WO2017022429A1 - 呼吸機能検査装置 - Google Patents

呼吸機能検査装置 Download PDF

Info

Publication number
WO2017022429A1
WO2017022429A1 PCT/JP2016/070550 JP2016070550W WO2017022429A1 WO 2017022429 A1 WO2017022429 A1 WO 2017022429A1 JP 2016070550 W JP2016070550 W JP 2016070550W WO 2017022429 A1 WO2017022429 A1 WO 2017022429A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
testing device
respiratory function
function testing
subject
Prior art date
Application number
PCT/JP2016/070550
Other languages
English (en)
French (fr)
Inventor
慎也 黒澤
理江 大崎
徳島 一雄
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to GB1801318.5A priority Critical patent/GB2555999A/en
Priority to CN201680045758.4A priority patent/CN107920777A/zh
Priority to US15/749,603 priority patent/US20180228388A1/en
Publication of WO2017022429A1 publication Critical patent/WO2017022429A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/036Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
    • A61B5/038Measuring oral pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow

Definitions

  • the present disclosure relates to a respiratory function testing device that measures intraoral pressure.
  • an intrathoracic pressure estimation device including a pulse wave acquisition unit that acquires a pulse wave signal representing a pulse wave of a subject and an estimation unit that estimates the intrathoracic pressure of the subject based on the pulse wave signal acquired by the pulse wave acquisition unit Is known (see Patent Document 1).
  • the estimation unit of the intrathoracic pressure estimation device described in Patent Document 1 creates a first envelope that connects the peaks of one pulse wave represented by the pulse wave signal, and connects the peaks of the first envelope. Create a second envelope. And an estimation part estimates the difference of a 1st envelope and a 2nd envelope as an intrathoracic pressure signal showing a test subject's intrathoracic pressure.
  • the intrathoracic pressure signal estimated by the intrathoracic pressure calculating device described in Patent Document 1 represents a relative transition of pressure and indicates a relative value of the intrathoracic pressure.
  • Calibration is performed by multiplying the intrathoracic pressure signal by the calibration coefficient.
  • the calibration coefficient is a coefficient based on the correspondence between the oral pressure of the subject and the intrathoracic pressure signal. This calibration coefficient is obtained in advance based on the correspondence between the pulse wave signal of the subject measured during the breathing and the intraoral pressure of the subject measured by the subject performing breathing at different depths.
  • the subject is allowed to perform breathing for each prescribed ventilation amount, and the intraoral pressure is measured by a sensing mechanism provided in the respiratory function testing device. It is possible.
  • This disclosure is intended to provide a technique that enables a subject to perform breathing at different depths in a simpler manner.
  • the main body is formed in a cylindrical shape, and an air inlet that is a hole through which air from the outside flows into the cylinder is perforated.
  • the main body portion is provided with a one-way valve for preventing inflow of air from the outside at one end portion, and the subject inhales through an end portion where the one-side valve is not provided.
  • the respiratory function testing device further includes a resistance setting unit that variably sets the magnitude of the inflow resistance with respect to the air flowing into the main body.
  • the respiratory function testing device further includes a pressure measuring unit that measures the pressure of the air moving in the cylinder of the main body as the intraoral pressure.
  • FIG. 2 It is a perspective view which shows the external appearance of the respiratory function inspection apparatus in 1st Embodiment
  • A is a top view of the respiratory function testing device in the first embodiment
  • B is a IIB-IIB cross-sectional view of FIG. 2 (A)
  • A is a top view of a modified example of the respiratory function testing device of the first embodiment
  • B is a sectional view taken along the line IVB-IVB of FIG.
  • FIG. 4 (A), (A) is a top view in a modified example of the respiratory function testing device of the first embodiment, (B) is a VB-VB sectional view of FIG. 5 (A), (A) is a top view in the respiratory function testing device of the second embodiment, (B) is a VIB-VIB sectional view of FIG. 6 (A), (A) is a perspective view showing one of the fitting portions, (B) is a perspective view showing a fitting portion different from FIG. 7 (A), (A) is a top view in a modified example of the respiratory function testing device of the second embodiment, (B) is a VIIIB-VIIIB sectional view of FIG. 8 (A), and (A) is a top view of the respiratory function testing apparatus of the third embodiment, and (B) is a cross-sectional view taken along the line IXB-IXB in FIG. 9 (A).
  • a respiratory function testing device 1 shown in FIG. 1 is a device that measures the intraoral pressure of a subject.
  • the intraoral pressure measured by the respiratory function testing device 1 is used to calculate a calibration coefficient for calculating the absolute value of the intrathoracic pressure of the subject based on the pulse wave signal representing the pulse wave of the subject.
  • the respiratory function testing device 1 includes a main body unit 5, a pressure measurement unit 32 (see FIG. 2B), a flow rate measurement unit 34 (see FIG. 2B), and a resistance setting unit 40.
  • the main body 5 is a cylindrical member and includes a mouthpiece 7, a main body cylindrical portion 9, and a one-way valve 11.
  • the main body cylinder portion 9 is a cylindrical member.
  • An intake port 13 and a pressure measurement hole 15 are formed in the main body cylinder portion 9.
  • the air inlet 13 is a hole through which air flows into the main body cylinder portion 9 from the outside.
  • the pressure measurement hole 15 is a hole for measuring the pressure of the air flowing in the main body cylinder portion 9.
  • a pressure measurement unit 32 is connected to the pressure measurement hole 15.
  • the valve 11 is a valve device fixed to one end portion of the main body cylinder portion 9.
  • the one-way valve 11 prevents air from the outside from flowing into the main body tube portion 9 and causes the exhaled air flowing through the main body tube portion 9 to flow out to the outside.
  • the mouthpiece 7 is a cylindrical member.
  • the mouthpiece 7 of the present embodiment is connected to an end portion of the main body cylinder portion 9 where the one valve 11 is not provided.
  • the mouthpiece 7 flows inhaled air that is inhaled by the subject and exhaled air that is exhaled by the subject.
  • the pressure measuring unit 32 measures the pressure of the air that moves in the cylinder of the main body unit 5 by one breathing by the subject as the intraoral pressure.
  • the measurement of the intraoral pressure in the present embodiment is continuously performed along the time axis. It is conceivable to use a known pressure sensor as the pressure measuring unit 32 in the embodiment.
  • the flow rate measuring unit 34 measures the flow rate of the air moving in the cylinder of the main body unit 5 as a ventilation amount by one breathing by the subject.
  • the measurement of the ventilation amount in the present embodiment is continuously performed along the time axis.
  • the ventilation volume said here is the quantity of the air which flows by one respiration, ie, a respiration volume.
  • a known flow rate sensor as the flow rate measurement unit 34.
  • the resistance setting unit 40 is configured to be able to change the magnitude of resistance to air (that is, exhaled air) flowing into the main body cylinder unit 9.
  • the resistance setting unit 40 of the present embodiment changes the magnitude of the inflow resistance by covering at least a part of the air inlet 13 bored in the main body cylinder portion 9.
  • the inflow resistance referred to here is resistance that prevents the flow of air from the outside into the main body cylinder portion 9.
  • the resistance setting unit 40 in the present embodiment includes an adjustment plate 42 formed in a circular plate shape.
  • the adjustment plate 42 has at least one vent hole 44, 46, 48 formed therein.
  • the vent holes 44, 46, 48 are holes that penetrate the adjustment plate 42.
  • These vent holes 44, 46 and 48 are holes having a diameter smaller than the diameter of the air inlet 13 formed in the main body cylinder portion 9, and have different diameters.
  • the diameter of the ventilation hole 48 having the smallest diameter among the ventilation holes 44, 46, 48, that is, the upper limit value of the inflow resistance is an upper limit value that allows the subject to breathe at rest with a predetermined ventilation amount. It has been decided.
  • the resting breathing referred to here is breathing performed only by contraction and relaxation of the respiratory muscles and is not so-called forced breathing.
  • the range of change in oral pressure is considered to be a range from 0 cmH 2 O to ⁇ 15 cmH 2 O, and an upper limit value for breathing in resting breathing is considered.
  • ⁇ 15 cmH 2 O can be considered.
  • the reason why the range and the upper limit value are appropriate is that the amount of change from the first reference value of the intraoral pressure of the subject is the magnitude of the resistance between the oral cavity and the thoracic cavity, as a result of the inventors' extensive research. This is because the knowledge that the amount of change in the intrathoracic pressure is equal to the amount of change from the second reference value is obtained regardless of the above.
