WO2017018449A1 - バイオセンサ - Google Patents

バイオセンサ Download PDF

Info

Publication number
WO2017018449A1
WO2017018449A1 PCT/JP2016/072017 JP2016072017W WO2017018449A1 WO 2017018449 A1 WO2017018449 A1 WO 2017018449A1 JP 2016072017 W JP2016072017 W JP 2016072017W WO 2017018449 A1 WO2017018449 A1 WO 2017018449A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
film
substrate
reference electrode
passivation film
Prior art date
Application number
PCT/JP2016/072017
Other languages
English (en)
French (fr)
Inventor
敦志 東名
森 重恭
一秀 冨安
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017018449A1 publication Critical patent/WO2017018449A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the present invention relates to a biosensor, and more particularly, to a biosensor using a thin film transistor.
  • the amount of change in the electrical characteristics of the thin film transistor may be small. Therefore, it is required to improve the detection accuracy of the change in electrical characteristics.
  • An object of the present invention is to improve accuracy when detecting a change in electrical characteristics of a thin film transistor in a biosensor using the thin film transistor.
  • the biosensor according to the embodiment of the present invention includes a substrate, a thin film transistor, a region, and a reference electrode.
  • the thin film transistor is a bottom gate type and is formed on a substrate.
  • the region is formed in the channel layer of the thin film transistor as viewed from the normal direction of the substrate.
  • the region adheres a biological substance contained in the solution.
  • the reference electrode is formed at a position that does not overlap the region when viewed from the normal direction of the substrate.
  • the reference electrode is in contact with a solution containing a biological substance.
  • biosensor it is possible to improve accuracy when detecting a change in the electrical characteristics of the thin film transistor.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the biosensor according to the first embodiment of the present invention, which is a cross-sectional view taken along the line AA in FIG.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a biosensor according to a second embodiment of the present invention, which is a cross-sectional view corresponding to the AA cross section in FIG.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a biosensor according to an application example of the second embodiment of the present invention, which is a cross-sectional view taken along line BB in FIG.
  • the biosensor according to the embodiment of the present invention includes a substrate, a thin film transistor, a region, and a reference electrode.
  • the thin film transistor is a bottom gate type and is formed on a substrate.
  • the region is formed in the channel layer of the thin film transistor as viewed from the normal direction of the substrate.
  • the region attaches biological material present in the solution.
  • the reference electrode is formed at a position that does not overlap the region when viewed from the normal direction of the substrate. A reference electrode contacts the solution.
  • the biosensor has a region to which a biological substance is attached.
  • the region is formed in the channel layer as viewed from the normal direction of the substrate.
  • the region is formed in the channel layer when viewed from the normal direction of the substrate is not only the case where the region is formed of the channel layer itself, but also the covering layer that covers the channel layer. Including the case where it is formed.
  • the electrical characteristics of the thin film transistor change. That is, in the biosensor, a change in the electrical characteristics of the thin film transistor due to the biological substance adhering to the region can be detected.
  • changes in electrical characteristics of the thin film transistor include, for example, changes in off-state current and threshold voltage.
  • the biosensor has a reference electrode.
  • the reference electrode is in contact with a solution containing a biological substance.
  • the potential of the reference electrode can be used as the potential of the solution. That is, the potential of the solution can be set to a predetermined magnitude. Therefore, variation in the potential of the solution can be suppressed. As a result, it is possible to increase accuracy when detecting a change in electrical characteristics of the thin film transistor.
  • a reference electrode may not be provided separately. Therefore, compared with the case where a reference electrode is separately provided, the work of installing the reference electrode becomes unnecessary.
  • the biosensor preferably further includes an insulating film.
  • the insulating film covers the source electrode and the drain electrode included in the thin film transistor.
  • the reference electrode is formed on the insulating film.
  • the reference electrode preferably overlaps at least one of the source electrode and the drain electrode when viewed from the normal direction of the substrate.
  • the reference electrode can be brought close to the region as viewed from the normal direction of the substrate. As a result, the miniaturization of the biosensor can be realized.
  • the insulating film preferably covers the channel layer.
  • the channel layer can be protected by the insulating film. That is, the channel layer is not exposed to the solution containing the biological substance. Therefore, the operation of the thin film transistor can be stabilized.
  • the insulating film preferably includes a passivation film and a resin film.
  • the passivation film is formed in contact with the source electrode and the drain electrode.
  • the resin film is formed in contact with the passivation film.
  • the reference electrode is formed in contact with the resin film.
  • the resin film can be easily formed thicker than the passivation film. Therefore, in the above aspect, the reference electrode can be moved away from the source electrode and the drain electrode in the normal direction of the substrate. As a result, it is difficult for noise caused by a change in potential applied to the reference electrode to be superimposed on a signal indicating a change in electrical characteristics of the thin film transistor.
  • the resin film preferably includes a side wall.
  • the side wall extends in the normal direction of the substrate and holds a solution containing a biological substance. That is, the side wall surrounds the region and the reference electrode when viewed from the normal direction of the substrate.
