WO2017018222A1 - Piezoelectric film, method for producing same, bimorph element, piezoelectric element, and method for producing same - Google Patents

Piezoelectric film, method for producing same, bimorph element, piezoelectric element, and method for producing same Download PDF

Info

Publication number
WO2017018222A1
WO2017018222A1 PCT/JP2016/070757 JP2016070757W WO2017018222A1 WO 2017018222 A1 WO2017018222 A1 WO 2017018222A1 JP 2016070757 W JP2016070757 W JP 2016070757W WO 2017018222 A1 WO2017018222 A1 WO 2017018222A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode
formula
equation
forming
Prior art date
Application number
PCT/JP2016/070757
Other languages
French (fr)
Japanese (ja)
Inventor
健 木島
本多 祐二
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to JP2017531135A priority Critical patent/JPWO2017018222A1/en
Priority to TW105123257A priority patent/TWI728988B/en
Publication of WO2017018222A1 publication Critical patent/WO2017018222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes

Definitions

  • the present invention relates to a piezoelectric film and a manufacturing method thereof, a bimorph element, a piezoelectric element and a manufacturing method thereof.
  • PZT Pb (Zr, Ti) O 3
  • the polycrystalline PZT powder is fired, and this polycrystalline PZT powder is mixed with a resin to form a PZT sheet in which the mixture is formed into a sheet.
  • a bulk piezoelectric body can be manufactured.
  • the thickness of the single layer PZT sheet after baking is 20 ⁇ m or more (see, for example, Patent Document 1).
  • the reason why the PZT sheets having a bulk piezoelectric body of 20 ⁇ m or more are laminated as described above is that when the thickness is less than 20 ⁇ m, piezoelectric characteristics may not be obtained.
  • the polycrystalline PZT powder since the polycrystalline PZT powder has a large crystal grain size, it cannot be processed into a PZT sheet having a thickness of 10 ⁇ m or less.
  • the PZT of the bulk piezoelectric body since the PZT of the bulk piezoelectric body has a low Curie temperature of 200 ° C., the piezoelectric characteristics are easily broken at high temperatures. Therefore, there is a drawback that it is difficult to precisely process the bulk piezoelectric body because there is a limit to the temperature at which it can be heated.
  • a conventional PZT film-like piezoelectric body is manufactured by forming a PZT film having a thickness of 2 ⁇ m or less on a substrate by sputtering (see, for example, Patent Document 2).
  • the film-like piezoelectric body has a thickness of 2 ⁇ m or less because the film forming speed is low. Specifically, since it takes 2 hours or more to form a PZT film having a thickness of 1 ⁇ m by sputtering, it takes 4 hours or more to form a 2 ⁇ m PZT film. Therefore, manufacturing a thick film-like piezoelectric material such as a bulk piezoelectric material with a PZT film increases the cost, and is not practical for industrial use.
  • the PZT film is formed by sputtering to a thickness of 5 ⁇ m or more, the input voltage VDC of the sputtering apparatus is lowered, and it is difficult to produce a PZT film having a constant composition.
  • the reason is that as the film formation time becomes longer, the surface of the PZT target of the sputtering apparatus becomes metallized and the resistance value decreases, and the surface composition of the PZT target is not PZT. Therefore, it is difficult to produce a film-like piezoelectric body having a film thickness of 5 ⁇ m or more. Due to the above circumstances, the bulk piezoelectric film and the film piezoelectric body have different thicknesses. Therefore, the product manufactured by the bulk piezoelectric body and the product manufactured by the film piezoelectric body are separated depending on the application.
  • the piezoelectric film is characterized in that the electrode is made of a Pt film.
  • (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A piezoelectric film having a Curie temperature of 250 to 420 ° C.
  • a step of forming a film The method of manufacturing a piezoelectric film, wherein the DUTY ratio is a ratio of a period during which the high-frequency output is applied to the sputtering target during one period.
  • the specific resistance of the surface of the sputtering target when the high-frequency output is supplied to the sputtering target is 1 ⁇ 10 9 ⁇ ⁇ cm or more 1 ⁇ 10 12
  • the sputtering target when supplying the high-frequency output to the sputtering target is O in the ratio of the following formula 6. 2
  • a method for producing a piezoelectric film characterized by being placed in an atmosphere of gas and Ar gas. 0.1 ⁇ O 2 Gas / Ar gas ⁇ 0.3 Equation 6
  • the method for manufacturing a piezoelectric film wherein the sputtering target when supplying the high-frequency output to the sputtering target is placed in a pressure atmosphere of 0.1 Pa or more and 2 Pa or less.
  • First (Pb) having a thickness of 5 ⁇ m or more a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A membrane, The first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A first electrode formed on the membrane; The first electrode and the first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • a second (Pb) film having a thickness of 5 ⁇ m or more formed on the film.
  • a piezoelectric element having at least one of the following remanent polarization values: 0 ⁇ ⁇ ⁇ 1 Equation 1 1.00 ⁇ a + b ⁇ 1.35 Expression 11 0 ⁇ b ⁇ 0.08 Expression 12 1.00 ⁇ c + d + e ⁇ 1.1 Formula 13 0.4 ⁇ c ⁇ 0.7 Formula 14 0.3 ⁇ d ⁇ 0.6 Formula 15 0 ⁇ e ⁇ 0.1 Equation 16 [16] In the above [15], The first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ The XRD peak value of the film is higher than the XRD peak value of the first electrode, Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ The piezoelectric element, wherein the XRD peak value of the film is higher than the XRD peak value of the second electrode.
  • each film is a film formed by sputtering, For the first and second bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • Each of the films is a film formed by a sol-gel method.
  • a piezoelectric element having at least one of the following remanent polarization values: 0 ⁇ ⁇ ⁇ 1 Equation 1 1.00 ⁇ a + b ⁇ 1.35 Expression 11 0 ⁇ b ⁇ 0.08 Expression 12 1.00 ⁇ c + d + e ⁇ 1.1 Formula 13 0.4 ⁇ c ⁇ 0.7 Formula 14 0.3 ⁇ d ⁇ 0.6 Formula 15 0 ⁇ e ⁇ 0.1 Equation 16 [19] a first electrode; The first (Pb) film having a thickness of 5 ⁇ m or more formed on the first electrode.
  • a third (Pb) formed on the third electrode a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A membrane, Said third (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A fourth electrode formed on the membrane; Comprising A second side surface of the second electrode and a second side surface of the fourth electrode are electrically connected by a seventh electrode; a, b, c, d, e, and ⁇ satisfy the above-mentioned formula 1 and formulas 11 to 16; [24] In the above [23], A fourth (Pb) formed on the fourth electrode.
  • An electrode film is formed on the substrate, and a sputtering method (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Forming a film (a); (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ For adhesion on membrane (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A step (b) of forming a film by a sol-gel method; Removing the substrate from the electrode film (c); By etching the electrode film, the (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Forming a first electrode, a second electrode, and a third electrode under the film (d); Comprising A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and ⁇ satisfy the following formula 1 and formulas 11 to 16.
  • a first electrode film is formed on a first substrate, and a first (Pb) film is formed on the first electrode film by a sputtering method.
  • a second electrode film is formed on the film, and the second electrode film is etched to obtain the first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Forming a first electrode and a second electrode on the film (b);
  • Membrane for adhesion Pb on the first and second electrodes
  • a first electrode film is formed on a first substrate, and a first (Pb) film is formed on the first electrode film by a sputtering method.
  • a third electrode film is formed on the second substrate, and a third (Pb) film is formed on the third electrode film by a sputtering method.
  • a sixth electrode film is formed on the fourth substrate, and a sixth (Pb) film is formed on the sixth electrode film by a sputtering method.
  • a method for manufacturing a piezoelectric element comprising: [33] A step (a) of forming a first electrode on a substrate; On the first electrode, a first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Forming a film (b); The first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Forming a second electrode on the film (c); A second (Pb) is formed on the second electrode by sputtering.
  • the step (g) is a step of connecting the first side surface of the first electrode, the first side surface of the third electrode, and the first side surface of the fifth electrode by a sixth electrode.
  • C a specific C
  • B a specific B
  • C is formed above (or below) a specific B
  • C is formed
  • C is directly formed on (or below) B
  • the present invention is not limited to above (or below) B as long as the effect of the embodiment of the present invention is not inhibited.
  • C is formed via another (C is formed) is also included.
  • a film-like piezoelectric film having a film thickness of 5 ⁇ m or more or a method for manufacturing the film can be provided.
  • a bimorph element having a film-like piezoelectric film having a thickness of 5 ⁇ m or more can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a sputtering apparatus according to one embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the case of a DUTY ratio of 100 S / T%.
  • 3A to 3D are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 4A is a plan view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention
  • FIG. 4B is a cross-sectional view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention. is there.
  • 5A and 5B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 6A is a plan view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention
  • FIG. 6B is a cross-sectional view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention. is there.
  • 7A is a plan view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention
  • FIG. 7B is a cross-sectional view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention. is there.
  • 8A to 8C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the invention.
  • 9A to 9C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 10A to 10C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 11A to 11C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 12A to 12D are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • FIG. 13A and 13B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 14A and 14B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 15A to 15C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 16A is an image obtained by observing a cross section of the sample of Example 1 with an FIB (Focused Ion Beam)
  • FIG. 16B is an image obtained by observing the sample of the Example 2 with a FIB.
  • FIG. 17 is an XRD chart of the PZT film of Example 1 and the PZT film of Example 2.
  • FIG. 18 is an image diagram of a reciprocal lattice map.
  • FIG. 19 is a diagram for explaining reciprocal lattice vectors and reciprocal lattice points on the crystal lattice plane (hkl).
  • FIG. 20 is a diagram for explaining the vector notation of the X-ray diffraction conditions.
  • 21A to 21C are diagrams for explaining reciprocal lattice mapping (method).
  • FIG. 22 is a diagram for explaining reciprocal lattice mapping (method).
  • FIG. 23 shows a reciprocal lattice simulation result of the PZT single crystal.
  • 24A and 24B show the results of reciprocal lattice map measurement of the samples of Example 1 (present invention 5 ⁇ m) and Example 2 (present invention 10 ⁇ m).
  • FIG. 25 (A) is a diagram showing strongly attractive hysteresis curves of Example 1 (present invention 5 ⁇ m), Example 2 (present invention 10 ⁇ m) and Example 3 (present invention 20 ⁇ m), and FIG. It is a figure which shows the piezoelectric butterfly curve of each of Examples 1-3.
  • FIG. 26A is a diagram showing a strong attractive hysteresis curve of Comparative Example 2 (K148), and
  • FIG. 26B is a diagram showing a piezoelectric butterfly curve of Comparative Example 2 (K148).
  • FIG. 27A is a diagram showing a strong attractive hysteresis curve of Comparative Example 3 (K129)
  • FIG. 27B is a diagram showing a piezoelectric butterfly curve of Comparative Example 3 (K129).
  • FIG. 28 is a diagram showing the results of d33 evaluation of the PZT film of Example 3 (20 ⁇ m of the present invention).
  • FIG. 29 is a diagram showing the results of measuring the temperature change of the relative permittivity and dielectric loss (tan ⁇ ) of the sample of Example 2 (the present invention 10 ⁇ m) while changing the frequency to 100 k, 500 k, and 1 MHz.
  • 30 is a cross-sectional view showing a sample of Example 4.
  • FIG. FIG. 31 is an XRD chart of the sample of Example 4.
  • FIG. 32 is an XRD chart of the sample of Example 4.
  • FIG. 33 is an image obtained by observing a cross section of the sample of Example 5 using FIB.
  • 38A is a FIB-SEM image of the sample of Example 3 (20 ⁇ m-PZT film), and FIG. 38B is an enlarged image of FIG. 38A.
  • 39A and 39B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 40A and 40B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 41A and 41B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 42A to 42C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • 43A and 43B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
  • FIG. 44 is a cross-sectional view illustrating the method for manufacturing the series-type bimorph element according to one embodiment of the present invention.
  • FIG. 45 is a cross-sectional view illustrating the method for manufacturing the parallel bimorph element according to one embodiment of the present invention.
  • FIG. 46 is a cross-sectional view for explaining the method for manufacturing the piezoelectric film of the sixth embodiment.
  • FIG. 47 is a cross-sectional view for explaining the method of manufacturing the piezoelectric film of Comparative Example 4.
  • FIG. 48 is a diagram for explaining a method of measuring the strain (stress) of the PZT film.
  • FIG. 49 is an optical micrograph of the surface of the PZT film 1105 of Comparative Example 4 shown in FIG.
  • FIG. 1 is a cross-sectional view schematically illustrating a sputtering apparatus according to one embodiment of the present invention.
  • the sputtering apparatus includes a chamber 11, and a holding unit 13 that holds the substrate 12 is disposed in the chamber 11.
  • a heater (not shown) for heating the substrate 12 to a predetermined temperature may be disposed in the holding unit 13.
  • the chamber 11, the substrate 12, and the holding unit 13 are grounded.
  • a target holding unit 15 that holds the sputtering target 14 is disposed in the chamber 11.
  • the sputtering target 14 held by the target holding unit 15 is positioned so as to face the substrate 12 held by the holding unit 13.
  • the sputtering target 14 has a specific resistance of 1 ⁇ 10 7 It is a sputtering target including an insulator of ⁇ ⁇ cm or more, and the insulator is preferably an oxide.
  • the insulator is of the general formula ABO 3 A is Al, Y, Li, Na, K, Rb, Pb, Cs, La, Sr, Cr, Ag, Ca, Pr, Nd, Ba, Bi, F and a lanthanum series element of the periodic table And at least one element selected from the group consisting of: B, Al, Ga, In, Nb, Sn, Ti, Zr, Ru, Rh, Pd, Re, Os, IrPt, U, CO, Fe , Ni, Mn, Cr, Cu, Mg, V, Nb, Ta, Mo, and a substance containing a perovskite substance containing at least one element selected from the group consisting of W, or bismuth oxide and a perovskite structure
  • the perovskite structure block includes Li, Na, K, Ca, Sr, Ba, Y, Bi, Pb, and a bismuth layered structure ferroelectric crystal having a structure in which blocks are alternately stacked.
  • the sputtering target 14 is (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ And a, b, c, d, e, and ⁇ satisfy the following Expression 1 and Expressions 11 to 16.
  • includes a value larger than 0 in the above formula 1 is because it includes an oxygen deficient perovskite structure.
  • all the components of the sputtering target 14 may have an oxygen-deficient perovskite structure, but the sputtering target 14 may partially include an oxygen-deficient perovskite structure.
  • the sputtering apparatus has an output supply mechanism 16, which is a high-frequency power supply with a pulse function.
  • the output supply mechanism 16 is electrically connected to the matching unit 22, and the matching unit 22 is electrically connected to the target holding unit 15. That is, the output supply mechanism 16 outputs a high-frequency output (RF output) having a frequency of 10 kHz to 30 MHz to the sputtering target 14 via the matching unit 22 and the target holding unit 15 and a period (3 kHz) of 1/20 ms to 1/3 ms.
  • the frequency is 20 kHz or less) and is supplied in a pulse shape having a duty ratio of 25% or more and 90% or less.
  • the high-frequency output is supplied to the sputtering target 14 by the output supply mechanism 16 via the target holding unit 15, but the high-frequency output may be directly supplied to the sputtering target 14 by the output supply mechanism 16.
  • the DUTY ratio is a ratio of a period during which a high frequency output is applied to the target holding unit 15 during one cycle. For example, in the case of a DUTY ratio of 25%, a period of 25% of one cycle is a period during which a high frequency output is applied to the target holding unit 15 (a period when the high frequency output is on), and a period of 75% of one cycle is held by the target. This is a period during which no high-frequency output is applied to the unit 15 (high-frequency output off period).
  • a period of 1/80 ms of 25% of 1/20 ms becomes a period of high frequency output on.
  • FIG. 2 shows the case of a DUTY ratio of 100 S / T%, where one period of 100 S / T% is a high-frequency output on period, and the remaining period of 100 N / T% is one period. The high frequency output is off.
  • the pulse shape when the output supply mechanism 16 supplies the high-frequency output to the target holding unit 15 in a pulse shape has a period of 1/20 ms to 1/3 ms (frequency of 3 kHz to 20 kHz). ), A DUTY ratio of 25% or more and 90% or less is preferable. However, it is preferable that the pulse shape has a DUTY ratio of 25% or more and 90% or less in a period of 1/15 ms or more and 1/5 ms or less.
  • the sputtering apparatus has a voltage V that is a direct current component generated in the sputtering target 14 when a high frequency output is supplied by the output supply mechanism 16.
  • V a direct current component generated in the sputtering target 14 when a high frequency output is supplied by the output supply mechanism 16.
  • DC V to control -200V to -80V DC A control unit 23 is included. This V DC The control unit 23 DC It has a sensor and is electrically connected to the output supply mechanism 16.
  • the sputtering apparatus also includes a first gas introduction source 17 that introduces a rare gas into the chamber 11, and a vacuum exhaust mechanism 19 such as a vacuum pump that evacuates the chamber 11.
  • the sputtering apparatus has an O in the chamber. 2 It has the 2nd gas introduction source 18 which introduces gas.
  • the rare gas introduced into the chamber 11 by the first gas introduction source 17 is preferably Ar gas, and O introduced by the second gas introduction source 18 during film formation.
  • the sputtering apparatus may have a flow rate control unit (not shown) for controlling the ratio of the gas and the Ar gas introduced by the first gas introduction source 17 to satisfy the following formula 6. 0.1 ⁇ O 2 Gas / Ar gas ⁇ 0.3 Equation 6
  • the sputtering apparatus preferably includes a pressure control unit that controls the pressure in the chamber during film formation to be 0.1 Pa or more and 2 Pa or less.
  • the sputtering apparatus also includes a magnet 20 that applies a magnetic field to the sputtering target 14 and a rotating mechanism 21 that rotates the magnet 20 at a speed of 20 rpm to 120 rpm.
  • Various substrates can be used here, including those in which a thin film is formed on the substrate.
  • the following substrate is used as an example.
  • ZrO on Si substrate oriented in (100) 2 The film is formed by vapor deposition at a temperature of 550 ° C. or lower (preferably a temperature of 500 ° C.). This ZrO 2 The film is oriented (100). In this specification, the orientation to (100) and the orientation to (200) are substantially the same. After this, ZrO 2 A lower electrode is formed on the film.
  • the lower electrode is formed by an electrode film made of metal or oxide.
  • a Pt film or an Ir film is used as the electrode film made of metal.
  • an electrode film made of an oxide for example, Sr (Ti 1-x Ru x ) O 3 A film is used, and x satisfies the following formula 15. 0.01 ⁇ x ⁇ 0.4 Formula 15
  • ZrO 2 On the film, a Pt film by epitaxial growth is formed as a lower electrode by sputtering at a temperature of 550 ° C. or lower (preferably a temperature of 400 ° C.). This Pt film is oriented to (200).
  • the substrate as described above is used, but instead of the Si substrate, a single crystal substrate such as a Si single crystal or a sapphire single crystal, a single crystal substrate with a metal oxide film formed on the surface, and a polysilicon on the surface A substrate on which a film or a silicide film is formed may be used.
  • the substrate is held by the holding unit 13.
  • Ar gas is introduced into the chamber 11 by the first gas introduction source 17, and O 2 is introduced by the second gas introduction source 18. 2 Introduce gas.
  • O 2 It is good to control by a flow control part so that ratio of gas and Ar gas may satisfy the following formula 6.
  • the inside of the chamber 11 is evacuated by the evacuation mechanism 19 to reduce the pressure inside the chamber 11 to a predetermined pressure (for example, a pressure of 0.1 Pa or more and 2 Pa or less).
  • a predetermined pressure for example, a pressure of 0.1 Pa or more and 2 Pa or less.
  • the specific resistance is 1 ⁇ 10 1 on the substrate 12 via the matching unit 22 and the target holding unit 15 by the high-frequency output mechanism 16.
  • a high frequency output is supplied to the sputtering target 14 containing an insulator of ⁇ ⁇ cm or more.
  • This high-frequency output is in the form of a pulse having a DUTY ratio of 25% to 90% at a frequency of 10 kHz to 30 MHz and a period of 1/20 ms to 1/3 ms.
  • an insulating film is formed on the substrate 12.
  • a high frequency output is supplied to the sputtering target 14 to form an insulating film
  • a voltage V which is a direct current component generated in the sputtering target 14 when a high frequency output is supplied to the sputtering target 14.
  • DC V DC It is preferable to control to ⁇ 200 V or more and ⁇ 80 V or less by the control unit 23.
  • the specific resistance of the surface of the sputtering target 14 after supplying a high frequency output to the sputtering target 14 is 1 ⁇ 10 9 ⁇ ⁇ cm or more 1 ⁇ 10 12 It is preferable to control to ⁇ ⁇ cm or less.
  • a high frequency output of 10 kHz to 30 MHz is applied to a sputtering target including an insulator having a specific resistance of 1 ⁇ 10 7 ⁇ ⁇ cm or more, and a frequency of 1/20 ms or more and 1/3 ms or less is 25% or more and 90% or less.
  • DUTY ratio is supplied in a pulse form.
  • the sputtering target 14 is of the general formula ABO 3 It is conceivable that the surface resistance of the sputtering target 14 greatly fluctuates during film formation when the perovskite substance represented by the formula (1) or the bismuth layer structure ferroelectric crystal is included.
  • a, b, c, d, e, and ⁇ satisfy the following Equation 1 and Equations 11 to 16 (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • a, b, c, d, e, and ⁇ satisfy the following formula 1 and formulas 11 to 16.
  • the film has a thickness of 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more.
  • the Curie temperature of the film is preferably 250 ° C. or higher and 420 ° C. or lower (preferably 300 ° C. or higher and 400 ° C. or lower).
  • the film may be formed on an electrode such as a Pt film, and this (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • an electrode such as a Pt film
  • the peak value of (002) of the XRD becomes higher than the peak value of (200) of the XRD of the electrode.
  • the film thickness is 5 ⁇ m or more.
  • the above-mentioned high frequency output is supplied to the sputtering target made of in the above cycle in the form of pulses with the above DUTY ratio (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the film formation rate when forming the film can be improved to 1 nm / sec or more and 2.5 nm / sec or less.
  • ZrO is interposed between the Si substrate and the Pt film.
  • the oxygen deficient perovskite structure can be classified by the following general formula. The following classification is based on the crystal structure that actually exists. Perovskite structure is ABO 3- ⁇ Or A n B n O 3n-1 It is represented by The left figure of each of FIGS. 34 to 37 is ABO. 3- ⁇ It is a schematic diagram which shows the various crystal structures containing the oxygen deficiency. Each of the right diagrams of FIGS.
  • FIG. 34 to 37 is a schematic diagram of an oxygen deficient structure on the ab plane, and the C ′ layer and the D ′ layer are mirror images of the C layer and the D layer on the ab plane, respectively. It is a schematic diagram showing a state where the phase is shifted.
  • FIG. 34 is a schematic diagram of an oxygen deficient structure on the ab plane, and the C ′ layer and the D ′ layer are mirror images of the C layer and the D layer on the ab plane, respectively. It is a schematic diagram showing a state where the phase is shifted.
  • FIG. 34 is a schematic diagram of an oxygen-
  • One of the derived structures of perovskite is an oxygen-deficient ordered perovskite structure.
  • BO 6 The octahedron is BO 5 Square pyramid and BO 4 It changes to a tetrahedron.
  • ABO with slight oxygen deficiency 3- ⁇ In this case, oxygen at random sites is deficient while maintaining the basic structure.
  • the amount of oxygen deficiency ⁇ increases, in many cases, oxygen deficiencies are regularly arranged.
  • the coordination structure varies greatly depending on the oxygen deficiency state.
  • a ZrO film is formed on the Si substrate 101 by the same method as in the first embodiment.
  • 2 A film 102 is formed and ZrO 2 A Pt film 103 as an electrode film is formed on the film 102.
  • a film thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more) is formed on the Pt film 103 by sputtering.
  • a film 104 is formed.
  • a, b, c, d, e, and ⁇ may satisfy the following Expression 1 and Expressions 11 to 16.
  • the polarization direction is the direction of an arrow 31 illustrated in FIG. That is, (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the polarization direction of the film 104 is perpendicular to the upper surface of the Si substrate 101 and is upward.
  • the Pt film 103 and ZrO 2 By processing the film 102 by photolithography technology and etching technology, (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A first electrode 103a, a second electrode 103b, and a third electrode 103c are formed under the film 104.
  • the first to third electrodes 103a to 103c are upper electrodes. Thereafter, as shown in FIG. a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Film 104 and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ The membrane 105 is cut.
  • the first electrode 103a (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Film 104 and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • a third stacked portion in which the films 105 are stacked is formed.
  • a fourth stacked portion and a fifth stacked portion are also formed.
  • FIG. 5A for bonding the first electrode 103a of the first stacked portion and the second stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Overlaying the film 105 and bonding the second electrode 103b of the second stacked portion and the third stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Overlaying the film 105 and bonding the third electrode 103c of the third stacked portion and the fourth stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the film 105 is overlaid.
  • the film 105 is attached, the (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the temperature of the heat treatment at this time is for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A temperature at which the film 105 crystallizes is good.
  • the electrodes 106 are formed on the side surfaces of the second electrode 103b and the fourth electrode 103d, and the first electrode 103a, the third electrode 103c, and the fifth electrode 103e are formed.
  • An electrode 107 is formed on the side surface of the substrate.
  • the electrode 106 is electrically connected to the second electrode 103b and the fourth electrode 103d, and the electrode 107 is electrically connected to the first electrode 103a, the third electrode 103c, and the fifth electrode 103e.
  • FIG. 6B are diagrams for describing a method of manufacturing a piezoelectric element according to an aspect of the present invention.
  • a ZrO film is formed on the Si substrate 101 by the same method as in the first embodiment.
  • 2 A film 102 is formed and ZrO 2 A Pt film 103 as an electrode film is formed on the film 102.
  • a first (Pb) film having a thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more) is formed on the Pt film 103 by sputtering.
  • a film 104 is formed.
  • a, b, c, d, e, and ⁇ may satisfy the following Expression 1 and Expressions 11 to 16.
  • the polarization direction is the direction of an arrow 31 illustrated in FIG. That is, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the polarization direction of the film 104 is perpendicular to the upper surface of the Si substrate 101 and is upward.
  • the film 104 is bonded onto the first to third electrodes 111a to 111c (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the film 112 is formed by a sol-gel method and temporarily fired. For bonding at this time (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the film 112 is amorphous. a, b, c, d, e, and ⁇ may satisfy the above-described Expression 1 and Expressions 11 to 16.
  • the ZrO film is formed on the Si substrate 121 by the same method as in the first embodiment.
  • 2 A film 122 is formed and ZrO 2 A Pt film 123 as an electrode film is formed on the film 122.
  • a second (Pb) film having a film thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 20 ⁇ m or more) is formed on the Pt film 123 by sputtering in the same manner as in the first embodiment.
  • a film 124 is formed.
  • the Pt film 123 and the ZrO 2 By processing the film 122 by a photolithography technique and an etching technique, the second (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A first electrode 123a, a second electrode 123b, and a third electrode 123c are formed under the film 124. Also, the Pt film 103 and ZrO 2 By processing the film 102 by the photolithography technique and the etching technique, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A first electrode 103a, a second electrode 103b, and a third electrode 103c are formed over the film 104.
  • the membrane 124 is cut.
  • a piezoelectric element can be manufactured by performing the process shown in FIG. In this embodiment, the same effect as that of the first embodiment can be obtained.
  • the polarization direction 31 of the film 104 is the second (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ This is the direction opposite to the polarization direction 32 of the film 124. Therefore, when a positive voltage is applied to one of the electrode 106 and the electrode 107 of the piezoelectric element after the step shown in FIG. 5B and a negative voltage is applied to the other, for example, one of the positive voltage and the negative voltage is applied.
  • a second (Pb) film having a film thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 20 ⁇ m or more) is formed on the Pt film 123 by sputtering in the same manner as in the first embodiment.
  • a film 124 is formed.
  • a, b, c, d, e, and ⁇ may satisfy the above-described Expression 1 and Expressions 11 to 16.
  • heat treatment is performed while applying a load between the Si substrate 101 and the Si substrate 121.
  • the Pt film 123 and the ZrO 2 By processing the film 122 by a photolithography technique and an etching technique, the second (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A first electrode 123a, a second electrode 123b, and a third electrode 123c are formed under the film 124. Then the second (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ The film 124 is bonded onto the first to third electrodes 123a to 123c (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A film 133 is formed by a sol-gel method and temporarily fired.
  • the film 133 is amorphous. a, b, c, d, e, and ⁇ may satisfy the above-described Expression 1 and Expressions 11 to 16. Thereafter, as shown in FIG. 10A, the ZrO layer is formed on the Si substrate 141.
  • ZrO on the Si substrate 151 2 A film 152 is formed and ZrO 2 A Pt film 153 as an electrode film is formed on the film 152.
  • the Pt film 153 is sputtered (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • a film 154 is formed.
  • a, b, c, d, e, and ⁇ may satisfy the above-described Expression 1 and Expressions 11 to 16.
  • heat treatment is performed while applying a load between the Si substrate 141 and the Si substrate 151.
  • the temperature of the heat treatment at this time is for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A temperature at which the film 133 crystallizes is good.
  • the Si substrate 141 and the ZrO 2 The film 142 is removed.
  • the Pt film 143 is processed by a photolithography technique and an etching technique, so that (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A first electrode 143a, a second electrode 143b, and a third electrode 143c are formed over the film 144. Thereafter, by repeating the steps of FIGS.
  • FIG. 12A is a view for explaining a method of manufacturing a piezoelectric element according to one embodiment of the present invention.
  • ZrO is formed on the Si substrate 161 by the same method as in the first embodiment.
  • 2 A film 162 is formed and ZrO 2 A Pt film 163 as an electrode film is formed on the film 162.
  • This Pt film 163 is the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ It becomes the first electrode for the film.
  • a first layer (Pb) having a film thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more) is formed on the Pt film 163 by sputtering in the same manner as in the first embodiment.
  • a film 164 is formed.
  • a, b, c, d, e, and ⁇ may satisfy the following Expression 1 and Expressions 11 to 16.
  • a Pt film 165 by epitaxial growth is formed on the film 164 by sputtering at a temperature of 550 ° C. or lower (preferably a temperature of 400 ° C.).
  • This Pt film 165 is the second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ This is the second electrode for the film. Thereafter, as shown in FIG.
  • a film thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, more preferably, more preferably by sputtering on the Pt film 165 in the same manner as in the first embodiment.
  • the second layer (Pb) a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • a film 166 is formed. It is preferable that a, b, c, d, e, and ⁇ satisfy Expression 1 and Expressions 11 to 16.
  • a Pt film 167 is formed on the film 166 in the same manner as the Pt film 165 described above.
  • This Pt film 167 is the third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ It becomes the third electrode for the film.
  • the third layer (Pb) is formed on the Pt film 167 as shown in FIG.
  • the Pt film 169 is the fourth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the fourth electrode for the film is used, and the Pt film 171 is the fifth electrode.
  • the Si substrate 161 is made of ZrO. 2 Remove from film 162.
  • the laminated film is cut after removing the Si substrate 161.
  • the laminated film may be cut before removing the Si substrate 161, and then the Si substrate may be removed.
  • a photosensitive permanent resist film 172 is applied to the first side surface of the stacked portion.
  • the photosensitive permanent resist film 172 is exposed and developed to form permanent resist films 172a and 172b on the first side surface of the stacked portion.
  • the first side surface of the Pt film (fourth electrode) 169 in the stacked portion is covered with the permanent resist film 172a, and the first side surface of the Pt film (second electrode) 165 in the stacked portion is the permanent resist film.
  • the first side surfaces of the Pt film (first electrode) 163, the Pt film (third electrode) 167, and the Pt film (fifth electrode) 171 in the stacked portion are exposed. Thereafter, as shown in FIG. 14B, the first side surface of the Pt film (first electrode) 163, the Pt film (third electrode) 167, and the Pt film (fifth electrode) 171 in the stacked portion.
  • a Pt film (sixth electrode) 173 is formed on the permanent resist films 172a and 172b. Accordingly, the Pt film (sixth electrode) 173 is electrically connected to the Pt film (first electrode) 163, the Pt film (third electrode) 167, and the Pt film (fifth electrode) 171. .
  • the stacked portion of FIG. 14B is disposed upside down, and a photosensitive permanent resist film 174 is applied to the second side surface of the stacked portion.
  • the photosensitive permanent resist film 174 is exposed and developed to form permanent resist films 174a, 174b, and 174c on the second side surface of the stacked portion.
  • the second side surface of the Pt film (first electrode) 163 in the stacked portion is covered with the permanent resist film 174a
  • the second side surface of the Pt film (third electrode) 167 in the stacked portion is the permanent resist film.
  • the second side surface of the Pt film (fifth electrode) 171 in the stacked portion is covered with a permanent resist film 174c
  • the Pt film (second electrode) 165 and the Pt film (fourth electrode) in the stacked portion are covered with 174b.
  • the second side surface of each electrode 169 is exposed. Thereafter, as shown in FIG.
  • the present invention is not limited to this, and the present invention can be modified as follows.
  • a stacked portion including the film 166 and the third electrode 167 can also be used.
  • the first side surface of the first electrode 163 and the first side surface of the third electrode 167 may be electrically connected by the sixth electrode 173.
  • a stacked portion including the film 168 and the fourth electrode 169 can also be used.
  • n-th layer (Pb) is formed on the fifth electrode 171 illustrated in FIG. a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the film and the (n + 3) th electrode may be repeatedly formed.
  • n is an integer of 5 or more.
  • the first electrode 163 the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Film 164, second electrode 165, second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Film 166, third electrode 167, third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Film 168, fourth electrode 169, fourth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Membrane 170, fifth electrode 171, fifth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Membrane, 8th electrode, 6th layer (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ Membrane and 9th electrode, 7th layer (Pb a La b ) (Zr c Ti
  • the first side surface of the first electrode 163, the first side surface of the third electrode 167, the first side surface of the fifth electrode 171, and the first side surface of the ninth electrode are the sixth side surface.
  • the second side surface of the second electrode 165, the second side surface of the fourth electrode 169, the second side surface of the eighth electrode, and the second side surface of the tenth electrode are electrically connected by the electrode 167.
  • FIG. 39A a ZrO film is formed on the Si substrate 101 by the same method as in the first embodiment.
  • a film 102 is formed and ZrO 2 A Pt film 103 as an electrode film is formed on the film 102.
  • a first (Pb) film having a thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more) is formed on the Pt film 103 by sputtering.
  • a film 104 is formed.
  • a, b, c, d, e, and ⁇ may satisfy the following Expression 1 and Expressions 11 to 16.
  • the film 125 is amorphous. a, b, c, d, e, and ⁇ may satisfy the above-described Expression 1 and Expressions 11 to 16.
  • the polarization direction of the film 104 is perpendicular to the upper surface of the Si substrate 101 and is upward.
  • the ZrO film is formed on the Si substrate 101 as in FIG. 2
  • the film 102, the Pt film 103, the first (Pb) having a film thickness of 5 ⁇ m or more (preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more) a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • a film 104 is formed in order.
  • the first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A Pt film 126 as an electrode film is formed on the film 104.
  • the polarization direction of the film 104 is the direction of the arrow 31.
  • the Si substrate 101 of FIG. 39B is placed in the reverse direction on the Pt film 126 of the Si substrate 101 of FIG. 40B.
  • the polarization direction of the film 104 (arrow 31) is the first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇
  • the direction of polarization of the film 104 (arrow 31) is reversed.
  • the upper Si substrate 101 is dissolved and removed by KOH wet etching. As a result, ZrO 2
  • the film 102 is exposed. In other words, the wet etching at this time is ZrO. 2 Etching is stopped at film 102.
  • FIG. 42A the upper Si substrate 101 is dissolved and removed by KOH wet etching.
  • the film 102 and the Pt film 103 are removed by dry etching. As a result, the upper first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ The film 104 is exposed. Next, as shown in FIG. 42C, the upper first (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ For adhesion on the membrane 104 (Pb a La b ) (Zr c Ti d Nb e ) O 3- ⁇ A film 127 is formed by a sol-gel method and temporarily fired.
  • FIG. 44 is a cross-sectional view illustrating the method for manufacturing the series-type bimorph element according to one embodiment of the present invention.
  • the steps shown in FIGS. 12A and 12B are performed, and then the Si substrate 161 is dissolved and removed by KOH wet etching in the same manner as the step shown in FIG.
  • a laminated film 37 is produced in which the Pt film 163, the PZT film 164, and the Pt film 165 are laminated in this order (see FIG. 44), and the PZT film 164 is polarized in the direction of the arrow 31.
  • ZrO 2 The film 162 may or may not be removed.
  • the laminated film 37 is attached to the upper and lower surfaces of the shim 35 made of metal foil by the adhesive layer 36.
  • a series type bimorph element can be moved by applying a DC voltage between the upper Pt film 163 and the lower Pt film 163. 44, the Pt film 165 on the shim 35 is read as the first electrode, the PZT film 164 on the Pt film 165 is read as the piezoelectric film, and the Pt film 163 on the PZT film 164 is changed to the second electrode.
  • FIG. 45 is a cross-sectional view illustrating the method for manufacturing the parallel bimorph element according to one embodiment of the present invention.
  • a laminated film 37 in which a Pt film 163, a PZT film 164, and a Pt film 165 are laminated in this order is produced by the same method as in the seventh embodiment (see FIG. 45), and this PZT film 164 is polarized in the direction of the arrow 31. is doing.
  • the laminated film 37 is attached to the upper and lower surfaces of the shim 35 made of metal foil by the adhesive layer 36.
  • the parallel bimorph element can be moved by applying a DC voltage between the upper Pt film 165 and the lower Pt film 163 and the shim 35.
  • the Pt film 163 on the shim 35 shown in FIG. 45 is read as the first electrode
  • the PZT film 164 on the Pt film 163 is read as the piezoelectric film
  • the Pt film 165 on the PZT film 164 is changed to the second electrode.
  • the Pt film 165 under the shim 35 is replaced with a third electrode
  • the PZT film 164 under the Pt film 165 is replaced with a piezoelectric film
  • the Pt film 163 under the PZT 165 is replaced with a fourth electrode. It may be replaced.
  • the first to eighth embodiments described above may be combined as appropriate.
  • Example 1 present invention 5 ⁇ m
  • Example 2 present invention 10 ⁇ m
  • a sample of Example 3 (20 ⁇ m of the present invention)
  • a sample of Comparative Example 1 comparativative Example 1 (conventional example) were prepared.
  • a ZrO 2 film was formed on a Si substrate by a vapor deposition method, and a Pt film formed by epitaxial growth as a lower electrode was formed on this ZrO 2 film by sputtering.
  • composition of the sputtering target and the composition of the sample when producing the samples of Examples 1, 2, 3 and Comparative Example 1 are as follows.
  • Example 1 (Invention 5 ⁇ m): Pb / Zr / Ti 130/58/42
  • Example 2 (Invention 10 ⁇ m): Pb / Zr / Ti 130/58/42
  • Example 1 (Invention 5 ⁇ m): Pb / Zr / Ti 109/55/45
  • Example 2 (Invention 10 ⁇ m): Pb / Zr / Ti 105/55/45
  • Example 3 (Invention 20 ⁇ m): Pb / Zr / Ti 102/55/45 Comparative example 1 (conventional example):
  • FIG. 16A is an image obtained by observing a cross section of the sample of Example 1 with an FIB (Focused Ion Beam), and FIG. 16B is an image obtained by observing the cross section of the sample of Example 2 with an FIB.
  • the thickness of the PZT film of Example 1 was 5.18 ⁇ m, and the thickness of the PZT film of Example 2 was 9.99 ⁇ m. These film thicknesses are Tilt correction values. The reason why this tilt correction is necessary is as follows. (1) When cutting with FIB is repeated, field of view shifts in the observed image. Since the cutting area is shifted from the center of the SEM image, correction is required. (2) The FIB cut surface is not perpendicular to the optical axis of observation.
  • FIG. 17 is a diagram showing the results of evaluating the crystallinity of the PZT film of Example 1 and the PZT film of Example 2 by XRD (X-Ray Diffraction).
  • the XRD (002) peak value of the PZT film is higher than the XRD (200) peak value of the Pt film. This is because the thickness of the PZT film is 5 ⁇ m or more.
  • Wide area reciprocal lattice mapping was performed on the samples of Examples 1, 2, 3 and Comparative Example 1. An image of the reciprocal lattice map is shown in FIG.
  • the XRD data of this example uses a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Corporation, and wide area reciprocal lattice mapping is measured by attaching a hybrid multidimensional pixel detector HyPix-3000 to SmartLab. went.
  • FIG. 19 is a diagram for explaining reciprocal lattice vectors and reciprocal lattice points on the crystal lattice plane (hkl).
  • FIG. 20 is a diagram for explaining the vector notation of the X-ray diffraction conditions.
  • Direction: normal direction / reciprocal lattice mapping of (hkl) plane Measure the spread of reciprocal lattice points in reciprocal space.
  • Reciprocal lattice point Conditions that cause diffraction / tip of reciprocal lattice vector
  • Scattering vector: K k ⁇ k 0
  • Scattering vector K) (reciprocal lattice vector g hkl ) -Reciprocal lattice map measurement The scattering vector K is scanned and the two-dimensional distribution of reciprocal lattice points is measured.
  • a reciprocal lattice simulation is performed in advance based on the crystal structure information, and the measured value is compared.
  • the reciprocal lattice map is plotted with the following qx and qz equations.
  • Two planes were measured at 2 ⁇ of 10-120 °, ⁇ of 10-90 °, X of 0 °, 30 °, 60 ° and 90 °, and ⁇ of 0 ° and 45 °.
  • measurement is performed by fixing the substrate horizontally and irradiating X-rays (see FIG. 21A).
  • ⁇ -2 ⁇ measurement is performed while scanning the ⁇ axis (the rotation axis of the material) and the ⁇ axis (the turning operation axis). Further, the ⁇ axis (in-plane rotation axis) was measured at 0 ° and 45 ° at two points.
  • qzvs What is plotted in qx is reciprocal lattice mapping. By simultaneously scanning several steps of ⁇ axes, reciprocal lattice mapping and superimposing all over one surface, different components of the domain are measured, and the superiority or inferiority of the true orientation degree is known (See FIGS. 21B and 21C). Using Rigaku's software SmartLab Guidance, as shown in Fig.
  • FIG. 22 shows a reciprocal lattice simulation result of the PZT single crystal.
  • 24A and 24B show the results of reciprocal lattice map measurement of the samples of Example 1 (present invention 5 ⁇ m) and Example 2 (present invention 10 ⁇ m). As shown in these drawings, it is found that the PZT films of Examples 1 and 2 are excellent single crystal films, which completely coincides with the calculated reciprocal lattice point ( ⁇ point) of the PZT single crystal.
  • Example 1 the present invention 5 ⁇ m
  • Example 2 the present invention 10 ⁇ m
  • Example 3 the present invention 20 ⁇ m
  • a high frequency output of 13.56 MHz was applied to the sputtering target at a pulse frequency of 5 kHz (1 / Since a pulse with a 90% DUTY ratio was supplied at a cycle of 5 ms), a time during which no plasma was generated on the sputtering target was generated when the high-frequency output was in an off state, and as a result, the film thickness was thick with a short film formation A PZT film could be easily formed.
  • FIG. 25 (A) is a diagram showing strongly attractive hysteresis curves of Example 1 (present invention 5 ⁇ m), Example 2 (present invention 10 ⁇ m), and Example 3 (present invention 20 ⁇ m), and FIG. ) Shows the piezoelectric butterfly curves of Examples 1 to 3.
  • FIGS. 25A and 25B it was confirmed that ferroelectricity and piezoelectricity proportional to the thickness of the PZT film were obtained. Further, in the sample of Example 3 having a film thickness of 20 ⁇ m, a very large Vc of 87 V was obtained. Moreover, when the Curie temperature Tc of the PZT film
  • membrane of Example 3 was measured, it was Tc 390 degreeC.
  • FIG. 26A is a diagram showing a strong attractive hysteresis curve of Comparative Example 2 (K148), and FIG. 26B is a diagram showing a piezoelectric butterfly curve of Comparative Example 2 (K148).
  • FIG. 27A is a diagram showing a strongly attractive hysteresis curve of Comparative Example 3 (K129), and
  • FIG. 27B is a diagram showing a piezoelectric butterfly curve of Comparative Example 3 (K129).
  • Comparative Example 2 (K148) and Comparative Example 3 (K129) are bulk piezoelectric elements manufactured by Reed Techno Co., Ltd. (1-5 Yokoya, Oecho, Otsu City, Shiga Prefecture 520-2194, Ryukoku University REC202B).
  • the piezoelectric element has a disk shape with a diameter of 8 mm ⁇ thickness of about 0.5 mm (500 ⁇ m).
  • a piezoelectric element of Comparative Example 2 (K148) and Comparative Example 3 (K129) a hard PZT (K148) generally used and a soft PZT (K129) related to the displacement amount were compared.
  • the transition temperature (Tc), piezoelectric constant d33 (pC / N), and relative dielectric constant ⁇ r in the catalog values were as follows. Tc of K129: 145 ° C K129 d33: 720 ⁇ r of K129: 8100 K148 Tc: 280 ° C.
  • heat treatment such as reflow (generally around 280 ° C.), there was a common bulk problem that depolarization easily occurred and piezoelectricity was lost.
  • the coercive voltage Vc of the sample of the PZT single crystal film of Example 3 (the present invention 20 ⁇ m) is 87 V / 20 ⁇ m.
  • Tc is as high as 300 ° C. or higher, there is no fear of depolarization at all even when potential application such as reflow temperature or static electricity during processing occurs.
  • the laminated body by PZT bulk is formed by laminating the bulks of Comparative Examples 2 and 3 having a thickness of about 20 ⁇ m per layer, and the coercive voltage Vc per layer is at most about 25V.
  • the transition temperature Tc is often 200 ° C. or less.
  • Example 3 is pure PZT, if an additive element or the like is examined, the possibility of obtaining a value 5 to 10 times is very high.
  • FIG. 38B is an enlarged image of FIG. According to FIG. 38, it can be seen that there is no columnar structure of a normal polycrystalline PZT film, and it is a very good single crystal. However, only a part of the region that seems to be another orientation region was observed, but when considered as a layer of a normal PZT laminated bulk body, it is clear that it retains overwhelming piezoelectricity and is approximately 20 ⁇ m thick.
  • Residual polarization value (Pr) about 40 ⁇ C / cm 2
  • Coercive voltage (Vc) 44V
  • Coercive electric field (Ec) 44 kV / cm
  • the dielectric constant ( ⁇ r), remanent polarization value (Pr), coercive voltage (Vc), and coercive electric field (Ec) are as follows. It is as follows.
  • Tc Curie temperature
  • FIG. 29 is a diagram showing the results of measuring the temperature change of the relative permittivity and dielectric loss (tan ⁇ ) of the sample of Example 2 (the present invention 10 ⁇ m) while changing the frequency to 100 k, 500 k, and 1 MHz.
  • Example 4 is a cross-sectional view showing a sample of Example 4.
  • FIG. 3 The method for producing the sample of Example 4 is as follows.
  • a ZrO 2 film 202 is formed on the Si substrate 201 by vapor deposition, and a Pt film 203 is formed on the ZrO 2 film 202 by epitaxial growth by sputtering.
  • an SrRuO 3 film (SRO film) 204 is formed on the Pt film 203 under the sputtering conditions shown in Table 2 using the sputtering apparatus shown in FIG.
  • a PZT film 205 having a thickness of 1 ⁇ m is formed on the SRO film 204 under the sputtering conditions of Example 1 (5 ⁇ m of the present invention) shown in Table 1.
  • the film formation time of Example 1 (the present invention 5 ⁇ m) shown in Table 1 is set to 720 s.
  • an SrRuO 3 film (SRO film) 206 is formed on the PZT film 205.
  • the film formation conditions at this time are the same as the film formation conditions for the SRO film 204 described above.
  • a Pt film 207, an SRO film 208, and a PZT film 209 having a thickness of 1 ⁇ m are sequentially formed on the SRO film 206.
  • the film formation conditions for the Pt film 207 are the same as the film formation conditions for the Pt film 203
  • the film formation conditions for the SRO film 208 are the same as the film formation conditions for the SRO film 204
  • the film forming conditions are the same as those for the PZT film 205 described above.
  • FIGS. 31 and 32 are XRD patterns of the sample of Example 4.
  • the half value of the Pt (400) peak is higher in the case of the intermediate Pt electrode than in the first layer Pt electrode. Although the width was slightly wide and slightly broad, it was found that the intermediate Pt electrode was also epitaxially grown.
  • the second layer PZT has a PZT (004) peak in comparison with the first layer PZT. Although the half width was slightly wide and slightly broad, it was found that the epitaxial growth was performed including the intermediate Pt electrode.
  • Example 33 is an image obtained by observing a cross section of the sample of Example 5 using FIB.
  • the sample of Example 5 is the same as the cross-sectional structure shown in FIG.
  • the manufacturing method of Example 5 is as follows. A ZrO 2 film is formed on the Si substrate by vapor deposition, and a Pt film is formed on the ZrO 2 film by epitaxial growth by sputtering. Next, using the sputtering apparatus shown in FIG. 1, a PZT film having a thickness of 1 ⁇ m is formed on the Pt film under the sputtering conditions of Example 1 (5 ⁇ m of the present invention) shown in Table 1.
  • Example 1 the film formation time of Example 1 (the present invention 5 ⁇ m) shown in Table 1 is set to 720 s.
  • a Pt film and a PZT film having a thickness of 1 ⁇ m are sequentially formed on the PZT film.
  • the film formation conditions for the Pt film are the same as the film formation conditions for the Pt film
  • the film formation conditions for the PZT film are the same as the film formation conditions for the PZT film.
  • a sample of Example 5 similar to the cross-sectional structure shown in FIG. 12C can be manufactured.
  • FIG. 46 is a cross-sectional view for explaining the method for manufacturing the piezoelectric film of the sixth embodiment. As shown in FIG. 46, a ZrO 2 film 1102 having a film thickness of 15 nm was formed on the Si substrate 1101 by vapor deposition.
  • the curvature radius of the Si substrate 1101 having the ZrO 2 film 1102 was measured by a simple stress measurement method using XRD shown in FIG. Specifically, the curvature radius was obtained by measuring the rocking curve while scanning the Si substrate 1101 having the ZrO 2 film 1102 while ⁇ scanning, and the warpage of the Si substrate was evaluated. The degree of curvature of the single crystal substrate was evaluated as the radius of curvature from the amount of shift of the rocking curve peak position with respect to the amount of movement ( ⁇ X) of the sample (substrate of Example 6) using an XY stage. The result was 66.3 °.
  • a Pt film 1103 having a thickness of 100 nm was formed by epitaxial growth on the ZrO 2 film 1102 and an SrRuO 3 film 1104 having a thickness of 20 nm was formed on the Pt film 1103 by sputtering. Then, it formed using the sputtering apparatus shown in FIG. 1 the PZT film 1105 having a thickness of 4 ⁇ m onto a SrRuO 3 film 1104. Thereafter, the radius of curvature of the Si substrate 1101 having the PZT film 1105 was measured by a simple stress measurement method using XRD shown in FIG. The result was 44.1 °.
  • FIG. 47 is a cross-sectional view for explaining the method of manufacturing the piezoelectric film of Comparative Example 4. As shown in FIG. 47, a YSZ film 1106 having a thickness of 15 nm was formed on a Si substrate 1101 by an evaporation method.
  • the radius of curvature of the Si substrate 1101 having the YSZ film 1106 was measured by a simple stress measurement method using XRD shown in FIG. The result was 83.5 °.
  • the YSZ film 1106 is a film obtained by oxidizing an alloy obtained by adding 8% Y to Zr.
  • a 100-nm-thick Pt film 1103 was formed by epitaxial growth on the YSZ film 1106, and a 20-nm-thick SrRuO 3 film 1104 was formed on the Pt film 1103 by sputtering.
  • a PZT film 1105 having a thickness of 5 ⁇ m was formed on the SrRuO 3 film 1104 using the sputtering apparatus shown in FIG.
  • the radius of curvature of the Si substrate 1101 having the PZT film 1105 was measured by a simple stress measurement method using XRD shown in FIG. The result was 43.9 °.
  • FIG. 49 is an optical micrograph of the surface of the PZT film 1105 of Comparative Example 4 shown in FIG. From this photograph, it can be seen that the entire PZT film has cracks of several microns square. This crack was generated about 2 hours after the PZT film 1105 of Comparative Example 4 was formed. As described above, it was confirmed that the PZT film of the comparative example cannot be formed with a film thickness of 5 ⁇ m or more.

