WO2017020678A1 - 一种水中悬浮隧道水下对接装置及其实现方法 - Google Patents

一种水中悬浮隧道水下对接装置及其实现方法 Download PDF

Info

Publication number
WO2017020678A1
WO2017020678A1 PCT/CN2016/089051 CN2016089051W WO2017020678A1 WO 2017020678 A1 WO2017020678 A1 WO 2017020678A1 CN 2016089051 W CN2016089051 W CN 2016089051W WO 2017020678 A1 WO2017020678 A1 WO 2017020678A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel frame
rail
tube
underwater
pair
Prior art date
Application number
PCT/CN2016/089051
Other languages
English (en)
French (fr)
Inventor
董满生
张嫄
唐飞
孙志彬
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Publication of WO2017020678A1 publication Critical patent/WO2017020678A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/063Tunnels submerged into, or built in, open water
    • E02D29/067Floating tunnels; Submerged bridge-like tunnels, i.e. tunnels supported by piers or the like above the water-bed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0061Production methods for working underwater
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/10Miscellaneous comprising sensor means

Definitions

  • the present invention relates to the field of machinery, and in particular to an underwater tunnel docking device, and more particularly to an underwater docking device for underwater suspension tunnels and an implementation method thereof.
  • the underwater suspension tunnel also known as the Archimedes Bridge, maintains balance and stability in the water through the combined effects of the structure's own weight, buoyancy and anchoring system.
  • suspended tunnels in water are a new type of traffic concept proposed in recent years. Due to its own economy, environmental protection, earthquake resistance and convenience, it is destined to have a very broad application prospect in the future.
  • the traffic concept of suspended tunnels in water involves a wide range of fields, and there are still many technical problems to be solved. Therefore, a practical underwater suspension tunnel has not yet been built in the world.
  • the problem of the docking of the underwater tunnel body is also one of the key technical problems that hinder the implementation of the suspension tunnel.
  • the underwater tunnel pipe body docking technology is mainly applied to the immersed pipe tunnel.
  • the immersed tunnel is built on the seabed and is less affected by water flow and waves, it is very difficult to accurately connect the pipe sections under the influence of various complicated factors such as ocean climate, marine fluid environment and seabed topography. of.
  • the present invention provides an underwater docking device for underwater suspension tunnels and an implementation method thereof, so as to realize accurate docking of underwater suspended tunnel underwater in a semi-automatic manner.
  • An aspect of the present invention provides an underwater docking device for a suspended tunnel in water, the butt joint includes an upper tube and a lower tube, and the docking device performs a docking operation between the upper tube and the lower tube;
  • Docking devices include:
  • a steel frame preferably a cylindrical shape, the steel frame being fitted with the rear half of the outer circumference of the upper tube and supported by the upper tube by a roller disposed on the second half a peripheral rail; on the inner side wall of the front half of the steel frame, at different axial positions, a plurality of circumferential rails are provided, the surrounding rails being centered on the central axis of the steel frame and having the same a radius R1 of the ring; an axial rail is provided between the surrounding rails, and the axial rails are two symmetrically arranged with the axis of the steel frame as a center of symmetry;
  • a plurality of telescopic mechanical arms supported on the axial rail by rotatable rollers and capable of moving in the axial rail and the surrounding rail by the rollers, the telescopic mechanical arms being in the steel frame
  • the axes are arranged in pairs at a position of a symmetrical center, and the telescopic mechanical arms disposed in pairs form a clamping for the lower tube;
  • the temporary rail in an axial direction on an outer side wall of the butt joint, the temporary rail passing between the upper tube and the lower tube, the roller being supported in the temporary track and capable of being along
  • the temporary track is axially moved such that the butt pipe and the steel frame are in a coaxial position and are relatively axially movable.
  • a temporary positioning elastic body is disposed at a position of the front end of the steel frame after the docking, and a positioning groove is arranged on the steel frame corresponding to the position, so that after the docking is completed
  • the steel frame is positioned by the cooperation of the temporary positioning elastic body and the positioning groove; the front end of the steel frame refers to the end of the front half of the steel frame.
  • the surrounding rails are equidistantly distributed in the axial direction.
  • the telescopic mechanical arm is provided at the front end with an arc-shaped pressure plate which can be engaged with the outer side wall of the lower tube, and the surface of the curved pressure plate is provided with a non-slip elastic cushion layer, and the curved pressure plate
  • the support rod is provided as a hydraulically retractable rod, and the roller is rotatable relative to the support rod.
  • steel pull rings for traction are respectively welded to both ends of the steel frame.
  • the underwater suspension tunnel underwater docking device provided by the present invention is further provided with a position sensor for detecting the relative distance between the upper tube and the lower tube in the docking process in real time.
  • the position sensor is composed of a transmitting end and a receiving end, and the transmitting end and the receiving end are respectively at the mating ends of the upper tube and the lower tube.
  • Another aspect of the present invention provides a method for realizing underwater docking of a suspended suspension tunnel in water by using the above-mentioned docking device, wherein one end of the first half of the steel frame is a front end, and one end of the second half of the steel frame is a rear end;
  • Each of the surrounding rails in the steel frame is from the side of the rear end of the steel frame toward the front end of the steel frame, and the first side is the first surrounding rail and the second surrounding rail until The nth track surrounds the rail, and n is the number of tracks around the rail;
  • a telescopic mechanical arm supported in the axial rail, wherein the pair of retractable mechanical arms from the side of the rear end of the steel frame toward the front end of the steel frame are the first pair a telescopic mechanical arm, a second pair of retractable mechanical arms up to an nth pair of retractable robot arms;
  • the method for realizing underwater docking of a suspended tunnel in water comprises the following steps:
  • Step 1 the steel frame is supported on the upper tube by a roller in a second half thereof, and the front half of the steel frame is overhanged at abutting end of the upper tube;