  • the 1st reference value said here is the value of the intraoral pressure set beforehand.
  • the intraoral pressure at the end of expiration can be considered.
  • the second reference value referred to here is a preset value of intrathoracic pressure.
  • the intrathoracic pressure at the end-expiratory position can be considered.
  • the correspondence between the amount of change in the amount of change from the first reference value of the intraoral pressure and the amount of change in the amount of change from the second reference value of the estimated intrathoracic pressure is derived as a calibration coefficient. . Then, by calculating the absolute value of the intrathoracic pressure of the subject by multiplying the estimated intrathoracic pressure by the derived calibration coefficient, the calculation accuracy of the absolute value of the intrathoracic pressure can be improved.
  • the estimated intrathoracic pressure referred to here is an estimated value of intrathoracic pressure estimated based on a pulse wave signal representing the pulse wave of the subject. Since the method for calculating the estimated intrathoracic pressure is well known as described in, for example, Japanese Patent Application Laid-Open No. 2002-355227, detailed description thereof is omitted here.
  • the adjustment plate 42 is rotatably supported by the support protrusion 17 protruding from the main body cylinder portion 9 toward the outside of the main body cylinder portion 9.
  • a configuration in which the adjustment plate 42 is rotated with respect to the main body 5 in a manner in which the area covering the air inlet 13 can be changed is included.
  • FIG. ⁇ Operation of respiratory function testing device> The subject performs a predetermined number of breaths in order to measure the intraoral pressure with resistances of different magnitudes with a constant ventilation rate.
  • the subject breathes once using the respiratory function testing device 1, first, the subject breathes in air through the mouthpiece 7 of the respiratory function testing device 1. Then, the air from the outside flows into the main body cylinder portion 9 via the resistance setting portion 40 and the intake port 13 of the main body cylinder portion 9. And the air (inhalation) which flowed in the main body cylinder part 9 passes through the mouthpiece 7 and moves into the subject's thoracic cavity through the subject's oral cavity.
  • the air from the subject's chest cavity passes through the mouthpiece 7 and flows into the main body cylinder portion 9. Furthermore, the air (intake air) that flows into the main body cylinder portion 9 opens the one-way valve 11 and flows out to the outside.
  • the pressure measuring unit 32 of the respiratory function testing device 1 measures the pressure of the air that moves in the cylinder of the main body cylinder unit 9 by one breathing by the subject as the intraoral pressure.
  • the subject rotates the adjustment plate 42 so that the area covering the air inlet 13 of the main body cylinder portion 9 is changed. Then, the subject uses the respiratory function testing device 1 to perform breathing while maintaining the same amount of ventilation as the previous breathing. The subject repeats such a procedure.
  • the measurement of the intraoral pressure in the present embodiment is continuously performed along the time axis during the period of performing the specified number of breaths.
  • the flow rate measurement unit 34 of the respiratory function testing device 1 measures the flow rate of air moving in the cylinder of the main body cylinder unit 9 as a ventilation amount by one breathing by the subject.
  • the measurement of the ventilation amount in the present embodiment may be continuously performed along the time axis during a period of performing the specified number of breaths.
  • the adjustment plate 42 is rotated so that the area covering the air inlet 13 of the main body cylinder portion 9 is changed, so that the main body cylinder portion 9 is externally rotated.
  • the magnitude of the inflow resistance that hinders the air flow can be changed. That is, according to the respiratory function testing device 1, the magnitude of the inflow resistance can be easily changed.
  • the prescribed number of breaths will have different depths. be able to. That is, according to the respiratory function testing device 1, breathing with different depths can be performed by a subject in a simple manner.
  • the respiratory function test apparatus 1 it is possible to easily measure the intraoral pressure of the subject in breathing at different depths.
  • the absolute value of the intrathoracic pressure of the subject By multiplying the estimated intrathoracic pressure by the calibration coefficient derived based on the correspondence relationship along the time axis between the intraoral pressure and the pulse wave signal thus measured, The calculation accuracy of the absolute value of the internal pressure can be improved.
  • the magnitude of the inflow resistance can be changed simply by rotating the adjustment plate 42, and the change of the inflow resistance by the resistance setting unit 40 can be realized more easily.
  • the respiratory function testing device 1 if the position of the adjustment plate 42 is set so that the vent holes 44, 46, 48 and the air inlet 13 are concentric, the subject can breathe through the respiratory function testing device 1. Air can be taken into the subject's respiratory system when performing.
  • sensing is performed by the pressure measurement unit 32 and the flow rate measurement unit 34 continuously along the time axis during a period in which the prescribed number of breaths are performed. Therefore, if the sensing result is notified, it is possible to make the subject recognize whether or not the prescribed number of breaths is appropriate. If the specified number of breaths is not an appropriate breath, the breathing mode can be corrected so as to approach the appropriate breath.
  • this indication is not limited to the above-mentioned embodiment, and can be carried out in various modes in the range which does not deviate from the gist of this indication.
  • the respiratory function testing device 2 may include a main body unit 5, a pressure measurement unit 32, and a resistance setting unit 40. That is, in the respiratory function testing device 2, the flow rate measurement unit 34 may be omitted.
  • the main body portion 6 of the respiratory function testing device 3 may include a main body cylinder portion 9 and a one-way valve 11 as shown in FIGS. 5 (A) and 5 (B). That is, the mouthpiece 7 may be omitted from the main body 6 of the respiratory function testing device 3.
  • the adjustment plate 42 in the resistance setting unit 40 of the above embodiment is rotated by a human hand
  • the adjustment plate 42 may be rotated by a driving force generated by a motor.
  • a resistance with a specified size along the time axis is realized.
  • the adjustment plate 42 may be rotated.
  • the adjustment plate 42 of the above embodiment has a plurality of vent holes, the adjustment plate 42 may have one vent hole.
  • the adjustment plate 42 is configured so that the peripheral edge of the vent hole formed in the adjustment plate 42 covers a part of the air inlet 13 of the main body cylinder portion 9. This is an example of variably setting the inflow resistance of air, and the configuration of the adjustment plate 42 can be selected from various modes.
  • the respiratory function test apparatus according to the second embodiment is different from the respiratory function test apparatus 1 according to the first embodiment in the configuration of the resistance setting unit.
  • a respiratory function testing device 50 shown in FIGS. 6A and 6B is a device that measures the intraoral pressure of a subject.
  • the intraoral pressure measured by the respiratory function testing device 50 is used to calculate a calibration coefficient for calculating an absolute value of the intrathoracic pressure of the subject based on a pulse wave signal representing the pulse wave of the subject.
  • the respiratory function testing device 50 includes a main body unit 5, a pressure measurement unit 32, and a resistance setting unit 60.
  • the resistance setting unit 60 is configured to be able to change the magnitude of resistance to air (that is, exhaled air) that flows into the main body cylinder unit 9.
  • the resistance setting unit 60 of the present embodiment changes the magnitude of the inflow resistance by covering at least a part of the air inlet 13 drilled in the main body cylinder unit 9.
  • the resistance setting section 60 in the present embodiment is a plurality of fitting sections 62. As shown in FIG. 7A, each fitting portion 62 includes a locking portion 64 and an insertion portion 66, and is attached to the intake port 13 in a replaceable manner.
  • the locking part 64 is a disk-shaped part having a diameter larger than the diameter of the air inlet 13 of the main body cylinder part 9.
  • the insertion portion 66 is a columnar portion protruding from one surface of the locking portion 64 and is provided concentrically with the locking portion 64. The outer diameter of the insertion portion 66 is large enough to fit into the air inlet 13 of the main body cylinder portion 9.
  • the fitting portion 62 has a vent hole 68 that penetrates the locking portion 64 and the insertion portion 66 at the center of the locking portion 64 and the insertion portion 66.
  • the vent hole 68 is a hole having a smaller diameter than the air inlet 13 and has a different diameter in each of the fitting portions 62 as shown in FIG. 7B.
