WO2017020648A1 - 手持扫描设备骨架结构 - Google Patents

手持扫描设备骨架结构 Download PDF

Info

Publication number
WO2017020648A1
WO2017020648A1 PCT/CN2016/084373 CN2016084373W WO2017020648A1 WO 2017020648 A1 WO2017020648 A1 WO 2017020648A1 CN 2016084373 W CN2016084373 W CN 2016084373W WO 2017020648 A1 WO2017020648 A1 WO 2017020648A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
tubular structure
scanning device
camera mount
mount
Prior art date
Application number
PCT/CN2016/084373
Other languages
English (en)
French (fr)
Inventor
方乐
郑俊
Original Assignee
杭州思看科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州思看科技有限公司 filed Critical 杭州思看科技有限公司
Publication of WO2017020648A1 publication Critical patent/WO2017020648A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the invention belongs to the field of handheld three-dimensional scanning technology, and in particular relates to a skeleton structure of a handheld scanning device.
  • the handheld 3D scanner is mainly used to detect and analyze the shape and appearance data of objects or environments in the real world, perform 3D reconstruction calculation of the data obtained by the instrument, and create a digital model of the actual object. . Its applications in industrial design, reverse engineering, machine vision, flaw detection, criminal identification, digital heritage and video game production are all visible.
  • scanners can be roughly divided into contact type 3D scanners and non-contact type 3D scanners.
  • Contact type 3D scanners calculate depth by touching the surface of the object, while non-contact type 3D scanners use extra energy. Projected to an object, the three-dimensional spatial information is calculated by the reflection of energy.
  • the commonly used energy source is structured light or laser
  • the non-contact three-dimensional scanner includes both fixed and hand-held.
  • the contact type 3D scanner can accurately measure the three-dimensional spatial information of the object, and is often used in the engineering manufacturing industry, but it must contact the object during the scanning process, so the object to be tested may be damaged by the probe damage, and the contact scanning
  • the instrument takes a long time to measure large objects.
  • Today's fastest scanners can perform hundreds of measurements per second, while optical technologies such as laser scanners operate at frequencies of 10,000 to 5 million per second.
  • handheld 3D scanners are portable and can be used in more applications.
  • the accuracy of the handheld 3D scanner is better than that of the fixed and contact type.
  • the degree is slightly insufficient.
  • the main problem is that the accuracy is offset by temperature.
  • the current common method is to use temperature compensation.
  • the analysis is mainly due to the temperature rise of the internal components of the scanner during the working process. Because the temperature is transmitted in the skeleton, it takes a long time to reach a relatively stable value. In this process, since the skeleton is slightly deformed due to uneven heating, there is an indeterminate drift phenomenon in the detection accuracy of the device.
  • the traditional use of the screw hole in the skeleton to fix so that the stress of the outer shell is easily transmitted to the skeleton structure, resulting in distortion of the skeleton, because the handheld device needs to constantly change the moving position during the detection process, so it is also indirect Affect the detection accuracy of the device.
  • the traditional solid skeleton is heavy and inconvenient to carry, and it is difficult for some space-compared components to scan and measure, and the conventional scanning device is not suitable for long-time scanning measurement.
  • the present invention provides a skeleton structure of a hand-held scanning device that is not easily deformed, has a light volume, and has high precision.
  • a skeleton structure of a handheld scanning device comprising a main frame, a camera mount and a pattern projector mount for mounting a pattern projector
  • the camera mount includes Installing a first camera mount and a second camera mount of the first camera and the second camera, the first camera mount and the second camera mount being respectively disposed at both ends of the main frame
  • the skeleton further includes a fixing member for fixedly connecting with the hand-held scanning device housing, the main frame being a tubular structure, the fixing member being disposed on an outer wall of the tubular structure, the pattern projector mounting seat being disposed at the first An outer wall of the tubular structure between a camera mount and the second camera mount.