  • Step 2 Introducing the butt end of the lower tube from the front end of the steel frame, the first pair of telescopic mechanical arms elongating and clamping the lower tube, and using an external force to the rear end of the steel frame Propelling the lower tube and the first pair of retractable robot arms;
  • Step 3 when the first pair of retractable mechanical arms reach the n-1th surrounding rail along the axial rail, the second pair of retractable mechanical arms extend and clamp the lower tube, and continue to use the external force Advancing the lower tube, the first pair of retractable robot arms, and the second pair of retractable robot arms in a rear end direction of the steel frame; thus, the first pair of retractable robot arms reach the position of the first surrounding rail, and the second pair The telescopic mechanical arm reaches the second surrounding rail until the nth pair of retractable mechanical arms reaches the nth surrounding rail, and the axial movement of the lower tube is completed; the first pair of retractable mechanical arms are correspondingly a second pair of retractable mechanical arms in a surrounding rail corresponding to the second surrounding rail until the nth pair of retractable mechanical arms correspond to the nth surrounding rail;
  • Step 4 rotating the lower tube by an external force, adjusting the lower tube and the upper tube at the same central angle, and completing the docking at the butt end of the lower tube and the upper tube;
  • Step 5 retracting each telescopic mechanical arm, moving the steel frame to the lower tube by using the temporary track and the roller, and then repeating the above steps to complete the docking installation of each pipe segment, that is, continuing the docking of the subsequent pipe segments installation.
  • an underwater suspension tunnel underwater docking device and an implementation method thereof have at least one of the following beneficial effects compared with the prior art:
  • the invention uses the mechanized method to fix and transmit the tunnel pipe section, overcomes the influence of unfavorable factors such as weather, water flow and wave on the docking operation of the underwater suspension tunnel, prevents the suspension tunnel pipe body and the installation of the hoisting ship from swinging, and ensures the smooth construction of the docking construction. get on;
  • the docking device provided by the invention adopts a lightweight and easy-to-install steel frame structure, which is combined with the track laid on the outer wall of the suspended tunnel in the water, and is pulled forward and backward by the external force of the ship force and mechanical force to realize the two-way. Movement, solves the problem of difficulty in adjustment after a failed docking;
  • the invention can realize continuous advancement and repeated use on the outer wall of the suspension tunnel, which greatly improves the construction progress and reduces the construction cost;
  • the invention utilizes a position sensor for position detection, and cooperates with a setting control system to realize automatic control of the telescopic movement of the telescopic arm and the rotation action of the support rod, and realizes a semi-automatic operation mode of the docking process, thereby greatly reducing manual underwater operation. Safe construction is guaranteed and the construction period is greatly shortened.
  • FIG. 1 is a schematic perspective structural view of a steel frame in an underwater docking device for underwater suspended tunnels according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of an underwater docking device for underwater suspended tunnels for initial sinking of a tunnel according to an embodiment of the present invention
  • FIG. 3 is a schematic perspective structural view of an upper tube and an outer peripheral steel frame of an underwater docking device for underwater suspended tunnels according to an embodiment of the present invention
  • FIG. 4 is a schematic perspective structural view of a lower tube and an outer peripheral steel frame of an underwater docking device for underwater suspended tunnels according to an embodiment of the present invention
  • 5a is a schematic cross-sectional structural view of a submerged tube in an underwater docking device for underwater suspended tunnels according to an embodiment of the present invention
  • FIG. 5b is a cross-sectional structural diagram of the underwater tube in the underwater docking device of the underwater suspension tunnel according to an embodiment of the present invention
  • Figure 6a is a perspective view showing the three-dimensional structure of the telescopic mechanical arm when it is located on the axial rail;
  • Figure 6b is a schematic perspective view of the telescopic mechanical arm on the surrounding rail.
  • the butt joint is the upper tube 1 and the lower tube 1'
  • the docking device is connected between the upper tube 1 and the lower tube 1', suspended in water.
  • the tunnel underwater docking device is comprised of:
  • the inner diameter of the steel frame 2 is larger than the outer diameter of the pipe joint 1 ⁇ 2 meters, the axial length is 20-30 meters, and the second half is set on the outer circumference of the upper tube 1 and supported on the outer circumference of the upper tube 1 by the roller 8 disposed on the second half;
  • On the inner side wall of the front half of the steel frame 2 a plurality of circumferential rails 7 are arranged at different axial positions, each of the surrounding rails 7 being centered on the central axis of the steel frame 2 and having the same Ring radius R1; there is an axial rail 6 passing through between all the surrounding rails 7, the axial rail 6 is a symmetrically arranged two lanes with the axis of the steel frame as the center of symmetry, and the first and the last are indented by 0.3 to 0.5 meters
  • a plurality of telescopic mechanical arms 5 are supported on the axial rails 6 by means of rotatable rollers 51, and are movable in the axial rails 6 and the surrounding rails 7 by means of rollers 51, which can be
  • the telescopic robot arm 5 is disposed in pairs at a position centered on the axis of the steel frame, and is clamped to the lower pipe 1' by the telescopic mechanical arms 5 provided in pairs.
  • a temporary rail 3 is disposed on the outer side wall of the butt pipe in the axial direction, and the temporary rail 3 is made of glass fiber and ceramic toughened epoxy material and penetrates the upper section.
  • the roller 8 is supported on the temporary rail 3 and is axially movable along the temporary rail so that the butt tube and the steel frame 2 are in a coaxial position. It can move relative to the axial direction.
  • a card slot 9 is provided at a fixed position on the temporary rail 3, When the steel frame 2 reaches the designated position, the diver inserts a temporary baffle in the front and rear slots 9 of the roller 8 to prevent the roller 8 from sliding and realize positioning.
  • the roller 8 is disposed at least two parallel to each other in the second half of the steel frame 2, and at least two are disposed in each group to achieve mutual restraint, preventing the steel frame 2 from moving and tipping at a large flow rate.
