる。 In the present embodiment, as shown in FIG. 3A, when the battery voltage Vbatt is less than VbattL that generates surplus power Pdump, the power P1out output from the first converter 107 is changed from a state indicated by a dotted line to a state indicated by a solid line. Thus, the charge control device 105 controls the power command value to the first converter 107. Thereby, the electric power P1out output from the first converter 107 follows the electric power P2out output from the second converter 108. As a result, as shown in FIG. 3B, the rise of the link voltage Vlink can be suppressed so as to change from the state indicated by the dotted line to the state indicated by the solid line.
 次に図4を用いてリンク電圧Vlinkを所定のリンク電圧Vlink*に追従させるリンク電圧抑制制御の具体的な方法について述べる。
 図4は、充電制御装置105の制御を機能ブロックにより示す図である。
Next, a specific method of link voltage suppression control for causing the link voltage Vlink to follow a predetermined link voltage Vlink * will be described with reference to FIG.
FIG. 4 is a diagram illustrating control of the charging control device 105 by functional blocks.
 リンク電圧抑制制御部301は、FF制御部302とFB制御部303を有している。FF制御部302は、第1コンバータ107が出力可能な電力相当となる第2コンバータ108の出力可能な電力を演算する。第2コンバータ108の出力可能な電力は、電圧検出器VT2(図1参照)により検出されたバッテリ電圧Vbattと充電電流制限値Ichglim*を積算器304で積算して、その値Pchglink__ffより求める。 The link voltage suppression control unit 301 includes an FF control unit 302 and an FB control unit 303. The FF control unit 302 calculates the power that can be output from the second converter 108 that is equivalent to the power that can be output from the first converter 107. The electric power that can be output from the second converter 108 is obtained by integrating the battery voltage Vbatt detected by the voltage detector VT2 (see FIG. 1) and the charging current limit value Ichglim * by the integrator 304 and calculating the value Pchglink__ff.
 FB制御部303は、リンク電圧Vlinkの上昇に対して、低減すべき第1コンバータ107の電力を求める。リンク電圧指令値Vlink*と電圧検出器VT1(図1参照)により検出されたリンク電圧Vlinkの偏差を加減算器306にて求める。この偏差をPI調節器307にて演算し、低減すべき電力量に換算して、低減すべき電力Plink_fbを求める。 The FB control unit 303 obtains the power of the first converter 107 to be reduced with respect to the increase of the link voltage Vlink. An adder / subtractor 306 obtains a deviation between the link voltage command value Vlink * and the link voltage Vlink detected by the voltage detector VT1 (see FIG. 1). This deviation is calculated by the PI controller 307, converted into the amount of power to be reduced, and the power Plink_fb to be reduced is obtained.
 FF制御部302で求めた出力可能な電力Pchglink_ffから、FB制御部302で求めた低減すべき電力Plink_fbを加減算器305で減ずることにより、リンク電圧抑制制御量Pchglinkを求める。 The link voltage suppression control amount Pchglink is obtained by subtracting the power Plink_fb to be reduced obtained by the FB control unit 302 by the adder / subtractor 305 from the outputtable power Pchglink_ff obtained by the FF control unit 302.
 電力補正制御部311は、車両ECU103から与えられる充電電力指令値Pchg*に対して、充電装置104が出力する充電電力Pchgの不足分を補う電力の演算を行う。充電装置104が出力する充電電力Pchgは、電圧検出器VT2(図1参照)により検出されたバッテリ電圧Vbattと、電流検出器CT2(図1参照)により検出された充電電流Ichgとの積より求める。 The electric power correction control unit 311 calculates electric power to compensate for the shortage of the charging power Pchg output from the charging device 104 with respect to the charging power command value Pchg * given from the vehicle ECU 103. Charging power Pchg output from charging device 104 is obtained from the product of battery voltage Vbatt detected by voltage detector VT2 (see FIG. 1) and charging current Ichg detected by current detector CT2 (see FIG. 1). .
 次に、車両ECU103から与えられる充電電力指令値Pchg*から充電電力Pchgを加減算器313にて減算して偏差を求める。求めた偏差をPI調節器314で電力に換算し、上下限リミッタ315にて、第2コンバータ108の最大電力損失で上限リミットを、0で下限リミットを行い、電力補正量Pcompを求める。充電電力指令値Pchg*に電力補正量Pcompを加減算器316を用いて加算することで充電電力指令値Pchg2*を求める。そして、上下限リミッタ308にて、リンク電圧抑制制御部301で求めたリンク電圧抑制制御量Pchglinkにより、充電電力指令値Pchg2*を上限リミットし、最終的な充電電力指令値Pchg1*を求める。 Next, the charging power Pchg is subtracted from the charging power command value Pchg * given from the vehicle ECU 103 by the adder / subtractor 313 to obtain a deviation. The obtained deviation is converted into electric power by the PI controller 314, and the upper / lower limiter 315 performs the upper limit with the maximum power loss of the second converter 108 and the lower limit with 0 to obtain the power correction amount Pcomp. The charge power command value Pchg2 * is obtained by adding the power correction amount Pcomp to the charge power command value Pchg * using the adder / subtractor 316. Then, the upper and lower limiter 308 limits the charging power command value Pchg2 * to the upper limit based on the link voltage suppression control amount Pchglink determined by the link voltage suppression control unit 301, and determines the final charging power command value Pchg1 *.
