WO2017018982A1 - Conduit de transition de turbine à gaz à injection pauvre tardive présentant un temps réduit de séjour de combustion - Google Patents
Conduit de transition de turbine à gaz à injection pauvre tardive présentant un temps réduit de séjour de combustion Download PDFInfo
- Publication number
- WO2017018982A1 WO2017018982A1 PCT/US2015/041948 US2015041948W WO2017018982A1 WO 2017018982 A1 WO2017018982 A1 WO 2017018982A1 US 2015041948 W US2015041948 W US 2015041948W WO 2017018982 A1 WO2017018982 A1 WO 2017018982A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- combustion
- cone
- accelerating
- turbine engine
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/06—Arrangement of apertures along the flame tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/346—Feeding into different combustion zones for staged combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/425—Combustion chambers comprising a tangential or helicoidal arrangement of the flame tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/46—Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
Definitions
- Disclosed embodiments are generally related to combustion turbine engines, such as gas turbine engines and, more particularly, to a combustion system having a reduced combustion residence time.
- DCS distributed combustion system
- FIG. 1 is a fragmentary schematic representation of one non-limiting embodiment of a ducting arrangement with fuel injectors disposed at a location in a flow-accelerating structure, such as a flow-accelerating cone, characterized by a relatively lower static temperature and a reduced combustion residence time, each of which is conducive to reduce NOx emissions at the high firing temperatures of a combustion turbine engine.
- FIG, 2 illustrate non-limiting plots of decreasing static temperatures as a function of increasing flow speed between the cone inlet and the cone outlet in the flow-accelerating cone shown in FIG. 1.
- FIGs. 3 and 4 illustrate further non-limiting embodiments of ducting arrangements with fuel injectors disposed at respective flow-accelerating cones.
- FIG. 5 is a schematic of a fuel injector, which in one non-limiting embodiment may be arranged to provide jet in cross-flow injection.
- FIG. 6 is a schematic of a fuel injector, which in another non-limiting embodiment may be arranged without providing jet in cross-flow injection DETAILED DESCRIPTION
- the inventors of the present invention have recognized synergies that result from an innovative integration of what up to the present invention have been perceived as seemingly independent combustor design approaches, such as may involve a distributed combustion system (DCS) approach, and an advanced ducting approach in the combustor system of a combustion turbine engine, such as a gas turbine engine.
- DCS distributed combustion system
- a combustion turbine engine such as a gas turbine engine.
- FIG. 1 is a fragmentary schematic representation of an advanced ducting arrangement 10 in one non-limiting embodiment of a combustor system of a combustion turbine engine, such as a gas turbine engine.
- a plurality of flow paths 12 blends smoothly into a single, annular chamber 14.
- each flow path 12 may be configured to deliver combustion gases formed in a respective combustor to a turbine section of the engine without a need of a first stage of flow-directing va es in the turbine section of the engine.
- each flow path 12 includes a cone 16 and an integrated exit piece (IEP) 18.
- each cone 16 has a cone inlet 26 having a circular cross section and configured to receive the combustion gases from a combustor outlet (not shown). The cross-sectional profile of cone 16 narrows toward a cone outlet 28 that is associated with an IEP inlet 30 in fluid communication with each other.
- cone 16 Based on the narrowing cross-sectional profile of cone 16, as the flow travels from cone inlet 26 to cone outlet 28, the flow of combustion gases is accelerated to a relatively high subsonic Mach (M) number, such as without limitation may comprise a range from approximately 0.3 M to approximately a 0.8 M, and thus cone 16 may be generally conceptualized as a non-limiting embodiment of a flow- accelerating structure. Accordingly, the combustion gases may flow through cone 16 with an increasing flow speed, and as a result, this flow of combustion gases can experience a decreasing static temperature in cone 16.
- M subsonic Mach
- FIG. 2 illustrates a non-limiting plot 40 of decreasing static temperature as a function of increasing flow speed between the cone inlet and the cone outlet in cone 16, as illustrated in FIG. 1.