  • the rollers 8 are arranged in two groups, and the angle between each of the three rollers 8 is 120°.
  • a temporary positioning elastic body 10 of natural rubber is disposed on the outer side wall of the lower tube 1' at a position where the front end of the butted steel frame 2 is completed.
  • a cubic positioning groove 11 having a side length of 0.3 to 0.5 m is disposed on the steel frame 2 corresponding to the position, so that the steel frame 2 after the completion of the docking is positioned by the temporary positioning elastic body 10; the front end of the steel frame 2 is Refers to the end of the first half of the steel frame 2.
  • the temporary positioning elastic body 10 has the characteristics of large elasticity. After the lower tube 1' is moved to the docking position, it can be compressed by manual operation. When the positioning elastic body 10 is rotated to the positioning groove 11, the elastic force is released. The card is inserted into the positioning slot 11 and can be positioned by the diver to determine the positioning of the pipe joint.
  • the surrounding rails 7 are equidistantly distributed in the axial direction with a pitch of 2 to 3 meters.
  • the telescopic mechanical arm 5 is at the front end of an arc-shaped pressure plate 53 which is engageable with the outer side wall of the lower tube 1'.
  • the surface of the curved platen 53 is provided as a non-slip elastic pad 54.
  • the support rod 52 of the curved platen 53 is provided as a hydraulically retractable rod, and the roller 51 and the support rod 52 are rotatable relative to each other by 90°.
  • the telescopic mechanical arm 5 is controlled by the land computer to expand and contract, and combines the external force to push the tube joint to realize the purpose of fixing the tube joint and the radial positioning, and realizes accurate docking by pushing and rotating.
  • a steel tab 4 for pulling is welded to both ends of the steel frame 2, respectively.
  • a position sensor is disposed in the embodiment for detecting the relative distance between the upper tube 1 and the lower tube 1' in the docking process in real time; the position sensor adopts an ultrasonic sensor, which is composed of a transmitting end and The receiving end is configured, and the transmitting end and the receiving end are respectively located at the mating ends of the upper tube 1 and the lower tube 1'.
  • the position sensor controls the telescopic rotation of the telescopic robot arm 5 by collecting the distance data between the docking pipe segments and transmitting the data to the computer terminal through data analysis by the computer.
  • One end of the first half of the steel frame 2 is a front end, and one end of the second half of the steel frame 2 is a rear end;
  • Each of the tracks in the steel frame 2 surrounds the rail 7, and the side from the rear end of the steel frame 2 toward the front side of the steel frame 2 is the first surrounding rail, the second surrounding rail... the nth round Rail, n is the number of tracks around the rail 7;
  • the telescopic mechanical arm 5 supported in the axial rail 6 is in the first pair of telescopic mechanical arms 5 from the side of the rear end of the steel frame 2 toward the side of the front section of the steel frame 2 a robot arm, a second pair of retractable robot arms... an nth pair of retractable robot arms;
  • the docking device realizes the underwater docking of the underwater suspension tunnel by the following steps:
  • Step 1 Support the steel frame 2 with the roller 8 in the second half thereof on the upper tube 1 and make the first half of the steel frame 2 overhang at the butt end of the upper tube 1;
  • Step 2 Introducing the butt end of the lower tube 1' from the front end of the steel frame 2, the first pair of telescopic mechanical arms are extended and the lower tube 1' is clamped, and the lower tube is advanced to the rear end of the steel frame by an external force. 1' and the first pair of retractable robot arms;
  • Step 3 The position sensor can realize the distance data collection and transmit to the computer terminal.
  • the first pair of retractable mechanical arms reach the n-1th surrounding rail along the axial rail
  • the second pair of retractable mechanical arms are elongated and clamped. Hold the lower tube 1', and continue to push the lower tube 1', the first pair of retractable arm and the second pair of retractable arm to the rear end of the steel frame by external force; until the first pair of retractable arm reaches the first The track surrounds the rail, the second pair of retractable arm reaches the second wrap rail...
  • the telescopic mechanical arm corresponds to the first surrounding rail
  • the second pair of retractable mechanical arms correspond to the second surrounding rail
  • the nth pair of retractable mechanical arms correspond to the nth surrounding rail
  • Step 4 When the distance between the two pairs of pipe segments is 0.3 to 0.5 m, the diver temporarily compresses the temporary positioning elastic body 10 into the structural frame of the steel frame 2 and observes it.
  • the lower section tube 1' is rotated by an external force, and the lower section tube 1' is adjusted to be at the same central angle of the upper section tube 1.
  • the temporary positioning elastic body 10 is moved into the positioning groove 11, elastic release and fixation will occur.
  • the position sensor is quickly removed and the steel frame 2 is pulled backward by an external force, so that the butt joint of the lower tube 1' and the upper tube 1 can be docked;
  • Step 5 Retract each of the retractable robot arms, and use the temporary rail 3 and the roller 8 to move the steel frame 2 to the lower section pipe 1', and continue the docking installation of the subsequent pipe sections.
  • the above external force may be provided by marine construction equipment such as ships and machinery.
  • the first section of the land is docked after prefabricating the pipe section on the land, and the temporary track 3 and the position sensor are installed at the same time, and two steel frames 2 are simultaneously set on the two pipe sections, and then the sinking is performed. put.
  • the docking work can be carried out simultaneously to the left and right according to the two sections of the pipe joint, which greatly saves construction time.
  • the docking device of the present invention can be mainly used for a butt pipe segment with a deviation of 20 to 50 cm.
  • the temporary positioning of the elastic body 10 on the lower tube 1' is removed, and the continuous advancement of the steel frame 2 can be performed by an external force. All of the bolt holes and the card slots 9 for temporary installation are positioned on the ground to allow for quick installation and removal of the temporary mounting parts.
  • the suspended tunnel in water is used as a model, and the corresponding structural arrangement may also be a long and thin structure such as an immersed tunnel, an offshore oil, and a natural gas transportation pipeline.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