Abstract

The present invention addresses the problem of providing a film-like piezoelectric film having a film thickness of 5 µm or more. One embodiment of the present invention is a piezoelectric film that is a (PbaLab)(ZrcTidNbe)O3-δ film having a film thickness of 5 µm or more and in which a, b, c, d, e, and δ satisfy formulas 1 and 11-16 indicated below. The (PbaLab)(ZrcTidNbe)O3-δ film has a dielectric constant of 100-600 per µm of film thickness, and said piezoelectric film has least one of a coercive voltage of 3-15 V per µm of film thickness and a remanence value of 20-50 µC/cm2. Formula 1: 0 ≤ δ ≤ 1. Formula 11: 1.00 ≤ a + b ≤ 1.35. Formula 12: 0 ≤ b ≤ 0.8. Formula 13: 1.00 ≤ c + d + e ≤ 1.1. Formula 14: 0.4 ≤ c ≤ 0.7. Formula 15: 0.3 ≤ d ≤ 0.6. Formula 16: 0 ≤ e ≤ 0.1.

Description

圧電体膜及びその製造方法、バイモルフ素子、圧電体素子及びその製造方法Piezoelectric film and manufacturing method thereof, bimorph element, piezoelectric element and manufacturing method thereof
 本発明は、圧電体膜及びその製造方法、バイモルフ素子、圧電体素子及びその製造方法に関する。 The present invention relates to a piezoelectric film and a manufacturing method thereof, a bimorph element, a piezoelectric element and a manufacturing method thereof.
 従来のPb(Zr,Ti)O(以下、「PZT」という。)のバルク状圧電体の製造方法について説明する。
 多結晶PZT粉末を焼成し、この多結晶PZT粉末を樹脂と混合し、その混合物をシート状にしたPZTシートを形成する。このPZTシートを積層し、焼き固めることで、バルク状圧電体を作製することができる。焼き固めた後の1層のPZTシートの厚さは20μm以上である(例えば特許文献1参照)。
 上記のようにバルク状圧電体が厚さ20μm以上のPZTシートを積層させるのは、20μm未満の厚さにすると圧電特性が得られないことがあるからである。また、多結晶PZT粉末の結晶粒径が大きいため、10μm以下の厚さのPZTシートに加工することもできない。また、バルク状圧電体のPZTはキュリー温度が200℃と低いため、高温になると圧電特性が壊れやすい。従って、加熱できる温度に制限があるため、バルク状圧電体を精密に加工するのが難しいという欠点がある。
 従来のPZTの膜状圧電体は、基板上に2μm以下の厚さのPZT膜をスパッタリング法により成膜することで製造する(例えば特許文献2参照)。膜状圧電体が2μm以下の厚さであるのは成膜速度が遅いからである。具体的には、厚さ1μmのPZT膜をスパッタリング法により成膜するには2時間以上の時間がかかるため、2μmのPZT膜を成膜するには4時間以上の時間を要することになる。従って、バルク状圧電体のような厚膜の膜状圧電体をPZT膜で作製することはコストが高くなるため、産業上利用するにあたり現実的ではなかった。
 また、成膜時間を長時間かけてスパッタリング法により厚さ5μm以上のPZT膜を基板上に成膜すると、そのPZT膜が厚いために2μm以下の薄いPZT膜に比べて大きな歪(応力)が発生する。その歪によってPZT膜が割れたり、基板からPZT膜が剥がれることがある。従って、5μm以上の膜厚の膜状圧電体を作製することが困難である。
 また、スパッタリング法によるPZT膜の成膜を厚さ5μm以上まで続けると、スパッタリング装置の入力電圧VDCが下がってしまい、一定の組成のPZT膜を作製することが困難である。その理由は、成膜時間が長くなるとスパッタリング装置のPZTターゲットの表面が金属化して抵抗値が下がるからであり、PZTターゲットの表面組成がPZTではなくなるからである。従って、5μm以上の膜厚の膜状圧電体を作製することは困難である。
 上記の事情によりバルク状圧電体と膜状圧電体では厚さが大きく異なるため、バルク状圧電体によって作製される製品と膜状圧電体によって作製される製品は用途によって分けられていた。
A method for producing a conventional bulk piezoelectric body of Pb (Zr, Ti) O 3 (hereinafter referred to as “PZT”) will be described.
The polycrystalline PZT powder is fired, and this polycrystalline PZT powder is mixed with a resin to form a PZT sheet in which the mixture is formed into a sheet. By stacking and baking this PZT sheet, a bulk piezoelectric body can be manufactured. The thickness of the single layer PZT sheet after baking is 20 μm or more (see, for example, Patent Document 1).
The reason why the PZT sheets having a bulk piezoelectric body of 20 μm or more are laminated as described above is that when the thickness is less than 20 μm, piezoelectric characteristics may not be obtained. Further, since the polycrystalline PZT powder has a large crystal grain size, it cannot be processed into a PZT sheet having a thickness of 10 μm or less. In addition, since the PZT of the bulk piezoelectric body has a low Curie temperature of 200 ° C., the piezoelectric characteristics are easily broken at high temperatures. Therefore, there is a drawback that it is difficult to precisely process the bulk piezoelectric body because there is a limit to the temperature at which it can be heated.
A conventional PZT film-like piezoelectric body is manufactured by forming a PZT film having a thickness of 2 μm or less on a substrate by sputtering (see, for example, Patent Document 2). The film-like piezoelectric body has a thickness of 2 μm or less because the film forming speed is low. Specifically, since it takes 2 hours or more to form a PZT film having a thickness of 1 μm by sputtering, it takes 4 hours or more to form a 2 μm PZT film. Therefore, manufacturing a thick film-like piezoelectric material such as a bulk piezoelectric material with a PZT film increases the cost, and is not practical for industrial use.
Further, when a PZT film having a thickness of 5 μm or more is formed on a substrate by sputtering for a long time, a large strain (stress) is generated compared to a thin PZT film having a thickness of 2 μm or less because the PZT film is thick. appear. The strain may break the PZT film or peel the PZT film from the substrate. Therefore, it is difficult to produce a film-like piezoelectric body having a thickness of 5 μm or more.
Further, if the PZT film is formed by sputtering to a thickness of 5 μm or more, the input voltage VDC of the sputtering apparatus is lowered, and it is difficult to produce a PZT film having a constant composition. The reason is that as the film formation time becomes longer, the surface of the PZT target of the sputtering apparatus becomes metallized and the resistance value decreases, and the surface composition of the PZT target is not PZT. Therefore, it is difficult to produce a film-like piezoelectric body having a film thickness of 5 μm or more.
Due to the above circumstances, the bulk piezoelectric film and the film piezoelectric body have different thicknesses. Therefore, the product manufactured by the bulk piezoelectric body and the product manufactured by the film piezoelectric body are separated depending on the application.
特開2013−518420号公報JP2013-518420A
 本発明の一態様は、膜厚が5μm以上の膜状の圧電体膜またはその製造方法を提供することを課題とする。
 また、本発明の一態様は、膜厚が5μm以上の膜状の圧電体膜を有する圧電体素子またはその製造方法を提供することを課題とする。
 また、本発明の一態様は、膜状の圧電体膜を積層した圧電体素子またはその製造方法を提供することを課題とする。
 また、本発明の一態様は、膜厚が5μm以上の膜状の圧電体膜を有するバイモルフ素子を提供することを課題とする。
An object of one embodiment of the present invention is to provide a film-like piezoelectric film having a thickness of 5 μm or more or a method for manufacturing the film.
Another object of one embodiment of the present invention is to provide a piezoelectric element having a film-like piezoelectric film having a thickness of 5 μm or more, or a method for manufacturing the same.
Another object of one embodiment of the present invention is to provide a piezoelectric element in which film-shaped piezoelectric films are stacked or a method for manufacturing the piezoelectric element.
Another object of one embodiment of the present invention is to provide a bimorph element having a film-like piezoelectric film having a thickness of 5 μm or more.
 以下に、本発明の種々の態様について説明する。
[1]膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜であり、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
 前記(PbLa)(ZrTiNb)O3−δ膜は、100以上600以下の膜厚1μm当たりの比誘電率を有し、
 前記(PbLa)(ZrTiNb)O3−δ膜は、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体膜。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[2]上記[1]において、
 前記(PbLa)(ZrTiNb)O3−δ膜は電極上に形成されており、
 前記(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記電極のXRDのピーク値より高いことを特徴とする圧電体膜。
[3]上記[2]において、
 前記電極はPt膜からなることを特徴とする圧電体膜。
[4]上記[1]乃至[3]のいずれか一項において、
 前記(PbLa)(ZrTiNb)O3−δ膜のキュリー温度は250℃以上420℃以下であることを特徴とする圧電体膜。
[5]シムの上面に配置された第1の電極と、
 前記第1の電極上に配置された上記[1]に記載の圧電体膜と、
 前記圧電体膜上に配置された第2の電極と、
 前記シムの下面に配置された第3の電極と、
 前記第3の電極下に配置された上記[1]に記載の圧電体膜と、
 前記圧電体膜下に配置された第4の電極と、
を具備することを特徴とするバイモルフ素子。
[6]基板上にスパッタリング法により膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜を成膜する工程を有し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
 前記(PbLa)(ZrTiNb)O3−δ膜を成膜する際の成膜速度は1nm/sec以上2.5nm/sec以下であることを特徴とする圧電体膜の製造方法。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[7]上記[6]において、
 前記工程は、スパッタリングターゲットに10kHz以上30MHz以下の高周波出力を、1/20ms以上1/3ms以下の周期で25%以上90%以下のDUTY比のパルス状に供給することで、前記(PbLa)(ZrTiNb)O3−δ膜を成膜する工程であり、
 前記DUTY比は、1周期の間で前記スパッタリングターゲットに前記高周波出力が印加される期間の比率であることを特徴とする圧電体膜の製造方法。
[8]上記[7]において、
 前記スパッタリングターゲットに前記高周波出力を供給する際に20rpm以上120rpm以下の速度で磁石を回転させることで前記スパッタリングターゲットに磁場を加えることを特徴とする圧電体膜の製造方法。
[9]上記[7]または[8]において、
 前記スパッタリングターゲットに前記高周波出力を供給している際に前記スパッタリングターゲットに発生する直流成分である電圧VDCを−200V以上−80V以下に制御することを特徴とする圧電体膜の製造方法。
[10]上記[7]乃至[9]のいずれか一項において、
 前記スパッタリングターゲットに前記高周波出力を供給している際の前記スパッタリングターゲットの表面の比抵抗を1×10Ω・cm以上1×1012Ω・cm以下に制御することを特徴とする圧電体膜の製造方法。
[11]上記[7]乃至[10]のいずれか一項において、
 前記スパッタリングターゲットに前記高周波出力を供給する際の前記スパッタリングターゲットは、下記式6の比のOガス及びArガスの雰囲気に置かれることを特徴とする圧電体膜の製造方法。
 0.1≦Oガス/Arガス≦0.3 ・・・式6
[12]上記[7]乃至[11]のいずれか一項において、
 前記スパッタリングターゲットに前記高周波出力を供給する際の前記スパッタリングターゲットは、0.1Pa以上2Pa以下の圧力雰囲気に置かれることを特徴とする圧電体膜の製造方法。
[13]上記[6]乃至[12]のいずれか一項において、
 前記工程で成膜された前記(PbLa)(ZrTiNb)O3−δ膜は、100以上600以下の膜厚1μm当たりの比誘電率を有し、
 前記工程で成膜された前記(PbLa)(ZrTiNb)O3−δ膜は、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体膜の製造方法。
[14]上記[6]乃至[13]のいずれか一項において、
 前記(PbLa)(ZrTiNb)O3−δ膜の分極方向は、前記基板の上面に対して垂直で上方向であることを特徴とする圧電体膜の製造方法。
[15]膜厚が5μm以上の第1の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第1の電極と、
 前記第1の電極及び前記第1の(PbLa)(ZrTiNb)O3−δ膜に貼り付けられた第2の接着用(PbLa)(ZrTiNb)O3−δ膜と、
 前記第2の接着用(PbLa)(ZrTiNb)O3−δ膜上に形成された膜厚が5μm以上の第2の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜上形成された第2の電極と、
 前記第2の電極及び前記第2の(PbLa)(ZrTiNb)O3−δ膜に貼り付けられた第3の接着用(PbLa)(ZrTiNb)O3−δ膜と、
 前記第3の接着用(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第3の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[16]上記[15]において、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第1の電極のXRDのピーク値より高く、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第2の電極のXRDのピーク値より高いことを特徴とする圧電体素子。
[17]上記[15]または[16]において、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれはスパッタリング法により形成された膜であり、
 前記第1及び第2の接着用(PbLa)(ZrTiNb)O3−δ膜それぞれはゾルゲル法により形成された膜であることを特徴とする圧電体素子。
[18]第1の電極と、
 前記第1の電極上に形成された膜厚が5μm以上の第1の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
 前記第2の電極及び前記第1の(PbLa)(ZrTiNb)O3−δ膜の上に形成された接着用(PbLa)(ZrTiNb)O3−δ膜と、
 前記接着用(PbLa)(ZrTiNb)O3−δ膜上に貼り付けられた膜厚が5μm以上の第2の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[19]第1の電極と、
 前記第1の電極上に形成された膜厚が5μm以上の第1の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
 前記第2の電極及び前記第1の(PbLa)(ZrTiNb)O3−δ膜の上に形成された第2の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜上に貼り付けられた膜厚が5μm以上の第3の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第3の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
 前記第1乃至第3の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
 前記第1乃至第3の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[20]上記[19]において、
 前記第3の(PbLa)(ZrTiNb)O3−δ膜及び前記第3の電極の上に形成された接着用(PbLa)(ZrTiNb)O3−δ膜と、
 前記接着用(PbLa)(ZrTiNb)O3−δ膜上に貼り付けられた膜厚が5μm以上の第4の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第4の(PbLa)(ZrTiNb)O3−δ膜上に形成された第4の電極と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[21]第1の電極と、
 前記第1の電極上に形成された第1の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
 前記第2の電極上に形成された第2の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
を具備し、
 前記第1の電極の第1の側面と前記第3の電極の第1の側面が第6の電極によって電気的に接続され、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
 前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[22]上記[21]において、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜の分極方向は、第2の(PbLa)(ZrTiNb)O3−δ膜の分極方向の逆方向であることを特徴とする圧電体素子。
[23]上記[21]または[22]において、
 前記第3の電極上に形成された第3の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第3の(PbLa)(ZrTiNb)O3−δ膜上に形成された第4の電極と、
を具備し、
 前記第2の電極の第2の側面と前記第4の電極の第2の側面が第7の電極によって電気的に接続され、
 a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子。
[24]上記[23]において、
 前記第4の電極上に形成された第4の(PbLa)(ZrTiNb)O3−δ膜と、
 前記第4の(PbLa)(ZrTiNb)O3−δ膜上に形成された第5の電極と、
を具備し、
 前記第5の電極の第1の側面と前記第3の電極の第1の側面と前記第1の電極の第1の側面が前記第6の電極によって電気的に接続され、
 a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子。
[25]上記[21]乃至[24]において、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第1の電極のXRDのピーク値より高く、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第2の電極のXRDのピーク値より高いことを特徴とする圧電体素子。
[26]基板上に電極膜を形成し、前記電極膜上にスパッタリング法により(PbLa)(ZrTiNb)O3−δ膜を形成する工程(a)と、
 前記(PbLa)(ZrTiNb)O3−δ膜上に接着用(PbLa)(ZrTiNb)O3−δ膜をゾルゲル法により形成する工程(b)と、
 前記基板を前記電極膜から除去する工程(c)と、
 前記電極膜をエッチング加工することで、前記(PbLa)(ZrTiNb)O3−δ膜下に第1の電極、第2の電極及び第3の電極を形成する工程(d)と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[27]上記[26]において、
 前記工程(d)の後に、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を切断することで、前記第1の電極、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を積層した第1の積層部と、前記第2の電極、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を積層した第2の積層部と、前記第3の電極、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を積層した第3の積層部を形成する工程と、
 前記第1の積層部の前記第1の電極と前記第2の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜とを重ね、かつ前記第2の積層部の前記第2の電極と前記第3の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜とを重ねる工程と、
 前記第1の積層部の前記第1の電極と前記第3の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜との間に荷重をかけつつ熱処理を施すことで、前記第1の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜及び前記第1の電極それぞれと前記第2の積層部の前記(PbLa)(ZrTiNb)O3−δ膜を貼り付けるとともに、前記第2の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜及び前記第2の電極それぞれと前記第3の積層部の前記(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程と、
を具備することを特徴とする圧電体素子の製造方法。
[28]上記[26]または[27]において、
 前記(PbLa)(ZrTiNb)O3−δ膜の膜厚は5μm以上であることを特徴とする圧電体素子の製造方法。
[29]第1の基板上に第1の電極膜を形成し、前記第1の電極膜上にスパッタリング法により第1の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(a)と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第2の電極膜を形成し、前記第2の電極膜をエッチング加工することで、前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第1の電極及び第2の電極を形成する工程(b)と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜、前記第1及び第2の電極の上に接着用(PbLa)(ZrTiNb)O3−δ膜をゾルゲル法により形成する工程(c)と、
 第2の基板上に第3の電極膜を形成し、前記第3の電極膜上にスパッタリング法により第2の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(d)と、
 前記接着用(PbLa)(ZrTiNb)O3−δ膜と前記第2の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程(e)と、
 前記第1の基板及び前記第2の基板を除去する工程(f)と、
 前記第1の電極膜をエッチング加工することで、前記第1の(PbLa)(ZrTiNb)O3−δ膜下に第3の電極及び第4の電極を形成する工程(g)と、
 前記第3の電極膜をエッチング加工することで、前記第2の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極及び第6の電極を形成する工程(h)と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[30]第1の基板上に第1の電極膜を形成し、前記第1の電極膜上にスパッタリング法により第1の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(a)と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第2の電極膜を形成し、前記第2の電極膜をエッチング加工することで、前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第1の電極及び第2の電極を形成する工程(b)と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜、前記第1及び第2の電極の上にスパッタリング法により第2の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(c)と、
 第2の基板上に第3の電極膜を形成し、前記第3の電極膜上にスパッタリング法により第3の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(d)と、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜と前記第3の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程(e)と、
 前記第2の基板を除去する工程(f)と、
 前記第3の電極膜をエッチング加工することで、前記第3の(PbLa)(ZrTiNb)O3−δ膜下に第3の電極及び第4の電極を形成する工程(g)と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[31]上記[30]において、
 前記工程(g)の後に、前記第3の(PbLa)(ZrTiNb)O3−δ膜、前記第3及び第4の電極の上に接着用(PbLa)(ZrTiNb)O3−δ膜をゾルゲル法により形成する工程と、
 第3の基板上に第4の電極膜を形成し、前記第4の電極膜上にスパッタリング法により第4の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
 前記第4の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極膜を形成し、前記第5の電極膜をエッチング加工することで、前記第4の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極及び第6の電極を形成する工程と、
 前記第4の(PbLa)(ZrTiNb)O3−δ膜、前記第5及び第6の電極の上にスパッタリング法により第5の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
 第4の基板上に第6の電極膜を形成し、前記第6の電極膜上にスパッタリング法により第6の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
 前記第6の(PbLa)(ZrTiNb)O3−δ膜と前記第5の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程と、
 前記第4の基板及び前記第6の電極膜を除去する工程と、
 前記接着用(PbLa)(ZrTiNb)O3−δ膜と前記第6の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程と、
を具備し、
 a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
[32]上記[31]において、
 前記第3の基板を除去し、前記第4の電極膜をエッチング加工することで、前記第4の(PbLa)(ZrTiNb)O3−δ膜下に第7の電極及び第8の電極を形成する工程と、
を具備することを特徴とする圧電体素子の製造方法。
[33]基板上に第1の電極を形成する工程(a)と、
 前記第1の電極上にスパッタリング法により第1の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(b)と、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第2の電極を形成する工程(c)と、
 前記第2の電極上にスパッタリング法により第2の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(d)と、
 前記第2の(PbLa)(ZrTiNb)O3−δ膜上に第3の電極を形成する工程(e)と、
 前記基板を前記第1の電極から除去する工程(f)と、
 前記第1の電極の第1の側面と前記第3の電極の第1の側面を第6の電極によって接続する工程(g)と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[34]上記[33]において、
 前記工程(e)と前記工程(f)との間に、
 前記第3の電極上にスパッタリング法により第3の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(h)と、
 前記第3の(PbLa)(ZrTiNb)O3−δ膜上に第4の電極を形成する工程(i)と、を有し、
 前記工程(f)の後に、前記第2の電極の第2の側面と前記第4の電極の第2の側面を第7の電極によって接続する工程を有し、
 a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
[35]上記[34]において、
 前記工程(i)と前記工程(f)との間に、
 前記第4の電極上にスパッタリング法により第4の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
 前記第4の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極を形成する工程と、を有し、
 前記工程(g)は、前記第1の電極の第1の側面と前記第3の電極の第1の側面と前記第5の電極の第1の側面を第6の電極によって接続する工程であり、
 a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
[36]上記[29]乃至[35]のいずれか一項において、
 前記第1の(PbLa)(ZrTiNb)O3−δ膜の膜厚は5μm以上であることを特徴とする圧電体素子の製造方法。
[37]基板上にZrO膜を形成する工程(a)と、
 前記ZrO膜上にエピタキシャル成長によるPt膜を形成する工程(b)と、
 前記Pt膜上にスパッタリング法により膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(c)と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体膜の製造方法。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[38]上記[37]において、
 前記工程(b)と前記工程(c)との間に、前記Pt膜上にSrRuO膜を形成する工程を含むことを特徴とする圧電体膜の製造方法。
[39]上記[37]または[38]において、
 前記(PbLa)(ZrTiNb)O3−δ膜の分極方向は、前記基板の上面に対して垂直で上方向であることを特徴とする圧電体膜の製造方法。
[40]ZrO膜と、
 前記ZrO膜上に形成されたエピタキシャル成長によるPt膜と、
 前記Pt膜上に形成された膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜と、
を具備し、
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体膜。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
[41]上記[40]において、
 前記Pt膜と前記(PbLa)(ZrTiNb)O3−δ膜との間に形成されたSrRuO膜を含むことを特徴とする圧電体膜。
 なお、上記の本発明の種々の態様において、特定のB(以下「B」という)の上(または下)に特定のC(以下「C」という)を形成する(Cが形成される)というとき、Bの上(または下)に直接Cを形成する(Cが形成される)場合に限定されず、Bの上(または下)に本発明の一態様の作用効果を阻害しない範囲で、他のものを介してCを形成する(Cが形成される)場合も含むものとする。
Hereinafter, various aspects of the present invention will be described.
[1] Film thickness of 5 μm or more (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film has a relative dielectric constant per 1 μm thickness of 100 to 600,
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film has a coercive voltage per 1 μm thickness of 3 V or more and 15 V or less and 20 μC / cm 2 50 μC / cm 2 A piezoelectric film having at least one of the following remanent polarization values:
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[2] In the above [1],
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The membrane is formed on the electrode,
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The piezoelectric film, wherein the XRD peak value of the film is higher than the XRD peak value of the electrode.
[3] In the above [2],
The piezoelectric film is characterized in that the electrode is made of a Pt film.
[4] In any one of [1] to [3] above,
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A piezoelectric film having a Curie temperature of 250 to 420 ° C.
[5] a first electrode disposed on the upper surface of the shim;
The piezoelectric film according to the above [1] disposed on the first electrode;
A second electrode disposed on the piezoelectric film;
A third electrode disposed on the lower surface of the shim;
The piezoelectric film according to the above [1], which is disposed under the third electrode;
A fourth electrode disposed under the piezoelectric film;
The bimorph element characterized by comprising.
[6] A film thickness of 5 μm or more (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Having a step of forming a film,
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A method of manufacturing a piezoelectric film, wherein a film formation rate when forming a film is 1 nm / sec or more and 2.5 nm / sec or less.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[7] In the above [6],
In the step, a high frequency output of 10 kHz to 30 MHz is supplied to the sputtering target in a pulse form having a duty ratio of 25% to 90% with a period of 1/20 ms to 1/3 ms. a La b ) (Zr c Ti d Nb e ) O 3-δ A step of forming a film,
The method of manufacturing a piezoelectric film, wherein the DUTY ratio is a ratio of a period during which the high-frequency output is applied to the sputtering target during one period.
[8] In the above [7],
A method of manufacturing a piezoelectric film, wherein a magnetic field is applied to the sputtering target by rotating a magnet at a speed of 20 rpm to 120 rpm when supplying the high-frequency output to the sputtering target.
[9] In the above [7] or [8],
A voltage V that is a direct current component generated in the sputtering target when the high-frequency output is supplied to the sputtering target. DC Is controlled to -200V or more and -80V or less.
[10] In any one of the above [7] to [9],
The specific resistance of the surface of the sputtering target when the high-frequency output is supplied to the sputtering target is 1 × 10 9 Ω · cm or more 1 × 10 12 A method of manufacturing a piezoelectric film, characterized by being controlled to Ω · cm or less.
[11] In any one of [7] to [10] above,
The sputtering target when supplying the high-frequency output to the sputtering target is O in the ratio of the following formula 6. 2 A method for producing a piezoelectric film, characterized by being placed in an atmosphere of gas and Ar gas.
0.1 ≦ O 2 Gas / Ar gas ≦ 0.3 Equation 6
[12] In any one of [7] to [11] above,
The method for manufacturing a piezoelectric film, wherein the sputtering target when supplying the high-frequency output to the sputtering target is placed in a pressure atmosphere of 0.1 Pa or more and 2 Pa or less.
[13] In any one of [6] to [12] above,
The (Pb) film formed in the step a La b ) (Zr c Ti d Nb e ) O 3-δ The film has a relative dielectric constant per 1 μm thickness of 100 to 600,
The (Pb) film formed in the step a La b ) (Zr c Ti d Nb e ) O 3-δ The film has a coercive voltage per 1 μm thickness of 3 V or more and 15 V or less and 20 μC / cm 2 50 μC / cm 2 A method for producing a piezoelectric film, comprising at least one of the following remanent polarization values:
[14] In any one of the above [6] to [13],
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The method of manufacturing a piezoelectric film, wherein the polarization direction of the film is perpendicular to the upper surface of the substrate and is upward.
[15] First (Pb) having a thickness of 5 μm or more a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode formed on the membrane;
The first electrode and the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For the second bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
For the second bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second (Pb) film having a thickness of 5 μm or more formed on the film. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second electrode formed on the film;
The second electrode and the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For the third adhesion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
For third bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The third (Pb formed on the film a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A third electrode formed on the film;
Comprising
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each of the films has a relative dielectric constant per 1 μm thickness of 100 to 600,
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each film has a coercive voltage per 1 μm thickness of 3 V or more and 15 V or less and 20 μC / cm. 2 50 μC / cm 2 A piezoelectric element having at least one of the following remanent polarization values:
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[16] In the above [15],
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The XRD peak value of the film is higher than the XRD peak value of the first electrode,
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The piezoelectric element, wherein the XRD peak value of the film is higher than the XRD peak value of the second electrode.
[17] In the above [15] or [16],
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each film is a film formed by sputtering,
For the first and second bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each of the films is a film formed by a sol-gel method.
[18] a first electrode;
The first (Pb) film having a thickness of 5 μm or more formed on the first electrode. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second electrode formed on the membrane;
The second electrode and the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For bonding (Pb formed on the film) a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
For bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The second (Pb) having a thickness of 5 μm or more pasted on the film a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A third electrode formed on the film;
Comprising
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each of the films has a relative dielectric constant per 1 μm thickness of 100 to 600,
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each film has a coercive voltage per 1 μm thickness of 3 V or more and 15 V or less and 20 μC / cm. 2 50 μC / cm 2 A piezoelectric element having at least one of the following remanent polarization values:
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[19] a first electrode;
The first (Pb) film having a thickness of 5 μm or more formed on the first electrode. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second electrode formed on the membrane;
The second electrode and the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The second (Pb formed on the film a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A third (Pb) film having a thickness of 5 μm or more pasted on the film. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A third electrode formed on the film;
Comprising
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
The first to third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each of the films has a relative dielectric constant per 1 μm thickness of 100 to 600,
The first to third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each film has a coercive voltage per 1 μm thickness of 3 V or more and 15 V or less and 20 μC / cm. 2 50 μC / cm 2 A piezoelectric element having at least one of the following remanent polarization values:
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[20] In the above [19],
Said third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For bonding (Pb) formed on the film and the third electrode a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
For bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A fourth (Pb) film having a thickness of 5 μm or more pasted on the film. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
The fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A fourth electrode formed on the membrane;
Comprising
a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16;
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[21] a first electrode;
The first (Pb) formed on the first electrode a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second electrode formed on the membrane;
A second (Pb) formed on the second electrode. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A third electrode formed on the film;
Comprising
A first side surface of the first electrode and a first side surface of the third electrode are electrically connected by a sixth electrode;
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each of the films has a relative dielectric constant per 1 μm thickness of 100 to 600,
The first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Each film has a coercive voltage per 1 μm thickness of 3 V or more and 15 V or less and 20 μC / cm. 2 50 μC / cm 2 A piezoelectric element having at least one of the following remanent polarization values:
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[22] In the above [21],
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction of the film is the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A piezoelectric element having a direction opposite to a polarization direction of a film.
[23] In the above [21] or [22],
A third (Pb) formed on the third electrode. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Said third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A fourth electrode formed on the membrane;
Comprising
A second side surface of the second electrode and a second side surface of the fourth electrode are electrically connected by a seventh electrode;
a, b, c, d, e, and δ satisfy the above-mentioned formula 1 and formulas 11 to 16;
[24] In the above [23],
A fourth (Pb) formed on the fourth electrode. a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
The fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A fifth electrode formed on the film;
Comprising
A first side surface of the fifth electrode, a first side surface of the third electrode, and a first side surface of the first electrode are electrically connected by the sixth electrode;
a, b, c, d, e, and δ satisfy the above-mentioned formula 1 and formulas 11 to 16;
[25] In the above [21] to [24],
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The XRD peak value of the film is higher than the XRD peak value of the first electrode,
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The piezoelectric element, wherein the XRD peak value of the film is higher than the XRD peak value of the second electrode.
[26] An electrode film is formed on the substrate, and a sputtering method (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (a);
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For adhesion on membrane (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A step (b) of forming a film by a sol-gel method;
Removing the substrate from the electrode film (c);
By etching the electrode film, the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a first electrode, a second electrode, and a third electrode under the film (d);
Comprising
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[27] In the above [26],
After the step (d), the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ By cutting the film, the first electrode, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first laminated portion in which films are laminated, the second electrode, and (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second laminated portion in which films are laminated, the third electrode, and (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a third laminated portion in which films are laminated;
For bonding (Pb) of the first electrode of the first laminated portion and the second laminated portion a La b ) (Zr c Ti d Nb e ) O 3-δ And the second electrode of the second stacked portion and the adhesive layer (Pb) of the third stacked portion. a La b ) (Zr c Ti d Nb e ) O 3-δ A process of layering the film,