  • a separate side wall for holding the solution may not be provided. Therefore, when detecting a bio-derived substance by a biosensor, the preparation work becomes easy.
  • the passivation film may include a first passivation film and a second passivation film.
  • the first passivation film is formed in contact with the source electrode and the drain electrode.
  • the second passivation film is formed in contact with the first passivation film.
  • the passivation film since the passivation film has a two-layer structure, the passivation film can be made thicker than when the passivation film has a single-layer structure. As a result, the reference electrode can be moved away from the source electrode and the drain electrode in the normal direction of the substrate.
  • the first passivation film is preferably a silicon oxide film and the second passivation film is a silicon nitride film.
  • the waterproofness of the passivation film is further enhanced.
  • the passivation film covers the channel layer, the operation of the thin film transistor can be further stabilized.
  • FIG. 1 is a plan view showing a schematic configuration of the biosensor 10.
  • 2 is a cross-sectional view taken along the line AA in FIG.
  • the biosensor 10 includes a thin film transistor 12, a passivation film 36, and a reference electrode 38, as shown in FIG. Hereinafter, these will be described.
  • the thin film transistor 12 is formed on the substrate 16 as shown in FIG.
  • a description will be given with reference to FIG.
  • the substrate 16 may be a substrate that transmits visible light or a substrate that does not transmit visible light.
  • the substrate that transmits visible light is, for example, a glass substrate.
  • the thin film transistor 12 has a so-called bottom gate structure.
  • the thin film transistor 12 includes a gate electrode 18, a gate insulating film 20, a semiconductor active layer 22, a source electrode 24, and a drain electrode 26.
  • the gate electrode 18 is formed in contact with the substrate 16.
  • the gate electrode 18 may be a metal film made of a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), or copper (Cu).
  • a metal film made of a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), or copper (Cu).
  • an alloy film made of an alloy containing any of these metals may be used.
  • the metal film and the alloy film may have a single layer structure or a laminated structure.
  • the gate electrode 18 may be a transparent conductive film, for example.
  • the transparent conductive film is, for example, an indium tin oxide film (ITO film).
  • the gate electrode 18 is covered with a gate insulating film 20.
  • the gate insulating film 20 may be, for example, a silicon nitride film, a silicon oxide film, or a laminate of a silicon nitride film and a silicon oxide film.
  • the semiconductor active layer 22 is formed in contact with the gate insulating film 20.
  • the semiconductor active layer 22 is located in the gate electrode 18 when viewed from the normal direction of the substrate 16. That is, as shown in FIG. 1, the entire semiconductor active layer 22 overlaps the gate electrode 18 when viewed from the normal direction of the substrate 16.
  • the semiconductor active layer 22 may be made of amorphous silicon or an oxide semiconductor, for example.
  • the oxide semiconductor may be, for example, a compound (In—Ga—Zn—O) composed of indium (In), gallium (Ga), zinc (Zn), and oxygen (O), or indium (In). , Tin (Tin), zinc (Zn), and oxygen (O) (In-Tin-Zn-O), indium (In), aluminum (Al), zinc (Zn), And a compound (In—Al—Zn—O) made of oxygen (O).
  • the source electrode 24 and the drain electrode 26 are formed in contact with the semiconductor active layer 22.
  • the source electrode 24 and the drain electrode 26 may be formed of the same material as the gate electrode 20 or may be formed of different materials.
  • the passivation film 36 includes a passivation film 361 and a passivation film 362.
  • the passivation film 361 is a silicon oxide film.
  • the passivation film 361 covers the semiconductor active layer 22, the source electrode 24, and the drain electrode 26.
  • the passivation film 362 is a silicon nitride film.
  • the passivation film 362 covers the passivation film 361.
  • the reference electrode 38 is formed on the passivation film 362.
  • the reference electrode 38 overlaps the source electrode 24 and the drain electrode 26 when viewed from the normal direction of the substrate 16, that is, in plan view.
  • the reference electrode 38 is formed, for example, by patterning a film formed on the passivation film 36 by photolithography.
  • the reference electrode 38 is formed of a material that is resistant to a liquid used in a process for attaching the biological substance 30 to the region 32 described later.
  • a material that is resistant to alkali such as titanium is employed.
  • the biosensor 10 is in contact with the solution 28 as shown in FIG.
  • the solution 28 is stored using, for example, a side wall (not shown) provided on the substrate 16.
  • the solution 28 includes a biological substance 30.
  • the biological substance 30 is, for example, DNA, sugar chain, or protein.
  • the biological substance 30 is charged.
  • the biological substance 30 exists in the solution 28 in an ionized state.
  • the biosensor 10 has a region 32 as shown in FIG. Hereinafter, the region 32 will be described.
  • the region 32 is formed by a portion of the passivation film 362 that overlaps the semiconductor active layer 22 when viewed from the normal direction of the substrate 16. As shown in FIG. 1, this portion is located between the source electrode 24 and the drain electrode 26 when viewed from the normal direction of the substrate 16.
  • a reference electrode 38 is formed around the region 32 as shown in FIG. That is, the reference electrode 38 surrounds the region 32 when viewed from the normal direction of the substrate 16.
  • the biological substance 30 adheres to the region 32.
  • the region 32 is subjected to a treatment for facilitating the attachment of the biological substance 30.
  • the above treatment may be performed as long as it modifies the functional group on the surface of the passivation film 362.
  • a conventionally well-known thing can be employ
  • the target biological material 30 is easily attached. If the silane coupling agent is changed, the type of the biological material 30 to be attached can be changed.
  • Further processing may be performed after the processing using the silane coupling agent.
  • the surface of the passivation film 362 is modified with biotin