  • tubular structure is provided with a honeycomb coal structure for increasing the strength of the tubular structure at a point of connection with the fixture, the honeycomb coal structure being located within the tubular structure.
  • the fixing member is an ear structure, and the ear structure is connected to the tubular structure at a single point.
  • first camera mount and the second camera mount are respectively located on opposite sides of the central axis of the tubular structure and are both inclined toward the pattern projector mount.
  • the fixture is located between the camera mount and the pattern projector mount.
  • tubular structure is a rounded square tube.
  • the beneficial effects of the present invention are mainly manifested in that the present invention adopts a tubular structure with hollowed out and a certain wall thickness.
  • the weight is firstly greatly reduced, and the second tubular structure is obtained in temperature deformation.
  • the skeleton structure is connected with the scanner shell by a leaf-like structure, which improves the external stress caused by multi-point fixation in the conventional skeleton as a deformation of the skeleton structure; thereby enabling the handheld 3D scanner to be accurate,
  • the stability and portability have been greatly improved, making handheld 3D scanners available in more fields.
  • Figure 1 is a schematic view of the structure of the present invention.
  • Figure 2 is a perspective view of Figure 1.
  • Fig. 3 is a front view of Fig. 1.
  • Figure 4 is a schematic transverse cross-sectional view of the A-A tubular structure portion of Figure 3.
  • Figure 5 is a schematic transverse cross-sectional view of the portion of the B-B honeycomb coal structure of Figure 3.
  • Figure 6 is a schematic longitudinal cross-sectional view of the center of the present invention.
  • Figure 7 is a schematic view showing the angle between the first camera and the second camera of the present invention.
  • Figure 8 is a schematic view of a conventional solid skeleton structure.
  • Fig. 9 is a schematic view showing the skeleton structure of a conventional two-camera and pattern projector in a triangular arrangement.
  • a handheld scanning device skeleton structure includes a main frame, a camera mount, and a pattern projector mount 3 for mounting a pattern projector, the camera mount including a first camera and a first camera mount 1 and a second camera mount 2 of the second camera, the first camera mount 1 and the second camera mount 2 being respectively disposed at both ends of the main frame, the skeleton structure Also included is a securing member for fixed attachment to the hand-held scanning device housing, the main frame being a tubular structure 4, the securing member being disposed on an outer wall of the tubular structure 4, the patterned projector mount 3 being disposed in the The outer wall of the tubular structure 4 between the first camera mount 1 and the second camera mount 2 is described.
  • tubular structure 4 is provided with a honeycomb coal structure 6 for increasing the strength of the tubular structure at a point of connection with the fixture, the honeycomb coal structure 6 being located within the tubular structure 4.
  • the fixing member is an ear structure 5, and the ear structure 5 is connected to the tubular structure 4 at a single point.
  • first camera mount 1 and the second camera mount 2 are respectively located on both sides of the central axis of the tubular structure 4 and both face the pattern projector mount 3 tilt.
  • the fixing member is located between the camera mount and the pattern projector mount 3.
  • tubular structure 4 is a rounded square tube.
  • the first camera mount 1, the second camera mount 2, the pattern projector mount 3, and the ear-like structures 5 that are connected and fixed to the outside of the skeleton and are attached and fixed to the hand-held scanning device housing are both provided in a tubular shape.
  • the pattern projector may be a laser projector or a white light projector, the laser projector may comprise a single or a plurality of pattern projection generating devices, in this embodiment a laser projector comprising three laser generating devices;
  • the invention is applied to a handheld three-dimensional scanner, and can be specifically applied to a handheld laser three-dimensional scanner and a handheld white light three-dimensional scanner.
  • the present invention employs a tubular structure having a certain wall thickness as a main body for connecting the camera and the pattern projector.