  • the smallest diameter of the air holes 68, that is, the upper limit value of the inflow resistance is determined as an upper limit value that allows the subject to breathe at rest with a predetermined ventilation amount.
  • the fitting portion 62 attached to the air inlet 13 of the main body cylinder portion 9 is replaced with a fitting portion 62 in which vent holes 68 having different diameters are formed, thereby increasing the inflow resistance. Change the size.
  • ⁇ Operation of respiratory function testing device> The subject carries out a predetermined number of breaths in order to measure the intraoral pressure at different resistances with a constant ventilation.
  • the subject When the subject breathes once using the respiratory function testing device 50, first, the subject sucks air through the mouthpiece 7 of the respiratory function testing device 50. Then, the air from the outside passes through the vent hole 68 of the resistance setting unit 60, passes through the main body cylinder portion 9 and the mouthpiece 7, moves through the subject's oral cavity, and moves into the subject's chest cavity.
  • the air from the subject's chest cavity passes through the mouthpiece 7 and flows into the main body cylinder portion 9. Furthermore, the air (intake air) that flows into the main body cylinder portion 9 opens the one-way valve 11 and flows out to the outside.
  • the pressure measuring unit 32 of the respiratory function testing device 50 measures the pressure of the air that moves in the cylinder of the main body cylinder unit 9 as a mouth pressure by one breathing by the subject.
  • the subject replaces the fitting portion 62 attached to the air inlet 13 of the main body cylinder portion 9 so that the diameter of the air inlet 13 of the main body cylinder portion 9 and eventually the diameter of the vent hole 68 of the resistance setting portion 60 is changed.
  • the subject uses the respiratory function testing device 50 to perform breathing while maintaining the same amount of ventilation as the previous breathing. The subject repeats such a procedure.
  • the fitting portion 62 can be replaced.
  • the magnitude of the inflow resistance can be changed by changing the fitting portion 62 to the vent hole 68 having a different diameter.
  • the resistance setting unit 60 capable of changing the magnitude of the inflow resistance can be realized with a simple configuration.
  • this indication is not limited to the above-mentioned embodiment, and can be carried out in various modes in the range which does not deviate from the gist of this indication.
  • the main body cylinder portion 9 of the respiratory function testing device 50 includes two members, a first cylinder portion 19 and a second cylinder portion 21. May be.
  • the 1st cylinder part 19 said here is a member formed in the cylinder shape, and is a member by which the inlet port 13 was pierced.
  • the second cylinder portion 21 is a cylindrical member connected to one end of the first cylinder portion 19 and is a member provided with the pressure measurement hole 15.
  • the respiratory function testing device according to the third embodiment is different from the respiratory function testing device 1 according to the first embodiment and the respiratory function testing device 50 according to the second embodiment in the configuration of the resistance setting unit.
  • a respiratory function testing device 70 shown in FIGS. 9A and 9B is a device that measures the intraoral pressure of a subject.
  • the intraoral pressure measured by the respiratory function testing device 70 is used to calculate a calibration coefficient for calculating an absolute value of the intrathoracic pressure of the subject based on a pulse wave signal representing the pulse wave of the subject.
  • the respiratory function testing device 70 includes a main body unit 5, a pressure measurement unit 32, and a resistance setting unit 80.
  • the resistance setting unit 80 is configured to be able to change the magnitude of resistance to the air (that is, exhaled air) flowing into the main body cylinder unit 9.
  • the resistance setting unit 80 changes the magnitude of the inflow resistance by covering at least a part of the air inlet 13 formed in the main body cylinder unit 9.
  • the resistance setting unit 80 in this embodiment includes an adjustment plate 82 and a storage unit 84.
  • the adjustment plate 82 is a plate-like member having a larger area than the intake port 13 of the main body cylinder portion 9.
  • the storage portion 84 stores the adjustment plate 82.
  • the resistance setting portion 80 has a structure in which the adjustment plate 82 slides with respect to the main body portion 5 so as to block a part of the air inlet 13 of the main body cylinder portion 9. That is, the adjustment plate 82 is moved between the covering position that covers at least a part of the air inlet 13 of the main body cylinder portion 9 and the open position that opens the air inlet 13 of the main body cylinder portion 9. Attached to the outer surface.
  • the open position is a position where the entire adjustment plate 82 is stored in the storage portion 84.
  • size of inflow resistance is changed by sliding the adjustment board 82 and changing the area which covers the inlet port 13 of the main body cylinder part 9.
  • FIG. ⁇ Operation of respiratory function testing device> The subject carries out a predetermined number of breaths in order to measure the intraoral pressure at different resistances with a constant ventilation.
  • the subject When the subject breathes once using the respiratory function testing device 70, first, the subject sucks air through the mouthpiece 7 of the respiratory function testing device 70. Then, the air from the outside flows into the main body cylinder portion 9 through the intake port 13 of the main body cylinder portion 9. And the air (inhalation) which flowed in the main body cylinder part 9 passes through the mouthpiece 7 and moves into the subject's thoracic cavity through the subject's oral cavity.
  • the air from the subject's chest cavity passes through the mouthpiece 7 and flows into the main body cylinder portion 9. Furthermore, the air (intake air) that flows into the main body cylinder portion 9 opens the one-way valve 11 and flows out to the outside.
  • the pressure measuring unit 32 of the respiratory function testing device 70 measures the pressure of the air that moves in the cylinder of the main body cylinder unit 9 by breathing once by the subject as the intraoral pressure.
  • the subject slides the adjustment plate 82 so that the area covering the air inlet 13 of the main body cylinder portion 9 is changed. Then, the subject uses the respiratory function testing device 70 to breathe while maintaining the same amount of ventilation as the previous breath. The subject repeats such a procedure.
  • the respiratory function testing device 70 the magnitude of the inflow resistance can be changed simply by sliding the adjustment plate 82. In other words, the resistance setting unit 80 that changes the magnitude of the inflow resistance can be realized with a simple configuration.
  • this indication is not limited to the above-mentioned embodiment, and can be carried out in various modes in the range which does not deviate from the gist of this indication.
  • the respiratory function testing device 50 according to the second embodiment and the respiratory function testing device 70 according to the third embodiment do not include the flow rate measuring unit 34, but the respiratory function testing device 50 according to the second embodiment and the third embodiment.
  • the respiratory function testing device 70 may include a flow rate measuring unit 34.
  • main body cylinder portion 9 may be configured by combining three or more parts.
  • the main body 5 may be configured by a single component. That is, the main body 5 of the respiratory function testing device 50 may be configured by one component, or may be configured by combining at least two components.
  • the present disclosure relates to a respiratory function testing device that measures the intraoral pressure of a subject that changes as a result of breathing.
  • This respiratory function testing device includes a main body, a resistance setting unit, and a pressure measurement unit.
  • the main body is formed in a cylindrical shape, and an air inlet that is a hole through which air from outside flows into the cylinder.
  • the main body portion is provided with a one-way valve that prevents inflow of air from the outside at one end portion. In the main body, the subject inhales through an end portion on which the one-way valve is not provided.
  • the resistance setting unit variably sets the magnitude of the inflow resistance with respect to the air flowing into the main body. Further, the pressure measuring unit measures the pressure of air moving in the cylinder of the main body as the intraoral pressure. According to such a respiratory function test apparatus, when the respiratory function test apparatus is used to cause a subject to perform a plurality of breaths at a predetermined predetermined ventilation volume, different resistances are set. The multiple breaths can be of different depths. In other words, according to the respiratory function testing device, it is possible to implement a subject having a different depth of breathing by a simpler method.
  • the respiratory function test apparatus it is possible to easily measure the oral pressure of the subject in breathing at different depths.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Dentistry (AREA)
  • Hematology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