一种水中悬浮隧道水下对接装置及其实现方法。该对接装置包括钢架(2),钢架(2)后半段套装并支撑在上节管(1)上,在钢架(2)的前半段的内侧壁上的不同轴向位置设置多道环绕钢轨(7),在所述环绕钢轨(7)之间有轴向钢轨(6)相贯通;多个可伸缩机械臂(5)利用可旋转的滚轮(51)支撑在轴向钢轨(6)上,并能够在轴向钢轨(6)及环绕钢轨(7)中移动,成对设置的可伸缩机械臂(5)对下节管(1')形成夹持;在对接管的外侧壁上沿轴向设置临时轨道(3),辊轮(8)支撑在临时轨道中,使对接管与钢架(2)处在同轴位置上并能够相对轴向移动。上述对接装置及相应的对接方法可以以半自动化的形式实现水中悬浮隧道的准确对接。

Description

一种水中悬浮隧道水下对接装置及其实现方法 技术领域
本发明涉及机械领域,具体地涉及一种水下隧道对接装置,更具体地涉及一种水中悬浮隧道水下对接装置及其实现方法。
背景技术
水中悬浮隧道,又称阿基米德桥,其通过结构的自重、浮力和锚固系统的共同作用维持在水中的平衡和稳定。水中悬浮隧道与跨海大桥、沉管隧道等传统交通形式相比,是近几年来提出的一种新型交通概念。由于其自身所具有的经济性、环保性、抗震性和便捷性,注定水中悬浮隧道在未来将拥有十分广阔的应用前景。但是水中悬浮隧道这一交通概念涉及领域广泛,需要解决的技术难题尚多,因此目前世界上还未建成一座实用的水中悬浮隧道。而水下隧道管体对接这一难题,也是阻碍悬浮隧道实施的关键技术问题之一。
目前水下隧道管体对接技术主要运用于沉管隧道。虽然沉管隧道建设于海床之上,受到水流、波浪的影响较小,但要在海洋气候、海洋流体环境、海底地形地貌等各种复杂因素的影响下进行管段之间的精确对接也是非常困难的。
迄今为止,并没有一种针对水中悬浮隧道水下精准对接的施工技术。与沉管隧道不同的是,水中悬浮隧道通常位于水下十几米到三十米之间,除了受沉管隧道水下对接安装影响的因素外,水流、波浪均会导致悬浮隧 道管体和安装起吊船舶的摆动,极大地增加了悬浮隧道管体水中对接的难度。
发明内容
为了避免上述现有技术所存在的不足之处,本发明提供一种水中悬浮隧道水下对接装置及其实现方法,以期能够以半自动化的形式实现水中悬浮隧道水下的准确对接。
本发明一方面提供了一种水中悬浮隧道水下对接装置,对接管包括上节管和下节管,所述对接装置是在所述上节管和下节管之间进行对接操作;所述对接装置包括:
钢架,所述钢架优选为圆筒状,所述钢架以其后半段套装在所述上节管的外周,并利用设置在后半段上的辊轮支撑在所述上节管的外周;在所述钢架的前半段的内侧壁上、处在不同的轴向位置上设有多道环绕钢轨,所述环绕钢轨是以所述钢架的中轴线为中心并具有相同的圆环半径R1;在所述环绕钢轨之间设有轴向钢轨相贯通,所述轴向钢轨为以所述钢架的轴线为对称中心而对称设置的两道;
多个可伸缩机械臂利用可旋转的滚轮支撑在所述轴向钢轨上,并能够利用所述滚轮在所述轴向钢轨及环绕钢轨中移动,所述可伸缩机械臂在以所述钢架的轴线为对称中心的位置上成对设置,利用成对设置的可伸缩机械臂对于所述下节管形成夹持;
在所述对接管的外侧壁上沿轴向设置临时轨道,所述临时轨道贯通在所述上节管和下节管之间,所述辊轮支撑在所述临时轨道中,并能够沿所 述临时轨道进行轴向移动,使所述对接管与钢架处在同轴位置上并能够相对轴向移动。
进一步地,在所述下节管的外侧壁上,处在完成对接后的钢架的前端所在位置上设置有临时定位弹性体,对应位置的钢架上设置有定位槽,使完成对接后的钢架利用所述临时定位弹性体与定位槽的配合获得定位;所述钢架的前端是指所述钢架的前半段所在的一端。
优选地,所述环绕钢轨在轴向等距分布。
进一步地,所述可伸缩机械臂在前端设有一能够与所述下节管的外侧壁相贴合的弧形压板,所述弧形压板的表面设置有防滑弹性垫层,所述弧形压板的支撑杆设置为液压可伸缩杆,所述滚轮与所述支撑杆可相对转动。
进一步地,在所述钢架的两端分别焊接有用于牵引的钢拉环。
优选地,本发明提供的水中悬浮隧道水下对接装置还设置有位置传感器,用于实时检测处在对接过程中的上节管和下节管之间的相对距离。
进一步地,所述位置传感器由发射端和接收端构成,所述发射端和接收端分别处于所述上节管和下节管的对接端。
本发明另一方面提供了利用上述对接装置实现水中悬浮隧道水下对接的方法,所述钢架中前半段所在的一端为前端,所述钢架中后半段所在的一端为后端;
处在所述钢架中的各道环绕钢轨,其自所述钢架的后端所在一侧朝向所述钢架的前端,所在一侧依次为第一道环绕钢轨、第二道环绕钢轨直至第n道环绕钢轨,n为环绕钢轨的道数;
支撑在所述轴向钢轨中的可伸缩机械臂,其自所述钢架的后端所在一侧朝向所述钢架的前端所在一侧的各成对的可伸缩机械臂依次为第一对可伸缩机械臂、第二对可伸缩机械臂直至第n对可伸缩机械臂;
所述实现水中悬浮隧道水下对接的方法,包括以下步骤:
步骤1,将所述钢架利用其后半段中的辊轮支撑在所述上节管上,并使所述钢架的前半段在所述上节管的对接端呈悬伸;