  • the surface is treated with a silane coupling agent and then treated with a biotinylation reagent.
  • the electrical characteristics of the thin film transistor 12 change. Specifically, for example, the threshold voltage changes as the IV characteristic shifts. Therefore, the difference between the threshold voltage when the biological material 30 is attached to the region 32 and the threshold voltage when the biological material 30 is not attached to the region 32 is the biological material 30 attached to the region 32. It can be detected as an electrical signal related to. That is, the biosensor 10 can detect a change in electrical characteristics of the thin film transistor 12 as an electrical signal related to the biological material 30.
  • a reference electrode 38 is provided in the biosensor 10.
  • a predetermined potential for example, 0 V
  • the potential applied to the reference electrode 38 is used as the potential of the solution 28. That is, the potential of the solution 28 can be set to a predetermined magnitude. As a result, it is possible to improve accuracy when detecting a change in electrical characteristics of the thin film transistor 12.
  • the reference electrode 38 is formed on the passivation film 362. That is, the biosensor 10 includes the reference electrode 38. Therefore, compared with a case where a reference electrode is separately prepared, an operation for installing the reference electrode becomes unnecessary. That is, the number of steps (preparation work) before the biosensor 10 detects the biological substance 30 can be reduced.
  • the biosensor 10 since the biosensor 10 includes the reference electrode 38, the mechanism for detecting the electrical signal related to the biological substance 30 can be reduced in size.
  • the reference electrode 38 can be formed by a series of processes in which the thin film transistor 12 is formed, the passivation film 36 is formed, and the reference electrode 38 is further formed. That is, the reference electrode 38 can be formed using a manufacturing process of a semiconductor device (thin film transistor). The formation of the reference electrode 38 is facilitated.
  • the reference electrode 38 is formed at a position that does not overlap the region 32 when viewed from the normal direction of the substrate 16. Therefore, even if the reference electrode 38 is provided, detection of a change in the electrical characteristics of the thin film transistor 12 when the biological material 30 adheres to the region 32 is difficult to be hindered.
  • the reference electrode 38 is formed on the passivation film 36 having a two-layer structure. Therefore, the reference electrode 38 can be moved away from the thin film transistor 12. As a result, noise caused by fluctuations in the potential of the reference electrode 38 can be eliminated.
  • the reference electrode 38 overlaps the source electrode 24 and the drain electrode 26 when viewed from the normal direction of the substrate 16.
  • the reference electrode 38 can be brought closer to the region 32 when viewed from the normal direction of the substrate 16. As a result, the size of the biosensor 10 can be reduced.
  • the semiconductor active layer 22 is covered with a passivation film 36. Therefore, exposure of the semiconductor active layer 22 to the solution 28 can be suppressed. As a result, the operation of the thin film transistor 12 can be stabilized.
  • the semiconductor active layer 22 is covered with a passivation film 36. Therefore, for example, when the reference electrode 38 is formed by patterning a film formed on the passivation film 36 by photolithography, the passivation film 36 can prevent the semiconductor active layer 22 from being etched.
  • the uppermost layer (passivation film 362) of the passivation film 36 is a silicon nitride film. Therefore, the waterproofing effect by the passivation film 36 can be further enhanced. As a result, the operation of the thin film transistor 12 can be further stabilized.
  • the biosensor 10 ⁇ / b> A further includes a resin film 40 as compared with the biosensor 10.
  • the resin film 40 is formed on the passivation film 362.
  • the resin film 40 may be made of, for example, an acrylic resin, may be made of polyimide, or may be made of silicone (PDMS).
  • a reference electrode 38 is formed in contact with the resin film 40.
  • the reference electrode 38 is formed on the resin film 40. Therefore, the reference electrode 38 can be further away from the thin film transistor 12. As a result, noise caused by fluctuations in the potential of the reference electrode 38 can be further eliminated.
  • the biosensor 10B has a wall 401 compared to the biosensor 10A.
  • the wall 401 protrudes from the upper surface of the resin film 40 (the surface opposite to the surface in contact with the passivation film 362).
  • the wall 401 surrounds the region 32 and the reference electrode 38 when viewed from the normal direction of the substrate 16. That is, the region 32 and the reference electrode 38 are located inside the wall 401.
  • the solution 28 is stored inside the wall 401. That is, the wall 401 holds the solution 28.
  • a wall 401 for storing the solution 28 is formed in the resin film 40. Therefore, compared with a case where a side wall for storing the solution is separately prepared, an operation for installing the side wall for storing the solution becomes unnecessary. That is, it is possible to further reduce the number of steps of the work (preparation work) before the biosensor 10B detects the biological substance 30.
  • the passivation film 36 may not cover the semiconductor active layer 22 as a channel layer.
  • the region to which the biological substance 30 is attached is formed by the channel layer (semiconductor active layer 22). That is, the biological substance 30 adheres to the channel layer (semiconductor active layer 22). Therefore, compared with the case where the biological material 30 adheres to the passivation film 36 covering the channel layer (semiconductor active layer 22), the change in the electrical characteristics of the thin film transistor 12 when the biological material 30 adheres to the region becomes larger. . As a result, it becomes easy to detect a change in electrical characteristics of the thin film transistor 12 when the biological material 30 adheres to the region.
  • the passivation film 36 has a two-layer structure
  • the passivation film may be a single layer.
  • the passivation film may be a silicon oxide film or a silicon nitride film.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thin Film Transistor (AREA)