- FIG. 2 further illustrates a plot 42 of total temperature, which is essentially independent of the increasing flow speed between the cone inlet and the cone outlet.
- FIG. 1 illustrates a single injector 32, as may comprise an assembly of an air scoop and a fuel nozzle, in connection with each of the cones illustrated in FIG. 1; it will be appreciated, however, that multiple injectors may be circumferentially distributed in each cone 16.
- FIG. 3 illustrates another non- limiting embodiment of a ducting arrangement 50 where a flow-accelerating cone 51 may be made up of two or more interconnected cone sections, in lieu of a single-piece flow- accelerating cone, as described above.
- a first cone section 52 may be arranged to receive the combustion gases from a combustor outlet 54, and a second cone section 56, affixed at one end to first cone section 52, may be arranged to supply the combustion gases to a corresponding lEP inlet 58.
- cone sections 52, 54 may each include a respective flattened portion 60 defining a non-varying cross sectional profile where the injectors 32 may be located.
- a respective manifold 34 (e.g., a ring manifold) is fluidly coupled to the fuel injectors 32.
- manifold 34 may be affixed (e.g., bolted) between respective interconnecting flanges 33, 35. It will be appreciated that aspects of the present invention are not limited to any specific configuration regarding the mechanical design of the flow-accelerating cone; or regarding mechanical
- injectors 64 may ⁇ be disposed to provide jet in cross-flow injection, as schematically illustrated in FIG.
- injectors 66 may be positioned normal to a wall 62 of the flow- accelerating cone, as schematically illustrated in FIG. 6, where arrow 68
- FIG. 5 schematically represents flow direction. It will be appreciated that one can use injector angles relative to the flow direction other than those illustrated in FIGs. 5 and
- aspects of the present invention are not limited to injector angles normal to the flow or normal to the wall. That is, aspects of the present invention are not limited to any particular modality of injectors or to any particular injector angle relative to the flow direction.
- disclosed embodiments are expected to be conducive to a combustion system capable of realizing approximately a 65% combined cycle efficiency or greater in a gas turbine engine.
- Disclosed embodiments are also expected to realize a combustion system capable of maintaining stable operation at turbine inlet temperatures of approximately 1700°C and higher while maintaining a relatively low level of NOx emissions, and acceptable temperatures in components of the engine without an increase in cooling air consumption.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
Abstract
L'invention concerne un système perfectionné de combustion de turbine à gaz comportant un temps réduit de séjour de combustion dans un moteur à turbine de combustion. Le système de combustion comprend une structure d'accélération d'écoulement (16, 51), telle qu'un conduit de transition, comportant un orifice d'entrée (26) et un orifice de sortie (28). L'orifice d'entrée (26) de la structure d'accélération d'écoulement (16, 51) est accouplé de manière fluidique afin de recevoir un écoulement des gaz de combustion à partir d'un orifice de sortie d'une chambre de combustion. Au moins un injecteur de carburant (32, 64, 66) est disposé entre l'orifice d'entrée (26) et l'orifice de sortie (28) de la structure d'accélération d'écoulement (16, 51). La structure d'accélération d'écoulement (16, 51) provoque une augmentation de la vitesse d'écoulement des gaz de combustion et, en conséquence, l'écoulement des gaz de combustion dans la structure d'accélération d'écoulement (16, 51) subit une diminution de la température statique et une réduction du temps de séjour de combustion, dont chacune est efficace pour réduire les émissions de NOx aux températures élevées d'allumage du moteur à turbine.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018503579A JP6584634B2 (ja) | 2015-07-24 | 2015-07-24 | 燃焼滞留時間が短縮された遅延希薄噴射を有するガスタービントランジションダクト |