 リンク電圧抑制を行った充電電力指令値Pchg1*は、リンク電圧抑制制御が働かない時、つまりバッテリ電圧Vbattと充電電流制限値Ichglim*が車両ECU103から与えられる充電電力指令値Pchg*以上の時は、車両ECU103から与えられる充電電力指令値Pchg*となる。一方、バッテリ電圧Vbattと充電電流制限値Ichglim*が車両ECU103から与えられる充電電力指令値Pchg*未満の時は、リンク電圧抑制を行った充電電力指令値Pchg1*は、リンク電圧抑制制御部301で求めた値Pchg1*となる。 The charge power command value Pchg1 * subjected to link voltage suppression is when the link voltage suppression control does not work, that is, when the battery voltage Vbatt and the charge current limit value Ichglim * are equal to or greater than the charge power command value Pchg * provided from the vehicle ECU 103. The charging power command value Pchg * given from the vehicle ECU 103 is obtained. On the other hand, when the battery voltage Vbatt and the charging current limit value Ichglim * are less than the charging power command value Pchg * given from the vehicle ECU 103, the charging power command value Pchg1 * subjected to link voltage suppression is received by the link voltage suppression control unit 301. The obtained value Pchg1 * is obtained.
 充電制御装置105は、充電電力指令値Pchg1*に基づいて第1コンバータ107のスイッチング素子Q1~Q4を制御する。これにより、第1コンバータ107は、充電電力指令値Pchg1*に対応した電力を出力する。その結果、図3(a)に示すように、バッテリ電圧Vbattが余剰電力Pdumpを発生するVbattL未満の時、第1コンバータ107が出力する電力P1outが点線で示す状態から実線で示す状態になるように第1コンバータ107への電力指令値を制御する。そして、図3(b)に示すように、リンク電圧Vlinkを点線で示す状態から実線で示す状態になるように上昇を抑制することができる。 The charging control device 105 controls the switching elements Q1 to Q4 of the first converter 107 based on the charging power command value Pchg1 *. Thereby, the first converter 107 outputs power corresponding to the charging power command value Pchg1 *. As a result, as shown in FIG. 3A, when the battery voltage Vbatt is less than VbattL that generates surplus power Pdump, the power P1out output from the first converter 107 changes from the state indicated by the dotted line to the state indicated by the solid line. The power command value to the first converter 107 is controlled. And as shown in FIG.3 (b), a raise can be suppressed so that link voltage Vlink may be in the state shown with a continuous line from the state shown with a dotted line.
(第2の実施形態)
 図5は第2の実施形態におけるシステム構成図である。図1で示した第1コンバータ107に替えて、第1コンバータ107aを示し、その他の構成は図1と同様であり図示を省略する。
(Second Embodiment)
FIG. 5 is a system configuration diagram in the second embodiment. A first converter 107a is shown instead of the first converter 107 shown in FIG. 1, and the other configurations are the same as those in FIG.
 以下、図5を参照して、第1コンバータ107aについて説明する。第1コンバータ107aは、スイッチング素子Q1aとQ2aで構成された第1アームLeg1とスイッチング素子Q3aとQ4aで構成された第2アームLeg2の位相を制御することで、直流電圧を絶縁した直流電圧に変換する。スイッチング素子Q1a~Q4aのON/OFFの比率は約50%であり、スイッチング素子Q1aとQ2a、Q3aとQ4aのスイッチのON/OFF状態は相補関係にある。スイッチング素子Q1aとQ4a、スイッチング素子Q2aとQ3aが同時にONになる時間を長くすることで第1コンバータ107aの出力を大きくし、ONになる時間を短くすることで第1コンバータ107aの出力を小さくする。 Hereinafter, the first converter 107a will be described with reference to FIG. The first converter 107a converts the DC voltage into an insulated DC voltage by controlling the phase of the first arm Leg1 composed of the switching elements Q1a and Q2a and the second arm Leg2 composed of the switching elements Q3a and Q4a. To do. The ON / OFF ratio of the switching elements Q1a to Q4a is about 50%, and the ON / OFF states of the switches of the switching elements Q1a and Q2a and Q3a and Q4a are in a complementary relationship. The output of the first converter 107a is increased by increasing the time during which the switching elements Q1a and Q4a and the switching elements Q2a and Q3a are simultaneously turned ON, and the output of the first converter 107a is decreased by decreasing the ON time. .
 すなわち、第1コンバータ107aは、入力電圧Vinに対して、スイッチング素子Q1a~Q4aをスイッチングすることでトランスT1aの1次側に電流を流し、T1aの2次側に電流を発生させる。そして、トランスT1aの2次側に発生した電流をブリッジ接続されたダイオードD21a~D24aにより全波整流を行い、リアクトルL1a、コンデンサClinkaにより平滑化し出力電圧Voutを発生させる。 That is, the first converter 107a switches the switching elements Q1a to Q4a with respect to the input voltage Vin, thereby causing a current to flow on the primary side of the transformer T1a and generating a current on the secondary side of T1a. The current generated on the secondary side of the transformer T1a is full-wave rectified by the bridge-connected diodes D21a to D24a, and smoothed by the reactor L1a and the capacitor Clinka to generate the output voltage Vout.