呼吸をすることで変化する被験者の口腔内圧を計測する呼吸機能検査装置(1,2,3,50,70)は、本体部(5,6)と、抵抗設定部(40,60,80)と、圧力計測部(32)とを備える。本体部(5,6)は、筒状に形成され、筒内に外部からの空気が流入する孔である吸気口が穿孔されている。さらに、本体部(5,6)は、一方の端部に外部からの空気の流入を防止する一方弁(11)を備え、かつ、一方弁が設けられていない端部を介して被験者が吸気する。抵抗設定部(40,60,80)は、本体部へと流入する空気に対する流入抵抗の大きさを可変設定する。圧力計測部(32)は、本体部の筒内を移動する空気の圧力を口腔内圧として計測する。

Description

呼吸機能検査装置 関連出願の相互参照
 本出願は、2015年8月6日に出願された日本出願番号2015-155904号に基づくもので、ここにその記載内容を援用する。
 本開示は、口腔内圧を計測する呼吸機能検査装置に関する。
 従来、被験者の脈波を表す脈波信号を取得する脈波取得部と、脈波取得部で取得した脈波信号に基づいて被験者の胸腔内圧を推定する推定部とを備えた胸腔内圧推定装置が知られている(特許文献1参照)。
 この特許文献1に記載の胸腔内圧推定装置の推定部は、脈波信号によって表される1拍の脈波のピークを結んだ第1包絡線を作成し、その第1包絡線のピークを結んだ第2包絡線を作成する。そして、推定部は、第1包絡線と第2包絡線との差分を、被験者の胸腔内圧を表す胸腔内圧信号として推定する。
特開2002-355227号公報
 ところで、特許文献1に記載の胸腔内圧算出装置で推定される胸腔内圧信号は、圧力の相対的な推移を表すものであり、胸腔内圧の相対値を示す。この胸腔内圧の相対値を絶対値へと変換するためには、キャリブレーションを実施する必要がある。
 キャリブレーションは、胸腔内圧信号にキャリブレーション係数を乗算することで実施される。そのキャリブレーション係数は、被験者の口腔内圧と胸腔内圧信号との対応関係に基づく係数である。このキャリブレーション係数は、深さの異なる呼吸を被験者に実施させ、その呼吸の際に計測した被験者の脈波信号と被験者の口腔内圧との対応関係に基づいて、予め求められるものである。
 そして、深さの異なる呼吸において被験者の口腔内圧を予め計測する方法として、規定された換気量ごとでの呼吸を被験者に実施させ、呼吸機能検査装置に設けられたセンシング機構で口腔内圧を計測することが考えられる。
 しかしながら、規定された換気量ごとでの呼吸を被験者に実施させる場合、異なる換気量を実現するように被験者の呼吸を調整させることは困難である。この結果、従来の技術では、深さの異なる呼吸を被験者に実施させることができず、キャリブレーション係数を求めることが困難となるという課題が生じると懸念される。
 つまり、深さの異なる呼吸を被験者に実施させることをより簡易な方法で可能とする技術が有効と考えられる。
 本開示は、深さの異なる呼吸を被験者に実施させることをより簡易な方法で可能とする技術を提供することを目的とする。
 本開示の第一の態様において、呼吸をすることで変化する被験者の口腔内圧を計測する呼吸機能検査装置は、本体部を備える。本体部は筒状に形成され、筒内に外部からの空気が流入する孔である吸気口が穿孔される。本体部は、一方の端部に外部からの空気の流入を防止する一方弁が設けられ、かつ、前記一方弁が設けられていない端部を介して、前記被験者が吸気する。呼吸機能検査装置は、前記本体部へと流入する空気に対する流入抵抗の大きさを可変設定する抵抗設定部を、更に備える。呼吸機能検査装置は、前記本体部の筒内を移動する空気の圧力を前記口腔内圧として計測する圧力計測部を、更に備える。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態における呼吸機能検査装置の外観を示す斜視図であり、 (A)は第1実施形態における呼吸機能検査装置の上面図であり、(B)は図2(A)のIIB-IIB断面図であり、 安静時呼吸の範囲を示すグラフであり、 (A)は第1実施形態の呼吸機能検査装置における変形例の上面図であり、(B)は図4(A)のIVB-IVB断面図であり、 (A)は第1実施形態の呼吸機能検査装置の変形例における上面図であり、(B)は図5(A)のVB-VB断面図であり、 (A)は第2実施形態の呼吸機能検査装置における上面図であり、(B)は図6(A)のVIB-VIB断面図であり、 (A)は嵌合部の1つを示す斜視図であり、(B)は図7(A)とは異なる嵌合部を示す斜視図であり、 (A)は第2実施形態の呼吸機能検査装置の変形例における上面図であり、(B)は図8(A)のVIIIB-VIIIB断面図であり、また (A)は第3実施形態の呼吸機能検査装置における上面図であり、(B)は図9(A)のIXB-IXB断面図である。
 以下に本開示の実施形態を図面と共に説明する。
[第1実施形態]
<呼吸機能検査装置>
 図1に示す呼吸機能検査装置1は、被験者の口腔内圧を計測する装置である。なお、呼吸機能検査装置1で計測された口腔内圧は、被験者の脈波を表す脈波信号に基づいて、当該被験者の胸腔内圧の絶対値を算出するためのキャリブレーション係数の算出に用いられる。
 この呼吸機能検査装置1は、本体部5と、圧力計測部32(図2(B)参照)と、流量計測部34(図2(B)参照)と、抵抗設定部40とを備える。 図2(A),図2(B)に示すように、本体部5は、筒状の部材であり、マウスピース7と、本体筒部9と、一方弁11とを備えている。
 本体筒部9は、筒状の部材である。その本体筒部9には、吸気口13と、圧力計測孔15とが穿孔されている。吸気口13は、本体筒部9内へと外部から空気が流入する孔である。圧力計測孔15は、本体筒部9内を流動する空気の圧力を計測する孔である。この圧力計測孔15には、圧力計測部32が接続される。
 すなわち、本体筒部9では、被験者が吸い込む空気である吸気、及び被験者が吐き出した空気である呼気が筒内を流動する。一方弁11は、本体筒部9の一方の端部に固定される弁装置である。この一方弁11は、外部からの空気が本体筒部9に流入することを防止すると共に、本体筒部9を流動する呼気を外部に流出させる。
 マウスピース7は、筒状の部材である。本実施形態のマウスピース7は、本体筒部9の一方弁11が設けられていない端部に接続される。そのマウスピース7は、被験者が吸い込む空気である吸気、及び被験者が吐き出した空気である呼気が流動する。
 圧力計測部32は、被験者による一回の呼吸によって本体部5の筒内を移動する空気の圧力を口腔内圧として計測する。本実施形態における口腔内圧の計測は、時間軸に沿って継続して実施する。実施形態における圧力計測部32として、周知の圧力センサを用いることが考えられる。
 また、流量計測部34は、被験者による一回の呼吸によって本体部5の筒内を移動する空気の流量を換気量として計測する。本実施形態における換気量の計測は、時間軸に沿って継続して実施する。なお、ここで言う換気量とは、一回の呼吸によって流動する空気の量、即ち、呼吸量である。実施形態においては、流量計測部34として、周知の流量センサを用いることが考えられる。
<抵抗設定部>