  • a rounded square tube is used, and the oblique line portion in the figure is a tubular structure.
  • the transverse cross-section of the tubular structure can be circular, square, cylindrical, etc. in practical applications, and can be designed as any tubular structure according to actual needs.
  • the tubular structure has the characteristics of toughness and lightness, and is suitable for mobile handheld devices. At the same time, the tubular structure is less affected by temperature deformation.
  • the outer structure of the tubular structure of the present invention is used for attaching and fixing the ear structure 5 to the outer casing of the hand-held scanning device.
  • the ear structure 5 is characterized in that it has a large contact area with the outer casing of the hand-held scanning device, but
  • the tubular structure 4 is connected by a single point connection, and the ear structure 5 can prevent the external force from being transmitted to the tubular structure 4 through the connection point, thereby avoiding micro-deformation of the skeleton structure and causing inaccurate detection results; in the ear structure 5 and the tubular knot
  • a honeycomb coal structure 6 is adopted inside the skeleton.
  • the honeycomb coal structure 6 is characterized in that a cylindrical through hole is uniformly added in the solid.
  • the honeycomb coal structure 6 has the advantage of increasing the strength here in addition to the advantage of retaining the tubular structure 4.
  • the two cameras of the present invention are respectively fixed at two ends of the tubular structure 4, the camera fixing is fixed by one side, and the fixed end faces of the two cameras are respectively two sides of the central axis of the tubular structure 4;
  • the optical axis has an angle a, and the angle is between 0° and 180°.
  • FIG. 8 and FIG. 9 it is a skeleton structure in a conventional hand-held scanner, wherein FIG. 8 is a conventional solid skeleton structure in which two cameras and pattern projectors are also arranged in a straight line as in the present invention.
  • FIG. 8 is a conventional solid skeleton structure in which two cameras and pattern projectors are also arranged in a straight line as in the present invention.
  • a metal rectangular strip is used as the main body skeleton, two cameras are respectively fixed on both sides of the skeleton, a laser projector is fixed on the front end of the skeleton, and the skeleton and the scanner housing are fixed on the skeleton.
  • the skeleton in the present invention Compared with the skeleton in the present invention, firstly, when the solid skeleton is affected by temperature unevenness, the deformation of the skeleton is uncertain, and it cannot cancel each other like the tubular structure, so it will directly affect the detection accuracy, and secondly, The holes in the skeleton are fixed, and it is easy to transmit the force to the skeleton through the fixing holes by the force of the scanner casing, thereby causing the skeleton to be distorted.
  • the main body skeleton has also adopted a tubular structure having a certain wall thickness in the middle, the two cameras and the pattern projector are arranged in a triangular shape in this structure, and the two cameras are respectively mounted on the lateral sides, and the patterns are respectively The projector is mounted at the lower end of the longitudinal direction.
  • This structure allows the overall volume of the scanner to increase rapidly, which directly results in an overall package and weight increase, which is fatal for the hand-held, flexible and lightweight requirements. At the same time, the space requirement in the measurement process rises directly. For a small-volume internal control structure, such a structure directly leads to The scanner does not work.
  • the skeletal structure of the present invention is lightweight and effectively solves the problem of micro-deformation caused by temperature changes and external force of the current hand-held scanner skeleton structure, and thus has high industrial utilization value.
  • the above embodiments are merely illustrative of the principles of the invention and its advantages, and are not intended to limit the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种手持扫描设备骨架结构,包括主架、相机安装座和用以安装图案投影器的图案投影器安装座(3),相机安装座包括用以安装第一相机和第二相机的第一相机安装座(1)和第二相机安装座(2),第一相机安装座(1)与所述第二相机安装座(2)分别设置在主架的两端,骨架结构还包括用以与手持扫描设备外壳固定连接的固定件,主架为管状结构(4),固定件设置在管状结构(4)的外壁上,图案投影器安装座(3)设置在第一相机安装座(1)与第二相机安装座(2)之间的管状结构外壁上。该手持扫描设备骨架结构不易变形、体积较轻、精度较高。