CN201580081825.3A CN107923621B (zh) | 2015-07-24 | 2015-07-24 | 具有减少的燃烧停留时间的带延迟稀薄喷射的燃气涡轮过渡管道 |
US15/739,819 US20180187563A1 (en) | 2015-07-24 | 2015-07-24 | Gas turbine transition duct with late lean injection having reduced combustion residence time |
PCT/US2015/041948 WO2017018982A1 (fr) | 2015-07-24 | 2015-07-24 | Conduit de transition de turbine à gaz à injection pauvre tardive présentant un temps réduit de séjour de combustion |
EP15747907.2A EP3325887A1 (fr) | 2015-07-24 | 2015-07-24 | Conduit de transition de turbine à gaz à injection pauvre tardive présentant un temps réduit de séjour de combustion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/041948 WO2017018982A1 (fr) | 2015-07-24 | 2015-07-24 | Conduit de transition de turbine à gaz à injection pauvre tardive présentant un temps réduit de séjour de combustion |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018982A1 true WO2017018982A1 (fr) | 2017-02-02 |
Family
ID=53785745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/041948 WO2017018982A1 (fr) | 2015-07-24 | 2015-07-24 | Conduit de transition de turbine à gaz à injection pauvre tardive présentant un temps réduit de séjour de combustion |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180187563A1 (fr) |
EP (1) | EP3325887A1 (fr) |
JP (1) | JP6584634B2 (fr) |
CN (1) | CN107923621B (fr) |
WO (1) | WO2017018982A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020508431A (ja) * | 2017-02-24 | 2020-03-19 | ゼネラル・エレクトリック・カンパニイ | 軸方向多段型燃料噴射を備える燃焼システム |
US10816203B2 (en) | 2017-12-11 | 2020-10-27 | General Electric Company | Thimble assemblies for introducing a cross-flow into a secondary combustion zone |
US11137144B2 (en) | 2017-12-11 | 2021-10-05 | General Electric Company | Axial fuel staging system for gas turbine combustors |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
US11187415B2 (en) | 2017-12-11 | 2021-11-30 | General Electric Company | Fuel injection assemblies for axial fuel staging in gas turbine combustors |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10823418B2 (en) * | 2017-03-02 | 2020-11-03 | General Electric Company | Gas turbine engine combustor comprising air inlet tubes arranged around the combustor |
US11248789B2 (en) | 2018-12-07 | 2022-02-15 | Raytheon Technologies Corporation | Gas turbine engine with integral combustion liner and turbine nozzle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7721547B2 (en) | 2005-06-27 | 2010-05-25 | Siemens Energy, Inc. | Combustion transition duct providing stage 1 tangential turning for turbine engines |
US20110203282A1 (en) * | 2008-09-29 | 2011-08-25 | Charron Richard C | Assembly for directing combustion gas |
US20110289928A1 (en) * | 2010-05-25 | 2011-12-01 | Fox Timothy A | Air/fuel supply system for use in a gas turbine engine |
US8375726B2 (en) | 2008-09-24 | 2013-02-19 | Siemens Energy, Inc. | Combustor assembly in a gas turbine engine |
EP2660519A1 (fr) * | 2012-04-30 | 2013-11-06 | General Electric Company | Conduit de transition avec injection pauvre tardive pour une turbine à gaz |