For bonding (Pb) of the first electrode of the first laminated part and the third laminated part a La b ) (Zr c Ti d Nb e ) O 3-δ By applying a heat treatment between the film and the film, the first laminated portion for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ (Pb) of each of the film, the first electrode, and the second stacked portion a La b ) (Zr c Ti d Nb e ) O 3-δ Affixing the film and bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ (Pb) of each of the film and the second electrode and the third stacked portion a La b ) (Zr c Ti d Nb e ) O 3-δ A step of applying a film;
A method for manufacturing a piezoelectric element, comprising:
[28] In the above [26] or [27],
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A method of manufacturing a piezoelectric element, wherein the film thickness is 5 μm or more.
[29] A first electrode film is formed on a first substrate, and a first (Pb) film is formed on the first electrode film by a sputtering method. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (a);
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second electrode film is formed on the film, and the second electrode film is etched to obtain the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a first electrode and a second electrode on the film (b);
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane for adhesion (Pb on the first and second electrodes) a La b ) (Zr c Ti d Nb e ) O 3-δ A step (c) of forming a film by a sol-gel method;
A third electrode film is formed on the second substrate, and a second (Pb) film is formed on the third electrode film by a sputtering method. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (d);
For bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane and said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A step (e) of attaching a film;
Removing the first substrate and the second substrate (f);
Etching the first electrode film allows the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a third electrode and a fourth electrode under the film (g);
By etching the third electrode film, the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a fifth electrode and a sixth electrode on the film (h);
Comprising
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[30] A first electrode film is formed on a first substrate, and a first (Pb) film is formed on the first electrode film by a sputtering method. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (a);
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second electrode film is formed on the film, and the second electrode film is etched to obtain the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a first electrode and a second electrode on the film (b);
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second (Pb) film is formed on the first and second electrodes by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (c);
A third electrode film is formed on the second substrate, and a third (Pb) film is formed on the third electrode film by a sputtering method. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (d);
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane and said third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A step (e) of attaching a film;
Removing the second substrate (f);
By etching the third electrode film, the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a third electrode and a fourth electrode under the film (g);
Comprising
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[31] In the above [30],
After the step (g), the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane for adhesion (Pb on the third and fourth electrodes) a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film by a sol-gel method;
A fourth electrode film is formed on the third substrate, and a fourth (Pb) film is formed on the fourth electrode film by a sputtering method. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film;
The fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ By forming a fifth electrode film on the film and etching the fifth electrode film, the fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a fifth electrode and a sixth electrode on the film;
The fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A fifth (Pb) film is formed on the fifth and sixth electrodes by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film;
A sixth electrode film is formed on the fourth substrate, and a sixth (Pb) film is formed on the sixth electrode film by a sputtering method. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film;
The sixth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane and said fifth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A step of applying a film;
Removing the fourth substrate and the sixth electrode film;
For bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane and the sixth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A step of applying a film;
Comprising
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the above formulas 1 and 11 to 16.
[32] In the above [31],
By removing the third substrate and etching the fourth electrode film, the fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a seventh electrode and an eighth electrode under the film;
A method for manufacturing a piezoelectric element, comprising:
[33] A step (a) of forming a first electrode on a substrate;
On the first electrode, a first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (b);
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a second electrode on the film (c);
A second (Pb) is formed on the second electrode by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (d);
Said second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a third electrode on the film (e);
Removing the substrate from the first electrode (f);
Connecting the first side surface of the first electrode and the first side surface of the third electrode by a sixth electrode;
Comprising
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[34] In the above [33],
Between the step (e) and the step (f),
A third (Pb) is formed on the third electrode by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (h);
Said third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a fourth electrode on the film, (i),
After the step (f), a step of connecting the second side surface of the second electrode and the second side surface of the fourth electrode by a seventh electrode,
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the above formulas 1 and 11 to 16.
[35] In the above [34],
Between the step (i) and the step (f),
A fourth (Pb) layer is formed on the fourth electrode by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film;
The fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a fifth electrode on the film,
The step (g) is a step of connecting the first side surface of the first electrode, the first side surface of the third electrode, and the first side surface of the fifth electrode by a sixth electrode. ,
A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the above formulas 1 and 11 to 16.
[36] In any one of the above [29] to [35],
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A method of manufacturing a piezoelectric element, wherein the film thickness is 5 μm or more.
[37] ZrO on substrate 2 Forming a film (a);
ZrO 2 A step (b) of forming a Pt film by epitaxial growth on the film;
A film thickness of 5 μm or more (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Forming a film (c);
Comprising
A method for producing a piezoelectric film, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[38] In the above [37],
Between the step (b) and the step (c), SrRuO is formed on the Pt film. 3 A method of manufacturing a piezoelectric film comprising a step of forming a film.
[39] In the above [37] or [38],
(Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The method of manufacturing a piezoelectric film, wherein the polarization direction of the film is perpendicular to the upper surface of the substrate and is upward.
[40] ZrO 2 A membrane,
ZrO 2 An epitaxially grown Pt film formed on the film;
The film thickness formed on the Pt film is 5 μm or more (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A membrane,
Comprising
a, b, c, d, e, and δ satisfy the following formulas 1 and 11 to 16, respectively.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
[41] In the above [40],
The Pt film and the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ SrRuO formed between films 3 A piezoelectric film comprising a film.
In the various aspects of the present invention described above, a specific C (hereinafter referred to as “C”) is formed above (or below) a specific B (hereinafter referred to as “B”) (C is formed). When C is directly formed on (or below) B (C is formed), the present invention is not limited to above (or below) B as long as the effect of the embodiment of the present invention is not inhibited. The case where C is formed via another (C is formed) is also included.
 本発明の一態様よれば、膜厚が5μm以上の膜状の圧電体膜またはその製造方法を提供することができる。
 また、本発明の一態様によれば、膜厚が5μm以上の膜状の圧電体膜を有する圧電体素子またはその製造方法を提供することができる。
 また、本発明の一態様によれば、膜状の圧電体膜を積層した圧電体素子またはその製造方法を提供することがでる。
 また、本発明の一態様によれば、膜厚が5μm以上の膜状の圧電体膜を有するバイモルフ素子を提供することができる。
According to one embodiment of the present invention, a film-like piezoelectric film having a film thickness of 5 μm or more or a method for manufacturing the film can be provided.
In addition, according to one embodiment of the present invention, it is possible to provide a piezoelectric element having a film-like piezoelectric film having a film thickness of 5 μm or more, or a manufacturing method thereof.
In addition, according to one embodiment of the present invention, it is possible to provide a piezoelectric element in which film-like piezoelectric films are stacked or a method for manufacturing the same.
Further, according to one embodiment of the present invention, a bimorph element having a film-like piezoelectric film having a thickness of 5 μm or more can be provided.
 図1は本発明の一態様に係るスパッタリング装置を模式的に示す断面図である。
 図2は、100S/T%のDUTY比の場合を説明する図である。
 図3(A)~(D)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図4(A)は本発明の一態様に係る圧電体素子の製造方法を説明する平面図、図4(B)は本発明の一態様に係る圧電体素子の製造方法を説明する断面図である。
 図5(A),(B)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図6(A)は本発明の一態様に係る圧電体素子の製造方法を説明する平面図、図6(B)は本発明の一態様に係る圧電体素子の製造方法を説明する断面図である。
 図7(A)は本発明の一態様に係る圧電体素子の製造方法を説明する平面図、図7(B)は本発明の一態様に係る圧電体素子の製造方法を説明する断面図である。
 図8(A)~(C)は、発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図9(A)~(C)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図10(A)~(C)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図11(A)~(C)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図12(A)~(D)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図13(A),(B)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図14(A),(B)は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図15(A)~(C)は本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図16(A)は実施例1のサンプルをFIB(Focused Ion Beam)で断面観察した像、図16(B)は実施例2のサンプルをFIBで断面観察した像である。
 図17は実施例1のPZT膜及び実施例2のPZT膜のXRDチャートである。
 図18は、逆格子マップのイメージ図である。
 図19は、結晶格子面(hkl)の逆格子ベクトルと逆格子点を説明する図である。
 図20は、X線回折条件のベクトル表記を説明する図である。
 図21(A)~(C)は逆格子マッピング(方法)を説明する図である。
 図22は、逆格子マッピング(方法)を説明する図である。
 図23は、PZT単結晶の逆格子シミュレーション結果である。
 図24(A),(B)は、実施例1(本発明5μm)及び実施例2(本発明10μm)それぞれのサンプルを逆格子マップ測定した結果である。
 図25(A)は実施例1(本発明5μm)、実施例2(本発明10μm)及び実施例3(本発明20μm)それぞれの強誘性ヒステリシス曲線を示す図、図25(B)は実施例1~3それぞれの圧電バタフライ曲線を示す図である。
 図26(A)は比較例2(K148)の強誘性ヒステリシス曲線を示す図、図26(B)は比較例2(K148)の圧電バタフライ曲線を示す図である。
 図27(A)は比較例3(K129)の強誘性ヒステリシス曲線を示す図、図27(B)は比較例3(K129)の圧電バタフライ曲線を示す図である。
 図28は、実施例3(本発明20μm)のPZT膜のd33評価を行った結果を示す図である。
 図29は、実施例2(本発明10μm)のサンプルの比誘電率と誘電損失(tanδ)の温度変化を周波数を100k,500k,1MHzと変化させて測定した結果を示す図である。
 図30は、実施例4のサンプルを示す断面図である。
 図31は、実施例4のサンプルのXRDチャートである。
 図32は、実施例4のサンプルのXRDチャートである。
 図33は、実施例5のサンプルをFIBで断面観察した像である。
 図34は、δ=0.125、或はn=8.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図35は、δ=0.25、或はn=4.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図36は、δ=0.5、或はn=2.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図37は、δ=1.0、或はn=1.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図38(A)は実施例3のサンプル(20μm−PZT膜)のFIB−SEM像、図38(B)は図38(A)の拡大像である。
 図39(A),(B)は本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図40(A),(B)は本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図41(A),(B)は本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図42(A)~(C)は本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図43(A),(B)は本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図44は、本発明の一態様に係るシリーズ型のバイモルフ素子の製造方法を説明するための断面図である。
 図45は、本発明の一態様に係るパラレル型のバイモルフ素子の製造方法を説明するための断面図である。
 図46は、実施例6の圧電体膜の製造方法を説明するための断面図である。
 図47は、比較例4の圧電体膜の製造方法を説明するための断面図である。
 図48は、PZT膜の歪(応力)を測定する方法を説明するための図である。
 図49は、図48に示す比較例4のPZT膜1105の表面の光学顕微鏡写真である。
FIG. 1 is a cross-sectional view schematically showing a sputtering apparatus according to one embodiment of the present invention.
FIG. 2 is a diagram illustrating the case of a DUTY ratio of 100 S / T%.
3A to 3D are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
4A is a plan view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention, and FIG. 4B is a cross-sectional view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention. is there.
5A and 5B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
6A is a plan view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention, and FIG. 6B is a cross-sectional view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention. is there.
7A is a plan view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention, and FIG. 7B is a cross-sectional view illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention. is there.
8A to 8C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the invention.
9A to 9C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
10A to 10C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
11A to 11C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
12A to 12D are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
13A and 13B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
14A and 14B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
15A to 15C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
16A is an image obtained by observing a cross section of the sample of Example 1 with an FIB (Focused Ion Beam), and FIG. 16B is an image obtained by observing the sample of the Example 2 with a FIB.
FIG. 17 is an XRD chart of the PZT film of Example 1 and the PZT film of Example 2.
FIG. 18 is an image diagram of a reciprocal lattice map.
FIG. 19 is a diagram for explaining reciprocal lattice vectors and reciprocal lattice points on the crystal lattice plane (hkl).
FIG. 20 is a diagram for explaining the vector notation of the X-ray diffraction conditions.
21A to 21C are diagrams for explaining reciprocal lattice mapping (method).
FIG. 22 is a diagram for explaining reciprocal lattice mapping (method).
FIG. 23 shows a reciprocal lattice simulation result of the PZT single crystal.
24A and 24B show the results of reciprocal lattice map measurement of the samples of Example 1 (present invention 5 μm) and Example 2 (present invention 10 μm).
FIG. 25 (A) is a diagram showing strongly attractive hysteresis curves of Example 1 (present invention 5 μm), Example 2 (present invention 10 μm) and Example 3 (present invention 20 μm), and FIG. It is a figure which shows the piezoelectric butterfly curve of each of Examples 1-3.
FIG. 26A is a diagram showing a strong attractive hysteresis curve of Comparative Example 2 (K148), and FIG. 26B is a diagram showing a piezoelectric butterfly curve of Comparative Example 2 (K148).
FIG. 27A is a diagram showing a strong attractive hysteresis curve of Comparative Example 3 (K129), and FIG. 27B is a diagram showing a piezoelectric butterfly curve of Comparative Example 3 (K129).
FIG. 28 is a diagram showing the results of d33 evaluation of the PZT film of Example 3 (20 μm of the present invention).
FIG. 29 is a diagram showing the results of measuring the temperature change of the relative permittivity and dielectric loss (tan δ) of the sample of Example 2 (the present invention 10 μm) while changing the frequency to 100 k, 500 k, and 1 MHz.
30 is a cross-sectional view showing a sample of Example 4. FIG.
FIG. 31 is an XRD chart of the sample of Example 4.
FIG. 32 is an XRD chart of the sample of Example 4.
FIG. 33 is an image obtained by observing a cross section of the sample of Example 5 using FIB.
FIG. 34 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 0.125 or n = 8.0.
FIG. 35 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 0.25 or n = 4.0.
FIG. 36 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 0.5 or n = 2.0.
FIG. 37 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 1.0 or n = 1.0.
38A is a FIB-SEM image of the sample of Example 3 (20 μm-PZT film), and FIG. 38B is an enlarged image of FIG. 38A.
39A and 39B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
40A and 40B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
41A and 41B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
42A to 42C are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
43A and 43B are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
FIG. 44 is a cross-sectional view illustrating the method for manufacturing the series-type bimorph element according to one embodiment of the present invention.
FIG. 45 is a cross-sectional view illustrating the method for manufacturing the parallel bimorph element according to one embodiment of the present invention.
FIG. 46 is a cross-sectional view for explaining the method for manufacturing the piezoelectric film of the sixth embodiment.
FIG. 47 is a cross-sectional view for explaining the method of manufacturing the piezoelectric film of Comparative Example 4.
FIG. 48 is a diagram for explaining a method of measuring the strain (stress) of the PZT film.
FIG. 49 is an optical micrograph of the surface of the PZT film 1105 of Comparative Example 4 shown in FIG.
 以下では、本発明の実施形態及び実施例について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施形態の記載内容及び実施例に限定して解釈されるものではない。
 [第1の実施形態]
 図1は、本発明の一態様に係るスパッタリング装置を模式的に示す断面図である。このスパッタリング装置はチャンバー11を有し、このチャンバー11内には、基板12を保持する保持部13が配置されている。保持部13には基板12を所定の温度に加熱するヒーター(図示せず)が配置されているとよい。
 チャンバー11、基板12及び保持部13は接地されている。チャンバー11内にはスパッタリングターゲット14を保持するターゲット保持部15が配置されている。ターゲット保持部15に保持されたスパッタリングターゲット14は、保持部13に保持された基板12に対向するように位置する。
 スパッタリングターゲット14は比抵抗が1×10Ω・cm以上の絶縁物を含むスパッタリングターゲットであり、絶縁物は酸化物であるとよい。詳細には、絶縁物は、一般式ABOで表され、Aは、Al、Y、Li、Na、K、Rb、Pb、Cs、La、Sr、Cr、Ag、Ca、Pr、Nd、Ba、Bi、Fおよび周期表のランタン系列の元素からなる群から選択される少なくとも一つの元素を含んでなり、Bは、Al、Ga、In、Nb、Sn、Ti、Zr、Ru、Rh、Pd、Re、Os、IrPt、U、CO、Fe、Ni、Mn、Cr、Cu、Mg、V、Nb、Ta、MoおよびWからなる群から選択される少なくとも一つの元素を含んでなるペロブスカイト物質を含む物、または、酸化ビスマスと、ペロブスカイト型構造ブロックとが交互に積層された構造を有するビスマス層状構造強誘電体結晶を含む物であり、前記ペロブスカイト型構造ブロックは、Li、Na、K、Ca、Sr、Ba、Y、Bi、Pbおよび希土類元素から選ばれる少なくとも1つの元素Lと、Ti、Zr、Hf、V、Nb、Ta、W、Mo、Mn、Fe、SiおよびGeから選ばれる少なくとも1つの元素Rと、酸素とによって構成されるとよい。
 但し、本実施形態ではスパッタリングターゲット14を(PbLa)(ZrTiNb)O3−δとし、a、b、c、d、e及びδは下記の式1及び式11~式16を満たす。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 上記式1においてδが0より大きい値を含むのは酸素欠損型ペロブスカイト構造を含むからである。但し、スパッタリングターゲット14の成分がすべて酸素欠損型ペロブスカイト構造であってもよいが、スパッタリングターゲット14が部分的に酸素欠損型ペロブスカイト構造を含んでいてもよい。なお、酸素欠損型ペロブスカイト構造の詳細は後述する。
 また、スパッタリング装置は出力供給機構16を有し、この出力供給機構16はパルス機能付高周波電源である。出力供給機構16は整合器22に電気的に接続されており、整合器22はターゲット保持部15に電気的に接続されている。つまり、出力供給機構16は、整合器22及びターゲット保持部15を介してスパッタリングターゲット14に周波数が10kHz以上30MHz以下の高周波出力(RF出力)を、1/20ms以上1/3ms以下の周期(3kHz以上20kHz以下の周波数)で25%以上90%以下のDUTY比のパルス状に供給するものである。なお、本実施形態では、出力供給機構16により高周波出力をターゲット保持部15を介してスパッタリングターゲット14に供給するが、出力供給機構16により高周波出力をスパッタリングターゲット14に直接供給してもよい。
 DUTY比は、1周期の間でターゲット保持部15に高周波出力が印加される期間の比率である。例えば、25%のDUTY比の場合は、1周期の25%の期間がターゲット保持部15に高周波出力が印加される期間(高周波出力オンの期間)となり、1周期の75%の期間がターゲット保持部15に高周波出力が印加されない期間(高周波出力オフの期間)となる。詳細には、例えば1/20msの周期(20kHzの周波数)で25%のDUTY比の場合は、1/20ms(1周期)の25%の1/80msの期間が高周波出力オンの期間となり、1/20ms(1周期)の75%の3/80msの期間が高周波出力オフの期間となる。
 また、例えば図2は、100S/T%のDUTY比の場合を示しており、1周期の100S/T%の期間が高周波出力オンの期間となり、1周期の残りの100N/T%の期間が高周波出力オフの期間となる。
 また、本実施の形態では、出力供給機構16によってターゲット保持部15に高周波出力をパルス状に供給する際の当該パルス状を、1/20ms以上1/3ms以下の周期(3kHz以上20kHz以下の周波数)で25%以上90%以下のDUTY比としているが、当該パルス状を1/15ms以上1/5ms以下の周期で25%以上90%以下のDUTY比とすることが好ましい。
 上記の範囲でパルススパッタリングすることにより、次々に生ずる新たなRFプラズマの発生の数だけ新たなスパッタリング現象が生じ、成膜速度が飛躍的に向上し、かつ、RFプラズマ照射を完全に止めるプラズマOFFの時間が生じるが、その際もマイグレーション現象を中心に結晶は成長し続ける。
 DUTY比を25%以上とする理由は、25%未満とすると結晶成長が完全に途切れてしまい、次の結晶成長が上手く繋がらないからである。DUTY比を90%以下とする理由は、90%超とすると殆ど連続波と同等の成膜速度に落ち込んでしまうからである。
 また、スパッタリング装置は、出力供給機構16により高周波出力を供給している際にスパッタリングターゲット14に発生する直流成分である電圧VDCを−200V以上−80V以下に制御するVDC制御部23を有する。このVDC制御部23は、VDCセンサを有し、出力供給機構16に電気的に接続されている。
 また、出力供給機構16により高周波出力を供給した後のスパッタリングターゲット14の表面の比抵抗は、新品のスパッタリングターゲットの表面の比抵抗に対して変化することがあるが、1×10Ω・cm以上1×1012Ω・cm以下であることが好ましい。
 また、スパッタリング装置は、チャンバー11内に希ガスを導入する第1のガス導入源17と、チャンバー11内を真空排気する真空ポンプ等の真空排気機構19を有する。また、スパッタリング装置は、チャンバー内にOガスを導入する第2のガス導入源18を有する。
 第1のガス導入源17によってチャンバー11内に導入する希ガスはArガスであるとよく、成膜時における第2のガス導入源18により導入されるOガスと第1のガス導入源17により導入されるArガスとの比が下記式6を満たすように制御する流量制御部(図示せず)をスパッタリング装置が有するとよい。
 0.1≦Oガス/Arガス≦0.3 ・・・式6
 また、スパッタリング装置は、成膜時におけるチャンバー内の圧力が0.1Pa以上2Pa以下となるように制御する圧力制御部を有するとよい。
 また、スパッタリング装置は、スパッタリングターゲット14に磁場を加える磁石20と、この磁石20を20rpm以上120rpm以下の速度で回転させる回転機構21を有する。
 次に、図1のスパッタリング装置を用いて基板上に絶縁膜を成膜する方法について説明する。ここでいう基板は、種々の基板を用いることができ、基板上に薄膜が成膜されたものも含むが、本実施形態では一例として以下の基板を使用する。
 (100)に配向したSi基板上にZrO膜を550℃以下の温度(好ましくは500℃の温度)で蒸着法により形成する。このZrO膜は(100)に配向する。なお、本明細書において(100)に配向することと(200)に配向することは実質的に同一である。この後、ZrO膜上に下部電極を形成する。下部電極は、金属または酸化物からなる電極膜によって形成される。金属からなる電極膜としては例えばPt膜またはIr膜が用いられる。酸化物からなる電極膜としては例えばSr(Ti1−xRu)O膜が用いられ、xは下記式15を満たす。
 0.01≦x≦0.4 ・・・式15
 本実施形態では、ZrO膜上に550℃以下の温度(好ましくは400℃の温度)でスパッタリングによってエピタキシャル成長によるPt膜を下部電極として形成する。このPt膜は(200)に配向する。
 本実施形態では、上記のような基板を用いるが、Si基板に代えてSi単結晶やサファイア単結晶などの単結晶基板、表面に金属酸化物膜が形成された単結晶基板、表面にポリシリコン膜またはシリサイド膜が形成された基板等を用いてもよい。
 次に、上記の基板を保持部13に保持する。次いで、第1のガス導入源17によってチャンバー11内にArガスを導入し、第2のガス導入源18によってOガスを導入する。この際、OガスとArガスとの比が下記式6を満たすように流量制御部によって制御するとよい。
 0.1≦Oガス/Arガス≦0.3 ・・・式6
 また、真空排気機構19によってチャンバー11内を真空排気することで、チャンバー11内を所定の圧力(例えば0.1Pa以上2Pa以下の圧力)まで減圧する。
 この後、基板12上に、高周波出力機構16によって整合器22及びターゲット保持部15を介して、比抵抗が1×10Ω・cm以上の絶縁物を含むスパッタリングターゲット14に高周波出力を供給する。この高周波出力は、10kHz以上30MHz以下の周波数、1/20ms以上1/3ms以下の周期で25%以上90%以下のDUTY比のパルス状である。これにより、基板12上に絶縁膜を成膜する。
 スパッタリングターゲット14に高周波出力を供給して絶縁膜を成膜する際に、20rpm以上120rpm以下の速度で磁石20を回転機構21により回転させることでスパッタリングターゲット14に磁場を加えることが好ましい。
 また、スパッタリングターゲット14に高周波出力を供給している際にスパッタリングターゲット14に発生する直流成分である電圧VDCをVDC制御部23によって−200V以上−80V以下に制御することが好ましい。
 また、スパッタリングターゲット14に高周波出力を供給した後のスパッタリングターゲット14の表面の比抵抗を1×10Ω・cm以上1×1012Ω・cm以下に制御することが好ましい。
 本実施形態によれば、比抵抗が1×107Ω・cm以上の絶縁物を含むスパッタリングターゲットに10kHz以上30MHz以下の高周波出力を、1/20ms以上1/3ms以下の周期で25%以上90%以下のDUTY比のパルス状に供給する。このようにパルス状に高周波出力を供給するため、絶縁物を含むスパッタリングターゲットに電荷が溜まっても、高周波出力を供給していない時(高周波出力がオフ状態の時)にその溜まった電荷を逃がすことができ、その結果、スパッタリングターゲットが破損することを抑制できる。そのため、スパッタリングターゲットに印加する電力量を多くすることができ、成膜レートを高くすることが可能となる。
 特に、スパッタリングターゲット14が一般式ABOで表されるペロブスカイト物質を含む物、または、ビスマス層状構造強誘電体結晶を含む物である場合、成膜時にスパッタリングターゲット14の表面抵抗が大きく変動することが考えられる。このため、上記のようにパルス状に高周波出力を供給してスパッタリングターゲット14に電荷が溜まりにくくすることで、スパッタリングターゲット14の表面抵抗の変動を抑制することが可能となる。
 a、b、c、d、e及びδは下記の式1及び式11~式16を満たす(PbLa)(ZrTiNb)O3−δからなるスパッタリングターゲット14を用い、上記の成膜方法により基板上に成膜された圧電体膜は、(PbLa)(ZrTiNb)O3−δ膜であり、a、b、c、d、e及びδは下記の式1及び式11~式16を満たすとよい。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 上記(PbLa)(ZrTiNb)O3−δ膜は、100以上600以下(好ましくは100以上400以下)の膜厚1μm当たりの比誘電率εrを有し、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有するとよい。また、(PbLa)(ZrTiNb)O3−δ膜は5μm以上の膜厚を有し、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上の膜厚を有するとよい。また、(PbLa)(ZrTiNb)O3−δ膜のキュリー温度は250℃以上420℃以下(好ましくは300℃以上400℃以下)であるとよい。
 上記(PbLa)(ZrTiNb)O3−δ膜は例えばPt膜等の電極上に形成されていてもよく、この(PbLa)(ZrTiNb)O3−δ膜をXRD(X−Ray Diffraction)で結晶性を評価すると、そのXRDの(002)のピーク値は、電極のXRDの(200)のピーク値より高くなる。これは、(PbLa)(ZrTiNb)O3−δ膜の膜厚が5μm以上であるためである。
 また、本実施形態によれば、(PbLa)(ZrTiNb)O3−δからなるスパッタリングターゲットに上記の高周波出力を、上記の周期で上記のDUTY比のパルス状に供給することで、基板上に(PbLa)(ZrTiNb)O3−δ膜を成膜する際の成膜速度を1nm/sec以上2.5nm/sec以下に向上させることができる。
 また、本実施形態では、Si基板とPt膜との間にZrO膜を形成することで、(PbLa)(ZrTiNb)O3−δ膜の内部応力を低減することができる。そのため、その(PbLa)(ZrTiNb)O3−δ膜の膜厚を5μm以上としても、(PbLa)(ZrTiNb)O3−δ膜にクラックが入ることを抑制できる。
 なお、本実施形態では、Pt膜上に(PbLa)(ZrTiNb)O3−δ膜を形成しているが、Pt膜上にSrRuO膜を形成し、このSrRuO膜上に(PbLa)(ZrTiNb)O3−δ膜を形成してもよい。
 次に、酸素欠損型ペロブスカイト構造について図34~図37を参照しつつ詳細に説明する。
 酸素欠損型ペロブスカイト構造を一般式で表すと以下のように分類される。以下の分類は実際に存在している結晶構造を基にしている。
 ペロブスカイト構造はABO3−δ、或はA3n−1で表される。
 図34~図37それぞれの左図はABO3−δの酸素欠損を含有した各種結晶構造を示す模式図である。図34~図37それぞれの右図は、a−b面の酸素欠損構造の模式図であり、C’層、D’層はそれぞれ、C層、D層をa−b面で鏡映した状態、或は位相がずれた状態を示す模式図である。
 図34は、δ=0.125、或はn=8.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図35は、δ=0.25、或はn=4.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図36は、δ=0.5、或はn=2.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 図37は、δ=1.0、或はn=1.0の場合の酸素欠損型ペロブスカイト構造の模式図である。
 ペロブスカイトの派生構造の一つに酸素欠損秩序型ペロブスカイト構造というものがある。Bサイト遷移金属が高価数で不安定な場合や、試料作製雰囲気の制御により、酸素が欠損する。酸素が欠損するとBO八面体は、BO正方ピラミッドやBO四面体などに変化する。酸素がわずかに欠損したABO3−δでは基本構造を保ったまま、ランダムなサイトの酸素が欠損するが、酸素欠損量δが大きくなると、多くの場合酸素欠損が規則的に配列する。
 酸素欠損状態の違いにより、配位構造は大きく異なる。BO(B:Bサイトイオン、O:酸素イオン)八面体は、酸素欠損の無い八面体構造である。Bサイトイオンが5配位の場合は、BO正方ピラミッド構造となり、4配位の場合は、BO四面体構造、BO平面(酸素が完全に欠損)の2つの構造を有する。
 なお、上記の酸素欠損型ペロブスカイト構造の説明は、本明細書に記載したペロブスカイト構造に関するすべての物質に適用される。
 [第2の実施形態]
 図3~図5は、本発明の一態様に係る圧電体素子の製造方法を説明するための図である。
 図3(A)に示すように、第1の実施形態と同様の方法で、Si基板101上にZrO膜102を形成し、ZrO膜102上に電極膜としてのPt膜103を形成する。
 次いで、第1の実施形態と同様の方法で、Pt膜103上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の(PbLa)(ZrTiNb)O3−δ膜104を形成する。a、b、c、d、e及びδは下記の式1及び式11~式16を満たすとよい。(PbLa)(ZrTiNb)O3−δ膜104、スパッタリング法により成膜されるため、その分極方向が図3(A)に示す矢印31の方向となる。即ち、(PbLa)(ZrTiNb)O3−δ膜104の分極方向は、Si基板101の上面に対して垂直で上方向となる。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 次に、図3(B)に示すように、(PbLa)(ZrTiNb)O3−δ膜104上に接着用(PbLa)(ZrTiNb)O3−δ膜105をゾルゲル法により形成し、仮焼成する。このときの接着用(PbLa)(ZrTiNb)O3−δ膜105はアモルファスである。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 この後、図3(C)に示すように、Si基板101を上下逆にする。次いで、図3(D)に示すように、Si基板101をZrO膜102から除去する。Si基板101を完全に除去しても、(PbLa)(ZrTiNb)O3−δ膜104の膜厚が5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)あれば、膜として自立することが可能である。
 次に、図4(A),(B)に示すように、Pt膜103及びZrO膜102をフォトリソグラフィー技術及びエッチング技術により加工することで、(PbLa)(ZrTiNb)O3−δ膜104下に第1の電極103a、第2の電極103b及び第3の電極103cを形成する。第1~第3の電極103a~103cは上部電極となる。
 この後、図4(A)に示す(PbLa)(ZrTiNb)O3−δ膜104及び接着用(PbLa)(ZrTiNb)O3−δ膜105を切断する。これにより、第1の電極103a、(PbLa)(ZrTiNb)O3−δ膜104及び接着用(PbLa)(ZrTiNb)O3−δ膜105を積層した第1の積層部と、第2の電極103b、(PbLa)(ZrTiNb)O3−δ膜104及び接着用(PbLa)(ZrTiNb)O3−δ膜105を積層した第2の積層部と、第3の電極103c、(PbLa)(ZrTiNb)O3−δ膜104及び接着用(PbLa)(ZrTiNb)O3−δ膜105を積層した第3の積層部を形成する。なお、図4(B)には示していないが、第4の積層部、第5の積層部も形成される。
 次に、図5(A)に示すように、第1の積層部の第1の電極103aと第2の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105とを重ね、かつ第2の積層部の第2の電極103bと第3の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105とを重ね、かつ第3の積層部の第3の電極103cと第4の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105とを重ねる。
 次いで、第1の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105と第4の積層部の第4の電極103dとの間に荷重をかけつつ熱処理を施す。これにより、第1の積層部の第1の電極103a及び(PbLa)(ZrTiNb)O3−δ膜104それぞれと第2の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105を貼り付けるとともに、第2の積層部の(PbLa)(ZrTiNb)O3−δ膜及び第2の電極それぞれと第3の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105を貼り付けるとともに、第3の積層部の(PbLa)(ZrTiNb)O3−δ膜104及び第3の電極103cそれぞれと第4の積層部の接着用(PbLa)(ZrTiNb)O3−δ膜105を貼り付けるとともに、第1~第4の積層部それぞれの接着用(PbLa)(ZrTiNb)O3−δ膜105を結晶化する(図5(A)参照)。この際の熱処理の温度は接着用(PbLa)(ZrTiNb)O3−δ膜105が結晶化する温度であるとよい。
 次に、図5(B)に示すように、第2の電極103b及び第4の電極103dの側面に電極106を形成し、第1の電極103a、第3の電極103c及び第5の電極103eの側面に電極107を形成する。電極106は第2の電極103b及び第4の電極103dに電気的に接続され、電極107は第1の電極103a、第3の電極103c及び第5の電極103eに電気的に接続される。このようにして圧電体素子を作製することができる。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 [第3の実施形態]
 図6~図8は、本発明の一態様に係る圧電体素子の製造方法を説明するための図である。
 図6(B)に示すように、第1の実施形態と同様の方法で、Si基板101上にZrO膜102を形成し、ZrO膜102上に電極膜としてのPt膜103を形成する。
 次いで、第1の実施形態と同様の方法で、Pt膜103上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の第1の(PbLa)(ZrTiNb)O3−δ膜104を形成する。a、b、c、d、e及びδは下記の式1及び式11~式16を満たすとよい。第1の(PbLa)(ZrTiNb)O3−δ膜104は、スパッタリング法により成膜されるため、その分極方向が図6(B)に示す矢印31の方向となる。即ち、第1の(PbLa)(ZrTiNb)O3−δ膜104の分極方向は、Si基板101の上面に対して垂直で上方向となる。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 次いで、第1の(PbLa)(ZrTiNb)O3−δ膜104上に電極膜としてのPt膜を形成し、このPt膜をエッチング加工することで、第1の(PbLa)(ZrTiNb)O3−δ膜104上に第1の電極111a、第2の電極111b及び第3の電極111cを形成する(図6(A),(B)参照)。
 次に、図7(A),(B)に示すように、第1の(PbLa)(ZrTiNb)O3−δ膜104、第1~第3の電極111a~111cの上に接着用(PbLa)(ZrTiNb)O3−δ膜112をゾルゲル法により形成し、仮焼成する。このときの接着用(PbLa)(ZrTiNb)O3−δ膜112はアモルファスである。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 この後、図8(A)に示すように、第1の実施形態と同様の方法で、Si基板121上にZrO膜122を形成し、ZrO膜122上に電極膜としてのPt膜123を形成する。次いで、第1の実施形態と同様の方法で、Pt膜123上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の第2の(PbLa)(ZrTiNb)O3−δ膜124を形成する。第2の(PbLa)(ZrTiNb)O3−δ膜124は、スパッタリング法により成膜されるため、その分極方向が図8(A)に示す矢印32の方向となる。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 次いで、Si基板101とSi基板121との間に荷重をかけつつ熱処理を施す。これにより、接着用(PbLa)(ZrTiNb)O3−δ膜112と第2の(PbLa)(ZrTiNb)O3−δ膜124を貼り付ける。この際の熱処理の温度は接着用(PbLa)(ZrTiNb)O3−δ膜112が結晶化する温度であるとよい。
 次に、図8(B)に示すように、Si基板101及びSi基板121を除去する。次いで、図8(C)に示すように、Pt膜123及びZrO膜122をフォトリソグラフィー技術及びエッチング技術により加工することで、第2の(PbLa)(ZrTiNb)O3−δ膜124下に第1の電極123a、第2の電極123b及び第3の電極123cを形成する。また、Pt膜103及びZrO膜102をフォトリソグラフィー技術及びエッチング技術により加工することで、第1の(PbLa)(ZrTiNb)O3−δ膜104上に第1の電極103a、第2の電極103b及び第3の電極103cを形成する。
 この後、第1の(PbLa)(ZrTiNb)O3−δ膜104、接着用(PbLa)(ZrTiNb)O3−δ膜112及び第2の(PbLa)(ZrTiNb)O3−δ膜124を切断する。次いで、図5(B)に示す工程を施すことで、圧電体素子を作製することができる。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 また、本実施形態では、第1の(PbLa)(ZrTiNb)O3−δ膜104の分極方向31は第2の(PbLa)(ZrTiNb)O3−δ膜124の分極方向32の逆方向である。このため、図5(B)に示す工程後の圧電体素子の電極106及び電極107の一方にプラス電圧を印加し、他方にマイナス電圧を印加すると、例えばプラス電圧及びマイナス電圧の一方の電圧が第1の電極103a,123aに印加され、他方の電圧が第1の電極111aに印加されるので、第1の(PbLa)(ZrTiNb)O3−δ膜104と第2の(PbLa)(ZrTiNb)O3−δ膜124とを同一方向に伸ばすことができる。
 [第4の実施形態]
 図9~図11は、本発明の一態様に係る圧電体素子の製造方法を説明するための図である。
 図9(A)に示すように、第3の実施形態における図6に示す工程までを行った後に、第1の(PbLa)(ZrTiNb)O3−δ膜104、第1の電極111a、第2の電極111b及び第3の電極111cの上に、第1の実施形態と同様の方法で、スパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の(PbLa)(ZrTiNb)O3−δ膜132を形成する。a、b、c、d、e及びδは下記の式1及び式11~式16を満たすとよい。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 次いで、第1の実施形態と同様の方法で、Si基板121上にZrO膜122を形成し、ZrO膜122上に電極膜としてのPt膜123を形成する。次いで、第1の実施形態と同様の方法で、Pt膜123上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の第2の(PbLa)(ZrTiNb)O3−δ膜124を形成する。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 次いで、Si基板101とSi基板121との間に荷重をかけつつ熱処理を施す。これにより、(PbLa)(ZrTiNb)O3−δ膜132と第2の(PbLa)(ZrTiNb)O3−δ膜124を貼り付ける。
 次に、図9(B)に示すように、Si基板121を除去する。
 次いで、図9(C)に示すように、Pt膜123及びZrO膜122をフォトリソグラフィー技術及びエッチング技術により加工することで、第2の(PbLa)(ZrTiNb)O3−δ膜124下に第1の電極123a、第2の電極123b及び第3の電極123cを形成する。