Description

手持扫描设备骨架结构 技术领域
本发明属于手持式三维扫描技术领域,尤其涉及一种手持扫描设备骨架结构。
背景技术
手持式三维扫描仪作为一种高科技的仪器,其主要用来侦测并分析现实世界中物体或环境形状与外观数据,将仪器所获得的数据进行三维重建计算,并创建实际物体的数字模型。其在工业设计、逆向工程、机器视觉、瑕疵检测、刑事鉴定、数字文物及影视游戏制作等领域都可见其应用。
目前扫描仪大致可分为接触式三维扫描仪和非接触式三维扫描仪,接触式三维扫描仪通过探针触碰物体表面的方式计算深度,而非接触式三维扫描仪则采用将额外的能量投射至物体,借由能量的反射来计算三维空间信息,目前常用的能量源有结构光或激光,非接触式三维扫描仪又包含固定式和手持式两种。接触式三维扫描仪能精确测量得到物体的三维空间信息,常应用于工程制造产业,但其在扫描过程中必须接触物体,因此待测物体有遭到探针破坏损毁之可能,另外接触式扫描仪在测量大物体时需要较长的时间,现今最快的扫描仪每秒能完成数百次测量,而光学技术如激光扫描仪运作频率则高达每秒一万至五百万次。手持式三维扫描仪相较于固定式三维扫描仪,其携带轻便,可应用于更多场合。
目前,手持式三维扫描仪的精度相较于固定和接触式的其在精 度上略微显得不够,其主要存在的问题是精度受温度发生偏移的现象,目前常用的方法是采用温度补偿的方式,经分析其主要是由于扫描仪内部器件在工作过程中存在升温的现象,由于温度在骨架中传导需要经过较长的时间才能达到相对稳定值,在这过程中由于骨架由于受热不均匀从而发生微形变,因此设备的检测精度就会存在不确定的漂移现象。同时传统采用在骨架上穿螺丝孔的方式进行固定,这样容易将外壳的应力传递到骨架结构上从而导致骨架的扭曲变形,由于手持设备在检测过程中需要不停的变换移动位置,因此也间接影响设备的检测精度。另外传统实心骨架笨重,携带不方便,对于一些空间较紧凑的零部件则很难进行扫描测量,而且传统的扫描设备不宜长时间扫描测量。
发明内容
为了克服现有技术存在的不足,本发明提供一种不易变形、体积较轻、精度较高的手持扫描设备骨架结构。
本发明解决其技术问题所采用的技术方案是:一种手持扫描设备骨架结构,包括主架、相机安装座和用以安装图案投影器的图案投影器安装座,所述相机安装座包括用以安装第一相机和第二相机的第一相机安装座和第二相机安装座,所述第一相机安装座与所述第二相机安装座分别设置在所述主架的两端,所述骨架结构还包括用以与手持扫描设备外壳固定连接的固定件,所述主架为管状结构,所述固定件设置在所述管状结构的外壁上,所述图案投影器安装座设置在所述第一相机安装座与所述第二相机安装座之间的管状结构外壁上。
进一步,所述管状结构在与所述固定件连接点处设有用以增加管状结构强度的蜂窝煤结构,所述蜂窝煤结构位于所述管状结构内。
再进一步,所述固定件为耳状结构,所述耳状结构与所述管状结构单点连接。
再进一步,所述第一相机固定座与所述第二相机固定座分别位于所述管状结构中心轴的两侧并均朝向所述图案投影器安装座倾斜。
再进一步,所述固定件位于所述相机安装座与所述图案投影器安装座之间。
更进一步,所述管状结构为圆角方管。
本发明的有益效果主要表现在:本发明采用中间有镂空且有一定壁厚的管状结构,相比传统的实心骨架结构,首先在重量上得到极大的减轻,其次管状结构在温度形变上得到显著改善;所述骨架结构与扫描仪外壳采用叶状结构相连,改善了传统骨架中因多点固定所导致的外部应力作为骨架结构发生形变的状况;从而可使手持式三维扫描仪在精度、稳定性和便携性上得到极大的提升,使得手持式三维扫描仪可以在更多的领域得到应用。
附图说明
图1是本发明结构示意图。
图2是图1的透视图。
图3是图1的主视图。
图4是图3的A-A管状结构部分的横向截面示意图。
图5是图3的B-B蜂窝煤状结构部分的横向截面示意图。
图6是本发明中心纵向截面示意图。
图7是本发明上第一相机与第二相机的光心夹角示意图。
图8是传统实心骨架结构示意图。