步骤2,将所述下节管的对接端自所述钢架的前端导入,第一对可伸缩机械臂伸长并夹持所述下节管,利用外力向所述钢架的后端方向推进所述下节管以及第一对可伸缩机械臂;
步骤3,当第一对可伸缩机械臂沿所述轴向钢轨达到第n-1道环绕钢轨时,第二对可伸缩机械臂伸长并夹持所述下节管,利用外力继续向所述钢架的后端方向推进所述下节管、第一对可伸缩机械臂以及第二对可伸缩机械臂;从而第一对可伸缩机械臂达到第一道环绕钢轨所在位置、第二对可伸缩机械臂达到第二道环绕钢轨直至当第n对可伸缩机械臂达到第n道环绕钢轨时,完成所述下节管的轴向移动;使第一对可伸缩机械臂对应处在第一道环绕钢轨中、第二对可伸缩机械臂对应处在第二道环绕钢轨中直至第n对可伸缩机械臂对应处在第n道环绕钢轨中;
步骤4,利用外力转动所述下节管,调整所述下节管与上节管处在相同的圆心角上,在所述下节管与上节管的对接端完成对接;
步骤5,收回各可伸缩机械臂,利用所述临时轨道和辊轮将所述钢架移动至所述下节管上,然后重复上述步骤完成各管段的对接安装,即继续后续各管段的对接安装。
根据本发明提供的一种水中悬浮隧道水下对接装置及其实现方法,与现有技术相比具有至少以下有益效果之一:
1、本发明运用机械化方法固定和传送隧道管段,克服了天气、水流、波浪等不利因素对于水下悬浮隧道对接作业的影响,防止悬浮隧道管体和安装起吊船舶的摆动,保证对接施工的顺利进行;
2、本发明提供的该对接装置采用轻质、易安装的钢架结构,其与水中悬浮隧道外壁布设的轨道相结合,通过船舶力、机械力等外加动力向前、向后牵引,实现双向运动,解决了一次对接失败后调整困难的问题;
3、本发明可实现在悬浮隧道外壁上连续推进、重复利用,极大地提升了施工进度,降低了施工成本;
4、本发明利用位置传感器进行位置检测,配合设置控制系统,对于伸缩臂的伸缩动作和支撑杆的旋转动作实现自动控制,实现对接过程的半自动化操作模式,较大地减少了人工水下作业,保证了安全施工,并大大缩短工期。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的水中悬浮隧道水下对接装置中钢架的立体结构示意图;
图2为本发明实施例提供的水中悬浮隧道水下对接装置实现隧道初始沉放的立体示意图;
图3为本发明实施例提供的水中悬浮隧道水下对接装置中上节管及其外周钢架的立体结构示意图;
图4为本发明实施例提供的水中悬浮隧道水下对接装置中下节管及其外周钢架的立体结构示意图;
图5a为本发明实施例提供的水中悬浮隧道水下对接装置中下节管未进行旋转定位时的横截面结构示意图;
图5b为本发明实施例提供的水中悬浮隧道水下对接装置中下节管完成定位后的横截面结构示意图;
图6a为可伸缩机械臂位于轴向钢轨时的立体结构示意图;
图6b为可伸缩机械臂位于环绕钢轨上的立体结构示意图。
附图标记:下节管1’,上节管1,钢架2,临时轨道3,钢拉环4,可伸缩机械臂5,滚轮51,支撑杆52,弧形压板53,防滑弹性垫层54,轴向钢轨6,环绕钢轨7,辊轮8,卡槽9,临时定位弹性体10,定位槽11。
具体实施方式
下面参照附图详细介绍本发明的示例性实施例。提供这些示例性实施例的目的是为了使得本领域普通技术人员能够清楚地理解本发明,并且根 据这里的描述能够实现本发明。附图和具体实施例不旨在对本发明进行限定,本发明的范围由所附权利要求限定。
如图3和图4所示,本实施例中,对接管为上节管1和下节管1’,对接装置是在上节管1和下节管1’之间进行对接操作,水中悬浮隧道水下对接装置是包括:
一呈圆筒状的钢架2,如图1所示,为了防止海洋环境腐蚀结构,钢架2所有暴露表面均涂覆有聚氨酯防腐涂层;所述钢架2内径大于管节外径1~2米,轴向长度为20~30米,以其后半段套装在上节管1的外周,并利用设置在后半段上的辊轮8支撑在所述上节管1的外周;在所述钢架2的前半段的内侧壁上、处在不同的轴向位置上设置有多道环绕钢轨7,各道所述环绕钢轨7是以钢架2的中轴线为中心并具有相同的圆环半径R1;在所有环绕钢轨7之间有轴向钢轨6相贯通,所述轴向钢轨6为以钢架轴线为对称中心的对称设置的两道,首尾各缩进0.3~0.5米;
如图4所示,多个可伸缩机械臂5利用可旋转的滚轮51支撑在所述轴向钢轨6上,并能够利用滚轮51在所述轴向钢轨6及环绕钢轨7中移动,所述可伸缩机械臂5在以钢架轴线为对称中心的位置上成对设置,利用成对设置的可伸缩机械臂5对于下节管1’形成夹持。
如图2和图3所示,在所述对接管的外侧壁上沿轴向设置临时轨道3,所述临时轨道3采用玻璃纤维和陶瓷增韧的环氧树脂材料并贯通在所述上节管1和下节管1’之间,所述辊轮8是支撑在所述临时轨道3上,并能够沿所述临时轨道进行轴向移动,使对接管与钢架2处在同轴位置上并能够相对轴向移动。本实施例中,在临时轨道3上的固定位置设置有卡槽9,在 钢架2到达指定位置时,由潜水员于辊轮8前后卡槽9内插入临时档板,阻止辊轮8的滑动,实现定位。所述辊轮8在钢架2后半段至少设置为相互平行的两组,每组至少设置两个,以实现相互约束,防止钢架2在较大流速下发生移动和倾覆。本实施例中,辊轮8设置为两组,每组三个辊轮8之间夹角为120°。