 次いで、第2の(PbLa)(ZrTiNb)O3−δ膜124、第1~第3の電極123a~123cの上に接着用(PbLa)(ZrTiNb)O3−δ膜133をゾルゲル法により形成し、仮焼成する。このときの接着用(PbLa)(ZrTiNb)O3−δ膜133はアモルファスである。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 この後、図10(A)に示すように、Si基板141上にZrO膜142、Pt膜143、(PbLa)(ZrTiNb)O3−δ膜144を順に形成し、(PbLa)(ZrTiNb)O3−δ膜144上に第1の電極145a、第2の電極145b及び第3の電極145cを形成する。次いで、第1~第3の電極145a~145cの上に、スパッタリング法により(PbLa)(ZrTiNb)O3−δ膜146を形成する。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 次いで、Si基板151上にZrO膜152を形成し、ZrO膜152上に電極膜としてのPt膜153を形成する。次いで、Pt膜153上にスパッタリング法により(PbLa)(ZrTiNb)O3−δ膜154を形成する。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 次いで、Si基板141とSi基板151との間に荷重をかけつつ熱処理を施す。これにより、(PbLa)(ZrTiNb)O3−δ膜146と(PbLa)(ZrTiNb)O3−δ膜154を貼り付ける。
 次に、図10(B),(C)に示すように、Si基板151、ZrO膜152及びPt膜153を除去する。
 この後、図11(A)に示すように、図9(C)に示す接着用(PbLa)(ZrTiNb)O3−δ膜133と図10(C)に示す(PbLa)(ZrTiNb)O3−δ膜154を重ね合わせる。そして、図11(B)に示すように、Si基板101とSi基板141との間に荷重をかけつつ熱処理を施す。これにより、接着用(PbLa)(ZrTiNb)O3−δ膜133と(PbLa)(ZrTiNb)O3−δ膜154を貼り付ける。この際の熱処理の温度は接着用(PbLa)(ZrTiNb)O3−δ膜133が結晶化する温度であるとよい。
 次に、図11(C)に示すように、Si基板141及びZrO膜142を除去する。次いで、Pt膜143をフォトリソグラフィー技術及びエッチング技術により加工することで、(PbLa)(ZrTiNb)O3−δ膜144上に第1の電極143a、第2の電極143b及び第3の電極143cを形成する。
 この後、図11(A)、(B)、(C)の工程を繰り返すことで、(PbLa)(ZrTiNb)O3−δ膜の積層数を増やすことができる。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 [第5の実施形態]
 図12~図15は、本発明の一態様に係る圧電体素子の製造方法を説明するための図である。
 図12(A)に示すように、第1の実施形態と同様の方法で、Si基板161上にZrO膜162を形成し、ZrO膜162上に電極膜としてのPt膜163を形成する。このPt膜163は1層目(PbLa)(ZrTiNb)O3−δ膜用の第1の電極となる。
 次いで、第1の実施形態と同様の方法で、Pt膜163上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の1層目(PbLa)(ZrTiNb)O3−δ膜164を形成する。a、b、c、d、e及びδは下記の式1及び式11~式16を満たすとよい。なお、1層目(PbLa)(ZrTiNb)O3−δ膜164は、スパッタリング法により成膜されるため、その分極方向が図12(A)に示す矢印31の方向となる。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 次に、図12(B)に示すように、1層目(PbLa)(ZrTiNb)O3−δ膜164上に550℃以下の温度(好ましくは400℃の温度)でスパッタリングによってエピタキシャル成長によるPt膜165を形成する。このPt膜165は2層目(PbLa)(ZrTiNb)O3−δ膜用の第2の電極となる。
 この後、図12(C)に示すように、第1の実施形態と同様の方法で、Pt膜165上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の2層目(PbLa)(ZrTiNb)O3−δ膜166を形成する。a、b、c、d、e及びδは前記の式1及び式11~式16を満たすとよい。
 次に、図12(D)に示すように、2層目(PbLa)(ZrTiNb)O3−δ膜166上にPt膜167を上記のPt膜165と同様の方法で形成する。このPt膜167は3層目(PbLa)(ZrTiNb)O3−δ膜用の第3の電極となる。
 この後、図12(C)に示す工程と図12(D)に示す工程を繰り返すことで、図13(A)に示すように、Pt膜167上に3層目(PbLa)(ZrTiNb)O3−δ膜168、Pt膜169、4層目(PbLa)(ZrTiNb)O3−δ膜170、Pt膜171を形成する。a、b、c、d、e及びδは前記の式1及び式11~式16を満たすとよい。Pt膜169は4層目(PbLa)(ZrTiNb)O3−δ膜用の第4の電極となり、Pt膜171は第5の電極となる。次いで、Si基板161をZrO膜162から除去する。
 次に、ZrO膜162、Pt膜163上に1層目(PbLa)(ZrTiNb)O3−δ膜164、Pt膜165、2層目(PbLa)(ZrTiNb)O3−δ膜166、Pt膜167上に3層目(PbLa)(ZrTiNb)O3−δ膜168、Pt膜169、4層目(PbLa)(ZrTiNb)O3−δ膜170、Pt膜171を有する積層膜を必要な大きさに切断する(図示せず)。これにより、図13(A)に示す積層部が複数得られる。
 なお、本実施形態では、Si基板161を除去した後に上記積層膜を切断しているが、Si基板161を除去する前に上記積層膜を切断し、その後にSi基板を除去してもよい。
 次に、図13(B)に示すように、上記の積層部の第1の側面に感光性永久レジスト膜172を塗布する。次いで、図14(A)に示すように、感光性永久レジスト膜172を露光、現像することで、永久レジスト膜172a,172bを積層部の第1の側面に形成する。これにより、積層部のPt膜(第4の電極)169の第1の側面は永久レジスト膜172aによって覆われ、積層部のPt膜(第2の電極)165の第1の側面は永久レジスト膜172bによって覆われ、積層部のPt膜(第1の電極)163、Pt膜(第3の電極)167及びPt膜(第5の電極)171それぞれの第1の側面は露出される。
 この後、図14(B)に示すように、積層部のPt膜(第1の電極)163,Pt膜(第3の電極)167,Pt膜(第5の電極)171の第1の側面及び永久レジスト膜172a,172bの上にPt膜(第6の電極)173を形成する。これにより、Pt膜(第6の電極)173はPt膜(第1の電極)163、Pt膜(第3の電極)167及びPt膜(第5の電極)171それぞれに電気的に接続される。
 次に、図15(A)に示すように、図14(B)の積層部を上下逆に配置し、この積層部の第2の側面に感光性永久レジスト膜174を塗布する。次いで、図15(B)に示すように、感光性永久レジスト膜174を露光、現像することで、永久レジスト膜174a,174b,174cを積層部の第2の側面に形成する。これにより、積層部のPt膜(第1の電極)163の第2の側面は永久レジスト膜174aによって覆われ、積層部のPt膜(第3の電極)167の第2の側面は永久レジスト膜174bによって覆われ、積層部のPt膜(第5の電極)171の第2の側面は永久レジスト膜174cによって覆われ、積層部のPt膜(第2の電極)165及びPt膜(第4の電極)169それぞれの第2の側面は露出される。
 この後、図15(C)に示すように、積層部のPt膜(第2の電極)165及びPt膜(第4の電極)169それぞれの第1の側面及び永久レジスト膜174a,174b,174cの上にPt膜(第7の電極)175を形成する。これにより、Pt膜(第7の電極)175はPt膜(第2の電極)165及びPt膜(第4の電極)169それぞれに電気的に接続される。このようにして圧電体素子を作製することができる。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 なお、本実施形態では、ZrO膜162、第1の電極163、1層目(PbLa)(ZrTiNb)O3−δ膜164、第2の電極165、2層目(PbLa)(ZrTiNb)O3−δ膜166、第3の電極167、3層目(PbLa)(ZrTiNb)O3−δ膜168、第4の電極169、4層目(PbLa)(ZrTiNb)O3−δ膜170、第5の電極171を有する積層部を用いているが、これに限定されるものではなく、以下のように変更して実施することも可能である。
 少なくとも第1の電極163、1層目(PbLa)(ZrTiNb)O3−δ膜164、第2の電極165、2層目(PbLa)(ZrTiNb)O3−δ膜166、第3の電極167を有する積層部を用いることも可能である。その場合、第1の電極163の第1の側面と第3の電極167の第1の側面が第6の電極173によって電気的に接続されるとよい。
 また、第1の電極163、1層目(PbLa)(ZrTiNb)O3−δ膜164、第2の電極165、2層目(PbLa)(ZrTiNb)O3−δ膜166、第3の電極167、3層目(PbLa)(ZrTiNb)O3−δ膜168、第4の電極169を有する積層部を用いることも可能である。その場合、第1の電極163の第1の側面と第3の電極167の第1の側面が第6の電極167によって電気的に接続され、第2の電極165の第2の側面と第4の電極169の第2の側面が第7の電極175によって電気的に接続されるとよい。
 また、図13(A)に示す第5の電極171上に更にn層目(PbLa)(ZrTiNb)O3−δ膜及び第(n+3)の電極を繰り返し形成してもよい。この場合、nは5以上の整数である。例えばnが5,6,7の場合、第1の電極163、1層目(PbLa)(ZrTiNb)O3−δ膜164、第2の電極165、2層目(PbLa)(ZrTiNb)O3−δ膜166、第3の電極167、3層目(PbLa)(ZrTiNb)O3−δ膜168、第4の電極169、4層目(PbLa)(ZrTiNb)O3−δ膜170、第5の電極171、5層目(PbLa)(ZrTiNb)O3−δ膜、第8の電極、6層目(PbLa)(ZrTiNb)O3−δ膜及び第9の電極、7層目(PbLa)(ZrTiNb)O3−δ膜及び第10の電極を有する積層部を用いることになる。その場合、第1の電極163の第1の側面と第3の電極167の第1の側面と第5の電極171の第1の側面と第9の電極の第1の側面とが第6の電極167によって電気的に接続され、第2の電極165の第2の側面と第4の電極169の第2の側面と第8の電極の第2の側面と第10の電極の第2の側面とが第7の電極175によって電気的に接続されるとよい。
 [第6の実施形態]
 図39~図43は、本発明の一態様に係る圧電体素子の製造方法を説明するための断面図である。
 図39(A)に示すように、第1の実施形態と同様の方法で、Si基板101上にZrO膜102を形成し、ZrO膜102上に電極膜としてのPt膜103を形成する。
 次いで、第1の実施形態と同様の方法で、Pt膜103上にスパッタリング法により膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の第1の(PbLa)(ZrTiNb)O3−δ膜104を形成する。a、b、c、d、e及びδは下記の式1及び式11~式16を満たすとよい。
 0≦δ≦1 ・・・式1
 1.00≦a+b≦1.35 ・・・式11
 0≦b≦0.08 ・・・式12
 1.00≦c+d+e≦1.1 ・・・式13
 0.4≦c≦0.7 ・・・式14
 0.3≦d≦0.6 ・・・式15
 0≦e≦0.1 ・・・式16
 次に、図39(B)に示すように、第1の(PbLa)(ZrTiNb)O3−δ膜104の上に接着用(PbLa)(ZrTiNb)O3−δ膜125をゾルゲル法により形成し、仮焼成する。このときの接着用(PbLa)(ZrTiNb)O3−δ膜125はアモルファスである。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 なお、第1の(PbLa)(ZrTiNb)O3−δ膜104は、スパッタリング法により成膜されるため、その分極方向が図39(B)に示す矢印31の方向となる。即ち、第1の(PbLa)(ZrTiNb)O3−δ膜104の分極方向は、Si基板101の上面に対して垂直で上方向となる。
 図40(A)に示すように、図39(A)と同様に、Si基板101上にZrO膜102、Pt膜103、膜厚5μm以上(好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上)の第1の(PbLa)(ZrTiNb)O3−δ膜104を順に形成する。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 次に、図40(B)に示すように、第1の(PbLa)(ZrTiNb)O3−δ膜104上に電極膜としてのPt膜126を形成する。なお、第1の(PbLa)(ZrTiNb)O3−δ膜104の分極方向は矢印31の方向となる。
 次に、図41(A)に示すように、図40(B)のSi基板101のPt膜126上に図39(B)のSi基板101を逆向きに載せる。これにより、図39(B)のSi基板101上の接着用(PbLa)(ZrTiNb)O3−δ膜125を図40(B)のSi基板101上のPt膜126と接触させる。
 この後、図41(B)に示すように、下側のSi基板101と上側のSi基板101との間に荷重をかけつつ熱処理を施す。これにより、結晶化された接着用(PbLa)(ZrTiNb)O3−δ膜125aとPt膜126を貼り付ける。なお、下側の第1の(PbLa)(ZrTiNb)O3−δ膜104の分極方向(矢印31)は、上側の第1の(PbLa)(ZrTiNb)O3−δ膜104の分極方向(矢印31)と逆になっている。
 次に、図42(A)に示すように、上側のSi基板101をKOHのウエットエッチングで溶解して除去する。これにより、ZrO膜102が露出される。つまり、この際のウエットエッチングはZrO膜102でエッチングが停止される。
 次に、図42(B)に示すように、ZrO膜102及びPt膜103をドライエッチングで除去する。これにより、上側の第1の(PbLa)(ZrTiNb)O3−δ膜104が露出される。
 次に、図42(C)に示すように、上側の第1の(PbLa)(ZrTiNb)O3−δ膜104の上に接着用(PbLa)(ZrTiNb)O3−δ膜127をゾルゲル法により形成し、仮焼成する。このときの接着用(PbLa)(ZrTiNb)O3−δ膜127はアモルファスである。a、b、c、d、e及びδは上記の式1及び式11~式16を満たすとよい。
 次に、図42(A)に示す状態のSi基板101を別途準備し、このSi基板101のZrO膜102上に図42(C)のSi基板101を逆向きに載せる。これにより、図43(A)に示すように、図42(C)のSi基板101上の接着用(PbLa)(ZrTiNb)O3−δ膜127を図42(A)のSi基板101上のZrO膜102と接触させる。
 次いで、下側のSi基板101と上側のSi基板101との間に荷重をかけつつ熱処理を施す。これにより、結晶化された接着用(PbLa)(ZrTiNb)O3−δ膜127aとZrO膜102を貼り付ける。
 次に、図43(B)に示すように、図42(A)に示す工程と同様の方法で上側のSi基板101をKOHのウエットエッチングで除去する。次に、図43(A)の工程と図43(B)の工程を必要なだけ繰り返す。
 この後、図13~図15に示す工程を用いて側面端子を形成する。このようにして圧電体素子を作製することができる。
 本実施形態においもて第3の実施形態と同様の効果を得ることができる。
 [第7の実施形態]
 図44は、本発明の一態様に係るシリーズ型のバイモルフ素子の製造方法を説明するための断面図である。
 まず、図12(A),(B)に示す工程を行い、その後、図42(A)に示す工程と同様の方法で、Si基板161をKOHのウエットエッチングで溶解して除去する。これにより、Pt膜163、PZT膜164、Pt膜165の順に積層された積層膜37が作製され(図44参照)、このPZT膜164は矢印31の方向に分極している。なお、ZrO膜162は除去してもよいし、除去しなくてもよい。
 次に、図44に示すように、金属箔からなるシム35の上面及び下面に接着層36によって上記の積層膜37を貼り付ける。そして、上側のPt膜163と下側のPt膜163との間に直流電圧を印加することで、シリーズ型のバイモルフ素子を動かすことができる。
 なお、図44に示すシム35の上のPt膜165を第1の電極と読み替え、そのPt膜165上のPZT膜164を圧電体膜と読み替え、そのPZT膜164上のPt膜163を第2の電極と読み替え、シム35の下のPt膜165を第3の電極と読み替え、そのPt膜165下のPZT膜164を圧電体膜と読み替え、そのPZT165下のPt膜163を第4の電極と読み替えてもよい。
 [第8の実施形態]
 図45は、本発明の一態様に係るパラレル型のバイモルフ素子の製造方法を説明するための断面図である。
 第7の実施形態と同様の方法で、Pt膜163、PZT膜164、Pt膜165の順に積層された積層膜37を作製し(図45参照)、このPZT膜164は矢印31の方向に分極している。
 次に、図45に示すように、金属箔からなるシム35の上面及び下面に接着層36によって上記の積層膜37を貼り付ける。そして、上側のPt膜165及び下側のPt膜163とシム35との間に直流電圧を印加することで、パラレル型のバイモルフ素子を動かすことができる。
 なお、図45に示すシム35の上のPt膜163を第1の電極と読み替え、そのPt膜163上のPZT膜164を圧電体膜と読み替え、そのPZT膜164上のPt膜165を第2の電極と読み替え、シム35の下のPt膜165を第3の電極と読み替え、そのPt膜165下のPZT膜164を圧電体膜と読み替え、そのPZT165下のPt膜163を第4の電極と読み替えてもよい。
 なお、上述した第1乃至第8実施形態を適宜組合せて実施してもよい。
Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments and examples below.
[First Embodiment]
FIG. 1 is a cross-sectional view schematically illustrating a sputtering apparatus according to one embodiment of the present invention. The sputtering apparatus includes a chamber 11, and a holding unit 13 that holds the substrate 12 is disposed in the chamber 11. A heater (not shown) for heating the substrate 12 to a predetermined temperature may be disposed in the holding unit 13.
The chamber 11, the substrate 12, and the holding unit 13 are grounded. A target holding unit 15 that holds the sputtering target 14 is disposed in the chamber 11. The sputtering target 14 held by the target holding unit 15 is positioned so as to face the substrate 12 held by the holding unit 13.
The sputtering target 14 has a specific resistance of 1 × 10 7 It is a sputtering target including an insulator of Ω · cm or more, and the insulator is preferably an oxide. Specifically, the insulator is of the general formula ABO 3 A is Al, Y, Li, Na, K, Rb, Pb, Cs, La, Sr, Cr, Ag, Ca, Pr, Nd, Ba, Bi, F and a lanthanum series element of the periodic table And at least one element selected from the group consisting of: B, Al, Ga, In, Nb, Sn, Ti, Zr, Ru, Rh, Pd, Re, Os, IrPt, U, CO, Fe , Ni, Mn, Cr, Cu, Mg, V, Nb, Ta, Mo, and a substance containing a perovskite substance containing at least one element selected from the group consisting of W, or bismuth oxide and a perovskite structure The perovskite structure block includes Li, Na, K, Ca, Sr, Ba, Y, Bi, Pb, and a bismuth layered structure ferroelectric crystal having a structure in which blocks are alternately stacked. And at least one element L selected from rare earth elements, at least one element R selected from Ti, Zr, Hf, V, Nb, Ta, W, Mo, Mn, Fe, Si and Ge, and oxygen It is good to be done.
However, in this embodiment, the sputtering target 14 is (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ And a, b, c, d, e, and δ satisfy the following Expression 1 and Expressions 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
The reason why δ includes a value larger than 0 in the above formula 1 is because it includes an oxygen deficient perovskite structure. However, all the components of the sputtering target 14 may have an oxygen-deficient perovskite structure, but the sputtering target 14 may partially include an oxygen-deficient perovskite structure. Details of the oxygen-deficient perovskite structure will be described later.
Further, the sputtering apparatus has an output supply mechanism 16, which is a high-frequency power supply with a pulse function. The output supply mechanism 16 is electrically connected to the matching unit 22, and the matching unit 22 is electrically connected to the target holding unit 15. That is, the output supply mechanism 16 outputs a high-frequency output (RF output) having a frequency of 10 kHz to 30 MHz to the sputtering target 14 via the matching unit 22 and the target holding unit 15 and a period (3 kHz) of 1/20 ms to 1/3 ms. The frequency is 20 kHz or less) and is supplied in a pulse shape having a duty ratio of 25% or more and 90% or less. In this embodiment, the high-frequency output is supplied to the sputtering target 14 by the output supply mechanism 16 via the target holding unit 15, but the high-frequency output may be directly supplied to the sputtering target 14 by the output supply mechanism 16.
The DUTY ratio is a ratio of a period during which a high frequency output is applied to the target holding unit 15 during one cycle. For example, in the case of a DUTY ratio of 25%, a period of 25% of one cycle is a period during which a high frequency output is applied to the target holding unit 15 (a period when the high frequency output is on), and a period of 75% of one cycle is held by the target. This is a period during which no high-frequency output is applied to the unit 15 (high-frequency output off period). Specifically, for example, in the case of a DUTY ratio of 25% with a period of 1/20 ms (frequency of 20 kHz), a period of 1/80 ms of 25% of 1/20 ms (one period) becomes a period of high frequency output on. A period of 3/80 ms, which is 75% of / 20 ms (one cycle), is a high-frequency output off period.
Further, for example, FIG. 2 shows the case of a DUTY ratio of 100 S / T%, where one period of 100 S / T% is a high-frequency output on period, and the remaining period of 100 N / T% is one period. The high frequency output is off.
In the present embodiment, the pulse shape when the output supply mechanism 16 supplies the high-frequency output to the target holding unit 15 in a pulse shape has a period of 1/20 ms to 1/3 ms (frequency of 3 kHz to 20 kHz). ), A DUTY ratio of 25% or more and 90% or less is preferable. However, it is preferable that the pulse shape has a DUTY ratio of 25% or more and 90% or less in a period of 1/15 ms or more and 1/5 ms or less.
By performing pulse sputtering in the above range, new sputtering phenomena occur as many as the number of new RF plasmas generated one after another, the film formation speed is dramatically improved, and plasma OFF that completely stops RF plasma irradiation is achieved. However, the crystal continues to grow around the migration phenomenon.
The reason for setting the DUTY ratio to 25% or more is that if it is less than 25%, the crystal growth is completely interrupted and the next crystal growth is not well connected. The reason why the DUTY ratio is set to 90% or less is that when it exceeds 90%, the film forming speed is almost equal to that of a continuous wave.
In addition, the sputtering apparatus has a voltage V that is a direct current component generated in the sputtering target 14 when a high frequency output is supplied by the output supply mechanism 16. DC V to control -200V to -80V DC A control unit 23 is included. This V DC The control unit 23 DC It has a sensor and is electrically connected to the output supply mechanism 16.
Further, the specific resistance of the surface of the sputtering target 14 after the high-frequency output is supplied by the output supply mechanism 16 may change with respect to the specific resistance of the surface of the new sputtering target, but 1 × 10. 9 Ω · cm or more 1 × 10 12 It is preferable that it is below Ω · cm.
The sputtering apparatus also includes a first gas introduction source 17 that introduces a rare gas into the chamber 11, and a vacuum exhaust mechanism 19 such as a vacuum pump that evacuates the chamber 11. In addition, the sputtering apparatus has an O in the chamber. 2 It has the 2nd gas introduction source 18 which introduces gas.
The rare gas introduced into the chamber 11 by the first gas introduction source 17 is preferably Ar gas, and O introduced by the second gas introduction source 18 during film formation. 2 The sputtering apparatus may have a flow rate control unit (not shown) for controlling the ratio of the gas and the Ar gas introduced by the first gas introduction source 17 to satisfy the following formula 6.
0.1 ≦ O 2 Gas / Ar gas ≦ 0.3 Equation 6
The sputtering apparatus preferably includes a pressure control unit that controls the pressure in the chamber during film formation to be 0.1 Pa or more and 2 Pa or less.
The sputtering apparatus also includes a magnet 20 that applies a magnetic field to the sputtering target 14 and a rotating mechanism 21 that rotates the magnet 20 at a speed of 20 rpm to 120 rpm.
Next, a method for forming an insulating film on a substrate using the sputtering apparatus of FIG. 1 will be described. Various substrates can be used here, including those in which a thin film is formed on the substrate. In this embodiment, the following substrate is used as an example.
ZrO on Si substrate oriented in (100) 2 The film is formed by vapor deposition at a temperature of 550 ° C. or lower (preferably a temperature of 500 ° C.). This ZrO 2 The film is oriented (100). In this specification, the orientation to (100) and the orientation to (200) are substantially the same. After this, ZrO 2 A lower electrode is formed on the film. The lower electrode is formed by an electrode film made of metal or oxide. For example, a Pt film or an Ir film is used as the electrode film made of metal. As an electrode film made of an oxide, for example, Sr (Ti 1-x Ru x ) O 3 A film is used, and x satisfies the following formula 15.
0.01 ≦ x ≦ 0.4 Formula 15
In this embodiment, ZrO 2 On the film, a Pt film by epitaxial growth is formed as a lower electrode by sputtering at a temperature of 550 ° C. or lower (preferably a temperature of 400 ° C.). This Pt film is oriented to (200).
In the present embodiment, the substrate as described above is used, but instead of the Si substrate, a single crystal substrate such as a Si single crystal or a sapphire single crystal, a single crystal substrate with a metal oxide film formed on the surface, and a polysilicon on the surface A substrate on which a film or a silicide film is formed may be used.
Next, the substrate is held by the holding unit 13. Next, Ar gas is introduced into the chamber 11 by the first gas introduction source 17, and O 2 is introduced by the second gas introduction source 18. 2 Introduce gas. At this time, O 2 It is good to control by a flow control part so that ratio of gas and Ar gas may satisfy the following formula 6.
0.1 ≦ O 2 Gas / Ar gas ≦ 0.3 Equation 6
Further, the inside of the chamber 11 is evacuated by the evacuation mechanism 19 to reduce the pressure inside the chamber 11 to a predetermined pressure (for example, a pressure of 0.1 Pa or more and 2 Pa or less).
Thereafter, the specific resistance is 1 × 10 1 on the substrate 12 via the matching unit 22 and the target holding unit 15 by the high-frequency output mechanism 16. 7 A high frequency output is supplied to the sputtering target 14 containing an insulator of Ω · cm or more. This high-frequency output is in the form of a pulse having a DUTY ratio of 25% to 90% at a frequency of 10 kHz to 30 MHz and a period of 1/20 ms to 1/3 ms. Thereby, an insulating film is formed on the substrate 12.
When a high frequency output is supplied to the sputtering target 14 to form an insulating film, it is preferable to apply a magnetic field to the sputtering target 14 by rotating the magnet 20 by the rotation mechanism 21 at a speed of 20 rpm to 120 rpm.
Further, a voltage V which is a direct current component generated in the sputtering target 14 when a high frequency output is supplied to the sputtering target 14. DC V DC It is preferable to control to −200 V or more and −80 V or less by the control unit 23.
Further, the specific resistance of the surface of the sputtering target 14 after supplying a high frequency output to the sputtering target 14 is 1 × 10 9 Ω · cm or more 1 × 10 12 It is preferable to control to Ω · cm or less.
According to this embodiment, a high frequency output of 10 kHz to 30 MHz is applied to a sputtering target including an insulator having a specific resistance of 1 × 10 7 Ω · cm or more, and a frequency of 1/20 ms or more and 1/3 ms or less is 25% or more and 90% or less. DUTY ratio is supplied in a pulse form. Since the high-frequency output is supplied in a pulse shape in this way, even if charges are accumulated in the sputtering target including the insulator, the accumulated charges are released when the high-frequency output is not supplied (when the high-frequency output is in the off state). As a result, the sputtering target can be prevented from being damaged. Therefore, the amount of power applied to the sputtering target can be increased, and the film formation rate can be increased.
In particular, the sputtering target 14 is of the general formula ABO 3 It is conceivable that the surface resistance of the sputtering target 14 greatly fluctuates during film formation when the perovskite substance represented by the formula (1) or the bismuth layer structure ferroelectric crystal is included. For this reason, it becomes possible to suppress fluctuations in the surface resistance of the sputtering target 14 by supplying high-frequency output in pulses as described above to make it difficult for charges to accumulate in the sputtering target 14.
a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16 (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A piezoelectric film formed on a substrate by the above-described film formation method using a sputtering target 14 made of a La b ) (Zr c Ti d Nb e ) O 3-δ It is preferable that a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
Above (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film has a relative dielectric constant εr per 1 μm of film thickness of 100 or more and 600 or less (preferably 100 or more and 400 or less), and has a coercive voltage per 1 μm of film thickness of 3V or more and 15V or less and 20 μC / cm. 2 50 μC / cm 2 It is preferable to have at least one of the following remanent polarization values. Also, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film has a thickness of 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and further preferably 20 μm or more. Also, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The Curie temperature of the film is preferably 250 ° C. or higher and 420 ° C. or lower (preferably 300 ° C. or higher and 400 ° C. or lower).
Above (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film may be formed on an electrode such as a Pt film, and this (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ When the crystallinity of the film is evaluated by XRD (X-Ray Diffraction), the peak value of (002) of the XRD becomes higher than the peak value of (200) of the XRD of the electrode. This is (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ This is because the film thickness is 5 μm or more.
Further, according to the present embodiment, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The above-mentioned high frequency output is supplied to the sputtering target made of in the above cycle in the form of pulses with the above DUTY ratio (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film formation rate when forming the film can be improved to 1 nm / sec or more and 2.5 nm / sec or less.
In the present embodiment, ZrO is interposed between the Si substrate and the Pt film. 2 By forming a film, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The internal stress of the film can be reduced. Therefore, its (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Even if the film thickness is 5 μm or more, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ It can suppress that a crack enters into a film.
In the present embodiment, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film is formed, but SrRuO is formed on the Pt film. 3 A film is formed and this SrRuO 3 On the membrane (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film may be formed.
Next, the oxygen-deficient perovskite structure will be described in detail with reference to FIGS.
The oxygen deficient perovskite structure can be classified by the following general formula. The following classification is based on the crystal structure that actually exists.
Perovskite structure is ABO 3-δ Or A n B n O 3n-1 It is represented by
The left figure of each of FIGS. 34 to 37 is ABO. 3-δ It is a schematic diagram which shows the various crystal structures containing the oxygen deficiency. Each of the right diagrams of FIGS. 34 to 37 is a schematic diagram of an oxygen deficient structure on the ab plane, and the C ′ layer and the D ′ layer are mirror images of the C layer and the D layer on the ab plane, respectively. It is a schematic diagram showing a state where the phase is shifted.
FIG. 34 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 0.125 or n = 8.0.
FIG. 35 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 0.25 or n = 4.0.
FIG. 36 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 0.5 or n = 2.0.
FIG. 37 is a schematic diagram of an oxygen-deficient perovskite structure when δ = 1.0 or n = 1.0.
One of the derived structures of perovskite is an oxygen-deficient ordered perovskite structure. When the B-site transition metal is expensive and unstable, or oxygen is lost due to control of the sample preparation atmosphere. When oxygen is deficient, BO 6 The octahedron is BO 5 Square pyramid and BO 4 It changes to a tetrahedron. ABO with slight oxygen deficiency 3-δ In this case, oxygen at random sites is deficient while maintaining the basic structure. However, when the amount of oxygen deficiency δ increases, in many cases, oxygen deficiencies are regularly arranged.
The coordination structure varies greatly depending on the oxygen deficiency state. BO 6 The (B: B site ion, O: oxygen ion) octahedron has an octahedral structure without oxygen deficiency. If the B site ion is pentacoordinate, 5 It becomes a square pyramid structure. 4 Tetrahedral structure, BO 4 It has two structures (planar (completely deficient in oxygen)).
The above description of the oxygen-deficient perovskite structure applies to all substances related to the perovskite structure described in this specification.
[Second Embodiment]
3 to 5 are diagrams for explaining a method of manufacturing a piezoelectric element according to an aspect of the present invention.
As shown in FIG. 3A, a ZrO film is formed on the Si substrate 101 by the same method as in the first embodiment. 2 A film 102 is formed and ZrO 2 A Pt film 103 as an electrode film is formed on the film 102.
Next, in the same manner as in the first embodiment, a film thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, more preferably 20 μm or more) is formed on the Pt film 103 by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ A film 104 is formed. a, b, c, d, e, and δ may satisfy the following Expression 1 and Expressions 11 to 16. (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Since the film 104 is formed by a sputtering method, the polarization direction is the direction of an arrow 31 illustrated in FIG. That is, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction of the film 104 is perpendicular to the upper surface of the Si substrate 101 and is upward.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
Next, as shown in FIG. a La b ) (Zr c Ti d Nb e ) O 3-δ For adhesion on the membrane 104 (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 105 is formed by a sol-gel method and temporarily fired. For bonding at this time (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 105 is amorphous. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Thereafter, as shown in FIG. 3C, the Si substrate 101 is turned upside down. Next, as shown in FIG. 3D, the Si substrate 101 is made of ZrO. 2 Remove from film 102. Even if the Si substrate 101 is completely removed, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ If the thickness of the film 104 is 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, and further preferably 20 μm or more), the film 104 can be independent.
Next, as shown in FIGS. 4A and 4B, the Pt film 103 and ZrO 2 By processing the film 102 by photolithography technology and etching technology, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 103a, a second electrode 103b, and a third electrode 103c are formed under the film 104. The first to third electrodes 103a to 103c are upper electrodes.
Thereafter, as shown in FIG. a La b ) (Zr c Ti d Nb e ) O 3-δ Film 104 and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The membrane 105 is cut. Thereby, the first electrode 103a, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 104 and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The first stacked portion in which the film 105 is stacked, and the second electrode 103b (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 104 and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A second stacked portion in which the film 105 is stacked, and a third electrode 103c, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 104 and adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A third stacked portion in which the films 105 are stacked is formed. Although not shown in FIG. 4B, a fourth stacked portion and a fifth stacked portion are also formed.
Next, as shown in FIG. 5A, for bonding the first electrode 103a of the first stacked portion and the second stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Overlaying the film 105 and bonding the second electrode 103b of the second stacked portion and the third stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Overlaying the film 105 and bonding the third electrode 103c of the third stacked portion and the fourth stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 105 is overlaid.
Next, for bonding the first laminated portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Heat treatment is performed while applying a load between the film 105 and the fourth electrode 103d of the fourth stacked portion. Thereby, the first electrodes 103a and (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For bonding each film 104 and the second laminated portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ While the film 105 is pasted, the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For bonding the film and the second electrode to the third laminated portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ While the film 105 is attached, the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For bonding the film 104 and the third electrode 103c to the fourth stacked portion (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Affixing the film 105 and bonding each of the first to fourth laminated portions (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 105 is crystallized (see FIG. 5A). The temperature of the heat treatment at this time is for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A temperature at which the film 105 crystallizes is good.
Next, as illustrated in FIG. 5B, the electrodes 106 are formed on the side surfaces of the second electrode 103b and the fourth electrode 103d, and the first electrode 103a, the third electrode 103c, and the fifth electrode 103e are formed. An electrode 107 is formed on the side surface of the substrate. The electrode 106 is electrically connected to the second electrode 103b and the fourth electrode 103d, and the electrode 107 is electrically connected to the first electrode 103a, the third electrode 103c, and the fifth electrode 103e. In this way, a piezoelectric element can be manufactured.