图9是传统两相机和图案投影器呈三角形排布的骨架结构示意图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1~图9,一种手持扫描设备骨架结构,包括主架、相机安装座和用以安装图案投影器的图案投影器安装座3,所述相机安装座包括用以安装第一相机和第二相机的第一相机安装座1和第二相机安装座2,所述第一相机安装座1与所述第二相机安装座2分别设置在所述主架的两端,所述骨架结构还包括用以与手持扫描设备外壳固定连接的固定件,所述主架为管状结构4,所述固定件设置在所述管状结构4的外壁上,所述图案投影器安装座3设置在所述第一相机安装座1与所述第二相机安装座2之间的管状结构4外壁上。
进一步,所述管状结构4在与所述固定件连接点处设有用以增加管状结构强度的蜂窝煤结构6,所述蜂窝煤结构6位于所述管状结构4内。
再进一步,所述固定件为耳状结构5,所述耳状结构5与所述管状结构4单点连接。
再进一步,所述第一相机固定座1与所述第二相机固定座2分别位于所述管状结构4中心轴的两侧并均朝向所述图案投影器安装座3 倾斜。
再进一步,所述固定件位于所述相机安装座与所述图案投影器安装座3之间。
更进一步,所述管状结构4为圆角方管。
参照图1至图7,所述第一相机安装座1、第二相机安装座2、图案投影器安装座3和骨架外侧支出与手持扫描设备外壳进行连接固定的耳状结构5均设在管状结构4上;所述图案投影器可以是激光投影器或白光投影器,激光投影器可以包含单个或多个图案投影发生器件,本实施例中采用激光投影器,其中包含三个激光发生器件;本发明应用于手持式三维扫描仪上,具体可应用于手持式激光三维扫描仪和手持式白光三维扫描仪。
如图3和4所示,本发明所采用有一定壁厚的管状结构作为连接相机和图案投影器的主体,本实施例中采用的是圆角方管,图中斜线部分即为管状结构的横向截面示意图;在实际应用中管状结构横截面可以为圆形、方形、筒形等,还可根据实际需求设计为任意的管状结构,管状结构具有坚韧轻便的特性,适合用于移动手持设备,同时管状结构受温度形变影响小。
如图5所示,本发明所采用管状结构外侧支出耳状结构5来与手持扫描设备外壳进行连接固定,耳状结构5的特点是其与手持扫描设备外壳具有较大的接触面积,但与管状结构4连接采用单点连接,采用耳状结构5可以避免外部受力通过连接点传给管状结构4,从而避免骨架结构发生微变形导致检测结果不准确;在耳状结构5与管状结 构4连接点处骨架内部采用蜂窝煤结构6,蜂窝煤结构6特点是在实体中均匀的加入圆柱通孔,蜂窝煤结构6的优点是在保留管状结构4的优点外,增加了此处的强度。
如图1和图7所示,本发明所述两相机分别固定于管状结构4的两端,相机固定采用单边固定,且两相机固定端面分别为管状结构4中心轴线的两侧;两相机的光轴夹角a,且该夹角在0°到180°之间。
如图8和图9所示,为传统手持式扫描仪中的骨架结构,其中图8为传统的实心骨架结构,在此结构中两个相机和图案投影器也和本发明中一样采用直线排布,图8的结构中采用金属长方条作为连接主体骨架,两个相机分别固定于骨架的两侧,激光投影仪固定于骨架的前端,骨架与扫描仪外壳固定则采用在骨架上的三个孔固定;相比本发明中的骨架,首先实心骨架在受温度影响不均时,骨架的变形存在不确定性,其不能像管状结构可以相互抵消,因此将直接影响检测精度,其次采用在骨架上的孔固定,容易将扫描仪外壳的受力通过固定孔将力传递给骨架,从而使骨架发生扭曲变形。图9结构中虽然主体骨架也已采用中间有有一定壁厚的管状结构,但两个相机和图案投影器在此结构中呈三角形排布,两个相机分别安装在横向的两侧,而图案投影器则安装在纵向的下端,这样的结构使扫描仪的整体体积迅速的增加,这样直接导致的结果就是整体包装和重量增加,这对于手持式这种需要灵活轻便的要求来说是致命的,同时在测量过程中对空间的要求也就直接上升,对于小体积的内控等结构,此种结构直接导致 扫描仪无法工作。
综合上述,本发明骨架结构设计轻巧,有效地解决了目前手持式扫描仪骨架结构在温度变化及外力作用导致的微形变问题,因此具有高度产业利用价值。上述实施例仅例示性说明本发明的原理及其功效,并非用于限制本发明。