 抵抗設定部40は、本体筒部9へと流入する空気(即ち、呼気)に対する抵抗の大きさを変更可能に構成されている。本実施形態の抵抗設定部40は、本体筒部9に穿設された吸気口13の少なくとも一部分を覆うことで流入抵抗の大きさを変更する。ここで言う流入抵抗とは、外部から本体筒部9内への空気の流れを妨げる抵抗である。
 本実施形態における抵抗設定部40は、円形の板状に形成された調整板42を備えている。この調整板42には、少なくとも1つの通気孔44,46,48が穿孔されている。この通気孔44,46,48とは、調整板42を貫通する孔である。それらの通気孔44,46,48は、本体筒部9に穿設された吸気口13の径よりも径が小さい孔であり、それぞれ径が異なる。
 この通気孔44,46,48の中で径が最も小さい通気孔48の径、即ち、流入抵抗の上限値は、予め規定された換気量で被験者が安静時呼吸にて呼吸を行える上限値として決定されている。ここで言う安静時呼吸とは、呼吸筋の収縮と弛緩によってのみ行われる呼吸であり、いわゆる努力呼吸ではない呼吸である。
 その安静時呼吸の範囲の一例として、図3に示すように、口腔内圧の変化量が、0cmHOから-15cmHOまでの範囲が考えられ、安静時呼吸にて呼吸を行える上限値の一例として、-15cmHOが考えられる。この範囲及び上限値が適切である理由は、本発明者らが鋭意研究を行った結果、被験者の口腔内圧の第1基準値からの変化量が、口腔と胸腔との間の抵抗の大きさに係わらず、胸腔内圧の第2基準値からの変化量と等しいとの知見を得たためである。
 なお、ここで言う第1基準値とは、予め設定された口腔内圧の値である。この第1基準値の一例として、呼気終末位における口腔内圧が考えられる。なお、ここで言う第2基準値とは、予め設定された胸腔内圧の値である。この第2基準値の一例として、呼気終末位における胸腔内圧が考えられる。
 換言すると、この知見に基づき、口腔内圧の第1基準値からの変化量の変動量に対する、推定胸腔内圧の第2基準値からの変化量の変動量との対応関係をキャリブレーション係数として導出する。そして、その導出したキャリブレーション係数を推定胸腔内圧に乗算することで被験者の胸腔内圧の絶対値を算出すれば、胸腔内圧の絶対値の算出精度を向上させることができる。
 また、ここで言う推定胸腔内圧とは、被験者の脈波を表す脈波信号に基づいて推定した胸腔内圧の推定値である。この推定胸腔内圧の算出方法は、例えば、特開2002-355227号に記載されているように周知であるため、ここでの詳しい説明は省略する。
 ところで、調整板42は、本体筒部9の外側に向けて本体筒部9から突出する支持突起17によって、回動自在に支持されている。ここで言う回動自在には、吸気口13を覆う面積を変更可能な態様で、本体部5に対して調整板42を回動させる構成を含む。
 つまり、抵抗設定部40では、調整板42に穿設された通気孔44,46,48の周縁が本体筒部9の吸気口13の一部分を覆うように調整板42が回動される。そして、調整板42を回動させる際に吸気口13を覆う面積を変更することで、本体筒部9へと流入する空気(即ち、呼気)に対する抵抗の大きさが変更される。
<呼吸機能検査装置の作用>
 被験者は、換気量を一定として異なる大きさの抵抗で口腔内圧を計測するために、予め規定された規定回数の呼吸を実施する。
 呼吸機能検査装置1を用いて被験者が1回の呼吸を行う場合、まず、被験者は、呼吸機能検査装置1のマウスピース7を介して空気を吸い込む。すると、外部からの空気は、抵抗設定部40、及び本体筒部9の吸気口13を介して、本体筒部9に流入する。そして、本体筒部9内に流入した空気(吸気)は、マウスピース7を通過して被験者の口腔を経て、被験者の胸腔内へと移動する。
 そして、被験者が空気を吐き出すと、被験者の胸腔からの空気は、口腔を経てマウスピース7を通過して本体筒部9へと流入する。さらに、本体筒部9内に流入した空気(吸気)は、一方弁11を開弁して外部へと流出する。
 呼吸機能検査装置1の圧力計測部32は、被験者による一回の呼吸によって本体筒部9の筒内を移動する空気の圧力を口腔内圧として計測する。
 続いて被験者は、本体筒部9の吸気口13を覆う面積が変更されるように調整板42を回動させる。そして、被験者は、呼吸機能検査装置1を用いて、先の呼吸と換気量を同一に保って呼吸を行う。被験者は、このような手順を繰り返す。
 なお、本実施形態における口腔内圧の計測は、規定回数の呼吸を実施する期間中、時間軸に沿って継続して実施する。また、呼吸機能検査装置1の流量計測部34は、被験者による一回の呼吸によって本体筒部9の筒内を移動する空気の流量を換気量として計測する。本実施形態における換気量の計測は、規定回数の呼吸を実施する期間中、時間軸に沿って継続して実施してもよい。
 以上説明したように、呼吸機能検査装置1によれば、本体筒部9の吸気口13を覆う面積が変更されるように調整板42を回動させることで、外部から本体筒部9内への空気の流れを妨げる流入抵抗の大きさを変更できる。すなわち、呼吸機能検査装置1によれば、流入抵抗の大きさを容易に変更できる。
 そして、このように異なる大きさの流入抵抗を設定し、換気量を一定とした呼吸を予め規定された規定回数、被験者に実施させることで、その規定回数の呼吸を深さの異なるものとすることができる。すなわち、呼吸機能検査装置1によれば、深さの異なる呼吸を被験者により簡易な方法で実施させることができる。
 この結果、呼吸機能検査装置1によれば、深さの異なる呼吸における被験者の口腔内圧を簡易に計測することができる。このように計測した口腔内圧と脈波信号との時間軸に沿った対応関係に基づいて導出したキャリブレーション係数を推定胸腔内圧に乗算することで被験者の胸腔内圧の絶対値を算出すれば、胸腔内圧の絶対値の算出精度を向上させることができる。
 ところで、呼吸機能検査装置1によれば、調整板42を回動させるだけで、流入抵抗の大きさを変更でき、抵抗設定部40による流入抵抗の大きさの変更をより容易に実現できる。
 特に、呼吸機能検査装置1において、通気孔44,46,48と吸気口13とが同芯状となるように調整板42の位置を設定すれば、呼吸機能検査装置1を介して被験者が呼吸をする際に被験者の呼吸器に空気を取り入れることができる。
 なお、上記実施形態の呼吸機能検査装置1では、規定回数の呼吸を実施する期間中、時間軸に沿って継続して、圧力計測部32及び流量計測部34にてセンシングしている。よって、このセンシングの結果を報知すれば、被験者に、規定回数の呼吸が適切な呼吸であるか否かを認識させることができる。そして、規定回数の呼吸が適切な呼吸でなければ、適切な呼吸に近づくように、呼吸の態様を修正させることができる。
[第1実施形態の変形例]
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
 例えば、図4(A),図4(B)に示すように、呼吸機能検査装置2は、本体部5と、圧力計測部32と、抵抗設定部40とを備えていてもよい。すなわち、呼吸機能検査装置2は、流量計測部34が省略されていてもよい。
 さらに、呼吸機能検査装置3の本体部6は、図5(A),図5(B)に示すように、本体筒部9と、一方弁11とを備えていてもよい。すなわち、呼吸機能検査装置3の本体部6は、マウスピース7が省略されていてもよい。