In this embodiment, the same effect as that of the first embodiment can be obtained.
[Third Embodiment]
6 to 8 are diagrams for describing a method of manufacturing a piezoelectric element according to an aspect of the present invention.
As shown in FIG. 6B, a ZrO film is formed on the Si substrate 101 by the same method as in the first embodiment. 2 A film 102 is formed and ZrO 2 A Pt film 103 as an electrode film is formed on the film 102.
Next, in the same manner as in the first embodiment, a first (Pb) film having a thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, and further preferably 20 μm or more) is formed on the Pt film 103 by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ A film 104 is formed. a, b, c, d, e, and δ may satisfy the following Expression 1 and Expressions 11 to 16. First (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Since the film 104 is formed by a sputtering method, the polarization direction is the direction of an arrow 31 illustrated in FIG. That is, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction of the film 104 is perpendicular to the upper surface of the Si substrate 101 and is upward.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
Then the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ By forming a Pt film as an electrode film on the film 104 and etching the Pt film, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 111a, a second electrode 111b, and a third electrode 111c are formed over the film 104 (see FIGS. 6A and 6B).
Next, as shown in FIGS. 7A and 7B, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 104 is bonded onto the first to third electrodes 111a to 111c (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 112 is formed by a sol-gel method and temporarily fired. For bonding at this time (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 112 is amorphous. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Thereafter, as shown in FIG. 8A, the ZrO film is formed on the Si substrate 121 by the same method as in the first embodiment. 2 A film 122 is formed and ZrO 2 A Pt film 123 as an electrode film is formed on the film 122. Next, a second (Pb) film having a film thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, further preferably 20 μm or more) is formed on the Pt film 123 by sputtering in the same manner as in the first embodiment. a La b ) (Zr c Ti d Nb e ) O 3-δ A film 124 is formed. Second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Since the film 124 is formed by a sputtering method, the polarization direction is the direction of the arrow 32 illustrated in FIG. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Next, heat treatment is performed while applying a load between the Si substrate 101 and the Si substrate 121. As a result, for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 112 and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 124 is attached. The temperature of the heat treatment at this time is for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The temperature may be a temperature at which the film 112 is crystallized.
Next, as shown in FIG. 8B, the Si substrate 101 and the Si substrate 121 are removed. Next, as shown in FIG. 8C, the Pt film 123 and the ZrO 2 By processing the film 122 by a photolithography technique and an etching technique, the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 123a, a second electrode 123b, and a third electrode 123c are formed under the film 124. Also, the Pt film 103 and ZrO 2 By processing the film 102 by the photolithography technique and the etching technique, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 103a, a second electrode 103b, and a third electrode 103c are formed over the film 104.
After this, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 104, for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 112 and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The membrane 124 is cut. Next, a piezoelectric element can be manufactured by performing the process shown in FIG.
In this embodiment, the same effect as that of the first embodiment can be obtained.
In the present embodiment, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction 31 of the film 104 is the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ This is the direction opposite to the polarization direction 32 of the film 124. Therefore, when a positive voltage is applied to one of the electrode 106 and the electrode 107 of the piezoelectric element after the step shown in FIG. 5B and a negative voltage is applied to the other, for example, one of the positive voltage and the negative voltage is applied. Since the other voltage is applied to the first electrode 111a while being applied to the first electrodes 103a and 123a, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 104 and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The membrane 124 can be stretched in the same direction.
[Fourth Embodiment]
9 to 11 are diagrams for describing a method of manufacturing a piezoelectric element according to an aspect of the present invention.
As shown in FIG. 9A, after the steps up to the step shown in FIG. 6 in the third embodiment are performed, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Over the film 104, the first electrode 111a, the second electrode 111b, and the third electrode 111c, a film thickness of 5 μm or more (preferably 10 μm or more, more preferably) by a sputtering method in the same manner as in the first embodiment. (Pb of 15 μm or more, more preferably 20 μm or more) a La b ) (Zr c Ti d Nb e ) O 3-δ A film 132 is formed. a, b, c, d, e, and δ may satisfy the following Expression 1 and Expressions 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
Next, ZrO on the Si substrate 121 by the same method as in the first embodiment. 2 A film 122 is formed and ZrO 2 A Pt film 123 as an electrode film is formed on the film 122. Next, a second (Pb) film having a film thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, further preferably 20 μm or more) is formed on the Pt film 123 by sputtering in the same manner as in the first embodiment. a La b ) (Zr c Ti d Nb e ) O 3-δ A film 124 is formed. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Next, heat treatment is performed while applying a load between the Si substrate 101 and the Si substrate 121. As a result, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 132 and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 124 is attached.
Next, as shown in FIG. 9B, the Si substrate 121 is removed.
Next, as shown in FIG. 9C, the Pt film 123 and the ZrO 2 By processing the film 122 by a photolithography technique and an etching technique, the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 123a, a second electrode 123b, and a third electrode 123c are formed under the film 124.
Then the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 124 is bonded onto the first to third electrodes 123a to 123c (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 133 is formed by a sol-gel method and temporarily fired. For bonding at this time (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 133 is amorphous. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Thereafter, as shown in FIG. 10A, the ZrO layer is formed on the Si substrate 141. 2 Film 142, Pt film 143, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 144 is formed in order, and (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 145a, a second electrode 145b, and a third electrode 145c are formed over the film 144. Next, on the first to third electrodes 145a to 145c, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 146 is formed. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Next, ZrO on the Si substrate 151 2 A film 152 is formed and ZrO 2 A Pt film 153 as an electrode film is formed on the film 152. Next, the Pt film 153 is sputtered (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 154 is formed. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Next, heat treatment is performed while applying a load between the Si substrate 141 and the Si substrate 151. As a result, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 146 and (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 154 is attached.
Next, as shown in FIGS. 10B and 10C, the Si substrate 151, ZrO 2 The film 152 and the Pt film 153 are removed.
Thereafter, as shown in FIG. 11A, the bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 133 and (Pb) shown in FIG. a La b ) (Zr c Ti d Nb e ) O 3-δ The film 154 is overlaid. Then, as shown in FIG. 11B, heat treatment is performed while applying a load between the Si substrate 101 and the Si substrate 141. As a result, for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 133 and (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 154 is attached. The temperature of the heat treatment at this time is for bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A temperature at which the film 133 crystallizes is good.
Next, as shown in FIG. 11C, the Si substrate 141 and the ZrO 2 The film 142 is removed. Next, the Pt film 143 is processed by a photolithography technique and an etching technique, so that (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A first electrode 143a, a second electrode 143b, and a third electrode 143c are formed over the film 144.
Thereafter, by repeating the steps of FIGS. 11A, 11B, and 11C, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The number of laminated layers can be increased.
In this embodiment, the same effect as that of the first embodiment can be obtained.
[Fifth Embodiment]
12 to 15 are views for explaining a method of manufacturing a piezoelectric element according to one embodiment of the present invention.
As shown in FIG. 12A, ZrO is formed on the Si substrate 161 by the same method as in the first embodiment. 2 A film 162 is formed and ZrO 2 A Pt film 163 as an electrode film is formed on the film 162. This Pt film 163 is the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ It becomes the first electrode for the film.
Next, a first layer (Pb) having a film thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, more preferably 20 μm or more) is formed on the Pt film 163 by sputtering in the same manner as in the first embodiment. a La b ) (Zr c Ti d Nb e ) O 3-δ A film 164 is formed. a, b, c, d, e, and δ may satisfy the following Expression 1 and Expressions 11 to 16. The first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Since the film 164 is formed by a sputtering method, the polarization direction is the direction of the arrow 31 illustrated in FIG.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
Next, as shown in FIG. 12B, the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A Pt film 165 by epitaxial growth is formed on the film 164 by sputtering at a temperature of 550 ° C. or lower (preferably a temperature of 400 ° C.). This Pt film 165 is the second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ This is the second electrode for the film.
Thereafter, as shown in FIG. 12C, a film thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, more preferably, more preferably by sputtering on the Pt film 165 in the same manner as in the first embodiment. Is the second layer (Pb) a La b ) (Zr c Ti d Nb e ) O 3-δ A film 166 is formed. It is preferable that a, b, c, d, e, and δ satisfy Expression 1 and Expressions 11 to 16.
Next, as shown in FIG. 12D, the second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A Pt film 167 is formed on the film 166 in the same manner as the Pt film 165 described above. This Pt film 167 is the third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ It becomes the third electrode for the film.
Thereafter, by repeating the process shown in FIG. 12C and the process shown in FIG. 12D, the third layer (Pb) is formed on the Pt film 167 as shown in FIG. a La b ) (Zr c Ti d Nb e ) O 3-δ Film 168, Pt film 169, 4th layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 170 and a Pt film 171 are formed. It is preferable that a, b, c, d, e, and δ satisfy Expression 1 and Expressions 11 to 16. The Pt film 169 is the fourth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The fourth electrode for the film is used, and the Pt film 171 is the fifth electrode. Next, the Si substrate 161 is made of ZrO. 2 Remove from film 162.
Next, ZrO 2 On the film 162 and the Pt film 163, the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 164, Pt film 165, second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ On the film 166 and the Pt film 167, the third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 168, Pt film 169, 4th layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The laminated film having the film 170 and the Pt film 171 is cut to a required size (not shown). Thereby, a plurality of stacked portions shown in FIG.
In this embodiment, the laminated film is cut after removing the Si substrate 161. However, the laminated film may be cut before removing the Si substrate 161, and then the Si substrate may be removed.
Next, as shown in FIG. 13B, a photosensitive permanent resist film 172 is applied to the first side surface of the stacked portion. Next, as shown in FIG. 14A, the photosensitive permanent resist film 172 is exposed and developed to form permanent resist films 172a and 172b on the first side surface of the stacked portion. As a result, the first side surface of the Pt film (fourth electrode) 169 in the stacked portion is covered with the permanent resist film 172a, and the first side surface of the Pt film (second electrode) 165 in the stacked portion is the permanent resist film. The first side surfaces of the Pt film (first electrode) 163, the Pt film (third electrode) 167, and the Pt film (fifth electrode) 171 in the stacked portion are exposed.
Thereafter, as shown in FIG. 14B, the first side surface of the Pt film (first electrode) 163, the Pt film (third electrode) 167, and the Pt film (fifth electrode) 171 in the stacked portion. A Pt film (sixth electrode) 173 is formed on the permanent resist films 172a and 172b. Accordingly, the Pt film (sixth electrode) 173 is electrically connected to the Pt film (first electrode) 163, the Pt film (third electrode) 167, and the Pt film (fifth electrode) 171. .
Next, as shown in FIG. 15A, the stacked portion of FIG. 14B is disposed upside down, and a photosensitive permanent resist film 174 is applied to the second side surface of the stacked portion. Next, as shown in FIG. 15B, the photosensitive permanent resist film 174 is exposed and developed to form permanent resist films 174a, 174b, and 174c on the second side surface of the stacked portion. As a result, the second side surface of the Pt film (first electrode) 163 in the stacked portion is covered with the permanent resist film 174a, and the second side surface of the Pt film (third electrode) 167 in the stacked portion is the permanent resist film. The second side surface of the Pt film (fifth electrode) 171 in the stacked portion is covered with a permanent resist film 174c, and the Pt film (second electrode) 165 and the Pt film (fourth electrode) in the stacked portion are covered with 174b. The second side surface of each electrode 169 is exposed.
Thereafter, as shown in FIG. 15C, the first side surfaces of the Pt film (second electrode) 165 and the Pt film (fourth electrode) 169 and the permanent resist films 174a, 174b, 174c in the stacked portion. A Pt film (seventh electrode) 175 is formed thereon. As a result, the Pt film (seventh electrode) 175 is electrically connected to the Pt film (second electrode) 165 and the Pt film (fourth electrode) 169, respectively. In this way, a piezoelectric element can be manufactured.
In this embodiment, the same effect as that of the first embodiment can be obtained.
In this embodiment, ZrO 2 Film 162, first electrode 163, first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 164, second electrode 165, second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 166, third electrode 167, third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 168, fourth electrode 169, fourth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Although the stacked portion including the film 170 and the fifth electrode 171 is used, the present invention is not limited to this, and the present invention can be modified as follows.
At least the first electrode 163, the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 164, second electrode 165, second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A stacked portion including the film 166 and the third electrode 167 can also be used. In that case, the first side surface of the first electrode 163 and the first side surface of the third electrode 167 may be electrically connected by the sixth electrode 173.
In addition, the first electrode 163, the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 164, second electrode 165, second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 166, third electrode 167, third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A stacked portion including the film 168 and the fourth electrode 169 can also be used. In that case, the first side surface of the first electrode 163 and the first side surface of the third electrode 167 are electrically connected by the sixth electrode 167, and the second side surface of the second electrode 165 and the fourth side surface The second side surface of the electrode 169 may be electrically connected by the seventh electrode 175.
Further, an n-th layer (Pb) is formed on the fifth electrode 171 illustrated in FIG. a La b ) (Zr c Ti d Nb e ) O 3-δ The film and the (n + 3) th electrode may be repeatedly formed. In this case, n is an integer of 5 or more. For example, when n is 5, 6, or 7, the first electrode 163, the first layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 164, second electrode 165, second layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 166, third electrode 167, third layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 168, fourth electrode 169, fourth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane 170, fifth electrode 171, fifth layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane, 8th electrode, 6th layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Membrane and 9th electrode, 7th layer (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A laminated portion having a film and a tenth electrode is used. In that case, the first side surface of the first electrode 163, the first side surface of the third electrode 167, the first side surface of the fifth electrode 171, and the first side surface of the ninth electrode are the sixth side surface. The second side surface of the second electrode 165, the second side surface of the fourth electrode 169, the second side surface of the eighth electrode, and the second side surface of the tenth electrode are electrically connected by the electrode 167. Are preferably electrically connected by the seventh electrode 175.
[Sixth Embodiment]
39 to 43 are cross-sectional views illustrating a method for manufacturing a piezoelectric element according to one embodiment of the present invention.
As shown in FIG. 39A, a ZrO film is formed on the Si substrate 101 by the same method as in the first embodiment. 2 A film 102 is formed and ZrO 2 A Pt film 103 as an electrode film is formed on the film 102.
Next, in the same manner as in the first embodiment, a first (Pb) film having a thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, and further preferably 20 μm or more) is formed on the Pt film 103 by sputtering. a La b ) (Zr c Ti d Nb e ) O 3-δ A film 104 is formed. a, b, c, d, e, and δ may satisfy the following Expression 1 and Expressions 11 to 16.
0 ≦ δ ≦ 1 Equation 1
1.00 ≦ a + b ≦ 1.35 Expression 11
0 ≦ b ≦ 0.08 Expression 12
1.00 ≦ c + d + e ≦ 1.1 Formula 13
0.4 ≦ c ≦ 0.7 Formula 14
0.3 ≦ d ≦ 0.6 Formula 15
0 ≦ e ≦ 0.1 Equation 16
Next, as shown in FIG. 39B, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For adhesion on the membrane 104 (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 125 is formed by a sol-gel method and temporarily fired. For bonding at this time (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 125 is amorphous. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Since the film 104 is formed by a sputtering method, the polarization direction is the direction of an arrow 31 illustrated in FIG. That is, the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction of the film 104 is perpendicular to the upper surface of the Si substrate 101 and is upward.
As shown in FIG. 40A, the ZrO film is formed on the Si substrate 101 as in FIG. 2 The film 102, the Pt film 103, the first (Pb) having a film thickness of 5 μm or more (preferably 10 μm or more, more preferably 15 μm or more, and further preferably 20 μm or more) a La b ) (Zr c Ti d Nb e ) O 3-δ A film 104 is formed in order. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Next, as shown in FIG. 40 (B), the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A Pt film 126 as an electrode film is formed on the film 104. The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction of the film 104 is the direction of the arrow 31.
Next, as shown in FIG. 41A, the Si substrate 101 of FIG. 39B is placed in the reverse direction on the Pt film 126 of the Si substrate 101 of FIG. 40B. As a result, for bonding on the Si substrate 101 in FIG. a La b ) (Zr c Ti d Nb e ) O 3-δ The film 125 is brought into contact with the Pt film 126 on the Si substrate 101 of FIG.
Thereafter, as shown in FIG. 41B, heat treatment is performed while applying a load between the lower Si substrate 101 and the upper Si substrate 101. As a result, the crystallized adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 125a and a Pt film 126 are attached. The lower first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The polarization direction of the film 104 (arrow 31) is the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The direction of polarization of the film 104 (arrow 31) is reversed.
Next, as shown in FIG. 42A, the upper Si substrate 101 is dissolved and removed by KOH wet etching. As a result, ZrO 2 The film 102 is exposed. In other words, the wet etching at this time is ZrO. 2 Etching is stopped at film 102.
Next, as shown in FIG. 2 The film 102 and the Pt film 103 are removed by dry etching. As a result, the upper first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 104 is exposed.
Next, as shown in FIG. 42C, the upper first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ For adhesion on the membrane 104 (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ A film 127 is formed by a sol-gel method and temporarily fired. For bonding at this time (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ The film 127 is amorphous. a, b, c, d, e, and δ may satisfy the above-described Expression 1 and Expressions 11 to 16.
Next, the Si substrate 101 in the state shown in FIG. 2 The Si substrate 101 of FIG. 42C is placed on the film 102 in the reverse direction. As a result, as shown in FIG. 43A, for bonding (Pb on the Si substrate 101 in FIG. 42C). a La b ) (Zr c Ti d Nb e ) O 3-δ The film 127 is formed on the ZrO film on the Si substrate 101 in FIG. 2 Contact with membrane 102.
Next, heat treatment is performed while applying a load between the lower Si substrate 101 and the upper Si substrate 101. As a result, the crystallized adhesive (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ Film 127a and ZrO 2 A film 102 is attached.
Next, as shown in FIG. 43B, the upper Si substrate 101 is removed by KOH wet etching in the same manner as in the step shown in FIG. Next, the process of FIG. 43A and the process of FIG. 43B are repeated as necessary.
Thereafter, side terminals are formed using the steps shown in FIGS. In this way, a piezoelectric element can be manufactured.
In this embodiment, the same effects as those of the third embodiment can be obtained.
[Seventh Embodiment]
FIG. 44 is a cross-sectional view illustrating the method for manufacturing the series-type bimorph element according to one embodiment of the present invention.
First, the steps shown in FIGS. 12A and 12B are performed, and then the Si substrate 161 is dissolved and removed by KOH wet etching in the same manner as the step shown in FIG. As a result, a laminated film 37 is produced in which the Pt film 163, the PZT film 164, and the Pt film 165 are laminated in this order (see FIG. 44), and the PZT film 164 is polarized in the direction of the arrow 31. ZrO 2 The film 162 may or may not be removed.
Next, as shown in FIG. 44, the laminated film 37 is attached to the upper and lower surfaces of the shim 35 made of metal foil by the adhesive layer 36. A series type bimorph element can be moved by applying a DC voltage between the upper Pt film 163 and the lower Pt film 163.
44, the Pt film 165 on the shim 35 is read as the first electrode, the PZT film 164 on the Pt film 165 is read as the piezoelectric film, and the Pt film 163 on the PZT film 164 is changed to the second electrode. The Pt film 165 under the shim 35 is replaced with a third electrode, the PZT film 164 under the Pt film 165 is replaced with a piezoelectric film, and the Pt film 163 under the PZT 165 is replaced with a fourth electrode. It may be replaced.
[Eighth Embodiment]
FIG. 45 is a cross-sectional view illustrating the method for manufacturing the parallel bimorph element according to one embodiment of the present invention.
A laminated film 37 in which a Pt film 163, a PZT film 164, and a Pt film 165 are laminated in this order is produced by the same method as in the seventh embodiment (see FIG. 45), and this PZT film 164 is polarized in the direction of the arrow 31. is doing.
Next, as shown in FIG. 45, the laminated film 37 is attached to the upper and lower surfaces of the shim 35 made of metal foil by the adhesive layer 36. The parallel bimorph element can be moved by applying a DC voltage between the upper Pt film 165 and the lower Pt film 163 and the shim 35.
The Pt film 163 on the shim 35 shown in FIG. 45 is read as the first electrode, the PZT film 164 on the Pt film 163 is read as the piezoelectric film, and the Pt film 165 on the PZT film 164 is changed to the second electrode. The Pt film 165 under the shim 35 is replaced with a third electrode, the PZT film 164 under the Pt film 165 is replaced with a piezoelectric film, and the Pt film 163 under the PZT 165 is replaced with a fourth electrode. It may be replaced.
The first to eighth embodiments described above may be combined as appropriate.
 図1に示すスパッタリング装置を用い、表1に示すスパッタ条件で基板上にPZT膜を成膜することで、実施例1(本発明5μm)のサンプル、実施例2(本発明10μm)のサンプル、実施例3(本発明20μm)のサンプル及び比較例1(従来例)のサンプルを作製した。ここでの基板は、Si基板上にZrO膜を蒸着法により形成し、このZrO膜上にスパッタリングによってエピタキシャル成長によるPt膜を下部電極として形成したものを用いた。
Figure JPOXMLDOC01-appb-T000001
 実施例1,2,3及び比較例1それぞれのサンプルを作製する際のスパッタリングターゲットの組成とサンプルの組成は以下のとおりである。
 <スパッタリングターゲットの組成>
 実施例1(本発明5μm):Pb/Zr/Ti=130/58/42
 実施例2(本発明10μm):Pb/Zr/Ti=130/58/42
 実施例3(本発明20μm):Pb/Zr/Ti=130/58/42
 比較例1(従来例):Pb/Zr/Ti=130/58/42
 <サンプルの組成>
 実施例1(本発明5μm):Pb/Zr/Ti=109/55/45
 実施例2(本発明10μm):Pb/Zr/Ti=105/55/45
 実施例3(本発明20μm):Pb/Zr/Ti=102/55/45
 比較例1(従来例):Pb/Zr/Ti=98/55/45
 成膜前のスパッタリングターゲットの表面抵抗値と、成膜後のスパッタリングターゲットの表面抵抗値を、強誘電体測定システムにあたる絶縁抵抗測定器(MODEL:ADC5450(Ultra High Resistance Meter))を使用し、プローブ間距離を5mmとし、測定電圧を10Vとして測定した。測定結果は以下のとおりである。
 <成膜前のスパッタリングターゲットの表面抵抗値>
 スパッタリングターゲットの中央部:2.03×1011Ω・cm
 スパッタリングターゲットの中央部と外周部との間:2.10×1011Ω・cm
 スパッタリングターゲットの外周部:5.39×1010Ω・cm
 <成膜後のスパッタリングターゲットの表面抵抗値>
 スパッタリングターゲットの中央部:4.95×1011Ω・cm
 スパッタリングターゲットの中央部と外周部との間:1.45×1012Ω・cm
 スパッタリングターゲットの外周部:3.49×1011Ω・cm
 図16(A)は、実施例1のサンプルをFIB(Focused Ion Beam)で断面観察した像であり、図16(B)は、実施例2のサンプルをFIBで断面観察した像である。実施例1のPZT膜の膜厚は5.18μmであり、実施例2のPZT膜の膜厚は9.99μmであった。これらの膜厚はTilt補正値である。このTilt補正が必要な理由は以下のようである。(1)FIBで切削を繰り返すと観察像に視野ズレが生じる。SEM像の中心から切削領域がずれていくため補正が必要となる。(2)FIB切削面は観察の光軸に対して垂直にはならない。傾斜した面を見ているために、画像中で縦横スケールが異なり補正が必要である。以上の理由より、Tilt角度を補正してそれを実測長さと補正が必要となる。
 図17は、実施例1のPZT膜及び実施例2のPZT膜の結晶性をXRD(X−Ray Diffraction)で評価した結果を示す図である。PZT膜のXRDの(002)のピーク値は、Pt膜のXRDの(200)のピーク値より高くなる。これは、PZT膜の膜厚が5μm以上であるためである。
 実施例1,2,3及び比較例1それぞれのサンプルに対して広域逆格子マッピングを行った。逆格子マップのイメージは図18に示す。
 本実施例のXRDデータは、リガク社製全自動水平型多目的X線回折装置SmartLabを用いており、且つ、広域逆格子マッピングはSmartLabにハイブリッド型多次元ピクセル検出器HyPix−3000を取り付けて測定を行った。
 図19は、結晶格子面(hkl)の逆格子ベクトルと逆格子点を説明する図である。図20は、X線回折条件のベクトル表記を説明する図である。
・逆格子ベクトル(ghkl
 大きさ:(hkl)面のd値の逆数
 方向:(hkl)面の法線方向
・逆格子マッピング
 逆格子点の逆空間上での広がりを測定する。
 逆格子点:逆格子ベクトルの先端
・回折を起こす条件
 散乱ベクトル:K=k−k
 (散乱ベクトルK)=(逆格子ベクトルghkl
・逆格子マップ測定
 散乱ベクトルKを走査し、逆格子点の二次元分布を測定する。
 予め結晶構造情報を元に逆格子シミュレーションをしておき、実測値と比較する。逆格子マップは下記のqxとqz式でプロットしたものである。
Figure JPOXMLDOC01-appb-M000002
 2θを10−120°、Ωを10−90°、Xを0°,30°,60°,90°の4段階、Φを0°と45°で2面測定した。Φ=0°(//Si110)、Φ=45°(//Si100)、各サンプルΦ=0°,45°の2通りを測定した。
 従来のθ−2θ測定の場合、基板を水平に固定して、X線を照射し測定を行う(図21(A)参照)。
 θ−2θ測定をω軸(資料の回転軸)、χ軸(煽り操作軸)を走査しながら測定する。またφ軸(面内回転軸)を0°と45°2点で測定した。θ−2θ/ω軸走査測定後、qzvs.qxプロットしたものが逆格子マッピングであり、同時に何段階かχ軸走査しながら、逆格子マッピングし全てを一面に重ねることで、ドメインの異なる成分を測定し、真の配向度の優劣を知る(図21(B),(C)参照)。
 リガク社製ソフトSmartLab Guidanceを用い、図22のように、既知のPZT結晶構造情報を元に逆格子点の配置を予め、シミュレートしておき、実測値と重ね合わせることで、膜状態の解析を行った。
 図23は、PZT単結晶の逆格子シミュレーション結果である。
 図24(A),(B)は、実施例1(本発明5μm)及び実施例2(本発明10μm)それぞれのサンプルを逆格子マップ測定した結果である。これらの図に示すとおり、PZT単結晶の逆格子点計算値(×点)と完全に一致し、実施例1,2のPZT膜は良好な単結晶膜であることが分かる。
 表1に示すように、従来例では、パルスを用いずに高周波の連続波を用いたため、1800W以上(10W/cm以上)に出力を上げると、アークが発生して、プラズマが異常放電してスパッタリング装置が止まってしまうため、1800W以上に出力を上げることができなかった。これに対し、実施例1(本発明5μm)、実施例2(本発明10μm)及び実施例3(本発明20μm)では、スパッタリングターゲットに13.56MHzの高周波出力を、5kHzのパルス周波数(1/5msの周期)で90%のDUTY比のパルス状に供給したため、高周波出力がオフ状態の時にスパッタリングターゲット上にプラズマが立っていない時間ができ、その結果、短時間の成膜で膜厚が厚いPZT膜を容易に成膜することができた。
 図25(A)は、実施例1(本発明5μm)、実施例2(本発明10μm)及び実施例3(本発明20μm)それぞれの強誘性ヒステリシス曲線を示す図であり、図25(B)は、実施例1~3それぞれの圧電バタフライ曲線を示す図である。
 図25(A),(B)に示すように、PZT膜の膜厚に比例した強誘電性と圧電性が得られることが確認できた。また、膜厚が20μmの実施例3のサンプルでは、87Vという非常に大きなVcが得られた。また、実施例3のPZT膜のキュリー温度Tcを測定したところ、Tc=390℃であった。
 図26(A)は、比較例2(K148)の強誘性ヒステリシス曲線を示す図であり、図26(B)は比較例2(K148)の圧電バタフライ曲線を示す図である。
 図27(A)は、比較例3(K129)の強誘性ヒステリシス曲線を示す図であり、図27(B)は比較例3(K129)の圧電バタフライ曲線を示す図である。
 比較例2(K148)及び比較例3(K129)は、リードテクノ株式会社(〒520−2194滋賀県大津市大江町横谷1番5 龍谷大学REC202B)製のバルクの圧電素子である。この圧電素子の形状は、直径φ8mm×厚さ約0.5mm(500μm)の円盤状である。比較例2(K148)及び比較例3(K129)の圧電素子として、一般的に用いられるハード系PZT(K148)と変位量に拘ったソフト系PZT(K129)を比較した。
 先ずカタログ値の転移温度(Tc),圧電定数d33(pC/N),比誘電率εrは、以下の様であった。
 K129のTc: 145℃
 K129のd33: 720
 K129のεr: 8100