Claims (6)

  1. 一种手持扫描设备骨架结构,包括主架、相机安装座和用以安装图案投影器的图案投影器安装座,所述相机安装座包括用以安装第一相机和第二相机的第一相机安装座和第二相机安装座,所述第一相机安装座与所述第二相机安装座分别设置在所述主架的两端,其特征在于:所述骨架结构还包括用以与手持扫描设备外壳固定连接的固定件,所述主架为管状结构,所述固定件设置在所述管状结构的外壁上,所述图案投影器安装座设置在所述第一相机安装座与所述第二相机安装座之间的管状结构外壁上。
  2. 如权利要求1所述的手持扫描设备骨架结构,其特征在于:所述管状结构在与所述固定件连接点处设有用以增加管状结构强度的蜂窝煤结构,所述蜂窝煤结构位于所述管状结构内。
  3. 如权利要求1或2所述的手持扫描设备骨架结构,其特征在于:所述固定件为耳状结构,所述耳状结构与所述管状结构单点连接。
  4. 如权利要求1或2所述的手持扫描设备骨架结构,其特征在于:所述第一相机固定座与所述第二相机固定座分别位于所述管状结构中心轴的两侧并均朝向所述图案投影器安装座倾斜。
  5. 如权利要求1或2所述的手持扫描设备骨架结构,其特征在于:所述固定件位于所述相机安装座与所述图案投影器安装座之间。
  6. 如权利要求1或2所述的手持扫描设备骨架结构,其特征在于:所述管状结构为圆角方管。
PCT/CN2016/084373 2015-08-05 2016-06-01 手持扫描设备骨架结构 WO2017020648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520583363.2 2015-08-05
CN201520583363.2U CN204988183U (zh) 2015-08-05 2015-08-05 手持扫描设备骨架结构

Publications (1)

Publication Number Publication Date
WO2017020648A1 true WO2017020648A1 (zh) 2017-02-09

Family

ID=55122542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084373 WO2017020648A1 (zh) 2015-08-05 2016-06-01 手持扫描设备骨架结构

Country Status (2)

Country Link
CN (1) CN204988183U (zh)
WO (1) WO2017020648A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204988183U (zh) * 2015-08-05 2016-01-20 杭州思看科技有限公司 手持扫描设备骨架结构

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141650A (ja) * 1994-11-21 1996-06-04 Amada Co Ltd ベンダの曲げ角度測定装置及び測定方法及びこの測定装置を用いた曲げ加工方法
GB2338786A (en) * 1998-06-26 1999-12-29 Anthony David Hall Inspection device and method
CN2765141Y (zh) * 2004-12-20 2006-03-15 深圳市鑫磊鐳瑞精密仪器有限公司 复合式激光扫描测量头
CN101082756A (zh) * 2007-06-25 2007-12-05 华中科技大学 一种面结构光扫描装置
CN201191178Y (zh) * 2007-06-25 2009-02-04 华中科技大学 一种面结构光扫描装置
US20090080036A1 (en) * 2006-05-04 2009-03-26 James Paterson Scanner system and method for scanning
CN101853528A (zh) * 2010-05-10 2010-10-06 沈阳雅克科技有限公司 一种手持式三维型面信息提取方法及其提取仪
CA2686904A1 (en) * 2009-12-02 2011-06-02 Creaform Inc. Hand-held self-referenced apparatus for three-dimensional scanning
CN202719962U (zh) * 2012-08-06 2013-02-06 张宇航 拍照式三维扫描仪
CN202719961U (zh) * 2012-08-06 2013-02-06 张宇航 手持式三维扫描仪
CN203432548U (zh) * 2013-09-03 2014-02-12 苏州西博三维科技有限公司 工业光学三维扫描设备的相机三维调节装置
CN203479268U (zh) * 2013-09-23 2014-03-12 西安新拓三维光测科技有限公司 数字化密集点云扫描装置
CN104165600A (zh) * 2014-07-03 2014-11-26 杭州鼎热科技有限公司 一种无线手持3d激光扫描系统
CN104197926A (zh) * 2014-08-06 2014-12-10 北京信息科技大学 一种采用主动视觉方式的机器人导航装置
CN204077190U (zh) * 2014-08-19 2015-01-07 泉州荣广雕刻艺术研究所有限责任公司 一种3d扫描架
CN204359282U (zh) * 2015-01-16 2015-05-27 扬州梦幻世界科技有限公司 手持式微型三维扫描仪
CN204461370U (zh) * 2014-12-25 2015-07-08 重庆奥图亚模型有限公司 一种手持式激光扫描仪
CN204479038U (zh) * 2015-02-27 2015-07-15 福建浩蓝光电有限公司 新型高分辨率立式三维扫描仪
CN204988183U (zh) * 2015-08-05 2016-01-20 杭州思看科技有限公司 手持扫描设备骨架结构