 また、上記実施形態の抵抗設定部40における調整板42は、人の手によって回動することを想定していたが、調整板42は、モータで発生する駆動力によって回動されてもよい。この場合、換気量を一定として異なる大きさの抵抗での口腔内圧を計測するために規定回数の呼吸を実施する際に、時間軸に沿って規定された大きさの抵抗が実現されるように調整板42を回転させればよい。
 さらに、上記実施形態の調整板42には、複数の通気孔が穿孔されていたが、調整板42に穿孔される通気孔は、1つであってもよい。上記実施形態においては、調整板42に穿設された通気孔の周縁が本体筒部9の吸気口13の一部分を覆うように、調整板42が構成されている。これは空気の流入抵抗を可変設定する一例であり、調整板42の構成は様々な態様より選択可能である。
[第2実施形態]
 第2実施形態における呼吸機能検査装置は、第1実施形態の呼吸機能検査装置1とは抵抗設定部の構成が異なる。このため、共通する構成については、同一符号を付して説明を省略し、相違点である抵抗設定部を中心に説明する。
<呼吸機能検査装置>
 図6(A),図6(B)に示す呼吸機能検査装置50は、被験者の口腔内圧を計測する装置である。なお、呼吸機能検査装置50で計測された口腔内圧は、被験者の脈波を表す脈波信号に基づいて、当該被験者の胸腔内圧の絶対値を算出するためのキャリブレーション係数の算出に用いられる。
 この呼吸機能検査装置50は、本体部5と、圧力計測部32と、抵抗設定部60とを備える。
<抵抗設定部>
 抵抗設定部60は、本体筒部9へと流入する空気(即ち、呼気)に対する抵抗の大きさを変更可能に構成されている。本実施形態の抵抗設定部60は、本体筒部9に穿設された吸気口13の少なくとも一部分を覆うことで流入抵抗の大きさを変更する。
 本実施形態における抵抗設定部60は、複数の嵌合部62である。各嵌合部62は、図7(A)に示すように、係止部64と、挿入部66とを備え、吸気口13に取り替え可能に取り付けられる。
 係止部64は、本体筒部9の吸気口13の径よりも径の大きな円板状の部位である。挿入部66は、係止部64の一方の面から突出する柱状の部位であり、係止部64と同芯状に設けられている。この挿入部66の外径は、本体筒部9の吸気口13に嵌合する大きさである。
 さらに、嵌合部62には、係止部64及び挿入部66の中心に、係止部64及び挿入部66を貫通する通気孔68が穿孔されている。なお、通気孔68は、吸気口13よりも径が小さい孔であり、図7(B)に示すように、嵌合部62のそれぞれで異なる径を有する。この通気孔68の中で最も小さい径、即ち、流入抵抗の上限値は、予め規定された換気量で被験者が安静時呼吸にて呼吸を行える上限値として決定されている。
 抵抗設定部60では、本体筒部9の吸気口13に取り付けられた嵌合部62を、径が異なる通気孔68が穿設された嵌合部62へと交換することで、流入抵抗の大きさを変更する。
<呼吸機能検査装置の作用>
 被験者は、換気量を一定として異なる大きさの抵抗での口腔内圧を計測するために、予め規定された規定回数の呼吸を実施する。
 呼吸機能検査装置50を用いて被験者が1回の呼吸を行う場合、まず、被験者は、呼吸機能検査装置50のマウスピース7を介して空気を吸い込む。すると、外部からの空気は、抵抗設定部60の通気孔68を通過し、本体筒部9及びマウスピース7を通過して被験者の口腔を経て、被験者の胸腔内へと移動する。
 そして、被験者が空気を吐き出すと、被験者の胸腔からの空気は、口腔を経てマウスピース7を通過して本体筒部9へと流入する。さらに、本体筒部9内に流入した空気(吸気)は、一方弁11を開弁して外部へと流出する。
 呼吸機能検査装置50の圧力計測部32は、被験者による一回の呼吸によって本体筒部9の筒内を移動する空気の圧力を口腔内圧として計測する。
 続いて、被験者は、本体筒部9の吸気口13、ひいては、抵抗設定部60の通気孔68の径が変更されるように、本体筒部9の吸気口13に取り付ける嵌合部62を交換する。そして、被験者は、呼吸機能検査装置50を用いて、先の呼吸と換気量を同一に保って呼吸を行う。被験者は、このような手順を繰り返す。
[第2実施形態の効果]
 以上説明したように、呼吸機能検査装置50においては、嵌合部62を取り替えることができる。この嵌合部62を取り替える場合に、径の異なる通気孔68が穿孔された嵌合部62へと変更することで流入抵抗の大きさを変更できる。
 この結果、呼吸機能検査装置50によれば、流入抵抗の大きさを変更可能な抵抗設定部60を簡易な構成で実現できる。
[第2実施形態の変形例]
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
 例えば、図8(A),図8(B)に示すように、呼吸機能検査装置50の本体筒部9は、第1筒部19と、第2筒部21との2つの部材を備えていてもよい。ここで言う第1筒部19は、筒状に形成された部材であり、吸気口13が穿孔された部材である。また、第2筒部21は、第1筒部19の一端に接続される筒状の部材であり、圧力計測孔15が設けられた部材である。
[第3実施形態]
 第3実施形態における呼吸機能検査装置は、第1実施形態の呼吸機能検査装置1及び第2実施形態の呼吸機能検査装置50とは抵抗設定部の構成が異なる。このため、共通する構成については、同一符号を付して説明を省略し、相違点である抵抗設定部を中心に説明する。
<呼吸機能検査装置>
 図9(A),図9(B)に示す呼吸機能検査装置70は、被験者の口腔内圧を計測する装置である。なお、呼吸機能検査装置70で計測された口腔内圧は、被験者の脈波を表す脈波信号に基づいて、当該被験者の胸腔内圧の絶対値を算出するためのキャリブレーション係数の算出に用いられる。
 この呼吸機能検査装置70は、本体部5と、圧力計測部32と、抵抗設定部80とを備える。
<抵抗設定部>
 抵抗設定部80は、本体筒部9へと流入する空気(即ち、呼気)に対する抵抗の大きさを変更可能に構成されている。本実施形態の抵抗設定部80は、本体筒部9に穿設された吸気口13の少なくとも一部分を覆うことで流入抵抗の大きさを変更する。
 本実施形態における抵抗設定部80は、調整板82と、収納部84とを備える。調整板82は、本体筒部9の吸気口13よりも面積の大きい板状の部材である。収納部84は、調整板82を収納する。
 そして、抵抗設定部80は、本体筒部9の吸気口13の一部分を塞ぐように、本体部5に対して調整板82がスライドする構造を有する。すなわち、調整板82は、本体筒部9の吸気口13の少なくとも一部分を覆う被覆位置と、本体筒部9の吸気口13を開放する開放位置との間を移動するように、本体部5の外表面に取り付けられる。
 なお、ここで言う開放位置とは、収納部84内に調整板82全体が収納される位置である。抵抗設定部80では、調整板82をスライドさせて、本体筒部9の吸気口13を覆う面積を変更することで、流入抵抗の大きさを変更する。
<呼吸機能検査装置の作用>
 被験者は、換気量を一定として異なる大きさの抵抗での口腔内圧を計測するために、予め規定された規定回数の呼吸を実施する。
 呼吸機能検査装置70を用いて被験者が1回の呼吸を行う場合、まず、被験者は、呼吸機能検査装置70のマウスピース7を介して空気を吸い込む。すると、外部からの空気は、本体筒部9の吸気口13を介して、本体筒部9に流入する。そして、本体筒部9内に流入した空気(吸気)は、マウスピース7を通過して被験者の口腔を経て、被験者の胸腔内へと移動する。