如图5a和图5b所示,本实施例中在所述下节管1’的外侧壁上,处在完成对接后的钢架2的前端所在位置上设置有一天然橡胶的临时定位弹性体10,对应位置的钢架2上设置一边长为0.3~0.5米的立方体定位槽11,使完成对接后的钢架2利用所述临时定位弹性体10上获得定位;所述钢架2的前端是指钢架2的前半段所在的一端。临时定位弹性体10具有弹性大的特点,在下节管1’运动至对接位置后,可通过人工作业使其呈压缩状态,当定位弹性体10旋转至定位槽11时,将产生弹力释放,卡入定位槽11内,经过潜水员观察,即可确定管段对接处的定位情况。
如图1,环绕钢轨7在轴向等距分布,其间距为2~3米。
参见图6a和图6b,可伸缩机械臂5在前端为一能够与所述下节管1’的外侧壁相贴合的弧形压板53,弧形压板53的表面设置为防滑弹性垫层54,并在所述弧形压板53的支撑杆52设置为液压可伸缩杆,滚轮51与所述支撑杆52可相对90°转动。可伸缩机械臂5由陆上计算机控制伸缩和转动,结合外力推送管节运动,以实现固定管节和径向定位的目的,通过推送和旋转实现精确对接。
如图1所示,在所述钢架2的两端分别焊接有用于牵引的钢拉环4。
为了实现自动控制,本实施例中设置位置传感器,用于实时检测处在对接过程中的上节管1和下节管1’之间的相对距离;位置传感器采用超声波传感器,是由发射端和接收端构成,所述发射端和接收端分处在所述上节管1和下节管1’的对接端。位置传感器通过采集对接管段间的距离数据并传送给计算机终端,通过计算机进行数据分析后,控制可伸缩机械臂5的伸缩和转动。
参见图1,令:
钢架2中前半段所在一端为前端,钢架2中后半段所在一端为后端;
处在钢架2中的各道环绕钢轨7,其自钢架2后端所在一侧朝向钢架2的前段所在一侧依次为第一道环绕钢轨、第二道环绕钢轨…第n道环绕钢轨,n为环绕钢轨7的道数;
支撑在轴向钢轨6中的可伸缩机械臂5,其自钢架2后端所在一侧朝向钢架2的前段所在一侧的各成对的可伸缩机械臂5依次为第一对可伸缩机械臂、第二对可伸缩机械臂…第n对可伸缩机械臂;
如图3和图4所示,本实施例中对接装置实现水中悬浮隧道水下对接的方法是按如下步骤进行:
步骤1:将钢架2利用其后半段中的辊轮8支撑在上节管1上,并使钢架2的前半段在上节管1的对接端呈悬伸;
步骤2:将下节管1’的对接端自钢架2的前端导入,第一对可伸缩机械臂伸长并夹持下节管1’,利用外力向钢架后端方向推进下节管1’以及第一对可伸缩机械臂;
步骤3:位置感应器可实现距离数据采集并传送给计算机终端,当第一对可伸缩机械臂沿轴向钢轨达到第n-1道环绕钢轨时,第二对可伸缩机械臂伸长并夹持下节管1’,利用外力继续向钢架后端方向推进下节管1’、第一对可伸缩机械臂以及第二对可伸缩机械臂;直至第一对可伸缩机械臂达到第一道环绕钢轨所在位置、第二对可伸缩机械臂达到第二道环绕钢轨…当第n对可伸缩机械臂达到第n道环绕钢轨时,完成下节管1’的轴向移动;使第一对可伸缩机械臂对应处在第一道环绕钢轨中、第二对可伸缩机械臂对应处在第二道环绕钢轨中…第n对可伸缩机械臂对应处在第n道环绕钢轨中;
步骤4:当两对接管段间距离为0.3~0.5米时,由潜水员将临时定位弹性体10垂直压缩至钢架2结构框架内,并进行观察。利用外力转动下节管1’,调整下节管1’与上节管1处在相同的圆心角上,当临时定位弹性体10运动至定位槽11内,将发生弹性释放并固定。此时快速拆除位置传感器并通过外力向后牵引钢架2,即可在下节管1’与上节管1的对接端完成对接;
步骤5:收回各可伸缩机械臂,利用临时轨道3和辊轮8将钢架2移动至下节管1’上,继续后续各管段的对接安装。
上述外力可由船舶、机械等海上施工作业设备提供。
具体实施中,如图2所示,在陆上预制好管段之后进行首节陆上对接,同时安装临时轨道3和位置传感器并在两段管节上同时套装两个钢架2,随后进行沉放。对接工作可根据沉放的两段管节向左、向右同时进行,大大节约施工时间。本发明中的对接装置主要可用于偏差在20~50公分的对接管段。
在完成一次对接后,只需拆除下节管1’上的临时定位弹性体10,便可通过外力进行钢架2的连续推进。所有用于临时安装的螺栓孔和卡槽9均在陆上完成定位预设,可实现临时安装件的水下快速安装和拆卸。
本实施例是以水中悬浮隧道为模型,相应的结构设置也可以是沉管隧道、海洋石油、天然气运输管道等长细结构。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种水中悬浮隧道水下对接装置,对接管包括上节管(1)和下节管(1’),所述对接装置是在所述上节管(1)和下节管(1’)之间进行对接操作;所述对接装置包括:
    钢架(2),所述钢架(2)以其后半段套装在所述上节管(1)的外周,并利用设置在后半段上的辊轮(8)支撑在所述上节管(1)的外周;在所述钢架(2)的前半段的内侧壁上、处在不同的轴向位置上设有多道环绕钢轨(7),所述环绕钢轨(7)是以所述钢架(2)的中轴线为中心并具有相同的圆环半径R1;在所述环绕钢轨(7)之间设有轴向钢轨(6)相贯通,所述轴向钢轨(6)为以所述钢架(2)的轴线为对称中心而对称设置的两道;