 図1に示した第1の実施形態における第1コンバータ107は、スイッチング周波数と第1コンバータ107の入出力比との関係が非線形であるため制御特性が悪い場合がある。例えば軽負荷時に出力電圧を低下させる時などがこれにあたる。これに対して図5に示した第2の実施形態における第1コンバータ107aは、スイッチング素子Q1a~Q4aに与えるゲート信号のスイッチング周波数を任意の周波数に固定し、スイッチング素子のスイッチング期間のデューティ比を変化させることで出力の制御を行う。このデューティ制御ではデューティ比と第1コンバータ107aの入出力比との関係は線形であるため、制御特性は良好となる。 The first converter 107 in the first embodiment shown in FIG. 1 may have poor control characteristics because the relationship between the switching frequency and the input / output ratio of the first converter 107 is non-linear. For example, this is the case when the output voltage is lowered at light load. On the other hand, the first converter 107a in the second embodiment shown in FIG. 5 fixes the switching frequency of the gate signal applied to the switching elements Q1a to Q4a to an arbitrary frequency, and sets the duty ratio of the switching period of the switching element. The output is controlled by changing it. In this duty control, since the relationship between the duty ratio and the input / output ratio of the first converter 107a is linear, the control characteristics are good.
 また、スイッチング素子Q1a~Q4aに与えるゲート信号のスイッチング周波数を任意の周波数に固定し、デューティ比も50%に固定し、相補スイッチを行うLeg1とLeg2の位相差を変化させ出力の制御を行うこともできる。位相差制御では位相差と入出力比の関係は線形であるため、制御特性は良好となる。 In addition, the switching frequency of the gate signal applied to the switching elements Q1a to Q4a is fixed to an arbitrary frequency, the duty ratio is also fixed to 50%, and the output is controlled by changing the phase difference between Leg1 and Leg2 that perform complementary switching. You can also. In the phase difference control, since the relationship between the phase difference and the input / output ratio is linear, the control characteristics are good.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)充電装置104は、入力された電力を直流電圧へ変換して出力する第1コンバータ107と、第1コンバータ107へ指令値を出力して、第1コンバータ107の出力側の電力を制御する充電制御装置105と、第1コンバータ107の出力側の直流電圧を降圧してバッテリ102へ供給する第2コンバータ108と、を備え、充電制御装置105は、第1コンバータ107の出力側の電圧が所定電圧まで下がるように、指令値を出力して第1コンバータ107を制御する。これにより、高効率に充電を行う充電装置を提供することができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The charging device 104 converts the input power into a DC voltage and outputs it, and outputs a command value to the first converter 107 to control the power on the output side of the first converter 107. And a second converter 108 that steps down a DC voltage on the output side of the first converter 107 and supplies the DC voltage to the battery 102. The charge control device 105 includes a voltage on the output side of the first converter 107. The first converter 107 is controlled by outputting a command value so that the voltage drops to a predetermined voltage. Thereby, the charging device which charges with high efficiency can be provided.
(2)充電制御装置105は、第1コンバータ107が出力する電力が、第2コンバータ108が出力する電力に追従するように、指令値を出力して第1コンバータ107を制御する。これにより、第1コンバータ107が出力する電圧の上昇を抑制することができる。 (2) The charging control device 105 controls the first converter 107 by outputting a command value so that the power output from the first converter 107 follows the power output from the second converter 108. Thereby, the rise in the voltage output from the first converter 107 can be suppressed.
(3)充電制御装置105は、第2コンバータから出力される電流が所定の充電電流制限値であり、かつ第2コンバータ108から出力される電圧が所定の出力電圧以下であるときに、第1コンバータ107の出力側の電圧が所定電圧まで下がるように、指令値を出力して第1コンバータ107を制御する。これにより、バッテリ電圧が低い時に第1コンバータ107が出力する電圧の上昇を抑制することができる。 (3) When the current output from the second converter is a predetermined charging current limit value and the voltage output from the second converter 108 is equal to or lower than the predetermined output voltage, the charging control device 105 A command value is output to control the first converter 107 so that the voltage on the output side of the converter 107 drops to a predetermined voltage. As a result, it is possible to suppress an increase in voltage output from the first converter 107 when the battery voltage is low.
(4)第1コンバータ107aは、指令値に基づいて、第1コンバータ107aを構成するスイッチング素子のスイッチング期間のデューティ比を変更して出力側の電圧を所定電圧まで下げる。これにより、第1コンバータ107aが出力する電圧を制御することができる。 (4) Based on the command value, the first converter 107a changes the duty ratio of the switching period of the switching elements constituting the first converter 107a to lower the output voltage to a predetermined voltage. Thereby, the voltage output from the first converter 107a can be controlled.
(5)第1コンバータ107aは、ブリッジ接続されたスイッチング素子よりなる第1アームLeg1と第2アームLeg2より構成され、指令値に基づいて、第1アームLeg1及び第2アームLeg2の位相差を変更して出力側の電圧を所定電圧まで下げる。これにより、第1コンバータ107aが出力する電圧を制御することができる。 (5) The first converter 107a is composed of a first arm Leg1 and a second arm Leg2 made of bridge-connected switching elements, and changes the phase difference between the first arm Leg1 and the second arm Leg2 based on the command value. Then, the output side voltage is lowered to a predetermined voltage. Thereby, the voltage output from the first converter 107a can be controlled.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .
100 交流電源
101 電動車両
102 バッテリ
103 車両ECU
104 充電装置
105 充電制御装置
106 AC-DC変換器
107 第1コンバータ
108 第2コンバータ
100 AC power source 101 Electric vehicle 102 Battery 103 Vehicle ECU
104 Charging Device 105 Charging Control Device 106 AC-DC Converter 107 First Converter 108 Second Converter