EP2808610A1 (fr) * | 2013-05-31 | 2014-12-03 | Siemens Aktiengesellschaft | Chambre de combustion d'une turbine à gaz avec injection tangentielle comme injection pauvre tardive |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6047550A (en) * | 1996-05-02 | 2000-04-11 | General Electric Co. | Premixing dry low NOx emissions combustor with lean direct injection of gas fuel |
JP4409566B2 (ja) * | 2006-12-19 | 2010-02-03 | 川崎重工業株式会社 | 希薄予混合型燃焼装置とその制御方法 |
US8230688B2 (en) * | 2008-09-29 | 2012-07-31 | Siemens Energy, Inc. | Modular transvane assembly |
US8701383B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection system configuration |
US8689559B2 (en) * | 2009-03-30 | 2014-04-08 | General Electric Company | Secondary combustion system for reducing the level of emissions generated by a turbomachine |
US8991192B2 (en) * | 2009-09-24 | 2015-03-31 | Siemens Energy, Inc. | Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine |
US20130239585A1 (en) * | 2012-03-14 | 2013-09-19 | Jay A. Morrison | Tangential flow duct with full annular exit component |
US9551492B2 (en) * | 2012-11-30 | 2017-01-24 | General Electric Company | Gas turbine engine system and an associated method thereof |
US9482434B2 (en) * | 2013-03-15 | 2016-11-01 | General Electric Company | Methods relating to downstream fuel and air injection in gas turbines |
US9383104B2 (en) * | 2013-03-18 | 2016-07-05 | General Electric Company | Continuous combustion liner for a combustor of a gas turbine |
US9316396B2 (en) * | 2013-03-18 | 2016-04-19 | General Electric Company | Hot gas path duct for a combustor of a gas turbine |
US9316155B2 (en) * | 2013-03-18 | 2016-04-19 | General Electric Company | System for providing fuel to a combustor |
US9322556B2 (en) * | 2013-03-18 | 2016-04-26 | General Electric Company | Flow sleeve assembly for a combustion module of a gas turbine combustor |
US20150052905A1 (en) * | 2013-08-20 | 2015-02-26 | General Electric Company | Pulse Width Modulation for Control of Late Lean Liquid Injection Velocity |
US9574498B2 (en) * | 2013-09-25 | 2017-02-21 | General Electric Company | Internally cooled transition duct aft frame with serpentine cooling passage and conduit |
US10139111B2 (en) * | 2014-03-28 | 2018-11-27 | Siemens Energy, Inc. | Dual outlet nozzle for a secondary fuel stage of a combustor of a gas turbine engine |
EP3186559B1 (fr) * | 2014-08-26 | 2020-10-14 | Siemens Energy, Inc. | Système de refroidissement pour injecteurs de carburant à l'intérieur d'une chambre de combustion dans un moteur à turbine |
US20160281992A1 (en) * | 2015-03-24 | 2016-09-29 | General Electric Company | Injection boss for a unibody combustor |
US10095218B2 (en) * | 2016-08-03 | 2018-10-09 | Siemens Aktiengesellschaft | Method and computer-readable model for additively manufacturing ducting arrangement with injector assemblies forming a shielding flow of air |
CN109563997B (zh) * | 2016-08-03 | 2021-01-12 | 西门子股份公司 | 具有构造成形成喷射到燃气涡轮发动机的燃烧工段中的防护空气流的喷射器组件的管道装置 |
-
2015
- 2015-07-24 US US15/739,819 patent/US20180187563A1/en not_active Abandoned
- 2015-07-24 CN CN201580081825.3A patent/CN107923621B/zh not_active Expired - Fee Related
- 2015-07-24 WO PCT/US2015/041948 patent/WO2017018982A1/fr active Application Filing
- 2015-07-24 EP EP15747907.2A patent/EP3325887A1/fr not_active Withdrawn
- 2015-07-24 JP JP2018503579A patent/JP6584634B2/ja not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7721547B2 (en) | 2005-06-27 | 2010-05-25 | Siemens Energy, Inc. | Combustion transition duct providing stage 1 tangential turning for turbine engines |
US8375726B2 (en) | 2008-09-24 | 2013-02-19 | Siemens Energy, Inc. | Combustor assembly in a gas turbine engine |
US20110203282A1 (en) * | 2008-09-29 | 2011-08-25 | Charron Richard C | Assembly for directing combustion gas |