 K148のTc: 280℃
 K148のd33: 530
 K148のεr: 2400
 一般的なK148と異なり、圧電変位に拘ったK129はNiやNb等の元素が添加してあり、比誘電率が8000以上と大きく、これに伴って圧電変位が大きく取れ、アクチュエータ用途に用いられるが、同時にTc=145℃と非常に低く、温度特性が悪い為、所要箇所が限られる。
 一般的バルクK148の場合、センサ用途に最適なバタフライ形状をしているが(図26(B)参照)、バルクK148の抗電界Ec=11.42kV/cmを、本発明の実施例と比較する為、20μm当たりに変換すると、抗電界Ec=11.42kV/cmは22.84V/20μmとなり、抗電圧Vc=22.84Vと非常に低い。アクチュエータ用K129の場合は、抗電界Ec=5.7kV/cmは11.4V/20μmとなり、抗電圧Vcが11.4Vと更に低く、且つTc=145℃とこちらも低い為、デバイス加工時のリフロー等の熱処理(一般に280℃前後)時に、簡単に減分極を起こし、圧電性を失ってしまうというバルク共通の課題が有った。
 これに対し、前述した実施例3(本発明20μm)のPZT単結晶膜のサンプルは、抗電圧Vcが87V/20μmである。また、Tcが300℃以上と高い為、加工時のリフロー温度や静電気等の電位印加が起こっても、全く減分極する心配がない。
 PZTバルクによる積層体は、一層当たり20μm程度の厚さの比較例2,3のバルクを積層して形成するが、一層当たりの抗電圧Vcは高くても25V程度である。また、大きな圧電性を引き出そうと、添加剤を多く含み、転移温度Tcが200℃以下となっていることが多い。その結果、積層体が出来上がった時には、脱分極していて、全く圧電動作できないことも多い。これに対し、実施例3(本発明20μm)のサンプルは、抗電圧Vcが87V/20μm、且つ、Tc=390℃(実測値)であり、全く脱分極は生じない。
 次に、実施例3(本発明20μm)のPZT膜のd33評価を行った。詳細には、2mmφの上部Pt上に300gの荷重を数秒掛けて特性評価を行った。d33=1200pC/Nと非常に大きな値であった(図28参照)。バルクの約2倍程度の大きさが容易に得られた。実施例3は純粋なPZTであるため、添加元素等を検討すれば、5−10倍の値が得られる可能性は非常に高い。
 実施例3のサンプル(20μm−PZT膜)のFIB−SEMの断面像は、図38(A),(B)に示すとおりである。図38(B)は図38(A)の拡大像である。
 図38によれば、通常の多結晶PZT膜の柱状構造は全く存在せず、非常に良好な単一結晶であることが分かる。しかしながら、ごく一部、他配向領域と思われる領域が見受けられたが、通常のPZT積層バルク体の一層として考えると、圧倒的な圧電性を保持していることは明確であり、ほぼ20μm厚さにおいても、単結晶膜と言って良い圧倒的な圧電厚膜が得られた。
 図25(A)に示す実施例2(本発明10μm)の強誘性ヒステリシス曲線によれば、比誘電率(εr)、残留分極値(Pr)、抗電圧(Vc)及び抗電界(Ec)は以下のとおりである。また、実施例2のPZT膜のキュリー温度(Tc)を測定したところ、以下のとおりであった。
 比誘電率(εr)=約200@1kHz
 キュリー温度(Tc)=408℃
 残留分極値(Pr)=約40μC/cm
 抗電圧(Vc)=44V
 抗電界(Ec)=44kV/cm
 図26(A)に示す比較例2(K148)の強誘性ヒステリシス曲線によれば、比誘電率(εr)、残留分極値(Pr)、抗電圧(Vc)及び抗電界(Ec)は以下のとおりである。また、比較例2のPZTバルクのキュリー温度(Tc)を測定したところ、以下のとおりであった。
 Tc=280℃
 εr=2400
 Pr=37.92μC/cm
 Ec=11.42kV/cm
 Vc=571V@0.5mm(11.42V@10μm)
 図27(A)に示す比較例3(K129)の強誘性ヒステリシス曲線によれば、比誘電率(εr)、残留分極値(Pr)、抗電圧(Vc)及び抗電界(Ec)は以下のとおりである。また、比較例3のPZTバルクのキュリー温度(Tc)を測定したところ、以下のとおりであった。
 εr=8100
 Tc=145℃
 Pr=29.76μC/cm
 Vc=275V@0.5mm(Vc=5.5V@10μm)
 Ec=5.7kV/cm
 図29は、実施例2(本発明10μm)のサンプルの比誘電率と誘電損失(tanδ)の温度変化を周波数を100k,500k,1MHzと変化させて測定した結果を示す図である。
 詳細には、インピーダンスアナライザー(アジレントテクノロジーズ社製,HP4192A)を用いて、測定する10μm−PZTサンプルキャパシタをホットプレート(株式会社MSAファクトリー社製,PH−210−600型(50−600℃))上で加熱しながら、比誘電率と誘電損失(tanδ)の温度変化を、周波数を100k,500k,1MHzと変化させて測定した。転移温度:Tc=390℃,誘電損失:tanδ=約2−3%であった。
 図30は、実施例4のサンプルを示す断面図である。この実施例4のサンプルの作製方法は以下のとおりである。
 Si基板201上にZrO膜202を蒸着法により形成し、ZrO膜202上にスパッタリングによってエピタキシャル成長によるPt膜203を形成する。次いで、Pt膜203上にSrRuO膜(SRO膜)204を、図1に示すスパッタリング装置を用いて表2に示すスパッタ条件で成膜する。この際のスパッタリングターゲットの組成はSr/Ru=1:1.15である。
 次いで、図1に示すスパッタリング装置を用い、表1に示す実施例1(本発明5μm)のスパッタ条件でSRO膜204上に膜厚1μmのPZT膜205を成膜する。但し、ここでのPZT膜205の膜厚は1μmであるため、表1に示す実施例1(本発明5μm)の成膜時間を720sにする。
 次いで、PZT膜205上にSrRuO膜(SRO膜)206を成膜する。この際の成膜条件は上記のSRO膜204の成膜条件と同様である。次いで、SRO膜206上にPt膜207、SRO膜208、膜厚1μmのPZT膜209を順に成膜する。この際、Pt膜207の成膜条件は上記のPt膜203の成膜条件と同様であり、SRO膜208の成膜条件は上記のSRO膜204の成膜条件と同様であり、PZT膜209の成膜条件は上記のPZT膜205の成膜条件と同様である。このようにして図30に示す実施例4のサンプルを作製することができる。
Figure JPOXMLDOC01-appb-T000003
 上記の実施例4のサンプルの結晶性をXRDで評価した結果は図31及び図32に示す。図31及び図32は、実施例4のサンプルのXRDパターンである。
 図31及び図32のXRDパターンによれば次のことが分かる。
 1層目Pt電極(Pt膜203)と中間Pt電極(Pt膜207)の結晶性を比較すると、1層目Pt電極と比較して、中間Pt電極の場合、Pt(400)ピークの半価幅が若干広く、若干ブロードになってはいるが、中間Pt電極も、エピタキシャル成長していることが分かった。
 次に、1層目PZT(PZT膜205)と2層目PZT(PZT膜209)の結晶性を比較すると、1層目PZTと比較して2層目PZTの場合、PZT(004)ピークの半価幅が若干広く、若干ブロードになってはいるが中間Pt電極含め、エピタキシャル成長していることが同様に分かった。
 図33は、実施例5のサンプルをFIBで断面観察した像である。この実施例5のサンプルは、図12(C)に示す断面構造と同様である。また、実施例5の作製方法は以下のとおりである。
 Si基板上にZrO膜を蒸着法により形成し、ZrO膜上にスパッタリングによってエピタキシャル成長によるPt膜を形成する。次いで、図1に示すスパッタリング装置を用い、表1に示す実施例1(本発明5μm)のスパッタ条件でPt膜上に膜厚1μmのPZT膜を成膜する。但し、ここでのPZT膜の膜厚は1μmであるため、表1に示す実施例1(本発明5μm)の成膜時間を720sにする。
 次いで、PZT膜上にPt膜、膜厚1μmのPZT膜を順に成膜する。この際、Pt膜の成膜条件は前記のPt膜の成膜条件と同様であり、PZT膜の成膜条件は前記のPZT膜の成膜条件と同様である。このようにして図12(C)に示す断面構造と同様の実施例5のサンプルを作製することができる。
 次に、実施例6のPZT膜及び比較例4のPZT膜それぞれの歪(応力)を図48に示す方法で測定した。その結果、膜厚5μmの比較例4のPZT膜が大きな応力を有するために、そのPZT膜表面にクラックが入る理由を確認した。以下に詳細に説明する。
 図46は、実施例6の圧電体膜の製造方法を説明するための断面図である。
 図46に示すように、Si基板1101上に膜厚15nmのZrO膜1102を蒸着法により形成した。この後、このZrO膜1102を有するSi基仮1101の曲率半径を図48に示すXRDを用いた簡易応力測定法により測定した。詳細には、ZrO膜1102を有するSi基板1101をωスキャンしながらロッキングカーブを測定することにより曲率半径を求め、Si基板の反りを評価した。XYステージを用いてサンプル(実施例6の基板)の移動量(ΔX)に対するロッキングカーブピーク位置のシフト量から単結晶基板の反りの度合いを曲率半径として評価した。その結果は、66.3°であった。
 次いで、ZrO膜1102上にスパッタリングによってエピタキシャル成長による膜厚100nmのPt膜1103を形成し、Pt膜1103上に膜厚20nmのSrRuO膜1104をスパッタリングによって形成した。次いで、SrRuO膜1104上に膜厚4μmのPZT膜1105を図1に示すスパッタリング装置を用いて形成した。この後、このPZT膜1105を有するSi基板1101の曲率半径を図48に示すXRDを用いた簡易応力測定法により測定した。その結果は、44.1°であった。両者の曲率半径の差(66.3°−44.1°)がPZT膜の内部応力を近似しており、その値は22.2°となった。
 なお、PZT膜1105の組成は、Zr/Ti=0.58/0.42であって、Zrを多く含むロンボヘドラル組成であった。
 図47は、比較例4の圧電体膜の製造方法を説明するための断面図である。
 図47に示すように、Si基板1101上に膜厚15nmのYSZ膜1106を蒸着法により形成した。この後、このYSZ膜1106を有するSi基板1101の曲率半径を図48に示すXRDを用いた簡易応力測定法により測定した。その結果は、83.5°であった。なお、YSZ膜1106は、Zrに8%Yを添加した合金を酸化した状態の膜である。
 次いで、YSZ膜1106上にスパッタリングによってエピタキシャル成長による膜厚100nmのPt膜1103を形成し、Pt膜1103上に膜厚20nmのSrRuO膜1104をスパッタリングによって形成した。次いで、SrRuO膜1104上に膜厚5μmのPZT膜1105を図1に示すスパッタリング装置を用いて形成した。この後、このPZT膜1105を有するSi基板1101の曲率半径を図48に示すXRDを用いた簡易応力測定法により測定した。その結果は、43.9°であった。両者の曲率半径の差(83.5°−43.9°)がPZT膜の内部応力を近似しており、その値は39.6°となった。
 なお、PZT膜1105の組成は、Zr/Ti=0.52/0.48であって、MPB(モルフォトロピック)組成であった。
 上記のことから、図46の実施例6のPZT膜の内部応力(曲率半径の差)を、図47の比較例4のPZT膜の内部応力の約半分に低減できることが確認された。このように内部応力を低減できた理由は、Si基板とPt膜との間にZrO膜を形成したためである。
 図49は、図48に示す比較例4のPZT膜1105の表面の光学顕微鏡写真である。この写真からPZT膜全体に数ミクロン□に全面クラックが発生していることが分かる。このクラックは比較例4のPZT膜1105を成膜して約2時間後に発生したものである。
 以上説明したように、比較例のPZT膜では5μm以上の膜厚で成膜することができないことが確認された。
By using the sputtering apparatus shown in FIG. 1 and forming a PZT film on the substrate under the sputtering conditions shown in Table 1, a sample of Example 1 (present invention 5 μm), a sample of Example 2 (present invention 10 μm), A sample of Example 3 (20 μm of the present invention) and a sample of Comparative Example 1 (conventional example) were prepared. As the substrate here, a ZrO 2 film was formed on a Si substrate by a vapor deposition method, and a Pt film formed by epitaxial growth as a lower electrode was formed on this ZrO 2 film by sputtering.
Figure JPOXMLDOC01-appb-T000001
The composition of the sputtering target and the composition of the sample when producing the samples of Examples 1, 2, 3 and Comparative Example 1 are as follows.
<Composition of sputtering target>
Example 1 (Invention 5 μm): Pb / Zr / Ti = 130/58/42
Example 2 (Invention 10 μm): Pb / Zr / Ti = 130/58/42
Example 3 (Invention 20 μm): Pb / Zr / Ti = 130/58/42
Comparative example 1 (conventional example): Pb / Zr / Ti = 130/58/42
<Sample composition>
Example 1 (Invention 5 μm): Pb / Zr / Ti = 109/55/45
Example 2 (Invention 10 μm): Pb / Zr / Ti = 105/55/45
Example 3 (Invention 20 μm): Pb / Zr / Ti = 102/55/45
Comparative example 1 (conventional example): Pb / Zr / Ti = 98/55/45
The surface resistance value of the sputtering target before film formation and the surface resistance value of the sputtering target after film formation are measured by using an insulation resistance measuring instrument (MODEL: ADC5450 (Ultra High Resistance Meter)) corresponding to a ferroelectric measurement system. The distance was 5 mm, and the measurement voltage was 10 V. The measurement results are as follows.
<Surface resistance value of sputtering target before film formation>
Central part of sputtering target: 2.03 × 10 11 Ω · cm
Between the central portion and the outer peripheral portion of the sputtering target: 2.10 × 10 11 Ω · cm
Outer peripheral part of sputtering target: 5.39 × 10 10 Ω · cm
<Surface resistance value of sputtering target after film formation>
Central part of sputtering target: 4.95 × 10 11 Ω · cm
Between the central portion and the outer peripheral portion of the sputtering target: 1.45 × 10 12 Ω · cm
Outer peripheral part of sputtering target: 3.49 × 10 11 Ω · cm
FIG. 16A is an image obtained by observing a cross section of the sample of Example 1 with an FIB (Focused Ion Beam), and FIG. 16B is an image obtained by observing the cross section of the sample of Example 2 with an FIB. The thickness of the PZT film of Example 1 was 5.18 μm, and the thickness of the PZT film of Example 2 was 9.99 μm. These film thicknesses are Tilt correction values. The reason why this tilt correction is necessary is as follows. (1) When cutting with FIB is repeated, field of view shifts in the observed image. Since the cutting area is shifted from the center of the SEM image, correction is required. (2) The FIB cut surface is not perpendicular to the optical axis of observation. Since an inclined surface is seen, the vertical and horizontal scales differ in the image and correction is required. For the above reasons, it is necessary to correct the tilt angle and correct the measured length.
FIG. 17 is a diagram showing the results of evaluating the crystallinity of the PZT film of Example 1 and the PZT film of Example 2 by XRD (X-Ray Diffraction). The XRD (002) peak value of the PZT film is higher than the XRD (200) peak value of the Pt film. This is because the thickness of the PZT film is 5 μm or more.
Wide area reciprocal lattice mapping was performed on the samples of Examples 1, 2, 3 and Comparative Example 1. An image of the reciprocal lattice map is shown in FIG.
The XRD data of this example uses a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Corporation, and wide area reciprocal lattice mapping is measured by attaching a hybrid multidimensional pixel detector HyPix-3000 to SmartLab. went.
FIG. 19 is a diagram for explaining reciprocal lattice vectors and reciprocal lattice points on the crystal lattice plane (hkl). FIG. 20 is a diagram for explaining the vector notation of the X-ray diffraction conditions.
Reciprocal lattice vector (g hkl )
Size: reciprocal of d value of (hkl) plane Direction: normal direction / reciprocal lattice mapping of (hkl) plane Measure the spread of reciprocal lattice points in reciprocal space.
Reciprocal lattice point: Conditions that cause diffraction / tip of reciprocal lattice vector Scattering vector: K = k−k 0
(Scattering vector K) = (reciprocal lattice vector g hkl )
-Reciprocal lattice map measurement The scattering vector K is scanned and the two-dimensional distribution of reciprocal lattice points is measured.
A reciprocal lattice simulation is performed in advance based on the crystal structure information, and the measured value is compared. The reciprocal lattice map is plotted with the following qx and qz equations.
Figure JPOXMLDOC01-appb-M000002
Two planes were measured at 2θ of 10-120 °, Ω of 10-90 °, X of 0 °, 30 °, 60 ° and 90 °, and Φ of 0 ° and 45 °. Φ = 0 ° (// Si110), Φ = 45 ° (// Si100), and each sample Φ = 0 ° and 45 ° were measured.
In the case of conventional θ-2θ measurement, measurement is performed by fixing the substrate horizontally and irradiating X-rays (see FIG. 21A).
θ-2θ measurement is performed while scanning the ω axis (the rotation axis of the material) and the χ axis (the turning operation axis). Further, the φ axis (in-plane rotation axis) was measured at 0 ° and 45 ° at two points. After θ-2θ / ω-axis scanning measurement, qzvs. What is plotted in qx is reciprocal lattice mapping. By simultaneously scanning several steps of χ axes, reciprocal lattice mapping and superimposing all over one surface, different components of the domain are measured, and the superiority or inferiority of the true orientation degree is known ( (See FIGS. 21B and 21C).
Using Rigaku's software SmartLab Guidance, as shown in Fig. 22, the arrangement of reciprocal lattice points is simulated in advance based on the known PZT crystal structure information and superimposed on the measured values to analyze the film state. Went.
FIG. 23 shows a reciprocal lattice simulation result of the PZT single crystal.
24A and 24B show the results of reciprocal lattice map measurement of the samples of Example 1 (present invention 5 μm) and Example 2 (present invention 10 μm). As shown in these drawings, it is found that the PZT films of Examples 1 and 2 are excellent single crystal films, which completely coincides with the calculated reciprocal lattice point (× point) of the PZT single crystal.
As shown in Table 1, in the conventional example, since a high-frequency continuous wave was used without using a pulse, when the output was increased to 1800 W or more (10 W / cm 2 or more), an arc was generated and the plasma was abnormally discharged. As a result, the output of the sputtering apparatus could not be increased to 1800 W or more. On the other hand, in Example 1 (the present invention 5 μm), Example 2 (the present invention 10 μm) and Example 3 (the present invention 20 μm), a high frequency output of 13.56 MHz was applied to the sputtering target at a pulse frequency of 5 kHz (1 / Since a pulse with a 90% DUTY ratio was supplied at a cycle of 5 ms), a time during which no plasma was generated on the sputtering target was generated when the high-frequency output was in an off state, and as a result, the film thickness was thick with a short film formation A PZT film could be easily formed.
FIG. 25 (A) is a diagram showing strongly attractive hysteresis curves of Example 1 (present invention 5 μm), Example 2 (present invention 10 μm), and Example 3 (present invention 20 μm), and FIG. ) Shows the piezoelectric butterfly curves of Examples 1 to 3. FIG.
As shown in FIGS. 25A and 25B, it was confirmed that ferroelectricity and piezoelectricity proportional to the thickness of the PZT film were obtained. Further, in the sample of Example 3 having a film thickness of 20 μm, a very large Vc of 87 V was obtained. Moreover, when the Curie temperature Tc of the PZT film | membrane of Example 3 was measured, it was Tc = 390 degreeC.
FIG. 26A is a diagram showing a strong attractive hysteresis curve of Comparative Example 2 (K148), and FIG. 26B is a diagram showing a piezoelectric butterfly curve of Comparative Example 2 (K148).
FIG. 27A is a diagram showing a strongly attractive hysteresis curve of Comparative Example 3 (K129), and FIG. 27B is a diagram showing a piezoelectric butterfly curve of Comparative Example 3 (K129).
Comparative Example 2 (K148) and Comparative Example 3 (K129) are bulk piezoelectric elements manufactured by Reed Techno Co., Ltd. (1-5 Yokoya, Oecho, Otsu City, Shiga Prefecture 520-2194, Ryukoku University REC202B). The piezoelectric element has a disk shape with a diameter of 8 mm × thickness of about 0.5 mm (500 μm). As a piezoelectric element of Comparative Example 2 (K148) and Comparative Example 3 (K129), a hard PZT (K148) generally used and a soft PZT (K129) related to the displacement amount were compared.
First, the transition temperature (Tc), piezoelectric constant d33 (pC / N), and relative dielectric constant εr in the catalog values were as follows.
Tc of K129: 145 ° C
K129 d33: 720
Εr of K129: 8100
K148 Tc: 280 ° C.
K148 d33: 530
Εr of K148: 2400
Unlike general K148, K129 related to piezoelectric displacement is added with elements such as Ni and Nb, and the relative dielectric constant is as large as 8000 or more, and accordingly, the piezoelectric displacement can be increased and used for actuator applications. However, at the same time, Tc = 145 ° C. is very low, and the temperature characteristics are poor, so the required location is limited.
The general bulk K148 has a butterfly shape that is optimal for sensor applications (see FIG. 26B), but the coercive electric field Ec = 11.42 kV / cm of the bulk K148 is compared with the example of the present invention. Therefore, when converted per 20 μm, the coercive electric field Ec = 11.42 kV / cm becomes 22.84 V / 20 μm, and the coercive voltage Vc = 28.84 V is very low. In the case of K129 for actuators, the coercive electric field Ec = 5.7 kV / cm is 11.4 V / 20 μm, the coercive voltage Vc is 11.4 V, and Tc = 145 ° C. is also low. During heat treatment such as reflow (generally around 280 ° C.), there was a common bulk problem that depolarization easily occurred and piezoelectricity was lost.
On the other hand, the coercive voltage Vc of the sample of the PZT single crystal film of Example 3 (the present invention 20 μm) is 87 V / 20 μm. Further, since Tc is as high as 300 ° C. or higher, there is no fear of depolarization at all even when potential application such as reflow temperature or static electricity during processing occurs.
The laminated body by PZT bulk is formed by laminating the bulks of Comparative Examples 2 and 3 having a thickness of about 20 μm per layer, and the coercive voltage Vc per layer is at most about 25V. Moreover, in order to draw out large piezoelectricity, it contains many additives and the transition temperature Tc is often 200 ° C. or less. As a result, when the laminate is completed, it is often depolarized and cannot be operated at all. On the other hand, the sample of Example 3 (20 μm of the present invention) has a coercive voltage Vc of 87 V / 20 μm and Tc = 390 ° C. (actual measurement value), and no depolarization occurs at all.
Next, d33 evaluation of the PZT film of Example 3 (the present invention 20 μm) was performed. Specifically, the characteristics were evaluated by applying a load of 300 g on the upper part Pt of 2 mmφ for several seconds. It was a very large value of d33 = 1200 pC / N (see FIG. 28). A size of about twice the bulk was easily obtained. Since Example 3 is pure PZT, if an additive element or the like is examined, the possibility of obtaining a value 5 to 10 times is very high.
The cross-sectional images of FIB-SEM of the sample of Example 3 (20 μm-PZT film) are as shown in FIGS. FIG. 38B is an enlarged image of FIG.
According to FIG. 38, it can be seen that there is no columnar structure of a normal polycrystalline PZT film, and it is a very good single crystal. However, only a part of the region that seems to be another orientation region was observed, but when considered as a layer of a normal PZT laminated bulk body, it is clear that it retains overwhelming piezoelectricity and is approximately 20 μm thick. In this case, an overwhelming piezoelectric thick film that can be called a single crystal film was obtained.
According to the strongly induced hysteresis curve of Example 2 (the present invention 10 μm) shown in FIG. 25A, the relative permittivity (εr), the remanent polarization value (Pr), the coercive voltage (Vc), and the coercive electric field (Ec). Is as follows. Moreover, when the Curie temperature (Tc) of the PZT film | membrane of Example 2 was measured, it was as follows.
Relative permittivity (εr) = about 200 @ 1 kHz
Curie temperature (Tc) = 408 ° C.
Residual polarization value (Pr) = about 40 μC / cm 2
Coercive voltage (Vc) = 44V
Coercive electric field (Ec) = 44 kV / cm
According to the strongly attractive hysteresis curve of Comparative Example 2 (K148) shown in FIG. 26A, the dielectric constant (εr), remanent polarization value (Pr), coercive voltage (Vc), and coercive electric field (Ec) are as follows. It is as follows. Moreover, when the Curie temperature (Tc) of the PZT bulk of the comparative example 2 was measured, it was as follows.
Tc = 280 ° C
εr = 2400
Pr = 37.92μC / cm 2
Ec = 11.42 kV / cm
Vc=571V@0.5mm (11.42V@10μm)
According to the strongly attractive hysteresis curve of Comparative Example 3 (K129) shown in FIG. 27A, the dielectric constant (εr), remanent polarization value (Pr), coercive voltage (Vc), and coercive electric field (Ec) are as follows. It is as follows. Moreover, when the Curie temperature (Tc) of the PZT bulk of the comparative example 3 was measured, it was as follows.
εr = 8100
Tc = 145 ° C
Pr = 29.76 μC / cm 2
Vc=275V@0.5mm (Vc=5.5V@10μm)
Ec = 5.7 kV / cm
FIG. 29 is a diagram showing the results of measuring the temperature change of the relative permittivity and dielectric loss (tan δ) of the sample of Example 2 (the present invention 10 μm) while changing the frequency to 100 k, 500 k, and 1 MHz.
Specifically, using an impedance analyzer (manufactured by Agilent Technologies, HP4192A), a 10 μm-PZT sample capacitor to be measured is on a hot plate (manufactured by MSA Factory Co., Ltd., PH-210-600 type (50-600 ° C.)). The temperature change of the relative dielectric constant and dielectric loss (tan δ) was measured while changing the frequency to 100 k, 500 k, and 1 MHz while heating at 650 nm. Transition temperature: Tc = 390 ° C., dielectric loss: tan δ = about 2-3%.
30 is a cross-sectional view showing a sample of Example 4. FIG. The method for producing the sample of Example 4 is as follows.
A ZrO 2 film 202 is formed on the Si substrate 201 by vapor deposition, and a Pt film 203 is formed on the ZrO 2 film 202 by epitaxial growth by sputtering. Next, an SrRuO 3 film (SRO film) 204 is formed on the Pt film 203 under the sputtering conditions shown in Table 2 using the sputtering apparatus shown in FIG. The composition of the sputtering target at this time is Sr / Ru = 1: 1.15.
Next, using the sputtering apparatus shown in FIG. 1, a PZT film 205 having a thickness of 1 μm is formed on the SRO film 204 under the sputtering conditions of Example 1 (5 μm of the present invention) shown in Table 1. However, since the film thickness of the PZT film 205 here is 1 μm, the film formation time of Example 1 (the present invention 5 μm) shown in Table 1 is set to 720 s.
Next, an SrRuO 3 film (SRO film) 206 is formed on the PZT film 205. The film formation conditions at this time are the same as the film formation conditions for the SRO film 204 described above. Next, a Pt film 207, an SRO film 208, and a PZT film 209 having a thickness of 1 μm are sequentially formed on the SRO film 206. At this time, the film formation conditions for the Pt film 207 are the same as the film formation conditions for the Pt film 203, the film formation conditions for the SRO film 208 are the same as the film formation conditions for the SRO film 204, and the PZT film 209. The film forming conditions are the same as those for the PZT film 205 described above. In this way, the sample of Example 4 shown in FIG. 30 can be manufactured.
Figure JPOXMLDOC01-appb-T000003
The results of evaluating the crystallinity of the sample of Example 4 by XRD are shown in FIGS. 31 and 32 are XRD patterns of the sample of Example 4. FIG.
According to the XRD patterns of FIGS. 31 and 32, the following can be understood.
When the crystallinity of the first layer Pt electrode (Pt film 203) and the intermediate Pt electrode (Pt film 207) is compared, the half value of the Pt (400) peak is higher in the case of the intermediate Pt electrode than in the first layer Pt electrode. Although the width was slightly wide and slightly broad, it was found that the intermediate Pt electrode was also epitaxially grown.
Next, when the crystallinity of the first layer PZT (PZT film 205) and the second layer PZT (PZT film 209) is compared, the second layer PZT has a PZT (004) peak in comparison with the first layer PZT. Although the half width was slightly wide and slightly broad, it was found that the epitaxial growth was performed including the intermediate Pt electrode.
FIG. 33 is an image obtained by observing a cross section of the sample of Example 5 using FIB. The sample of Example 5 is the same as the cross-sectional structure shown in FIG. The manufacturing method of Example 5 is as follows.
A ZrO 2 film is formed on the Si substrate by vapor deposition, and a Pt film is formed on the ZrO 2 film by epitaxial growth by sputtering. Next, using the sputtering apparatus shown in FIG. 1, a PZT film having a thickness of 1 μm is formed on the Pt film under the sputtering conditions of Example 1 (5 μm of the present invention) shown in Table 1. However, since the film thickness of the PZT film here is 1 μm, the film formation time of Example 1 (the present invention 5 μm) shown in Table 1 is set to 720 s.
Next, a Pt film and a PZT film having a thickness of 1 μm are sequentially formed on the PZT film. At this time, the film formation conditions for the Pt film are the same as the film formation conditions for the Pt film, and the film formation conditions for the PZT film are the same as the film formation conditions for the PZT film. In this manner, a sample of Example 5 similar to the cross-sectional structure shown in FIG. 12C can be manufactured.
Next, the strains (stresses) of the PZT film of Example 6 and the PZT film of Comparative Example 4 were measured by the method shown in FIG. As a result, since the PZT film of Comparative Example 4 having a film thickness of 5 μm has a large stress, the reason for cracks on the surface of the PZT film was confirmed. This will be described in detail below.
FIG. 46 is a cross-sectional view for explaining the method for manufacturing the piezoelectric film of the sixth embodiment.
As shown in FIG. 46, a ZrO 2 film 1102 having a film thickness of 15 nm was formed on the Si substrate 1101 by vapor deposition. Thereafter, the curvature radius of the Si substrate 1101 having the ZrO 2 film 1102 was measured by a simple stress measurement method using XRD shown in FIG. Specifically, the curvature radius was obtained by measuring the rocking curve while scanning the Si substrate 1101 having the ZrO 2 film 1102 while ω scanning, and the warpage of the Si substrate was evaluated. The degree of curvature of the single crystal substrate was evaluated as the radius of curvature from the amount of shift of the rocking curve peak position with respect to the amount of movement (ΔX) of the sample (substrate of Example 6) using an XY stage. The result was 66.3 °.
Next, a Pt film 1103 having a thickness of 100 nm was formed by epitaxial growth on the ZrO 2 film 1102 and an SrRuO 3 film 1104 having a thickness of 20 nm was formed on the Pt film 1103 by sputtering. Then, it formed using the sputtering apparatus shown in FIG. 1 the PZT film 1105 having a thickness of 4μm onto a SrRuO 3 film 1104. Thereafter, the radius of curvature of the Si substrate 1101 having the PZT film 1105 was measured by a simple stress measurement method using XRD shown in FIG. The result was 44.1 °. The difference between the radii of curvature (66.3 ° -44.1 °) approximated the internal stress of the PZT film, and the value was 22.2 °.
The composition of the PZT film 1105 was Zr / Ti = 0.58 / 0.42, and was a rhombohedral composition containing a large amount of Zr.
FIG. 47 is a cross-sectional view for explaining the method of manufacturing the piezoelectric film of Comparative Example 4.
As shown in FIG. 47, a YSZ film 1106 having a thickness of 15 nm was formed on a Si substrate 1101 by an evaporation method. Thereafter, the radius of curvature of the Si substrate 1101 having the YSZ film 1106 was measured by a simple stress measurement method using XRD shown in FIG. The result was 83.5 °. The YSZ film 1106 is a film obtained by oxidizing an alloy obtained by adding 8% Y to Zr.
Next, a 100-nm-thick Pt film 1103 was formed by epitaxial growth on the YSZ film 1106, and a 20-nm-thick SrRuO 3 film 1104 was formed on the Pt film 1103 by sputtering. Next, a PZT film 1105 having a thickness of 5 μm was formed on the SrRuO 3 film 1104 using the sputtering apparatus shown in FIG. Thereafter, the radius of curvature of the Si substrate 1101 having the PZT film 1105 was measured by a simple stress measurement method using XRD shown in FIG. The result was 43.9 °. The difference in radius of curvature (83.5 ° -43.9 °) of both approximates the internal stress of the PZT film, and the value is 39.6 °.
Note that the composition of the PZT film 1105 was Zr / Ti = 0.52 / 0.48, which was an MPB (morphotropic) composition.
From the above, it was confirmed that the internal stress (difference in curvature radius) of the PZT film of Example 6 in FIG. 46 can be reduced to about half of the internal stress of the PZT film of Comparative Example 4 in FIG. The reason why the internal stress can be reduced in this manner is that a ZrO 2 film is formed between the Si substrate and the Pt film.
FIG. 49 is an optical micrograph of the surface of the PZT film 1105 of Comparative Example 4 shown in FIG. From this photograph, it can be seen that the entire PZT film has cracks of several microns square. This crack was generated about 2 hours after the PZT film 1105 of Comparative Example 4 was formed.
As described above, it was confirmed that the PZT film of the comparative example cannot be formed with a film thickness of 5 μm or more.
 11  チャンバー
 12  基板
 13  保持部
 14  スパッタリングターゲット
 15  ターゲット保持部
 16  出力供給機構
 17  第1のガス導入源
 18  第2のガス導入源
 19  真空排気機構
 20  磁石
 21  回転機構
 22  整合器
 23  VDC制御部
 31,32  矢印,分極方向
 35  シム
 36  接着層
 37  積層膜
101,121,141,151,161  Si基板
102,122,142,152,162  ZrO
103,123,143,153  Pt膜
103a,111a,123a,143a,145a 第1の電極
103b、111b.123b,143b,145b 第2の電極
103c、111c,123c,143c,145c 第3の電極
103d 第4の電極
103e 第5の電極
104  PbZrTiNbLa膜,第1のPbZrTiNbLa
105,112,133  接着用PbZrTiNbLa
106,107  電極
124  第2のPbZrTiNbLa
125  接着用(PbLa)(ZrTiNb)O3−δ
125a 結晶化された接着用(PbLa)(ZrTiNb)O3−δ
126  Pt膜
127  接着用(PbLa)(ZrTiNb)O3−δ
127a 結晶化された接着用(PbLa)(ZrTiNb)O3−δ
132,144,154  PbZrTiNbLa
163,165,167,169,171,173,175  Pt膜
164  1層目PbZrTiNbLa
166  2層目PbZrTiNbLa
168  3層目PbZrTiNbLa
170  4層目PbZrTiNbLa
172,174  感光性永久レジスト膜
172a,172b,174a,174b,174c 永久レジスト膜
DESCRIPTION OF SYMBOLS 11 Chamber 12 Substrate 13 Holding part 14 Sputtering target 15 Target holding part 16 Output supply mechanism 17 1st gas introduction source 18 2nd gas introduction source 19 Vacuum exhaust mechanism 20 Magnet 21 Rotation mechanism 22 Matching device 23 V DC control part 31 , 32 arrow, polarization direction 35 shim 36 adhesive layer 37 laminated film 101, 121, 141, 151, 161 Si substrate 102, 122, 142, 152, 162 ZrO 2 film 103, 123, 143, 153 Pt film 103a, 111a, 123a, 143a, 145a The first electrodes 103b, 111b. 123b, 143b, 145b Second electrode 103c, 111c, 123c, 143c, 145c Third electrode 103d Fourth electrode 103e Fifth electrode 104 Pb a Zr b Ti c Nb d La e O 3 film, first Pb a Zr b Ti c Nb d La e O 3 film 105,112,133 adhesive Pb a Zr b Ti c Nb d La e O 3 film 106, 107 electrode 124 the second Pb a Zr b Ti c Nb d La e O 3 film 125 for bonding (Pb a La b ) (Zr c T i d N b e ) O 3-δ film 125a for crystallized bonding (Pb a La b ) (Zr c T i d N b e ) O 3− [delta] film 126 Pt film 127 adhesive (Pb a La b) (Zr c Ti d Nb e) O 3-δ film 127a crystallized adhesive (Pb a La b) (Z c Ti d Nb e) O 3 -δ film 132,144,154 Pb a Zr b Ti c Nb d La e O 3 film 163,165,167,169,171,173,175 Pt film 164 first layer Pb a Zr b Ti c Nb d La e O 3 film 166 2nd layer Pb a Zr b Ti c Nb d La e O 3 film 168 3rd layer Pb a Zr b Ti c Nb d La e O 3 film 1704 4th layer Pb a Zr b Ti c Nb d La e O 3 film 172, 174 photosensitive permanent resist film 172a, 172b, 174a, 174b, 174c permanent resist film