 そして、被験者が空気を吐き出すと、被験者の胸腔からの空気は、口腔を経てマウスピース7を通過して本体筒部9へと流入する。さらに、本体筒部9内に流入した空気(吸気)は、一方弁11を開弁して外部へと流出する。
 呼吸機能検査装置70の圧力計測部32は、被験者による一回の呼吸によって本体筒部9の筒内を移動する空気の圧力を口腔内圧として計測する。
 続いて、被験者は、本体筒部9の吸気口13を覆う面積が変更されるように、調整板82をスライドさせる。そして、被験者は、呼吸機能検査装置70を用いて、先の呼吸と換気量を同一に保って呼吸を行う。被験者は、このような手順を繰り返す。
[第3実施形態の効果]
 以上説明したように、呼吸機能検査装置70によれば、調整板82をスライドさせるだけで流入抵抗の大きさを変更できる。換言すれば、流入抵抗の大きさを変更する抵抗設定部80を簡易な構成で実現できる。
[その他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
 例えば、第2実施形態の呼吸機能検査装置50及び第3実施形態の呼吸機能検査装置70は、流量計測部34を備えていないが、第2実施形態の呼吸機能検査装置50及び第3実施形態の呼吸機能検査装置70は、流量計測部34を備えていてもよい。
 また、本体筒部9は、3以上の部品を組み合わせることで構成されていてもよい。本体部5は、1つの部品によって構成されていてもよい。すなわち、呼吸機能検査装置50の本体部5は、1つの部品によって構成されていてもよいし、少なくとも2以上の部品を組み合わせることで構成されていてもよい。
 なお、上記実施形態の構成の一部を省略した態様も本開示の実施形態である。また、上記実施形態と変形例とを適宜組み合わせて構成される態様も本開示の実施形態である。また、特許請求の範囲に記載した文言によって特定される開示の本質を逸脱しない限度において考え得るあらゆる態様も本開示の実施形態である。
 上述の如く本開示は、呼吸をすることで変化する被験者の口腔内圧を計測する呼吸機能検査装置に関する。この呼吸機能検査装置は、本体部と、抵抗設定部と、圧力計測部とを備える。
 本体部は、筒状に形成され、筒内に外部からの空気が流入する孔である吸気口が穿孔されている。本体部には、一方の端部に外部からの空気の流入を防止する一方弁が設けられている。その本体部では、一方弁が設けられていない端部を介して、被験者が吸気する。
 抵抗設定部は、本体部へと流入する空気に対する流入抵抗の大きさを可変設定する。さらに、圧力計測部は、本体部の筒内を移動する空気の圧力を口腔内圧として計測する。このような呼吸機能検査装置によれば、当該呼吸機能検査装置を用いて、予め規定された一定の換気量で被験者に複数回の呼吸を実施させる際に、大きさの異なる抵抗を設定すれば、その複数回の呼吸を深さの異なるものとすることができる。すなわち、呼吸機能検査装置によれば、深さの異なる呼吸を被験者に実施させることをより簡易な方法で実現できる。
 この結果、呼吸機能検査装置によれば、深さの異なる呼吸における被験者の口腔内圧を簡易に計測することができる。
 なお、「特許請求の範囲」及び「課題を解決するための手段」の欄に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  呼吸をすることで変化する被験者の口腔内圧を計測する呼吸機能検査装置であって、
     筒状に形成され、筒内に外部からの空気が流入する孔である吸気口(13)が穿孔された本体部(5,6)であって、一方の端部に外部からの空気の流入を防止する一方弁(11)が設けられ、かつ、前記一方弁(11)が設けられていない端部を介して、前記被験者が吸気する本体部(5,6)と、
     前記本体部(5,6)へと流入する空気に対する流入抵抗の大きさを可変設定する抵抗設定部(40,60,80)と、
     前記本体部(5,6)の筒内を移動する空気の圧力を前記口腔内圧として計測する圧力計測部(32)と
     を備える、呼吸機能検査装置。
  2.  前記抵抗設定部(40,60,80)は、前記吸気口(13)の少なくとも一部分を覆うことで前記流入抵抗の大きさを変更する、
     請求項1に記載の呼吸機能検査装置。
  3.  前記抵抗設定部(40,80)は、板状に形成された調整板(42,82)を備え、
     前記調整板は、前記吸気口(13)の少なくとも一部分を覆う面積が変更されるように、前記本体部(5,6)の外表面に取り付けられている、
     請求項2に記載の呼吸機能検査装置。
  4.  前記調整板(42)は、前記本体部(5,6)に対して回動自在に構成されている、
     請求項3に記載の呼吸機能検査装置。
  5.  前記調整板には、
     少なくとも1つの孔である通気孔(44,46,48)が穿孔されている、
     請求項4に記載の呼吸機能検査装置。
  6.  前記調整板(82)は、
     前記吸気口(13)の一部分を塞ぐように、前記本体部(5,6)に対してスライドする構造を有する、
     請求項3に記載の呼吸機能検査装置。
  7.  前記抵抗設定部(60)は、
     前記吸気口(13)に取り替え可能に嵌合される嵌合部(62)を複数備え、
     前記嵌合部(62)それぞれには、
     前記吸気口(13)よりも径が小さい孔である通気孔(68)が穿孔されている、
     請求項1または請求項2に記載の呼吸機能検査装置。
  8.  前記本体部(5,6)の筒内を移動する空気の量を計測する流量計測部(34)を備える、
     請求項1から請求項7までのいずれか一項に記載の呼吸機能検査装置。
  9.  前記本体部(5,6)は、
     少なくとも2以上の部品を組み合わせることで構成される、
     請求項1から請求項8までのいずれか一項に記載の呼吸機能検査装置。
  10. 前記抵抗設定部(40,60,80)で設定される前記流入抵抗の上限値は、
     予め規定された換気量で前記被験者が安静時呼吸にて呼吸を行える上限値として決定されている、
     請求項1から請求項9までのいずれか一項に記載の呼吸機能検査装置。
PCT/JP2016/070550 2015-08-06 2016-07-12 呼吸機能検査装置 WO2017022429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1801318.5A GB2555999A (en) 2015-08-06 2016-07-12 Breathing function examining instrument
CN201680045758.4A CN107920777A (zh) 2015-08-06 2016-07-12 呼吸功能检查装置
US15/749,603 US20180228388A1 (en) 2015-08-06 2016-07-12 Breathing function examining instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-155904 2015-08-06
JP2015155904A JP2017029637A (ja) 2015-08-06 2015-08-06 呼吸機能検査装置