US8276389B2 (en) | 2008-09-29 | 2012-10-02 | Siemens Energy, Inc. | Assembly for directing combustion gas |
US20110289928A1 (en) * | 2010-05-25 | 2011-12-01 | Fox Timothy A | Air/fuel supply system for use in a gas turbine engine |
US8752386B2 (en) | 2010-05-25 | 2014-06-17 | Siemens Energy, Inc. | Air/fuel supply system for use in a gas turbine engine |
EP2660519A1 (fr) * | 2012-04-30 | 2013-11-06 | General Electric Company | Conduit de transition avec injection pauvre tardive pour une turbine à gaz |
EP2808610A1 (fr) * | 2013-05-31 | 2014-12-03 | Siemens Aktiengesellschaft | Chambre de combustion d'une turbine à gaz avec injection tangentielle comme injection pauvre tardive |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020508431A (ja) * | 2017-02-24 | 2020-03-19 | ゼネラル・エレクトリック・カンパニイ | 軸方向多段型燃料噴射を備える燃焼システム |
JP7051884B2 (ja) | 2017-02-24 | 2022-04-11 | ゼネラル・エレクトリック・カンパニイ | 軸方向多段型燃料噴射を備える燃焼システム |
US10816203B2 (en) | 2017-12-11 | 2020-10-27 | General Electric Company | Thimble assemblies for introducing a cross-flow into a secondary combustion zone |
US11137144B2 (en) | 2017-12-11 | 2021-10-05 | General Electric Company | Axial fuel staging system for gas turbine combustors |
US11187415B2 (en) | 2017-12-11 | 2021-11-30 | General Electric Company | Fuel injection assemblies for axial fuel staging in gas turbine combustors |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
Also Published As
Publication number | Publication date |
---|---|
CN107923621A (zh) | 2018-04-17 |
US20180187563A1 (en) | 2018-07-05 |
EP3325887A1 (fr) | 2018-05-30 |
CN107923621B (zh) | 2020-03-10 |
JP6584634B2 (ja) | 2019-10-02 |
JP2018526603A (ja) | 2018-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180187563A1 (en) | Gas turbine transition duct with late lean injection having reduced combustion residence time | |
US9534790B2 (en) | Fuel injector for supplying fuel to a combustor | |
EP2375167B1 (fr) | Contrôle du profil de température en sortie de chambre de combustion à l'aide une injection étagée du combustible et procédé associé | |
JP5544141B2 (ja) | ガスタービンにおける統合型燃焼器−第1段ノズル並びに関連する方法 | |
US8381532B2 (en) | Bled diffuser fed secondary combustion system for gas turbines | |
JP6708380B2 (ja) | 燃焼タービンエンジンの燃料噴射器組立体 | |
EP2527741B1 (fr) | Système pour le contrôle du débit dans un moteur à turbine à gaz | |
JP5947515B2 (ja) | 渦発生装置を有する混合管要素を備えたターボ機械 | |
US8479518B1 (en) | System for supplying a working fluid to a combustor | |
US20140260264A1 (en) | System for controlling a flow rate of a compressed working fluid to a combustor fuel injector | |
JP2014181903A (ja) | ガスタービンにおける下流側燃料及び空気噴射に関連する方法 | |
EP2589873B1 (fr) | Chambre de combustion à flux inversé avec une injection d'air de sillage | |
JP2014122784A (ja) | 燃焼器に燃料を供給するためのシステム | |
EP3102877B1 (fr) | Chambre de combustion | |
JP2017116250A (ja) | ガスタービンにおける燃料噴射器および段階的燃料噴射システム | |
JP4961415B2 (ja) | ガスタービン燃焼器 | |
US20130086920A1 (en) | Combustor and method for supplying flow to a combustor | |
US10344978B2 (en) | Combustion liner cooling | |
JP2011141111A (ja) | ターボ機械ノズル | |
US20140366541A1 (en) | Systems and apparatus relating to fuel injection in gas turbines | |
JP6092007B2 (ja) | ガスタービン燃焼器 | |
US8726671B2 (en) | Operation of a combustor apparatus in a gas turbine engine | |
US10920983B2 (en) | Counter-swirl doublet combustor with plunged holes | |
JP2019168144A (ja) | ガスタービン燃焼器及びそれを備えるガスタービン、並びに、ガスタービン燃焼器の燃焼振動抑制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15747907 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018503579 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015747907 Country of ref document: EP |