Claims (41)

  1.  膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜であり、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
     前記(PbLa)(ZrTiNb)O3−δ膜は、100以上600以下の膜厚1μm当たりの比誘電率を有し、
     前記(PbLa)(ZrTiNb)O3−δ膜は、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体膜。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a film thickness of 5 μm or more,
    a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
    The (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film has a relative dielectric constant per 1 μm thickness of 100 to 600,
    Wherein (Pb a La b) (Zr c Ti d Nb e) O 3-δ film, the coercive voltage and 20 [mu] C / cm 2 or more 50 .mu.C / cm 2 or less of residual polarization value of 15V per following thickness 1μm or 3V A piezoelectric film having at least one of them.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  2.  請求項1において、
     前記(PbLa)(ZrTiNb)O3−δ膜は電極上に形成されており、
     前記(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記電極のXRDのピーク値より高いことを特徴とする圧電体膜。
    In claim 1,
    The (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is formed on the electrode,
    The piezoelectric film, wherein the XRD peak value of the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is higher than the XRD peak value of the electrode.
  3.  請求項2において、
     前記電極はPt膜からなることを特徴とする圧電体膜。
    In claim 2,
    The piezoelectric film is characterized in that the electrode is made of a Pt film.
  4.  請求項1乃至3のいずれか一項において、
     前記(PbLa)(ZrTiNb)O3−δ膜のキュリー温度は250℃以上420℃以下であることを特徴とする圧電体膜。
    In any one of Claims 1 thru | or 3,
    The piezoelectric film, wherein the Curie temperature of the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is 250 ° C. or higher and 420 ° C. or lower.
  5.  シムの上面に配置された第1の電極と、
     前記第1の電極上に配置された請求項1に記載の圧電体膜と、
     前記圧電体膜上に配置された第2の電極と、
     前記シムの下面に配置された第3の電極と、
     前記第3の電極下に配置された請求項1に記載の圧電体膜と、
     前記圧電体膜下に配置された第4の電極と、
    を具備することを特徴とするバイモルフ素子。
    A first electrode disposed on the upper surface of the shim;
    The piezoelectric film according to claim 1 disposed on the first electrode;
    A second electrode disposed on the piezoelectric film;
    A third electrode disposed on the lower surface of the shim;
    The piezoelectric film according to claim 1 disposed under the third electrode;
    A fourth electrode disposed under the piezoelectric film;
    The bimorph element characterized by comprising.
  6.  基板上にスパッタリング法により膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜を成膜する工程を有し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
     前記(PbLa)(ZrTiNb)O3−δ膜を成膜する際の成膜速度は1nm/sec以上2.5nm/sec以下であることを特徴とする圧電体膜の製造方法。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    Forming a (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a thickness of 5 μm or more on the substrate by a sputtering method;
    a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
    A piezoelectric film characterized in that a film formation rate when forming the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is 1 nm / sec or more and 2.5 nm / sec or less. Manufacturing method.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  7.  請求項6において、
     前記工程は、スパッタリングターゲットに10kHz以上30MHz以下の高周波出力を、1/20ms以上1/3ms以下の周期で25%以上90%以下のDUTY比のパルス状に供給することで、前記(PbLa)(ZrTiNb)O3−δ膜を成膜する工程であり、
     前記DUTY比は、1周期の間で前記スパッタリングターゲットに前記高周波出力が印加される期間の比率であることを特徴とする圧電体膜の製造方法。
    In claim 6,
    In the step, a high frequency output of 10 kHz or more and 30 MHz or less is supplied to the sputtering target in a pulse form having a duty ratio of 25% or more and 90% or less at a period of 1/20 ms or more and 1/3 ms or less, so that the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film forming step,
    The method of manufacturing a piezoelectric film, wherein the DUTY ratio is a ratio of a period during which the high-frequency output is applied to the sputtering target during one period.
  8.  請求項7において、
     前記スパッタリングターゲットに前記高周波出力を供給する際に20rpm以上120rpm以下の速度で磁石を回転させることで前記スパッタリングターゲットに磁場を加えることを特徴とする圧電体膜の製造方法。
    In claim 7,
    A method of manufacturing a piezoelectric film, wherein a magnetic field is applied to the sputtering target by rotating a magnet at a speed of 20 rpm to 120 rpm when supplying the high-frequency output to the sputtering target.
  9.  請求項7または8において、
     前記スパッタリングターゲットに前記高周波出力を供給している際に前記スパッタリングターゲットに発生する直流成分である電圧VDCを−200V以上−80V以下に制御することを特徴とする圧電体膜の製造方法。
    In claim 7 or 8,
    A method of manufacturing a piezoelectric film, comprising: controlling a voltage VDC , which is a direct current component generated in the sputtering target when the high-frequency output is supplied to the sputtering target, to be −200 V or more and −80 V or less.
  10.  請求項7乃至9のいずれか一項において、
     前記スパッタリングターゲットに前記高周波出力を供給している際の前記スパッタリングターゲットの表面の比抵抗を1×10Ω・cm以上1×1012Ω・cm以下に制御することを特徴とする圧電体膜の製造方法。
    In any one of Claims 7 thru | or 9,
    A piezoelectric film characterized by controlling a specific resistance of a surface of the sputtering target when the high-frequency output is supplied to the sputtering target to 1 × 10 9 Ω · cm to 1 × 10 12 Ω · cm. Manufacturing method.
  11.  請求項7乃至10のいずれか一項において、
     前記スパッタリングターゲットに前記高周波出力を供給する際の前記スパッタリングターゲットは、下記式6の比のOガス及びArガスの雰囲気に置かれることを特徴とする圧電体膜の製造方法。
     0.1≦Oガス/Arガス≦0.3 ・・・式6
    In any one of Claims 7 thru | or 10,
    The method for manufacturing a piezoelectric film, wherein the sputtering target when supplying the high-frequency output to the sputtering target is placed in an atmosphere of O 2 gas and Ar gas having a ratio of the following formula 6.
    0.1 ≦ O 2 gas / Ar gas ≦ 0.3 Formula 6
  12.  請求項7乃至11のいずれか一項において、
     前記スパッタリングターゲットに前記高周波出力を供給する際の前記スパッタリングターゲットは、0.1Pa以上2Pa以下の圧力雰囲気に置かれることを特徴とする圧電体膜の製造方法。
    In any one of Claims 7 thru | or 11,
    The method for manufacturing a piezoelectric film, wherein the sputtering target when supplying the high-frequency output to the sputtering target is placed in a pressure atmosphere of 0.1 Pa or more and 2 Pa or less.
  13.  請求項6乃至12のいずれか一項において、
     前記工程で成膜された前記(PbLa)(ZrTiNb)O3−δ膜は、100以上600以下の膜厚1μm当たりの比誘電率を有し、
     前記工程で成膜された前記(PbLa)(ZrTiNb)O3−δ膜は、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体膜の製造方法。
    In any one of Claims 6 thru | or 12,
    The (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film formed in the step has a relative dielectric constant per 1 μm of film thickness of 100 to 600,
    The (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film formed in the above step has a coercive voltage per 1 μm thickness of 3 V to 15 V and 20 μC / cm 2 to 50 μC / cm. A method of manufacturing a piezoelectric film, comprising at least one of remanent polarization values of 2 or less.
  14.  請求項6乃至13のいずれか一項において、
     前記(PbLa)(ZrTiNb)O3−δ膜の分極方向は、前記基板の上面に対して垂直で上方向であることを特徴とする圧電体膜の製造方法。
    In any one of Claims 6 thru | or 13,
    The method of manufacturing a piezoelectric film, wherein a polarization direction of the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is perpendicular to the upper surface of the substrate and is upward.
  15.  膜厚が5μm以上の第1の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第1の電極と、
     前記第1の電極及び前記第1の(PbLa)(ZrTiNb)O3−δ膜に貼り付けられた第2の接着用(PbLa)(ZrTiNb)O3−δ膜と、
     前記第2の接着用(PbLa)(ZrTiNb)O3−δ膜上に形成された膜厚が5μm以上の第2の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
     前記第2の電極及び前記第2の(PbLa)(ZrTiNb)O3−δ膜に貼り付けられた第3の接着用(PbLa)(ZrTiNb)O3−δ膜と、
     前記第3の接着用(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第3の(PbLa)(ZrTiNb)O3−δ形成された第3の電極と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a thickness of 5 μm or more;
    A first electrode formed on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Second bonding (Pb a La b ) (Zr c Ti d ) affixed to the first electrode and the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film Nb e ) O 3-δ film;
    Said second adhesive (Pb a La b) (Zr c Ti d Nb e) O 3-δ film thickness formed on the 5μm or more second (Pb a La b) (Zr c Ti d Nb e ) O 3-δ film;
    A second electrode formed on the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Third bonding (Pb a La b ) (Zr c Ti d ) attached to the second electrode and the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film Nb e ) O 3-δ film;
    Third (Pb a La b ) (Zr c Ti d Nb e ) O 3− formed on the third bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film a δ film;
    A third electrode formed with the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ ;
    Comprising
    a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a relative dielectric constant per 1 μm thickness of 100 to 600,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a coercive voltage per film thickness of 3 V or more and 15 V or less, and 20 μC / cm 2 or more and 50 μC / cm or more. A piezoelectric element having at least one of remanent polarization values of 2 or less.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  16.  請求項15において、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第1の電極のXRDのピーク値より高く、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第2の電極のXRDのピーク値より高いことを特徴とする圧電体素子。
    In claim 15,
    The peak value of XRD of the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is higher than the peak value of XRD of the first electrode,
    The XRD peak value of the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is higher than the XRD peak value of the second electrode. .
  17.  請求項15または16において、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれはスパッタリング法により形成された膜であり、
     前記第1及び第2の接着用(PbLa)(ZrTiNb)O3−δ膜それぞれはゾルゲル法により形成された膜であることを特徴とする圧電体素子。
    In claim 15 or 16,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films is a film formed by a sputtering method,
    Each of the first and second bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films is a film formed by a sol-gel method.
  18.  第1の電極と、
     前記第1の電極上に形成された膜厚が5μm以上の第1の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
     前記第2の電極及び前記第1の(PbLa)(ZrTiNb)O3−δ膜の上に形成された接着用(PbLa)(ZrTiNb)O3−δ膜と、
     前記接着用(PbLa)(ZrTiNb)O3−δ膜上に貼り付けられた膜厚が5μm以上の第2の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A first electrode;
    A first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a thickness of 5 μm or more formed on the first electrode;
    A second electrode formed on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Said second electrode and said first (Pb a La b) (Zr c Ti d Nb e) O 3-δ film adhesive formed on the (Pb a La b) (Zr c Ti d Nb e ) An O 3-δ film;
    For the adhesive (Pb a La b) (Zr c Ti d Nb e) O 3-δ film thickness pasted onto the membrane is 5μm or more second (Pb a La b) (Zr c Ti d Nb e ) An O 3-δ film;
    A third electrode formed on the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Comprising
    a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a relative dielectric constant per 1 μm thickness of 100 to 600,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a coercive voltage per film thickness of 3 V or more and 15 V or less, and 20 μC / cm 2 or more and 50 μC / cm or more. A piezoelectric element having at least one of remanent polarization values of 2 or less.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  19.  第1の電極と、
     前記第1の電極上に形成された膜厚が5μm以上の第1の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
     前記第2の電極及び前記第1の(PbLa)(ZrTiNb)O3−δ膜の上に形成された第2の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜上に貼り付けられた膜厚が5μm以上の第3の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第3の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
     前記第1乃至第3の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
     前記第1乃至第3の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A first electrode;
    A first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a thickness of 5 μm or more formed on the first electrode;
    A second electrode formed on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Said second electrode and said first (Pb a La b) (Zr c Ti d Nb e) O 3-δ second (Pb a La b) formed on the film (Zr c Ti d Nb e ) an O 3-δ film;
    The second (Pb a La b) (Zr c Ti d Nb e) O 3-δ film thickness pasted on the membrane is not less than 5μm third (Pb a La b) (Zr c Ti d Nb e ) an O 3-δ film;
    A third electrode formed on the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Comprising
    a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
    Each of the first to third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a relative dielectric constant per 1 μm thickness of 100 to 600,
    Each of the first to third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a coercive voltage per film thickness of 3 V or more and 15 V or less, and 20 μC / cm 2 or more and 50 μC / cm 2 or more. A piezoelectric element having at least one of remanent polarization values of 2 or less.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  20.  請求項19において、
     前記第3の(PbLa)(ZrTiNb)O3−δ膜及び前記第3の電極の上に形成された接着用(PbLa)(ZrTiNb)O3−δ膜と、
     前記接着用(PbLa)(ZrTiNb)O3−δ膜上に貼り付けられた膜厚が5μm以上の第4の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第4の(PbLa)(ZrTiNb)O3−δ膜上に形成された第4の電極と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    In claim 19,
    The third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the bonding (Pb a La b ) (Zr c Ti d Nb e ) formed on the third electrode ) An O 3-δ film;
    A fourth (Pb a La b ) (Zr c Ti d Nb e ) having a thickness of 5 μm or more attached on the bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film. ) An O 3-δ film;
    A fourth electrode formed on the fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Comprising
    a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16;
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  21.  第1の電極と、
     前記第1の電極上に形成された第1の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に形成された第2の電極と、
     前記第2の電極上に形成された第2の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜上に形成された第3の電極と、
    を具備し、
     前記第1の電極の第1の側面と前記第3の電極の第1の側面が第6の電極によって電気的に接続され、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たし、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、100以上600以下の膜厚1μm当たりの比誘電率を有し、
     前記第1及び第2の(PbLa)(ZrTiNb)O3−δ膜それぞれは、3V以上15V以下の膜厚1μm当たりの抗電圧及び20μC/cm以上50μC/cm以下の残留分極値の少なくとも一方を有することを特徴とする圧電体素子。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A first electrode;
    A first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film formed on the first electrode;
    A second electrode formed on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    A second (Pb a La b) (Zr c Ti d Nb e) O 3-δ film formed on the second electrode,
    A third electrode formed on the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Comprising
    A first side surface of the first electrode and a first side surface of the third electrode are electrically connected by a sixth electrode;
    a, b, c, d, e, and δ satisfy the following Equation 1 and Equations 11 to 16,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a relative dielectric constant per 1 μm thickness of 100 to 600,
    Each of the first and second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ films has a coercive voltage per film thickness of 3 V or more and 15 V or less, and 20 μC / cm 2 or more and 50 μC / cm or more. A piezoelectric element having at least one of remanent polarization values of 2 or less.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  22.  請求項21において、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜の分極方向は、第2の(PbLa)(ZrTiNb)O3−δ膜の分極方向の逆方向であることを特徴とする圧電体素子。
    In claim 21,
    The polarization direction of the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is the same as that of the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film. A piezoelectric element characterized by being in a direction opposite to the polarization direction.
  23.  請求項21または22において、
     前記第3の電極上に形成された第3の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第3の(PbLa)(ZrTiNb)O3−δ膜上に形成された第4の電極と、
    を具備し、
     前記第2の電極の第2の側面と前記第4の電極の第2の側面が第7の電極によって電気的に接続され、
     a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子。
    In claim 21 or 22,
    A third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film formed on the third electrode;
    A fourth electrode formed on the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Comprising
    A second side surface of the second electrode and a second side surface of the fourth electrode are electrically connected by a seventh electrode;
    a, b, c, d, e, and δ satisfy the above-mentioned formula 1 and formulas 11 to 16;
  24.  請求項23において、
     前記第4の電極上に形成された第4の(PbLa)(ZrTiNb)O3−δ膜と、
     前記第4の(PbLa)(ZrTiNb)O3−δ膜上に形成された第5の電極と、
    を具備し、
     前記第5の電極の第1の側面と前記第3の電極の第1の側面と前記第1の電極の第1の側面が前記第6の電極によって電気的に接続され、
     a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子。
    In claim 23,
    A fourth (Pb a La b) (Zr c Ti d Nb e) O 3-δ film formed on the fourth electrode,
    A fifth electrode formed on the fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film;
    Comprising
    A first side surface of the fifth electrode, a first side surface of the third electrode, and a first side surface of the first electrode are electrically connected by the sixth electrode;
    a, b, c, d, e, and δ satisfy the above-mentioned formula 1 and formulas 11 to 16;
  25.  請求項21乃至24において、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第1の電極のXRDのピーク値より高く、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜のXRDのピーク値は、前記第2の電極のXRDのピーク値より高いことを特徴とする圧電体素子。
    In claims 21 to 24,
    The peak value of XRD of the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is higher than the peak value of XRD of the first electrode,
    The XRD peak value of the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is higher than the XRD peak value of the second electrode. .
  26.  基板上に電極膜を形成し、前記電極膜上にスパッタリング法により(PbLa)(ZrTiNb)O3−δ膜を形成する工程(a)と、
     前記(PbLa)(ZrTiNb)O3−δ膜上に接着用(PbLa)(ZrTiNb)O3−δ膜をゾルゲル法により形成する工程(b)と、
     前記基板を前記電極膜から除去する工程(c)と、
     前記電極膜をエッチング加工することで、前記(PbLa)(ZrTiNb)O3−δ膜下に第1の電極、第2の電極及び第3の電極を形成する工程(d)と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    (A) forming an electrode film on the substrate, and forming a (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film on the electrode film by a sputtering method;
    Forming a (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film on the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film by a sol-gel method (B) and
    Removing the substrate from the electrode film (c);
    By etching the electrode film, the (Pb a La b) (Zr c Ti d Nb e) a first electrode under O 3-[delta] film, forming a second electrode and the third electrode (D) and
    Comprising
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  27.  請求項26において、
     前記工程(d)の後に、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を切断することで、前記第1の電極、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を積層した第1の積層部と、前記第2の電極、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を積層した第2の積層部と、前記第3の電極、前記(PbLa)(ZrTiNb)O3−δ膜及び前記接着用(PbLa)(ZrTiNb)O3−δ膜を積層した第3の積層部を形成する工程と、
     前記第1の積層部の前記第1の電極と前記第2の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜とを重ね、かつ前記第2の積層部の前記第2の電極と前記第3の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜とを重ねる工程と、
     前記第1の積層部の前記第1の電極と前記第3の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜との間に荷重をかけつつ熱処理を施すことで、前記第1の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜及び前記第1の電極それぞれと前記第2の積層部の前記(PbLa)(ZrTiNb)O3−δ膜を貼り付けるとともに、前記第2の積層部の前記接着用(PbLa)(ZrTiNb)O3−δ膜及び前記第2の電極それぞれと前記第3の積層部の前記(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程と、
    を具備することを特徴とする圧電体素子の製造方法。
    In claim 26,
    After the step (d), the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ By cutting the film, the first electrode, the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the bonding (Pb a La b ) (Zr c Ti d Nb e ) A first laminated portion in which an O 3-δ film is laminated, the second electrode, the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, and the bonding (Pb a La) b ) (Zr c Ti d Nb e ) O 3-δ film stacked second layer, the third electrode, (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and for the adhesive (Pb a La b) (Zr c Ti d Nb e) O 3-δ film third laminated to Forming a layer portion,
    The first for the adhesion of said first electrode and the second laminated portion of the laminated portion (Pb a La b) (Zr c Ti d Nb e) O 3-δ superimposed and film, and the second Stacking the second electrode of the stacked portion and the bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film of the third stacked portion;
    While applying a load between the first laminated portion of the first electrode and the third for the adhesive of the laminate (Pb a La b) (Zr c Ti d Nb e) O 3-δ film By applying a heat treatment, the bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the first electrode of the first stacked unit and the second stacked unit The (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is attached, and the second laminated portion (Pb a La b ) (Zr c Ti d Nb e ) O Attaching each of the 3-δ film and the second electrode to the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film of the third stacked portion;
    A method for manufacturing a piezoelectric element, comprising:
  28.  請求項26または27において、
     前記(PbLa)(ZrTiNb)O3−δ膜の膜厚は5μm以上であることを特徴とする圧電体素子の製造方法。
    In claim 26 or 27,
    A method of manufacturing a piezoelectric element, wherein the film thickness of the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is 5 μm or more.
  29.  第1の基板上に第1の電極膜を形成し、前記第1の電極膜上にスパッタリング法により第1の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(a)と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第2の電極膜を形成し、前記第2の電極膜をエッチング加工することで、前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第1の電極及び第2の電極を形成する工程(b)と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜、前記第1及び第2の電極の上に接着用(PbLa)(ZrTiNb)O3−δ膜をゾルゲル法により形成する工程(c)と、
     第2の基板上に第3の電極膜を形成し、前記第3の電極膜上にスパッタリング法により第2の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(d)と、
     前記接着用(PbLa)(ZrTiNb)O3−δ膜と前記第2の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程(e)と、
     前記第1の基板及び前記第2の基板を除去する工程(f)と、
     前記第1の電極膜をエッチング加工することで、前記第1の(PbLa)(ZrTiNb)O3−δ膜下に第3の電極及び第4の電極を形成する工程(g)と、
     前記第3の電極膜をエッチング加工することで、前記第2の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極及び第6の電極を形成する工程(h)と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A first electrode film formed on the first substrate, forming a first first by sputtering on the electrode film of (Pb a La b) (Zr c Ti d Nb e) O 3-δ film Step (a) to perform,
    A second electrode film is formed on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, and the second electrode film is etched, whereby the first A step (b) of forming a first electrode and a second electrode on the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film of
    The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the first and second electrodes are bonded (Pb a La b ) (Zr c Ti d Nb e ) A step (c) of forming an O 3-δ film by a sol-gel method;
    A third electrode film is formed on the second substrate, and a second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is formed on the third electrode film by a sputtering method. Step (d), and
    A process of attaching the bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film (E) and
    Removing the first substrate and the second substrate (f);
    By etching the first electrode film, a third electrode and a fourth electrode are formed under the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film. Step (g);
    By etching the third electrode film, a fifth electrode and a sixth electrode are formed on the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film. Step (h);
    Comprising
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  30.  第1の基板上に第1の電極膜を形成し、前記第1の電極膜上にスパッタリング法により第1の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(a)と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第2の電極膜を形成し、前記第2の電極膜をエッチング加工することで、前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第1の電極及び第2の電極を形成する工程(b)と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜、前記第1及び第2の電極の上にスパッタリング法により第2の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(c)と、
     第2の基板上に第3の電極膜を形成し、前記第3の電極膜上にスパッタリング法により第3の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(d)と、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜と前記第3の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程(e)と、
     前記第2の基板を除去する工程(f)と、
     前記第3の電極膜をエッチング加工することで、前記第3の(PbLa)(ZrTiNb)O3−δ膜下に第3の電極及び第4の電極を形成する工程(g)と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A first electrode film formed on the first substrate, forming a first first by sputtering on the electrode film of (Pb a La b) (Zr c Ti d Nb e) O 3-δ film Step (a) to perform,
    A second electrode film is formed on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, and the second electrode film is etched, whereby the first A step (b) of forming a first electrode and a second electrode on the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film of
    The first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, a second (Pb a La b ) (Zr c ) formed on the first and second electrodes by sputtering. A step (c) of forming a Ti d Nb e ) O 3-δ film;
    A third electrode film is formed on a second substrate, forming the third third by sputtering on the electrode film of (Pb a La b) (Zr c Ti d Nb e) O 3-δ film Step (d), and
    The second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film are attached. Step (e);
    Removing the second substrate (f);
    Etching the third electrode film forms the third electrode and the fourth electrode under the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film. Step (g);
    Comprising
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  31.  請求項30において、
     前記工程(g)の後に、前記第3の(PbLa)(ZrTiNb)O3−δ膜、前記第3及び第4の電極の上に接着用(PbLa)(ZrTiNb)O3−δ膜をゾルゲル法により形成する工程と、
     第3の基板上に第4の電極膜を形成し、前記第4の電極膜上にスパッタリング法により第4の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
     前記第4の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極膜を形成し、前記第5の電極膜をエッチング加工することで、前記第4の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極及び第6の電極を形成する工程と、
     前記第4の(PbLa)(ZrTiNb)O3−δ膜、前記第5及び第6の電極の上にスパッタリング法により第5の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
     第4の基板上に第6の電極膜を形成し、前記第6の電極膜上にスパッタリング法により第6の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
     前記第6の(PbLa)(ZrTiNb)O3−δ膜と前記第5の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程と、
     前記第4の基板及び前記第6の電極膜を除去する工程と、
     前記接着用(PbLa)(ZrTiNb)O3−δ膜と前記第6の(PbLa)(ZrTiNb)O3−δ膜を貼り付ける工程と、
    を具備し、
     a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
    In claim 30,
    After the step (g), the third (Pb a La b ) (Zr c T i d N b e ) O 3-δ film is bonded onto the third and fourth electrodes (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is formed by a sol-gel method;
    The third form the fourth electrode film on a substrate, forming the fourth on the electrode film by sputtering fourth (Pb a La b) (Zr c Ti d Nb e) O 3-δ film And a process of
    A fifth electrode film is formed on the fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, and the fifth electrode film is etched to form the fourth electrode film. Forming a fifth electrode and a sixth electrode on the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film,
    The fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, the fifth (Pb a La b ) (Zr c ) by sputtering on the fifth and sixth electrodes. Forming a Ti d Nb e ) O 3-δ film;
    Fourth a sixth electrode film is formed on a substrate of, forming the sixth on the electrode film sputtering by the first 6 (Pb a La b) ( Zr c Ti d Nb e) O 3-δ film And a process of
    The sixth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the fifth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film are attached. Process,
    Removing the fourth substrate and the sixth electrode film;
    The bonding (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film and the sixth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film When,
    Comprising
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the above formulas 1 and 11 to 16.
  32.  請求項31において、
     前記第3の基板を除去し、前記第4の電極膜をエッチング加工することで、前記第4の(PbLa)(ZrTiNb)O3−δ膜下に第7の電極及び第8の電極を形成する工程と、
    を具備することを特徴とする圧電体素子の製造方法。
    In claim 31,
    The third substrate is removed, and the fourth electrode film is etched to form a seventh (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film under the seventh film. Forming an electrode and an eighth electrode;
    A method for manufacturing a piezoelectric element, comprising:
  33.  基板上に第1の電極を形成する工程(a)と、
     前記第1の電極上にスパッタリング法により第1の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(b)と、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜上に第2の電極を形成する工程(c)と、
     前記第2の電極上にスパッタリング法により第2の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(d)と、
     前記第2の(PbLa)(ZrTiNb)O3−δ膜上に第3の電極を形成する工程(e)と、
     前記基板を前記第1の電極から除去する工程(f)と、
     前記第1の電極の第1の側面と前記第3の電極の第1の側面を第6の電極によって接続する工程(g)と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    Forming a first electrode on the substrate (a);
    Forming a first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film on the first electrode by a sputtering method;
    Forming a second electrode on the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film (c);
    A step (d) of forming a second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film on the second electrode by a sputtering method;
    Forming a third electrode on the second (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film (e);
    Removing the substrate from the first electrode (f);
    Connecting the first side surface of the first electrode and the first side surface of the third electrode by a sixth electrode;
    Comprising
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  34.  請求項33において、
     前記工程(e)と前記工程(f)との間に、
     前記第3の電極上にスパッタリング法により第3の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(h)と、
     前記第3の(PbLa)(ZrTiNb)O3−δ膜上に第4の電極を形成する工程(i)と、を有し、
     前記工程(f)の後に、前記第2の電極の第2の側面と前記第4の電極の第2の側面を第7の電極によって接続する工程を有し、
     a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
    In claim 33,
    Between the step (e) and the step (f),
    Forming a third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film on the third electrode by a sputtering method;
    Forming a fourth electrode on the third (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film, (i),
    After the step (f), a step of connecting the second side surface of the second electrode and the second side surface of the fourth electrode by a seventh electrode,
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the above formulas 1 and 11 to 16.
  35.  請求項34において、
     前記工程(i)と前記工程(f)との間に、
     前記第4の電極上にスパッタリング法により第4の(PbLa)(ZrTiNb)O3−δ膜を形成する工程と、
     前記第4の(PbLa)(ZrTiNb)O3−δ膜上に第5の電極を形成する工程と、を有し、
     前記工程(g)は、前記第1の電極の第1の側面と前記第3の電極の第1の側面と前記第5の電極の第1の側面を第6の電極によって接続する工程であり、
     a、b、c、d、e及びδは前記の式1及び式11~式16を満たすことを特徴とする圧電体素子の製造方法。
    In claim 34,
    Between the step (i) and the step (f),
    Forming a fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film on the fourth electrode by a sputtering method;
    Forming a fifth electrode on the fourth (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film,
    The step (g) is a step of connecting the first side surface of the first electrode, the first side surface of the third electrode, and the first side surface of the fifth electrode by a sixth electrode. ,
    A method of manufacturing a piezoelectric element, wherein a, b, c, d, e, and δ satisfy the above formulas 1 and 11 to 16.
  36.  請求項29乃至35のいずれか一項において、
     前記第1の(PbLa)(ZrTiNb)O3−δ膜の膜厚は5μm以上であることを特徴とする圧電体素子の製造方法。
    In any one of claims 29 to 35,
    A method of manufacturing a piezoelectric element, wherein the first (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film has a thickness of 5 μm or more.
  37.  基板上にZrO膜を形成する工程(a)と、
     前記ZrO膜上にエピタキシャル成長によるPt膜を形成する工程(b)と、
     前記Pt膜上にスパッタリング法により膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜を形成する工程(c)と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体膜の製造方法。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    Forming a ZrO 2 film on the substrate (a);
    A step (b) of forming a Pt film by epitaxial growth on the ZrO 2 film;
    (C) forming a (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a thickness of 5 μm or more on the Pt film by a sputtering method;
    Comprising
    A method for producing a piezoelectric film, wherein a, b, c, d, e, and δ satisfy the following formula 1 and formulas 11 to 16.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  38.  請求項37において、
     前記工程(b)と前記工程(c)との間に、前記Pt膜上にSrRuO膜を形成する工程を含むことを特徴とする圧電体膜の製造方法。
    In claim 37,
    A method of manufacturing a piezoelectric film, comprising a step of forming a SrRuO 3 film on the Pt film between the step (b) and the step (c).
  39.  請求項37または38において、
     前記(PbLa)(ZrTiNb)O3−δ膜の分極方向は、前記基板の上面に対して垂直で上方向であることを特徴とする圧電体膜の製造方法。
    In claim 37 or 38,
    The method of manufacturing a piezoelectric film, wherein a polarization direction of the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film is perpendicular to the upper surface of the substrate and is upward.
  40.  ZrO膜と、
     前記ZrO膜上に形成されたエピタキシャル成長によるPt膜と、
     前記Pt膜上に形成された膜厚が5μm以上の(PbLa)(ZrTiNb)O3−δ膜と、
    を具備し、
     a、b、c、d、e及びδは下記の式1及び式11~式16を満たすことを特徴とする圧電体膜。
     0≦δ≦1 ・・・式1
     1.00≦a+b≦1.35 ・・・式11
     0≦b≦0.08 ・・・式12
     1.00≦c+d+e≦1.1 ・・・式13
     0.4≦c≦0.7 ・・・式14
     0.3≦d≦0.6 ・・・式15
     0≦e≦0.1 ・・・式16
    A ZrO 2 film;
    An epitaxially grown Pt film formed on the ZrO 2 film;
    A (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film having a thickness of 5 μm or more formed on the Pt film;
    Comprising
    a, b, c, d, e, and δ satisfy the following formulas 1 and 11 to 16, respectively.
    0 ≦ δ ≦ 1 Equation 1
    1.00 ≦ a + b ≦ 1.35 Expression 11
    0 ≦ b ≦ 0.08 Expression 12
    1.00 ≦ c + d + e ≦ 1.1 Formula 13
    0.4 ≦ c ≦ 0.7 Formula 14
    0.3 ≦ d ≦ 0.6 Formula 15
    0 ≦ e ≦ 0.1 Equation 16
  41.  請求項40において、
     前記Pt膜と前記(PbLa)(ZrTiNb)O3−δ膜との間に形成されたSrRuO膜を含むことを特徴とする圧電体膜。
    In claim 40,
    A piezoelectric film comprising a SrRuO 3 film formed between the Pt film and the (Pb a La b ) (Zr c Ti d Nb e ) O 3-δ film.
PCT/JP2016/070757 2015-07-24 2016-07-07 Piezoelectric film, method for producing same, bimorph element, piezoelectric element, and method for producing same WO2017018222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017531135A JPWO2017018222A1 (en) 2015-07-24 2016-07-07 Piezoelectric film and manufacturing method thereof, bimorph element, piezoelectric element and manufacturing method thereof
TW105123257A TWI728988B (en) 2015-07-24 2016-07-22 Piezoelectric film and its manufacturing method, bimorph element, piezoelectric element and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146825 2015-07-24
JP2015-146825 2015-07-24