    多个可伸缩机械臂(5)利用可旋转的滚轮(51)支撑在所述轴向钢轨(6)上,并能够利用所述滚轮(51)在所述轴向钢轨(6)及环绕钢轨(7)中移动,所述可伸缩机械臂(5)在以所述钢架(2)的轴线为对称中心的位置上成对设置,利用成对设置的可伸缩机械臂(5)对于所述下节管(1’)形成夹持;
    在所述对接管的外侧壁上沿轴向设置临时轨道(3),所述临时轨道(3)贯通在所述上节管(1)和下节管(1’)之间,所述辊轮(8)支撑在所述临时轨道(3)中,并能够沿所述临时轨道(3)进行轴向移动,使所述对接管与钢架(2)处在同轴位置上并能够相对轴向移动。
  2. 根据权利要求1所述的水中悬浮隧道水下对接装置,其中,在所述下节管(1’)的外侧壁上,处在完成对接后的钢架(2)的前端所在位置上 设置有临时定位弹性体(10),对应位置的钢架(2)上设置有定位槽(11),使完成对接后的钢架(2)利用所述临时定位弹性体(10)获得定位;所述钢架(2)的前端是指所述钢架(2)的前半段所在的一端。
  3. 根据权利要求1所述的水中悬浮隧道水下对接装置,其中,所述环绕钢轨(7)在轴向等距分布。
  4. 根据权利要求1所述的水中悬浮隧道水下对接装置,其中,所述可伸缩机械臂(5)在前端设有能够与所述下节管(1’)的外侧壁相贴合的弧形压板(53),所述弧形压板(53)的表面设置有防滑弹性垫层(54),所述弧形压板(53)的支撑杆(52)设置为液压可伸缩杆,所述滚轮(51)与所述支撑杆(52)可相对转动。
  5. 根据权利要求1所述的水中悬浮隧道水下对接装置,其中,在所述钢架(2)的两端分别焊接有用于牵引的钢拉环(4)。
  6. 根据权利要求1所述的水中悬浮隧道水下对接装置,其中,设置有位置传感器,用于实时检测处在对接过程中的上节管(1)和下节管(1’)之间的相对距离。
  7. 根据权利要求6所述的水中悬浮隧道水下对接装置,其中,所述位置传感器由发射端和接收端构成,所述发射端和接收端分别处于所述上节管(1)和下节管(1’)的对接端。
  8. 利用权利要求1-7中任一项所述对接装置实现水中悬浮隧道水下对接的方法,
    所述钢架(2)中前半段所在的一端为前端,所述钢架(2)中后半段所在的一端为后端;
    处在所述钢架(2)中的各道环绕钢轨(7),其自所述钢架(2)的后端所在一侧朝向所述钢架(2)的前端,所在一侧依次为第一道环绕钢轨、第二道环绕钢轨直至第n道环绕钢轨,n为环绕钢轨(7)的道数;
    支撑在所述轴向钢轨(6)中的可伸缩机械臂(5),其自所述钢架(2)的后端所在一侧朝向所述钢架(2)的前端所在一侧的各成对的可伸缩机械臂(5)依次为第一对可伸缩机械臂、第二对可伸缩机械臂直至第n对可伸缩机械臂;
    所述实现水中悬浮隧道水下对接的方法,包括以下步骤:
    步骤1,将所述钢架(2)利用其后半段中的辊轮(8)支撑在所述上节管(1)上,并使所述钢架(2)的前半段在所述上节管(1)的对接端呈悬伸;
    步骤2,将所述下节管(1’)的对接端自所述钢架(2)的前端导入,第一对可伸缩机械臂伸长并夹持所述下节管(1’),利用外力向所述钢架(2)的后端方向推进所述下节管(1’)以及第一对可伸缩机械臂;
    步骤3,当第一对可伸缩机械臂沿所述轴向钢轨(6)达到第n-1道环绕钢轨时,第二对可伸缩机械臂伸长并夹持所述下节管(1’),利用外力继续向所述钢架(2)的后端方向推进所述下节管(1’)、第一对可伸缩机械臂以及第二对可伸缩机械臂;从而第一对可伸缩机械臂达到第一道环绕钢轨所在位置、第二对可伸缩机械臂达到第二道环绕钢轨直至当第n对可伸缩机械臂达到第n道环绕钢轨时,完成所述下节管(1’)的轴向移动;使第一对可伸缩机械臂对应处在第一道环绕钢轨中、第二对可伸缩机械臂对应 处在第二道环绕钢轨中直至第n对可伸缩机械臂对应处在第n道环绕钢轨中;
    步骤4,利用外力转动所述下节管(1’),调整所述下节管(1’)与上节管(1)处在相同的圆心角上,在所述下节管(1’)与上节管(1)的对接端完成对接;
    步骤5,收回各可伸缩机械臂,利用所述临时轨道(3)和辊轮(8)将所述钢架(2)移动至所述下节管(1’)上,然后重复上述步骤完成各管段的对接安装。
PCT/CN2016/089051 2015-07-31 2016-07-07 一种水中悬浮隧道水下对接装置及其实现方法 WO2017020678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510474184.XA CN105064402B (zh) 2015-07-31 2015-07-31 一种水中悬浮隧道水下对接装置及其应用
CN201510474184.X 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017020678A1 true WO2017020678A1 (zh) 2017-02-09