Claims (5)

  1.  入力された電力を直流電圧へ変換して出力する第1コンバータと、
     前記第1コンバータへ指令値を出力して、前記第1コンバータの出力側の電力を制御する制御部と、
     前記第1コンバータの出力側の直流電圧を降圧してバッテリへ供給する第2コンバータと、を備え、
     前記制御部は、前記第1コンバータの出力側の電圧が所定電圧まで下がるように、前記指令値を出力して前記第1コンバータを制御する充電装置。
    A first converter that converts the input power into a DC voltage and outputs the DC voltage;
    A control unit that outputs a command value to the first converter and controls electric power on an output side of the first converter;
    A second converter for stepping down the DC voltage on the output side of the first converter and supplying it to the battery,
    The control unit is a charging device that outputs the command value and controls the first converter so that a voltage on an output side of the first converter is lowered to a predetermined voltage.
  2.  請求項1に記載の充電装置において、
     前記制御部は、前記第1コンバータが出力する電力が、前記第2コンバータが出力する電力に追従するように、前記指令値を出力して前記第1コンバータを制御する充電装置。
    The charging device according to claim 1,
    The control unit outputs the command value to control the first converter so that the power output from the first converter follows the power output from the second converter.
  3.  請求項1または2に記載の充電装置において、
     前記制御部は、前記第2コンバータから出力される電流が所定の充電電流制限値であり、かつ前記第2コンバータから出力される電圧が所定の出力電圧以下であるときに、前記第1コンバータの出力側の電圧が前記所定電圧まで下がるように、前記指令値を出力して前記第1コンバータを制御する充電装置。
    The charging device according to claim 1 or 2,
    When the current output from the second converter is a predetermined charging current limit value and the voltage output from the second converter is equal to or lower than a predetermined output voltage, the control unit A charging device that controls the first converter by outputting the command value so that a voltage on an output side drops to the predetermined voltage.
  4.  請求項3に記載の充電装置において、
     前記第1コンバータは、前記指令値に基づいて、前記第1コンバータを構成するスイッチング素子のスイッチング期間のデューティ比を変更して出力側の電圧を前記所定電圧まで下げる充電装置。
    The charging device according to claim 3,
    The first converter is a charging device that changes a duty ratio of a switching period of a switching element that constitutes the first converter based on the command value to lower an output-side voltage to the predetermined voltage.
  5.  請求項3に記載の充電装置において、
     前記第1コンバータは、ブリッジ接続されたスイッチング素子よりなる第1アームと第2アームより構成され、前記指令値に基づいて、前記第1アーム及び前記第2アームの位相差を変更して出力側の電圧を前記所定電圧まで下げる充電装置。
    The charging device according to claim 3,
    The first converter is composed of a first arm and a second arm made of bridge-connected switching elements, and changes the phase difference between the first arm and the second arm based on the command value to output the first converter A charging device that reduces the voltage of the battery to the predetermined voltage.
PCT/JP2016/072096 2015-08-06 2016-07-28 Charging device WO2017022601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017532532A JPWO2017022601A1 (en) 2015-08-06 2016-07-28 Charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-155624 2015-08-06
JP2015155624 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022601A1 true WO2017022601A1 (en) 2017-02-09