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141650A (ja) * 1994-11-21 1996-06-04 Amada Co Ltd ベンダの曲げ角度測定装置及び測定方法及びこの測定装置を用いた曲げ加工方法
GB2338786A (en) * 1998-06-26 1999-12-29 Anthony David Hall Inspection device and method
CN2765141Y (zh) * 2004-12-20 2006-03-15 深圳市鑫磊鐳瑞精密仪器有限公司 复合式激光扫描测量头
US20090080036A1 (en) * 2006-05-04 2009-03-26 James Paterson Scanner system and method for scanning
CN101082756A (zh) * 2007-06-25 2007-12-05 华中科技大学 一种面结构光扫描装置
CN201191178Y (zh) * 2007-06-25 2009-02-04 华中科技大学 一种面结构光扫描装置
CA2686904A1 (en) * 2009-12-02 2011-06-02 Creaform Inc. Hand-held self-referenced apparatus for three-dimensional scanning
CN101853528A (zh) * 2010-05-10 2010-10-06 沈阳雅克科技有限公司 一种手持式三维型面信息提取方法及其提取仪
CN202719962U (zh) * 2012-08-06 2013-02-06 张宇航 拍照式三维扫描仪
CN202719961U (zh) * 2012-08-06 2013-02-06 张宇航 手持式三维扫描仪
CN203432548U (zh) * 2013-09-03 2014-02-12 苏州西博三维科技有限公司 工业光学三维扫描设备的相机三维调节装置
CN203479268U (zh) * 2013-09-23 2014-03-12 西安新拓三维光测科技有限公司 数字化密集点云扫描装置
CN104165600A (zh) * 2014-07-03 2014-11-26 杭州鼎热科技有限公司 一种无线手持3d激光扫描系统
CN104197926A (zh) * 2014-08-06 2014-12-10 北京信息科技大学 一种采用主动视觉方式的机器人导航装置
CN204077190U (zh) * 2014-08-19 2015-01-07 泉州荣广雕刻艺术研究所有限责任公司 一种3d扫描架
CN204461370U (zh) * 2014-12-25 2015-07-08 重庆奥图亚模型有限公司 一种手持式激光扫描仪
CN204359282U (zh) * 2015-01-16 2015-05-27 扬州梦幻世界科技有限公司 手持式微型三维扫描仪
CN204479038U (zh) * 2015-02-27 2015-07-15 福建浩蓝光电有限公司 新型高分辨率立式三维扫描仪
CN204988183U (zh) * 2015-08-05 2016-01-20 杭州思看科技有限公司 手持扫描设备骨架结构

Also Published As

Publication number Publication date
CN204988183U (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
US8497901B2 (en) Method and device for exact measurement of objects
US20140192187A1 (en) Non-contact measurement device
TWI420066B (zh) 物件量測方法與系統
CN104570264A (zh) 镜头组装、断差检测和间隙检测三合一的装置
CN110487193A (zh) 一种基于单目视觉的圆柱工件直径检测方法
CN103925890B (zh) 一种基于光束畸变的三维角度测量系统
CN111750776A (zh) 一种检具测量方法、测量装置及探针光笔结构
WO2017020648A1 (zh) 手持扫描设备骨架结构
TW201509617A (zh) 機械手臂精度量測系統及其量測方法
TW201430482A (zh) 相機模組測試裝置及相機模組測試用鏡片
CN107153183B (zh) 一种车载激光测距仪
CN108152307B (zh) 具有调节旋钮的小径管x射线照相椭圆投影定位器
CN209310751U (zh) 一种三维扫描仪
CN107782239B (zh) 相机及其对射激光传感器的定位装置和定位方法
US10935365B2 (en) Mounting arrangement for 3D sensor
CN102322839B (zh) 一种光学虚拟光源出光角度的测量装置和方法
TWI442167B (zh) 以圓周運動擷取影像的多影像擷取裝置
CN102183461A (zh) 内窥成像探头
CN208569156U (zh) 一种可调整间距的双目镜头结构
CN202033026U (zh) 一种光学虚拟光源的距离测量装置
TW201741619A (zh) 探棒前端感測式探頭
CN107860310B (zh) 微型复杂件的多面检测方法
TW201121700A (en) Measurement device for multi-axis machine tool.
CN203732046U (zh) 采用光栅投影实现测量的工业内窥镜探头
CN219776639U (zh) 电池检测机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832136

Country of ref document: EP

Kind code of ref document: A1