Family

ID=54493889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089051 WO2017020678A1 (zh) 2015-07-31 2016-07-07 一种水中悬浮隧道水下对接装置及其实现方法

Country Status (2)

Country Link
CN (2) CN105064402B (zh)
WO (1) WO2017020678A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109537631A (zh) * 2019-01-08 2019-03-29 于铠奇 一种自潜悬浮式水下隧道装置
CN114952143A (zh) * 2021-02-26 2022-08-30 杨国庆 一种钻井平台输油管道快速定位连接装置
CN116336981A (zh) * 2023-01-29 2023-06-27 深圳大学 沉管管节水下粗定位方法及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105064402B (zh) * 2015-07-31 2016-08-17 合肥工业大学 一种水中悬浮隧道水下对接装置及其应用
CN105780810A (zh) * 2016-04-21 2016-07-20 招商局重庆交通科研设计院有限公司 水中悬浮隧道接头
CN108894250B (zh) * 2018-07-13 2023-12-01 北京九州动脉隧道技术有限公司 一种水下管道的对接系统
CN111254982B (zh) * 2020-01-20 2021-05-14 中交第三航务工程局有限公司 一种水下斜拉式悬浮隧道的顶推工艺
CN111424715B (zh) * 2020-03-31 2021-05-25 中交第三航务工程局有限公司 一种用于悬浮隧道接力延伸的人工岛管节连接系统
CN113062358B (zh) * 2021-02-20 2022-05-13 温州大学 一种内套筒移动式悬浮隧道管节
CN112900497B (zh) * 2021-02-20 2022-05-13 温州大学 一种外套筒移动式悬浮隧道管节
CN113669020B (zh) * 2021-08-04 2023-12-08 深圳宏业基岩土科技股份有限公司 钢套管快速上下对接方法
CN113529797B (zh) * 2021-08-12 2022-07-05 绍兴文理学院 一种悬浮隧道节段顶推施工的锚固装置
CN116104132B (zh) * 2023-04-13 2023-06-23 西南石油大学 一种推出式预制管节悬浮隧道及其对接施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012842A (en) * 1989-12-28 1991-05-07 Interprovincial Pipe Line Company Fluid actuated pipe clamp tightener
JPH05106763A (ja) * 1991-10-15 1993-04-27 Kubota Corp 自走式管接合装置
GB2299646A (en) * 1995-03-10 1996-10-09 Allseas Group Sa Method and installation for laying a pipeline on a surface located under water
CN102575795A (zh) * 2009-10-07 2012-07-11 阿克海底公司 水平连接设备
CN103118832A (zh) * 2010-05-28 2013-05-22 布拉斯方德美国公司 管道插入系统
CN105064402A (zh) * 2015-07-31 2015-11-18 合肥工业大学 一种水中悬浮隧道水下对接装置及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1036441A (en) * 1962-01-23 1966-07-20 Dragan Rudolf Petrik A transport system for high speed travel including a jet propelled locomotive
IT1264904B1 (it) * 1993-07-09 1996-10-17 Eniricerche Spa Giunto sismico per tunnel sottomarini galleggianti
JPH11336106A (ja) * 1998-05-29 1999-12-07 Taisei Corp 押出しトンネルの方向修正方法
CN1242128C (zh) * 2002-08-27 2006-02-15 上海隧道工程股份有限公司 沉管隧道管段浮运沉放对接施工工艺
CN1590658A (zh) * 2003-08-26 2005-03-09 刘寄声 一种半潜式隧道及其架设方法
CN201195847Y (zh) * 2008-05-04 2009-02-18 阿基米德桥国际公司 水中悬浮隧道
CN201778339U (zh) * 2010-08-31 2011-03-30 上海振华重工(集团)股份有限公司 海底隧道管节定位系统
CN202865755U (zh) * 2012-08-31 2013-04-10 中交第二航务工程局有限公司 一种沉管隧道管节轴线调位系统
CN203129180U (zh) * 2012-12-31 2013-08-14 中交第一航务工程局有限公司 管节对接导向装置
KR101459021B1 (ko) * 2013-11-22 2014-11-07 한국해양과학기술원 수중터널 충돌 충격 흡수 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012842A (en) * 1989-12-28 1991-05-07 Interprovincial Pipe Line Company Fluid actuated pipe clamp tightener
JPH05106763A (ja) * 1991-10-15 1993-04-27 Kubota Corp 自走式管接合装置
GB2299646A (en) * 1995-03-10 1996-10-09 Allseas Group Sa Method and installation for laying a pipeline on a surface located under water
CN102575795A (zh) * 2009-10-07 2012-07-11 阿克海底公司 水平连接设备
CN103118832A (zh) * 2010-05-28 2013-05-22 布拉斯方德美国公司 管道插入系统
CN105064402A (zh) * 2015-07-31 2015-11-18 合肥工业大学 一种水中悬浮隧道水下对接装置及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109537631A (zh) * 2019-01-08 2019-03-29 于铠奇 一种自潜悬浮式水下隧道装置
CN114952143A (zh) * 2021-02-26 2022-08-30 杨国庆 一种钻井平台输油管道快速定位连接装置
CN116336981A (zh) * 2023-01-29 2023-06-27 深圳大学 沉管管节水下粗定位方法及系统
CN116336981B (zh) * 2023-01-29 2024-01-16 深圳大学 沉管管节水下粗定位方法及系统

Also Published As

Publication number Publication date
CN105064402A (zh) 2015-11-18
CN106337439B (zh) 2018-05-01
CN106337439A (zh) 2017-01-18
CN105064402B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017020678A1 (zh) 一种水中悬浮隧道水下对接装置及其实现方法
RU2230967C2 (ru) Судно-трубоукладчик (варианты) и способ прокладки трубопроводов (варианты)
US8974149B2 (en) Method of joining two portions of an underwater pipeline for conducting fluids and/or gas
US3321925A (en) Deep water lay barge and method
BG61351B1 (bg) Устройство за почти вертикално поставяне на тръбопровод
CN105042184B (zh) 一种轻型双节点管道j型铺设系统
CN104532843B (zh) 一种立柱桩的钢立柱定位调直方法
CN110924864A (zh) 海上输水管道定向钻牵引施工方法
CN110280700A (zh) 一种方便超长钢筋笼分段对接处理系统及处理方法
CN113494295A (zh) 长大盾构隧道地中对接施工方法
US3440826A (en) Laying pipe in water
US9874295B2 (en) Clamp assembly for pipe-laying vessel and method of laying a pipeline
CN105757340A (zh) 一种深水j型快速铺设系统
CN112758287B (zh) 水下遥控检测和处置作业设备及其施工方法
CN110939460B (zh) 一种试验用管片拼装系统
CN112629396A (zh) 一种深水管道回接位姿测量装置
CN100485138C (zh) 悬浮法海底隧道
CN108613662B (zh) 一种用于水下监测的吸力式可调仪器架及其使用方法
CN204062146U (zh) 大直径管道穿越路基套管安装调整装置
CN205001657U (zh) 一种轻型双节点管道j型铺设系统
CN105346677A (zh) 一种折叠式板锚及其使用方法
Dong et al. Underwater docking installation technology of submerged floating tunnels
CN109185558A (zh) 一种大直径grp管道水下安装的方法
JP2014178304A (ja) 管状構造物の計測装置及び評価方法
RU2229053C2 (ru) Судно-трубоукладчик и способ прокладки трубопроводов

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: IDP00201700591

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832166

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16832166

Country of ref document: EP

Kind code of ref document: A1