Abstract

薄膜トランジスタを用いたバイオセンサにおいて、薄膜トランジスタの電気的特 性の変化を検出するときの精度を高める。バイオセンサ(10)は、基板(16)と、薄膜トランジスタ(12)と、領域(32)と、参照電極(38)とを備える。薄膜トランジスタは、ボトムゲート型であり、基板上に形成されている。領域は、基板の法線方向から見て、薄膜トランジスタが有するチャネル層(22)内に形成されている。領域は、溶液(28)内に存在する生体由来物質(30)を付着させる。参照電極は、基板の法線方向から見て、領域と重ならない位置に形成されている。参照電極は、溶液に接触する。

Description

バイオセンサ
 本発明は、バイオセンサに関し、詳しくは、薄膜トランジスタを用いたバイオセンサに関する。
 近年、電界効果トランジスタとしての薄膜トランジスタを用いたバイオセンサが提案されている(例えば、特開2013-92480号公報参照)。このようなバイオセンサにおいては、生体由来物質が付着したときの薄膜トランジスタの電気的特性の変化を検出する。
特開2013-92480号公報
 付着する生体由来物質の種類等によっては、薄膜トランジスタの電気的特性の変化量が小さいこともある。そのため、上記電気的特性の変化の検出精度を向上することが求められている。
 本発明の目的は、薄膜トランジスタを用いたバイオセンサにおいて、薄膜トランジスタの電気的特性の変化を検出するときの精度を高めることである。
 本発明の実施の形態によるバイオセンサは、基板と、薄膜トランジスタと、領域と、参照電極とを備える。薄膜トランジスタは、ボトムゲート型であり、基板上に形成されている。領域は、基板の法線方向から見て、薄膜トランジスタが有するチャネル層内に形成されている。領域は、溶液に含まれる生体由来物質を付着させる。参照電極は、基板の法線方向から見て、領域と重ならない位置に形成されている。参照電極は、生体由来物質を含む溶液に接触する。
 本発明の実施の形態によるバイオセンサにおいては、薄膜トランジスタの電気的特性の変化を検出するときの精度を高めることができる。
本発明の第1の実施の形態によるバイオセンサの概略構成を示す平面図である。 本発明の第1の実施の形態によるバイオセンサの概略構成を示す断面図であって、図1におけるA-A断面図である。 本発明の第2の実施の形態によるバイオセンサの概略構成を示す断面図であって、図1におけるA-A断面に相当する断面での断面図である。 本発明の第2の実施の形態の応用例によるバイオセンサの概略構成を示す平面図である。 本発明の第2の実施の形態の応用例によるバイオセンサの概略構成を示す断面図であって、図4におけるB-B断面図である。
 本発明の実施の形態によるバイオセンサは、基板と、薄膜トランジスタと、領域と、参照電極とを備える。薄膜トランジスタは、ボトムゲート型であり、基板上に形成されている。領域は、基板の法線方向から見て、薄膜トランジスタが有するチャネル層内に形成されている。領域は、溶液内に存在する生体由来物質を付着させる。参照電極は、基板の法線方向から見て、領域と重ならない位置に形成されている。参照電極は、上記溶液に接触する。
 上記バイオセンサは、生体由来物質が付着する領域を有する。領域は、基板の法線方向から見て、チャネル層内に形成されている。
 ここで、「基板の法線方向から見て、領域がチャネル層内に形成されている」とは、領域がチャネル層そのもので形成される場合だけでなく、領域がチャネル層を覆う被覆層で形成される場合も含む。
 生体由来物質が領域に付着すると、薄膜トランジスタの電気的特性が変化する。つまり、上記バイオセンサにおいては、生体由来物質が領域に付着することに起因する薄膜トランジスタの電気的特性の変化を検出できる。なお、薄膜トランジスタの電気的特性の変化としては、例えば、オフ電流や閾値電圧の変化がある。
 上記バイオセンサは、参照電極を有する。参照電極は、生体由来物質を含む溶液に接触する。
 参照電極に対して所定の電位を付与することにより、参照電極の電位を、溶液の電位として用いることができる。つまり、溶液の電位を所定の大きさに設定することができる。そのため、溶液の電位のばらつきを抑制できる。その結果、薄膜トランジスタの電気的特性の変化を検出するときの精度を高めることができる。
 上記バイオセンサにおいては、参照電極を別途設けなくてもよい。そのため、参照電極を別途設ける場合と比べて、参照電極を設置する作業が不要になる。
 上記バイオセンサは、好ましくは、絶縁膜をさらに備える。絶縁膜は、薄膜トランジスタが有するソース電極及びドレイン電極を覆う。参照電極は、絶縁膜上に形成されている。
 上記の絶縁膜を有する態様において、参照電極は、好ましくは、基板の法線方向から見て、ソース電極及びドレイン電極の少なくとも一方に重なる。この場合、基板の法線方向から見て、参照電極を領域に近づけることができる。その結果、バイオセンサの小型化を実現することができる。
 上記の絶縁膜を有する態様において、絶縁膜は、好ましくは、チャネル層を覆う。この場合、絶縁膜により、チャネル層を保護することができる。つまり、生体由来物質を含む溶液に対して、チャネル層が晒されなくなる。そのため、薄膜トランジスタの動作を安定させることができる。
 上記の参照電極が絶縁膜上に形成された態様において、絶縁膜は、好ましくは、パッシベーション膜と、樹脂膜とを含む。パッシベーション膜は、ソース電極及びドレイン電極に接して形成されている。樹脂膜は、パッシベーション膜に接して形成されている。参照電極は、樹脂膜に接して形成されている。
 樹脂膜は、パッシベーション膜よりも、厚く形成することが容易である。そのため、上記の態様においては、基板の法線方向で参照電極をソース電極及びドレイン電極から遠ざけることができる。その結果、参照電極に付与される電位の変動に起因するノイズが、薄膜トランジスタの電気的特性の変化を示す信号に重畳され難くなる。
 上記の樹脂膜を有する態様において、樹脂膜は、好ましくは、側壁を含む。側壁は、基板の法線方向に延び、生体由来物質を含む溶液を保持する。つまり、側壁は、基板の法線方向から見て、領域及び参照電極を囲む。
 上記態様においては、溶液を保持するための側壁を別途設けなくてもよい。そのため、バイオセンサによる生体由来物質の検出をするときに、その準備作業が容易になる。
 上記のパッシベーション膜を有する態様において、パッシベーション膜は、第1パッシベーション膜と、第2パッシベーション膜とを含んでいてもよい。この場合、第1パッシベーション膜は、ソース電極及びドレイン電極に接して形成される。第2パッシベーション膜は、第1パッシベーション膜に接して形成される。
 上記態様では、パッシベーション膜が2層構造となっているので、パッシベーション膜が単層構造である場合よりも、パッシベーション膜を厚くすることができる。その結果、基板の法線方向で参照電極をソース電極及びドレイン電極から遠ざけることができる。
 パッシベーション膜が第1及び第2のパッシベーション膜を有する態様において、好ましくは、第1パッシベーション膜がシリコン酸化膜であり、第2パッシベーション膜がシリコン窒化膜である。
 この場合、パッシベーション膜の防水性がさらに高まる。その結果、パッシベーション膜がチャネル層を覆っているのであれば、薄膜トランジスタの動作をさらに安定させることができる。
 以下、図面を参照しながら、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 [第1の実施の形態]
 図1及び図2を参照しながら、本発明の第1の実施の形態によるバイオセンサ10について説明する。図1は、バイオセンサ10の概略構成を示す平面図である。図2は、図1におけるA-A断面図である。
 バイオセンサ10は、図1に示すように、薄膜トランジスタ12と、パッシベーション膜36と、参照電極38とを備える。以下、これらについて説明する。
 薄膜トランジスタ12は、図2に示すように、基板16に形成されている。以下、図2を参照しながら、説明する。
 基板16は、可視光を透過する基板であってもよいし、可視光を透過しない基板であってもよい。可視光を透過する基板は、例えば、ガラス基板である。
 薄膜トランジスタ12は、所謂ボトムゲート構造を有する。薄膜トランジスタ12は、ゲート電極18と、ゲート絶縁膜20と、半導体活性層22と、ソース電極24と、ドレイン電極26とを含む。
 ゲート電極18は、基板16に接して形成されている。ゲート電極18は、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属からなる金属膜であってもよいし、これらの金属の何れかを含む合金からなる合金膜であってもよい。金属膜及び合金膜は、単層構造であってもよいし、積層構造であってもよい。
 ゲート電極18は、例えば、透明導電膜であってもよい。透明導電膜は、例えば、酸化インジウム錫膜(ITO膜)である。
 ゲート電極18は、ゲート絶縁膜20で覆われている。ゲート絶縁膜20は、例えば、シリコン窒化膜であってもよいし、シリコン酸化膜であってもよいし、シリコン窒化膜とシリコン酸化膜とを積層したものであってもよい。
 半導体活性層22は、ゲート絶縁膜20に接して形成されている。半導体活性層22は、基板16の法線方向から見て、ゲート電極18内に位置している。つまり、図1に示すように、基板16の法線方向から見て、半導体活性層22の全体がゲート電極18に重なっている。
 半導体活性層22は、例えば、アモルファスシリコンからなるものであってもよいし、酸化物半導体からなるものであってもよい。酸化物半導体は、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び酸素(O)からなる化合物(In-Ga-Zn-O)であってもよいし、インジウム(In)、錫(Tin)、亜鉛(Zn)、及び酸素(O)からなる化合物(In-Tin-Zn-O)であってもよいし、インジウム(In)、アルミニウム(Al)、亜鉛(Zn)、及び酸素(O)からなる化合物(In-Al-Zn-O)であってもよい。
 再び、図2を参照しながら説明する。ソース電極24及びドレイン電極26は、半導体活性層22に接して形成されている。ソース電極24及びドレイン電極26は、ゲート電極20と同様な材料で形成されていてもよいし、異なる材料で形成されていてもよい。
 パッシベーション膜36は、パッシベーション膜361と、パッシベーション膜362とを含む。
 パッシベーション膜361は、シリコン酸化膜である。パッシベーション膜361は、半導体活性層22と、ソース電極24と、ドレイン電極26とを覆う。
 パッシベーション膜362は、シリコン窒化膜である。パッシベーション膜362は、パッシベーション膜361を覆う。
 参照電極38は、パッシベーション膜362上に形成されている。参照電極38は、基板16の法線方向から見て、つまり、平面視で、ソース電極24及びドレイン電極26に重なっている。参照電極38は、例えば、パッシベーション膜36上に形成した膜をフォトリソグラフィでパターニングすることで形成される。
 参照電極38は、後述する領域32に生体由来物質30を付着させるための処理に用いられる液体に対して耐性がある材料で形成される。例えば、上記の処理においてアルカリ溶液が用いられる場合には、アルカリに対して耐性がある材料(例えば、チタン等)が採用される。
 バイオセンサ10は、図2に示すように、溶液28に接している。溶液28は、例えば、基板16上に設けられた側壁(図示せず)を用いて貯留されている。溶液28は、生体由来物質30を含む。生体由来物質30は、例えば、DNA、糖鎖、たんぱく質である。生体由来物質30は、電荷を帯びている。生体由来物質30は、溶液28中では、電離した状態で存在する。
 バイオセンサ10は、図1に示すように、領域32を有する。以下、領域32について説明する。
 領域32は、図1に示すように、パッシベーション膜362のうち、基板16の法線方向から見て、半導体活性層22と重なる部分によって形成されている。この部分は、図1に示すように、基板16の法線方向から見て、ソース電極24とドレイン電極26との間に位置している。
 領域32の周囲には、図1に示すように、参照電極38が形成されている。つまり、基板16の法線方向から見て、参照電極38は領域32を囲んでいる。
 領域32には、図2に示すように、生体由来物質30が付着する。領域32には、生体由来物質30を付着しやすくするための処理がされている。
 上記の処理は、パッシベーション膜362の表面に官能基を修飾するものであればよい。従来から公知のものを採用することができる。例えば、適当なシランカップリング剤を用いて、パッシベーション膜362の表面を処理することにより、目的とする生体由来物質30が付着しやすくする。シランカップリング剤を変更すれば、付着させる生体由来物質30の種類を変えることができる。
 シランカップリング剤を用いた処理の後で、さらに処理をしてもよい。例えば、パッシベーション膜362の表面をビオチンで修飾する場合には、シランカップリング剤で処理をした後、ビオチン化試薬を用いて、処理をする。
 生体由来物質30が領域32に付着すると、薄膜トランジスタ12の電気的特性が変化する。具体的には、例えば、I-V特性がシフトすることにより、閾値電圧が変化する。そのため、生体由来物質30が領域32に付着しているときの閾値電圧と、生体由来物質30が領域32に付着していないときの閾値電圧との差分を、領域32に付着した生体由来物質30に関連する電気信号として、検出することができる。つまり、バイオセンサ10は、薄膜トランジスタ12の電気的特性の変化を、生体由来物質30に関連する電気信号として、検出することができる。
 バイオセンサ10においては、参照電極38が設けられている。薄膜トランジスタ12の電気的特性の変化を検出するときには、所定の電位(例えば、0V)が参照電極38に付与される。参照電極38に付与された電位が、溶液28の電位として用いられる。つまり、溶液28の電位を所定の大きさに設定することができる。その結果、薄膜トランジスタ12の電気的特性の変化を検出するときの精度を高めることができる。
 バイオセンサ10においては、参照電極38がパッシベーション膜362上に形成されている。つまり、バイオセンサ10が参照電極38を備えている。そのため、参照電極を別途準備する場合と比べて、参照電極を設置するための作業が不要になる。つまり、バイオセンサ10による生体由来物質30の検出をする前の作業(準備作業)の工程数を少なくすることができる。
 また、バイオセンサ10が参照電極38を備えているので、生体由来物質30に関連する電気信号を検出する機構を小型化できる。
 バイオセンサ10においては、薄膜トランジスタ12を形成した後、パッシベーション膜36を形成し、さらに、参照電極38を形成するという一連のプロセスで、参照電極38を形成することができる。つまり、参照電極38は、半導体装置(薄膜トランジスタ)の製造プロセスを用いて形成することができる。参照電極38の形成が容易になる。
 バイオセンサ10においては、参照電極38が、基板16の法線方向から見て、領域32と重ならない位置に形成されている。そのため、参照電極38を設けていても、領域32に生体由来物質30が付着したときの薄膜トランジスタ12の電気的特性の変化の検出が阻害され難い。
 バイオセンサ10においては、参照電極38が2層構造のパッシベーション膜36上に形成されている。そのため、参照電極38を薄膜トランジスタ12から遠ざけることができる。その結果、参照電極38の電位の変動に起因するノイズを排除することができる。
 バイオセンサ10においては、基板16の法線方向から見て、参照電極38がソース電極24及びドレイン電極26に重なっている。基板16の法線方向から見て、参照電極38を領域32に近づけることができる。その結果、バイオセンサ10のサイズを小型化することができる。
 バイオセンサ10においては、半導体活性層22がパッシベーション膜36で覆われている。そのため、半導体活性層22が溶液28に晒されるのを抑制できる。その結果、薄膜トランジスタ12の動作を安定させることができる。
 バイオセンサ10においては、半導体活性層22がパッシベーション膜36で覆われている。そのため、例えば、パッシベーション膜36上に形成した膜をフォトリソグラフィでパターニングして参照電極38を形成するときに、パッシベーション膜36により、半導体活性層22がエッチングされるのを防ぐことができる。
 バイオセンサ10においては、パッシベーション膜36の最上層(パッシベーション膜362)がシリコン窒化膜である。そのため、パッシベーション膜36による防水効果をさらに高めることができる。その結果、薄膜トランジスタ12の動作をさらに安定させることができる。
 [第2の実施の形態]
 続いて、図3を参照しながら、本発明の第2の実施の形態によるバイオセンサ10Aについて説明する。バイオセンサ10Aは、バイオセンサ10と比べて、樹脂膜40をさらに備える。
 樹脂膜40は、パッシベーション膜362上に形成されている。樹脂膜40は、例えば、アクリル樹脂からなるものであってもよいし、ポリイミドからなるものであってもよいし、シリコーン(PDMS)からなるものであってもよい。樹脂膜40に接して、参照電極38が形成されている。
 バイオセンサ10Aにおいては、参照電極38が樹脂膜40上に形成されている。そのため、参照電極38を薄膜トランジスタ12からさらに遠ざけることができる。その結果、参照電極38の電位の変動に起因するノイズをさらに排除することができる。
 [第2の実施の形態の応用例]
 続いて、図4及び図5を参照しながら、本発明の第2の実施の形態の応用例によるバイオセンサ10Bについて説明する。バイオセンサ10Bは、バイオセンサ10Aと比べて、壁401を有する。
 壁401は、樹脂膜40の上面(パッシベーション膜362に接している面とは反対側の面)から突出している。壁401は、基板16の法線方向から見て、領域32及び参照電極38を囲んでいる。つまり、壁401の内側に、領域32及び参照電極38が位置している。
 壁401の内側には、溶液28が貯留されている。つまり、壁401は、溶液28を保持している。
 バイオセンサ10Bにおいては、樹脂膜40に対して、溶液28を貯留するための壁401が形成されている。そのため、溶液を貯留するための側壁を別途準備する場合と比べて、溶液を貯留するための側壁を設置する作業が不要となる。つまり、バイオセンサ10Bによる生体由来物質30の検出をする前の作業(準備作業)の工程数をさらに少なくすることができる。
 以上、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 例えば、パッシベーション膜36は、チャネル層としての半導体活性層22を覆っていなくてもよい。この場合、生体由来物質30が付着する領域は、チャネル層(半導体活性層22)によって形成される。つまり、生体由来物質30がチャネル層(半導体活性層22)に付着する。そのため、チャネル層(半導体活性層22)を覆うパッシベーション膜36に生体由来物質30が付着する場合と比べて、生体由来物質30が領域に付着したときの薄膜トランジスタ12の電気的特性の変化が大きくなる。その結果、生体由来物質30が領域に付着したときの薄膜トランジスタ12の電気的特性の変化を検出しやすくなる。
 例えば、パッシベーション膜36は2層構造であったが、パッシベーション膜は単層であってもよい。この場合、パッシベーション膜は、シリコン酸化膜であってもよいし、シリコン窒化膜であってもよい。
10:バイオセンサ、12:薄膜トランジスタ、14:半導体層、16:基板、18:ゲート電極、22:半導体活性層(チャネル層)、24:ソース電極、26:ドレイン電極、30:生体由来物質、32:領域(領域)、36:パッシベーション膜、361:パッシベーション膜(第1パッシベーション膜)、362:パッシベーション膜(第2パッシベーション膜)、38:参照電極、40:樹脂膜、401:壁(側壁)

Claims (7)

  1.  基板と、
     前記基板上に形成されたボトムゲート型の薄膜トランジスタと、
     前記基板の法線方向から見て、前記薄膜トランジスタが有するチャネル層内に形成され、溶液に含まれる生体由来物質を付着させる領域と、
     前記基板の法線方向から見て、前記領域と重ならない位置に形成され、前記溶液に接触する参照電極とを備える、バイオセンサ。
  2.  請求項1に記載のバイオセンサであって、さらに、
     前記薄膜トランジスタが有するソース電極及びドレイン電極を覆う絶縁膜を備え、
     前記参照電極は、前記絶縁膜上に形成されている、バイオセンサ。
  3.  請求項2に記載のバイオセンサであって、
     前記絶縁膜は、
     前記ソース電極及び前記ドレイン電極に接して形成されたパッシベーション膜と、
     前記パッシベーション膜に接して形成された樹脂膜とを含み、
     前記参照電極は、前記樹脂膜に接して形成されている、バイオセンサ。
  4.  請求項3に記載のバイオセンサであって、
     前記樹脂膜は、前記基板の法線方向に延び、前記溶液を保持する側壁を含む、バイオセンサ。
  5.  請求項3又は4に記載のバイオセンサであって、
     前記パッシベーション膜は、
     前記ソース電極及び前記ドレイン電極に接して形成された第1パッシベーション膜と、
     前記第1パッシベーション膜に接して形成された第2パッシベーション膜とを含む、バイオセンサ。
  6.  請求項5に記載のバイオセンサであって、
     前記第1パッシベーション膜は、シリコン酸化膜であり、
     前記第2パッシベーション膜は、シリコン窒化膜である、バイオセンサ。
  7.  請求項2~6の何れか1項に記載のバイオセンサであって、
     前記絶縁膜は、前記チャネル層を覆う、バイオセンサ。
PCT/JP2016/072017 2015-07-30 2016-07-27 バイオセンサ WO2017018449A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-150930 2015-07-30
JP2015150930 2015-07-30

Publications (1)

Publication Number Publication Date
WO2017018449A1 true WO2017018449A1 (ja) 2017-02-02

Family

ID=57885360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072017 WO2017018449A1 (ja) 2015-07-30 2016-07-27 バイオセンサ

Country Status (1)

Country Link
WO (1) WO2017018449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012800A1 (ja) * 2018-07-12 2020-01-16 浜松ホトニクス株式会社 匂いセンサ及び匂いセンサの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196600A (ja) * 1992-01-17 1993-08-06 Nec Corp 固定化酵素膜およびタンパク質固定化膜の製造方法
JP2005077237A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp バイオセンサ
JP2006258661A (ja) * 2005-03-17 2006-09-28 Canon Inc 有機トランジスタ型バイオセンサーおよびバイオセンサ測定方法
JP2012047612A (ja) * 2010-08-27 2012-03-08 Dainippon Printing Co Ltd カレントミラー型バイオセンサ
JP2012207991A (ja) * 2011-03-29 2012-10-25 Rohm Co Ltd イメージセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196600A (ja) * 1992-01-17 1993-08-06 Nec Corp 固定化酵素膜およびタンパク質固定化膜の製造方法
JP2005077237A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp バイオセンサ
JP2006258661A (ja) * 2005-03-17 2006-09-28 Canon Inc 有機トランジスタ型バイオセンサーおよびバイオセンサ測定方法
JP2012047612A (ja) * 2010-08-27 2012-03-08 Dainippon Printing Co Ltd カレントミラー型バイオセンサ
JP2012207991A (ja) * 2011-03-29 2012-10-25 Rohm Co Ltd イメージセンサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012800A1 (ja) * 2018-07-12 2020-01-16 浜松ホトニクス株式会社 匂いセンサ及び匂いセンサの製造方法
JP2020008522A (ja) * 2018-07-12 2020-01-16 浜松ホトニクス株式会社 匂いセンサ及び匂いセンサの製造方法
CN112400108A (zh) * 2018-07-12 2021-02-23 浜松光子学株式会社 气味传感器及气味传感器的制造方法
JP7269559B2 (ja) 2018-07-12 2023-05-09 浜松ホトニクス株式会社 匂いセンサ及び匂いセンサの製造方法
TWI827611B (zh) * 2018-07-12 2024-01-01 日商濱松赫德尼古斯股份有限公司 氣味感測器及氣味感測器之製造方法
US11921081B2 (en) 2018-07-12 2024-03-05 Hamamatsu Photonics K.K. Odor sensor and method for manufacturing odor sensor
CN112400108B (zh) * 2018-07-12 2024-06-11 浜松光子学株式会社 气味传感器及气味传感器的制造方法

Similar Documents

Publication Publication Date Title
US10451946B2 (en) Semiconductor device, liquid crystal display device, and semiconductor device manufacturing method
US8890145B2 (en) Thin film transistors and methods for manufacturing the same
US20150295006A1 (en) Light sensing device and manufacturing method thereof
US20150295092A1 (en) Semiconductor device
US10134910B2 (en) Semiconductor device and production method therefor
US9583510B2 (en) Semiconductor device, display device, and method for manufacturing semiconductor device
JP6259120B2 (ja) 半導体装置およびその製造方法
US8785243B2 (en) Method for manufacturing a thin film transistor array panel
KR20140043526A (ko) 박막 트랜지스터 표시판 및 그 제조 방법
US10680117B2 (en) Thin film transistor, method for manufacturing the same and display device comprising the same
US9831350B2 (en) Thin film transistor and method of manufacturing the same
JP6251823B2 (ja) 半導体装置およびその製造方法
US20120286259A1 (en) Display substrate and method of manufacturing the same
US8853012B2 (en) Display device and method for manufacturing the same
JP2010205923A (ja) 電界効果型トランジスタの製造方法
EP3261127A1 (en) Thin-film transistor and manufacturing method therefor, array substrate and display device
WO2017018449A1 (ja) バイオセンサ
US9466818B2 (en) Organic light emitting diode display device and method of fabricating the same
US10475822B2 (en) Array substrate, display panel and display apparatus having the same, and fabricating method thereof
WO2013042608A1 (ja) 半導体装置およびその製造方法
WO2017018434A1 (ja) バイオセンサ
KR101636146B1 (ko) 박막 트랜지스터 및 그 제조 방법
US8853698B1 (en) Oxide semiconductor thin film transistor substrate
US11927860B2 (en) Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device with touch sensor using active matrix substrate
US11127762B2 (en) Semiconductor device and display including wiring line having protective metal film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16830554

Country of ref document: EP

Kind code of ref document: A1