Publications (1)

Publication Number Publication Date
WO2017018222A1 true WO2017018222A1 (en) 2017-02-02

Family

ID=57885567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070757 WO2017018222A1 (en) 2015-07-24 2016-07-07 Piezoelectric film, method for producing same, bimorph element, piezoelectric element, and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2017018222A1 (en)
TW (1) TWI728988B (en)
WO (1) WO2017018222A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389143A (en) * 2017-08-17 2017-11-24 浙江师范大学 A kind of Novel tap water gauge table
WO2019243744A1 (en) * 2018-06-22 2019-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for transferring at least one layer of material from a first substrate to a second substrate
JPWO2018216226A1 (en) * 2017-05-26 2020-03-26 アドバンストマテリアルテクノロジーズ株式会社 Film forming apparatus and film forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103725A (en) * 2002-09-06 2004-04-02 Denso Corp Method for manufacturing laminated piezoelectric element
JP2004146640A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Piezoelectric thin film element and actuator using the same, ink jet head and ink jet recoding device
JP2007088447A (en) * 2005-08-23 2007-04-05 Canon Inc Piezoelectric substance, piezoelectric element, liquid discharge head using piezoelectric element, liquid discharge apparatus, and method of manufacturing liquid discharge element
JP2008270704A (en) * 2007-03-22 2008-11-06 Fujifilm Corp Ferroelectric film and its manufacturing method, dielectric element, and liquid discharge apparatus
JP2012204423A (en) * 2011-03-24 2012-10-22 Ngk Insulators Ltd Green laminate
JP2016127057A (en) * 2014-12-26 2016-07-11 株式会社ユーテック Piezoelectric film and piezoelectric ceramics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835553B1 (en) * 2006-03-17 2009-05-27 Delphi Technologies, Inc. Piezoelectric acuator
TWI469495B (en) * 2011-09-02 2015-01-11 Univ Nat Sun Yat Sen Piezoelectric generator with a composite piezoelectric structure
TW201434789A (en) * 2013-01-29 2014-09-16 Canon Kk Piezoelectric material, piezoelectric element, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103725A (en) * 2002-09-06 2004-04-02 Denso Corp Method for manufacturing laminated piezoelectric element
JP2004146640A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Piezoelectric thin film element and actuator using the same, ink jet head and ink jet recoding device
JP2007088447A (en) * 2005-08-23 2007-04-05 Canon Inc Piezoelectric substance, piezoelectric element, liquid discharge head using piezoelectric element, liquid discharge apparatus, and method of manufacturing liquid discharge element
JP2008270704A (en) * 2007-03-22 2008-11-06 Fujifilm Corp Ferroelectric film and its manufacturing method, dielectric element, and liquid discharge apparatus
JP2012204423A (en) * 2011-03-24 2012-10-22 Ngk Insulators Ltd Green laminate
JP2016127057A (en) * 2014-12-26 2016-07-11 株式会社ユーテック Piezoelectric film and piezoelectric ceramics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018216226A1 (en) * 2017-05-26 2020-03-26 アドバンストマテリアルテクノロジーズ株式会社 Film forming apparatus and film forming method
JP7343391B2 (en) 2017-05-26 2023-09-12 I-PEX Piezo Solutions株式会社 Film forming equipment and film forming method
CN107389143A (en) * 2017-08-17 2017-11-24 浙江师范大学 A kind of Novel tap water gauge table
WO2019243744A1 (en) * 2018-06-22 2019-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for transferring at least one layer of material from a first substrate to a second substrate
FR3082997A1 (en) * 2018-06-22 2019-12-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR TRANSFERRING MATERIAL LAYER (S) FROM A FIRST SUBSTRATE ON A SECOND SUBSTRATE
US11504958B2 (en) 2018-06-22 2022-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for transferring at least one layer of material from a first substrate to a second substrate

Also Published As

Publication number Publication date
JPWO2017018222A1 (en) 2018-06-07
TWI728988B (en) 2021-06-01
TW201709571A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US8058779B2 (en) Piezoelectric thin film element
EP2846370B1 (en) Piezoelectric element
JP6498821B1 (en) Membrane structure and manufacturing method thereof
US10697090B2 (en) Thin-film structural body and method for fabricating thereof
JP5790759B2 (en) Ferroelectric thin film and manufacturing method thereof
Sano et al. Fabrication of multilayer Pb (Zr, Ti) O3 thin film by sputtering deposition for MEMS actuator applications
Duclère et al. Lead-free Na0. 5Bi0. 5TiO3 ferroelectric thin films grown by Pulsed Laser Deposition on epitaxial platinum bottom electrodes
WO2017018222A1 (en) Piezoelectric film, method for producing same, bimorph element, piezoelectric element, and method for producing same
Swain et al. Large magnetoelectric coupling in 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3 film on Ni foil
WO2022168800A1 (en) Laminated structure and method for producing same
Tateyama et al. Thermal stability of self-polarization in a (K, Na) NbO3 film prepared by the hydrothermal method
JP6737994B2 (en) motor
US11785854B2 (en) Film structure and method for manufacturing the same
JP7307302B2 (en) MEMBRANE STRUCTURE AND MANUFACTURING METHOD THEREOF
WO2017018078A1 (en) Sputtering device and insulating film production method
JP2010135669A (en) Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material
WO2018216227A1 (en) Film structure and method for manufacturing same
CN109196672A (en) Film structure and its manufacturing method
Hao et al. Integration of Ferroelectric K0. 5Na0. 5NbO3 films on Si at 400℃
WO2023195413A1 (en) Nitride, piezoelectric body, piezoelectric element, ferroelectric body, and ferroelectric element
WO2022255035A1 (en) Piezoelectric thin-film element, microelectromechanical system, and ultrasound transducer
WO2023210308A1 (en) Film structure and method for producing same
Tanaka et al. Improvement of piezoelectric properties of epitaxial (K, Na) NbO3 thin films grown on Si substrates
JP2022137784A (en) Piezoelectric thin film, piezoelectric thin film element and piezoelectric transducer
Harris Liquid-Phase Processing of Barium Titanate Thin Films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830327

Country of ref document: EP

Kind code of ref document: A1