Family

ID=57943041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072096 WO2017022601A1 (en) 2015-08-06 2016-07-28 Charging device

Country Status (2)

Country Link
JP (1) JPWO2017022601A1 (en)
WO (1) WO2017022601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109050313A (en) * 2018-08-21 2018-12-21 北京鼎翰科技有限公司 A kind of new-energy automobile charging unit for capableing of pre- protection against electric shock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090515A (en) * 2010-10-19 2012-05-10 Samsung Electro-Mechanics Co Ltd Charging equipment of variable frequency control for power factor
JP2014093910A (en) * 2012-11-06 2014-05-19 Nippon Steel & Sumikin Texeng Co Ltd Bidirectional power source device for secondary battery and method for controlling the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040040B2 (en) * 1993-02-16 2000-05-08 ローム株式会社 DC stabilized power supply circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090515A (en) * 2010-10-19 2012-05-10 Samsung Electro-Mechanics Co Ltd Charging equipment of variable frequency control for power factor
JP2014093910A (en) * 2012-11-06 2014-05-19 Nippon Steel & Sumikin Texeng Co Ltd Bidirectional power source device for secondary battery and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109050313A (en) * 2018-08-21 2018-12-21 北京鼎翰科技有限公司 A kind of new-energy automobile charging unit for capableing of pre- protection against electric shock

Also Published As

Publication number Publication date
JPWO2017022601A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US10541549B2 (en) Power supply apparatus
JP5645582B2 (en) Resonant charging device and vehicle using the same
US10763754B2 (en) Power supply device
Kushwaha et al. A modified luo converter-based electric vehicle battery charger with power quality improvement
JP6569839B1 (en) Power converter
CN110896245B (en) Vehicle power supply device
US20130249469A1 (en) Input power controller for ac/dc battery charging
US10944283B2 (en) Distributed single-stage on-board charging device and method thereof
US8482249B2 (en) Charging apparatus with alternating current- and direct current-charging functions for mobile vehicle
JP5691925B2 (en) CHARGE SYSTEM, VEHICLE MOUNTING THE SAME, AND CHARGING DEVICE CONTROL METHOD
KR101742231B1 (en) High Power Factor And High Efficiency Interleaved Dual-Buck Converter And Method Therefor
JPWO2018073961A1 (en) Power supply system
CN111384859A (en) Power conversion device
US10277139B2 (en) Power conversion device which detects power shortage and switches to a power supply that is capable of supplying power
CN112311213A (en) Vehicle charger with grid frequency suppressor (OBC)
WO2017104304A1 (en) Power conversion device
JP2013009509A (en) Charging system
KR102180900B1 (en) A method of controlling a three-phase rectifier for a charging device mounted on an electric or hybrid vehicle
JP2015107027A (en) Power conversion device
WO2017022601A1 (en) Charging device
CN109888931B (en) Wireless power transmission apparatus and power transmission system
CN111404401A (en) Three-phase AC-DC AC/DC converter and method for realizing three-phase AC-DC AC/DC converter
JP2017175698A (en) Power transmitter and non-contact power supply system
TWI664790B (en) Distributed single stage on board charging device and method thereof
JP2017034950A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832880

Country of ref document: EP

Kind code of ref document: A1