Publications (1)

Publication Number Publication Date
WO2017022429A1 true WO2017022429A1 (ja) 2017-02-09

Family

ID=57942896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070550 WO2017022429A1 (ja) 2015-08-06 2016-07-12 呼吸機能検査装置

Country Status (5)

Country Link
US (1) US20180228388A1 (ja)
JP (1) JP2017029637A (ja)
CN (1) CN107920777A (ja)
GB (1) GB2555999A (ja)
WO (1) WO2017022429A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3820365A2 (en) * 2018-07-14 2021-05-19 Arete Medical Technologies Ltd Respiratory diagnostic tool and method
GB2576136B (en) * 2018-07-14 2022-08-24 Arete Medical Tech Ltd Multi-test respiratory diagnostic device
CA3134629A1 (en) 2019-03-27 2020-10-01 Spiro-Tech Medical Inc. Method and apparatus for measuring airway resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200016A (ja) * 1992-01-29 1993-08-10 Shinichi Konno 気道抵抗測定装置及びその測定方法
JPH08164225A (ja) * 1994-12-14 1996-06-25 Suzuki Gakki Seisakusho:Kk 呼吸器官鍛錬器
JP2015134080A (ja) * 2014-01-17 2015-07-27 株式会社デンソー 呼吸機能検査システム、呼吸機能検査システム用の呼吸経路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343647A (ja) * 1986-08-11 1988-02-24 チエスト株式会社 呼吸圧力計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200016A (ja) * 1992-01-29 1993-08-10 Shinichi Konno 気道抵抗測定装置及びその測定方法
JPH08164225A (ja) * 1994-12-14 1996-06-25 Suzuki Gakki Seisakusho:Kk 呼吸器官鍛錬器
JP2015134080A (ja) * 2014-01-17 2015-07-27 株式会社デンソー 呼吸機能検査システム、呼吸機能検査システム用の呼吸経路

Also Published As

Publication number Publication date
GB2555999A (en) 2018-05-16
CN107920777A (zh) 2018-04-17
JP2017029637A (ja) 2017-02-09
GB201801318D0 (en) 2018-03-14
US20180228388A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
AU2008271709B2 (en) A gas mixing device for an air-way management system
JP5307715B2 (ja) 呼吸筋耐久力訓練器具
EP2733485B1 (en) Method and system for DLCO quality control testing
US20190246953A1 (en) System and methods for the measurement of lung volumes
US8960192B2 (en) System and method for quantifying lung compliance in a self-ventilating subject
US20090137919A1 (en) Lung volume monitoring method and device
US20070123792A1 (en) System and method for determining airway obstruction
WO2017022429A1 (ja) 呼吸機能検査装置
US20150272475A1 (en) Device for the measurement and analysis of the multiple breath nitrogen washout process
JP5608675B2 (ja) エラスタンスおよび抵抗の決定
WO2018226639A1 (en) Breath analyzer device
US9320456B2 (en) Measuring head for diagnostic instruments and method
JP2012187292A (ja) 呼吸機能検査装置
RU2018123996A (ru) Способ измерения количества со2 при неинвазивной искусственной вентиляции легких
KR102613921B1 (ko) 호흡 분석 및 훈련 장치
RU171354U1 (ru) Дыхательный тренажер
KR102617848B1 (ko) 폐활량 측정, 호흡압 측정, 및 호흡저항 훈련을 가능하게 하는 호흡재활어셈블리
RU2688796C1 (ru) Дыхательный тренажер
KR20240030804A (ko) 호흡 측정 및 훈련 겸용 장치
JP2006034584A (ja) 死腔負荷装置
Thamrin et al. Breath-By-Breath Fluctuations And Effect Of CPAP In Respiratory Mechanics Measured By The Forced Oscillation Technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201801318

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160712

WWE Wipo information: entry into national phase

Ref document number: 15749603

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832708

Country of ref document: EP

Kind code of ref document: A1

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB