TWI469495B - Piezoelectric generator with a composite piezoelectric structure - Google Patents
Piezoelectric generator with a composite piezoelectric structure Download PDFInfo
- Publication number
- TWI469495B TWI469495B TW100131734A TW100131734A TWI469495B TW I469495 B TWI469495 B TW I469495B TW 100131734 A TW100131734 A TW 100131734A TW 100131734 A TW100131734 A TW 100131734A TW I469495 B TWI469495 B TW I469495B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- piezoelectric
- substrate
- power generator
- conductive layer
- Prior art date
Links
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
本發明係關於一種發電裝置,尤其是,一種可提升發電效率之複合壓電發電裝置。The present invention relates to a power generating device, and more particularly to a composite piezoelectric power generating device capable of improving power generation efficiency.
壓電效應是電場與力學相互結合作用的一種現象,單位晶胞內,如果正電荷與負電荷的幾何中心點不在同一點上時,也就是晶體結構中不存在著對稱中心,就會產生電偶極(electric dipole);當受到應力作用時,便會使正負電荷產生相對位移,因而產生電偶極矩或電壓,故壓電效應係由於晶體物質中之單位晶胞內缺乏對稱中心而導致。The piezoelectric effect is a phenomenon in which the electric field and the mechanics interact with each other. In the unit cell, if the geometric center point of the positive charge and the negative charge are not at the same point, that is, there is no symmetry center in the crystal structure, electricity is generated. Electric dipole; when subjected to stress, it will cause relative displacement of positive and negative charges, thus generating electric dipole moment or voltage, so the piezoelectric effect is caused by the lack of symmetry center in the unit cell in the crystal material. .
壓電效應包含了正壓電效應及逆壓電效應,正壓電效應係當一機械應力施加於一壓電材料時,該壓電材料之兩端會伴隨產生一個與該機械應力大小成比例的電荷,當應力方向相反時,電荷的極性,亦會隨之而反轉;逆壓電效應則是外加電場於壓電材料上,使材料產生機械形變,或是使材料內部阻抗產生變化。自壓電材料被發現以來,已被廣泛應用於換能器、感測器、微致動器、通訊元件等各種應用領域之中。The piezoelectric effect includes a positive piezoelectric effect and an inverse piezoelectric effect. When a mechanical stress is applied to a piezoelectric material, both ends of the piezoelectric material are accompanied by a magnitude proportional to the mechanical stress. The charge, when the stress direction is opposite, the polarity of the charge will also be reversed; the inverse piezoelectric effect is the applied electric field on the piezoelectric material, causing the material to mechanically deform or change the internal impedance of the material. Since the discovery of piezoelectric materials, it has been widely used in various applications such as transducers, sensors, microactuators, and communication components.
鋯鈦酸鉛(PZT)及氧化鋅(ZnO)是目前最常被使用之壓電材料,如第1a、1b及1c圖所示,一壓電元件91係由非傳導性材料構成,其內部沒有自由電子來幫助傳導,惟若施加一應力(例如:一張應力92或一壓縮應力93)於該壓電元件91上,造成其內部晶體形變,將導致電子94移動,使該壓電元件91之受力面聚集與該應力大小成比例之電荷(電壓),當該應力方向相反,電荷(電壓)之極性亦隨之相反。因此,當該壓電材料受力振動而變形時,其上下兩面會分別受到該張應力與該壓縮應力作用而聚集不同電荷,因此,該壓電材料可被製成一複合壓電發電裝置而發電,亦可進一步配合整流電路而產生直流電,以提供電子產品所需之電源。Lead zirconate titanate (PZT) and zinc oxide (ZnO) are the most commonly used piezoelectric materials. As shown in Figures 1a, 1b and 1c, a piezoelectric element 91 is composed of a non-conductive material and its interior. There is no free electron to help conduct, but if a stress (for example, a stress 92 or a compressive stress 93) is applied to the piezoelectric element 91, causing internal crystal deformation, it will cause the electron 94 to move, making the piezoelectric element The force surface of 91 accumulates a charge (voltage) proportional to the magnitude of the stress. When the stress direction is opposite, the polarity of the charge (voltage) is also reversed. Therefore, when the piezoelectric material is deformed by vibration, the upper and lower sides are respectively subjected to the tensile stress and the compressive stress to collect different charges, and therefore, the piezoelectric material can be fabricated into a composite piezoelectric power generator. Power generation can also be combined with a rectifier circuit to generate DC power to provide the power required for electronic products.
請參照第2圖所示,如中華民國公告第M258620號「免電安全燈鞋」新型專利案,揭示一種應用於安全燈鞋之習知複合壓電發電裝置8,其係包含一基板81及二壓電陶瓷82,該基板81之二相對表面係分別貼合該二壓電陶瓷82;其中,該習知複合壓電發電裝置8可電性連接於數個發電元件83,並設置於鞋子底部(圖未繪示)。藉此,當使用者穿著鞋子走動時,該壓電陶瓷82受力形變並產生電流,使該發電元件83發光。Please refer to the new patent case of "Rechargeable Safety Light Shoes" of the Republic of China Announcement No. M258620, which discloses a conventional composite piezoelectric generator 8 for safety light shoes, which comprises a substrate 81 and The second piezoelectric ceramics 82, the two opposite surfaces of the substrate 81 are respectively attached to the two piezoelectric ceramics 82; wherein the conventional composite piezoelectric power generator 8 is electrically connected to the plurality of power generating elements 83 and disposed on the shoes. Bottom (not shown). Thereby, when the user walks with the shoes, the piezoelectric ceramic 82 is deformed by force and generates an electric current to cause the power generating element 83 to emit light.
該習知複合壓電發電裝置8於使用時,由於該壓電陶瓷82並未緊密結合於該基板81,使得該壓電陶瓷82之發電效率不高,因此,該壓電陶瓷82需具有較大且較厚之尺寸,才能產生足夠驅動該發電元件83所需之電量。再者,鞋子底部之容置空間有限,該壓電陶瓷82之尺寸受限於該容置空間,並無法容納過大之壓電陶瓷82,因此,該習知複合壓電發電裝置8之發電量有限。When the conventional piezoelectric piezoelectric generator 8 is used, since the piezoelectric ceramic 82 is not tightly coupled to the substrate 81, the piezoelectric ceramic 82 has a low power generation efficiency, and therefore, the piezoelectric ceramic 82 needs to have a comparative A large and thick size produces sufficient power to drive the power generating component 83. Furthermore, the housing space of the bottom of the shoe is limited, and the size of the piezoelectric ceramic 82 is limited by the accommodating space, and the piezoelectric ceramic 82 cannot be accommodated. Therefore, the power generation of the conventional composite piezoelectric power generator 8 is limited.
基於上述原因,有必要進一步改良上述習知複合壓電發電裝置8,以提供一種具有高發電效率之複合壓電發電裝置。For the above reasons, it is necessary to further improve the above-described conventional composite piezoelectric power generator 8 to provide a composite piezoelectric power generator having high power generation efficiency.
本發明之目的乃改良上述缺點,係提供一種複合壓電發電裝置,可提升單位面積發電功率,以提供高發電效率者。SUMMARY OF THE INVENTION An object of the present invention is to improve the above disadvantages by providing a composite piezoelectric power generator capable of increasing power generation per unit area to provide high power generation efficiency.
一種複合壓電發電裝置,係包含:一基板,係具有耐熱性,且設有一第一結合面及一第二結合面,該第一結合面與該第二結合面為相對二表面;一第一壓電層,係設於該基板之第一結合面;一第一導電層,係設於該第一壓電層;一隔離層,係設於該基板之第二結合面,且該隔離層係由具有平坦的附著層之特性的材料製成;一第二壓電層,係設於該隔離層;及一第二導電層,係設於該第二壓電層。A composite piezoelectric power generating device comprising: a substrate having heat resistance, and having a first bonding surface and a second bonding surface, wherein the first bonding surface and the second bonding surface are opposite surfaces; a piezoelectric layer is disposed on the first bonding surface of the substrate; a first conductive layer is disposed on the first piezoelectric layer; an isolation layer is disposed on the second bonding surface of the substrate, and the isolation The layer is made of a material having a flat adhesion layer; a second piezoelectric layer is disposed on the isolation layer; and a second conductive layer is disposed on the second piezoelectric layer.
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明全文所述之「不鏽鋼」(stainless steel substrate),係指以重量計,鉻含量超過11.5%的鐵合金,係本發明所屬技術領域中具有通常知識者可以理解。The above and other objects, features and advantages of the present invention will become more <RTIgt; "Stainless steel substrate" means an iron alloy having a chromium content of more than 11.5% by weight, as will be understood by those of ordinary skill in the art to which the present invention pertains.
本發明全文所述之「彈性係數」(Modulus of Elasticity),或稱為楊氏係數,係指應力-應變曲線上的彈性區域之斜率,該應力與該應變之關係滿足虎克定律。換言之,彈性係數代表材料的剛性(Stiffness),高剛性材料具有較低的吸振效應,即在彈性負荷範圍內較易保持原有 形狀及尺寸,並得以達到較大的能量轉換效應,係本發明所屬技術領域中具有通常知識者可以理解。The "Modulus of Elasticity" or "Young's Coefficient" as used throughout the present invention refers to the slope of the elastic region on the stress-strain curve, and the relationship between the stress and the strain satisfies Hooke's law. In other words, the elastic coefficient represents the stiffness of the material, and the high-rigidity material has a low vibration-absorbing effect, that is, it is easier to maintain the original in the elastic load range. Shape and size, and to achieve greater energy conversion effects, will be understood by those of ordinary skill in the art to which the present invention pertains.
本發明全文所述之「歐姆接觸」(Ohmic Contact),係指一金屬半導體接面,其雙向皆可導通,且其接觸電阻值遠小於一半導體之串聯電阻值,當電流通過時,其壓降可忽略,係本發明所屬技術領域中具有通常知識者可以理解。"Ohmic Contact" as used throughout the specification of the present invention refers to a metal semiconductor junction which is electrically conductive in both directions and whose contact resistance value is much smaller than the series resistance of a semiconductor. The drop is negligible and can be understood by those of ordinary skill in the art to which the present invention pertains.
請參照第3圖所示,其係本發明複合壓電發電裝置之較佳實施例,該複合壓電發電裝置係包含一基板1、一第一壓電層2、一第一導電層3、一隔離層4、一第二壓電層5及一第二導電層6。該第一壓電層2係設於該基板1,該第一導電層3設於該第一壓電層2,該隔離層4係設於該基板1,且相對於該第一壓電層2,該第二壓電層5設於該隔離層4,該第二導電層6設於該第二壓電層5。藉此,該第一壓電層2及該第二壓電層5可受力變形而產生電力,並由第一導電層3及第二導電層6輸出電力。Referring to FIG. 3, which is a preferred embodiment of the composite piezoelectric power generator of the present invention, the composite piezoelectric power generator includes a substrate 1, a first piezoelectric layer 2, a first conductive layer 3, An isolation layer 4, a second piezoelectric layer 5 and a second conductive layer 6. The first piezoelectric layer 2 is disposed on the substrate 1 , the first conductive layer 3 is disposed on the first piezoelectric layer 2 , and the isolation layer 4 is disposed on the substrate 1 and opposite to the first piezoelectric layer 2. The second piezoelectric layer 5 is disposed on the isolation layer 4, and the second conductive layer 6 is disposed on the second piezoelectric layer 5. Thereby, the first piezoelectric layer 2 and the second piezoelectric layer 5 can be deformed by force to generate electric power, and the first conductive layer 3 and the second conductive layer 6 can output electric power.
該基板1係由具有耐熱性之材料所製成,例如:合金材料,使該基板1可承受其他材料層(例如:該第一壓電層2及該隔離層4)成長時的高溫,較佳由彈性佳且不易產生永久性形變之合金材料所製成,例如:不鏽鋼或特殊合金,使該基板1可受力而擺動,且經過長時間大幅擺動後,仍不會發生撓曲(Bending)現象,而產生永久性形變。該基板1設有一第一結合面11及一第二結合面12,該第一結合面11與該第二結合面12為相對二表面,該第一結合面11用以成長該第一壓電層2,使該第一壓電層2可以緊密結合於該基板1。該第二結合面12用以成長該隔離層 4。在此實施例中,該基板1之材質係以不鏽鋼作為實施態樣,惟不以此為限;該基板1之耐熱溫度為200度(℃)至500度;該基板1之彈性係數為126帕(GPa)至250帕。另,由於不鏽鋼之價格係低於特殊合金之價格,因此,採用不鏽鋼做為該基板1,可降低該基板1之製造成本,且可以使設置於該基板1之各材料層與該基板1緊密結合。The substrate 1 is made of a material having heat resistance, for example, an alloy material, so that the substrate 1 can withstand the high temperature when other material layers (for example, the first piezoelectric layer 2 and the isolation layer 4) grow. It is made of an alloy material that is excellent in elasticity and is not prone to permanent deformation, such as stainless steel or special alloy, so that the substrate 1 can be oscillated under force, and after a long swing, the bending does not occur (Bending) ) phenomenon, resulting in permanent deformation. The substrate 1 is provided with a first bonding surface 11 and a second bonding surface 12. The first bonding surface 11 and the second bonding surface 12 are opposite surfaces. The first bonding surface 11 is configured to grow the first piezoelectric layer. Layer 2 allows the first piezoelectric layer 2 to be tightly bonded to the substrate 1. The second bonding surface 12 is used to grow the isolation layer 4. In this embodiment, the material of the substrate 1 is made of stainless steel as the embodiment, but not limited thereto; the heat resistance temperature of the substrate 1 is 200 degrees (° C.) to 500 degrees; the elastic modulus of the substrate 1 is 126. Pa (GPa) to 250 Pa. In addition, since the price of the stainless steel is lower than the price of the special alloy, the use of stainless steel as the substrate 1 can reduce the manufacturing cost of the substrate 1, and the material layers provided on the substrate 1 can be tightly bonded to the substrate 1. Combine.
該第一壓電層2係由具有壓電性之材料製成,較佳係由鋯鈦酸鉛或氧化鋅等壓電材料,以射頻濺鍍法、直流濺鍍法、溶膠凝膠法、熱壓法、網印法、化學氣相沉積法、電子束蒸鍍法、雷射沉積法或原子層沉積法等方式成長而製成。該第一壓電層2係設置於該基板1之第一結合面11,並形成相對二表面21及22,當該基板1受力而擺動時,該第一壓電層2可受力變形而產生電力,其中,該第一壓電層2緊密結合該第一結合面11。在此實施例中,該第一壓電層2係由鋯鈦酸鉛或氧化鋅製成。The first piezoelectric layer 2 is made of a piezoelectric material, preferably a piezoelectric material such as lead zirconate titanate or zinc oxide, by radio frequency sputtering, direct current sputtering, sol-gel method, It is made by the method of hot pressing, screen printing, chemical vapor deposition, electron beam evaporation, laser deposition or atomic layer deposition. The first piezoelectric layer 2 is disposed on the first bonding surface 11 of the substrate 1 and forms opposite surfaces 21 and 22, and the first piezoelectric layer 2 can be deformed when the substrate 1 is oscillated by force. Power is generated, wherein the first piezoelectric layer 2 is tightly coupled to the first bonding surface 11. In this embodiment, the first piezoelectric layer 2 is made of lead zirconate titanate or zinc oxide.
該第一導電層3係由具有導電性之材料,以射頻濺鍍法、直流濺鍍法、熱蒸鍍法、網印法、化學氣相沉積法、電子束蒸鍍法、雷射沉積法、原子層沉積法或塗佈法等方式成長而製成。該第一導電層3係設置於該第一壓電層2,用以傳導該壓電層2所產生之電力,較佳平行該基板之第一結合面11,以增加電力傳導效率,其中,該第一導電層3及該第一壓電層2之間形成歐姆接觸(Ohmic Contact)。在此實施例中,該第一導電層3係由導電材料製成,例如:金、鉑或銀等導電材料。The first conductive layer 3 is made of a conductive material by radio frequency sputtering, direct current sputtering, thermal evaporation, screen printing, chemical vapor deposition, electron beam evaporation, and laser deposition. It is made by growing in a method such as atomic layer deposition or coating. The first conductive layer 3 is disposed on the first piezoelectric layer 2 for conducting power generated by the piezoelectric layer 2, preferably parallel to the first bonding surface 11 of the substrate, to increase power transmission efficiency, wherein An ohmic contact is formed between the first conductive layer 3 and the first piezoelectric layer 2. In this embodiment, the first conductive layer 3 is made of a conductive material such as a conductive material such as gold, platinum or silver.
該隔離層4係由具有平坦的附著層之特性的材料,例 如:鈦白金等,以射頻濺鍍法、直流濺鍍法、溶膠凝膠法、熱壓法、網印法、化學氣相沉積法、電子束蒸鍍法、雷射沉積法或原子層沉積法等方式成長而製成。該隔離層4係設置於該基板1之第二結合面12,其中,該隔離層4除了可以緊密結合該第二結合面12之外,還可以避免在製造時的熱升溫過程中,對於該基板1之第二結合面12的破壞,其中,該隔離層4之表面需具有平坦的微結構。在此實施例中,該隔離層4係由鈦白金製成。The isolation layer 4 is made of a material having the characteristics of a flat adhesion layer, for example Such as: Titanium Platinum, etc., by RF sputtering, DC sputtering, sol-gel method, hot pressing method, screen printing method, chemical vapor deposition method, electron beam evaporation method, laser deposition method or atomic layer deposition Made by law and other methods. The isolation layer 4 is disposed on the second bonding surface 12 of the substrate 1 , wherein the isolation layer 4 can be used in combination with the second bonding surface 12 to avoid thermal heating during manufacturing. The destruction of the second bonding surface 12 of the substrate 1, wherein the surface of the isolation layer 4 needs to have a flat microstructure. In this embodiment, the spacer layer 4 is made of titanium white gold.
該第二壓電層5與該第一壓電層2所揭示之材料及製程大致相同,在此容不贅述。該第二壓電層5係設置於該隔離層4,並形成相對二表面51及52,當該基板1受力而擺動時,該隔離層4及該第二壓電層5可受力變形,而使該第二壓電層5產生電力。在此實施例中,該第二壓電層5係由鋯鈦酸鉛或氧化鋅製成。The material and process of the second piezoelectric layer 5 and the first piezoelectric layer 2 are substantially the same, and are not described herein. The second piezoelectric layer 5 is disposed on the isolation layer 4 and forms opposite surfaces 51 and 52. When the substrate 1 is oscillated by force, the isolation layer 4 and the second piezoelectric layer 5 can be deformed by force. And the second piezoelectric layer 5 generates electric power. In this embodiment, the second piezoelectric layer 5 is made of lead zirconate titanate or zinc oxide.
該第二導電層6與該第一導電層3所揭示之材料及製程大致相同,在此容不贅述。該第二導電層6係設置於該第二壓電層5,用以傳導該第二壓電層5所產生之電力,其中,該第二導電層6及該第二壓電層5之間形成歐姆接觸。此外,該第二導電層6電性連接該第一導電層3。在此實施例中,該第二導電層6係由導電材料製成,例如:金、鉑或銀等導電材料。The material and process disclosed in the second conductive layer 6 and the first conductive layer 3 are substantially the same, and are not described herein. The second conductive layer 6 is disposed on the second piezoelectric layer 5 for conducting power generated by the second piezoelectric layer 5, wherein between the second conductive layer 6 and the second piezoelectric layer 5 An ohmic contact is formed. In addition, the second conductive layer 6 is electrically connected to the first conductive layer 3 . In this embodiment, the second conductive layer 6 is made of a conductive material such as a conductive material such as gold, platinum or silver.
本發明複合壓電發電裝置還可以包含二導線(圖未繪示),該二導線分別電性連接該第一導電層3及該第二導電層6,用以傳導本發明複合壓電發電裝置所產生之電力。The composite piezoelectric power generator of the present invention may further comprise two wires (not shown) electrically connected to the first conductive layer 3 and the second conductive layer 6 for conducting the composite piezoelectric power generator of the present invention. The electricity generated.
本發明之複合壓電發電裝置的運作情形係詳述如後 ,其中,由於該基板1具有彈性,當該基板1受力而變形時,可使設置於該基板1上之第一壓電層2及第二壓電層5亦隨其變形。如第4a圖所示,當該基板1向上擺動(依圖面而言)時,該第一壓電層2之表面21及22分別受一張應力及一壓縮應力作用,因此,該表面21聚集負電荷;該表面22聚集正電荷,並由該第一導電層3傳導。同時,該第二壓電層5之表面51及52分別受該壓縮應力及該張應力作用,因此,該表面51聚集正電荷;該表面52聚集負電荷,並由該第二導電層6傳導。The operation of the composite piezoelectric power generator of the present invention is detailed as follows In the case where the substrate 1 has elasticity, when the substrate 1 is deformed by force, the first piezoelectric layer 2 and the second piezoelectric layer 5 disposed on the substrate 1 can be deformed. As shown in FIG. 4a, when the substrate 1 is swung upward (in terms of the drawing), the surfaces 21 and 22 of the first piezoelectric layer 2 are respectively subjected to a stress and a compressive stress, and therefore, the surface 21 A negative charge is concentrated; the surface 22 concentrates and is conducted by the first conductive layer 3. At the same time, the surfaces 51 and 52 of the second piezoelectric layer 5 are respectively subjected to the compressive stress and the tensile stress. Therefore, the surface 51 concentrates a positive charge; the surface 52 collects a negative charge and is conducted by the second conductive layer 6. .
反之,如第4b圖所示,當該基板1向下擺動時,則該第一壓電層2之表面21及22分別聚集正電荷及負電荷;同時,該第二壓電層5之表面51及52分別聚集負電荷及正電荷,分別由該第一導電層3及該第二導電層6傳導。藉此,本發明複合壓電發電裝置可產生一單位面積發電功率高的交流電,進而提升本發明複合壓電發電裝置之發電效率,且該交流電還可藉由該二導線電性連接至一整流電路,用以整流成一直流電。因此,本發明複合壓電發電裝置可設置於一可雙面受力之應用場合,例如:應用於風力發電等。On the other hand, as shown in FIG. 4b, when the substrate 1 is swung downward, the surfaces 21 and 22 of the first piezoelectric layer 2 respectively collect positive and negative charges; meanwhile, the surface of the second piezoelectric layer 5 51 and 52 respectively collect a negative charge and a positive charge, which are respectively conducted by the first conductive layer 3 and the second conductive layer 6. Thereby, the composite piezoelectric power generating device of the present invention can generate an alternating current with a high power generation per unit area, thereby improving the power generation efficiency of the composite piezoelectric power generating device of the present invention, and the alternating current can be electrically connected to a rectification by the two wires. The circuit is used to rectify into a continuous current. Therefore, the composite piezoelectric power generator of the present invention can be disposed in a double-sided force application, for example, applied to wind power generation or the like.
本發明複合壓電發電裝置,係以該基板1之第一結合面11設置該第一壓電層2,由於該第一壓電層2緊密結合於該基板1,且該第一壓電層2與該基板1不易分離,進而提升單位面積發電功率。另一方面,該第二結合面12設置該隔離層4,該隔離層4設置該第二壓電層5,使該第二壓電層5與該基板1不易分離,進而提升單位面積發電 功率。因此,本發明複合壓電發電裝置可藉由提升單位面積發電功率,而具有高發電效率之功效。In the composite piezoelectric power generating device of the present invention, the first piezoelectric layer 2 is disposed on the first bonding surface 11 of the substrate 1, since the first piezoelectric layer 2 is tightly bonded to the substrate 1, and the first piezoelectric layer 2 The substrate 1 is not easily separated, thereby increasing the power generation per unit area. On the other hand, the second bonding surface 12 is provided with the isolation layer 4, and the isolation layer 4 is provided with the second piezoelectric layer 5, so that the second piezoelectric layer 5 and the substrate 1 are not easily separated, thereby increasing power generation per unit area. power. Therefore, the composite piezoelectric power generator of the present invention can have a high power generation efficiency by increasing the power generation per unit area.
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims.
〔本發明〕〔this invention〕
1‧‧‧基板1‧‧‧Substrate
11‧‧‧第一結合面11‧‧‧ first joint
12‧‧‧第二結合面12‧‧‧Second junction
2‧‧‧第一壓電層2‧‧‧First piezoelectric layer
21‧‧‧表面21‧‧‧ surface
22‧‧‧表面22‧‧‧ Surface
3‧‧‧第一導電層3‧‧‧First conductive layer
4‧‧‧隔離層4‧‧‧Isolation layer
5‧‧‧第二壓電層5‧‧‧Second piezoelectric layer
51‧‧‧表面51‧‧‧ surface
52‧‧‧表面52‧‧‧ Surface
6‧‧‧第二導電層6‧‧‧Second conductive layer
〔習知〕[study]
91‧‧‧壓電元件91‧‧‧Piezoelectric components
92‧‧‧張應力92‧‧‧ tensile stress
93‧‧‧壓縮應力93‧‧‧Compressive stress
94‧‧‧電子94‧‧‧Electronics
8‧‧‧習知複合壓電發電裝置8‧‧‧Knowledge composite piezoelectric generator
81‧‧‧基板81‧‧‧Substrate
82‧‧‧壓電陶瓷82‧‧‧ Piezoelectric Ceramics
83‧‧‧發電元件83‧‧‧Power generation components
第1a圖:習用複合壓電發電裝置未受力之示意圖。Figure 1a: Schematic diagram of the uncompressed force of a conventional composite piezoelectric power generator.
第1b圖:習用複合壓電發電裝置受到張應力之示意圖。Figure 1b: Schematic diagram of the tensile stress of a conventional composite piezoelectric power generator.
第1c圖:習用複合壓電發電裝置受到壓縮應力之示意圖。Figure 1c: Schematic diagram of a conventional composite piezoelectric power generator subjected to compressive stress.
第2圖:習用複合壓電發電裝置之結構示意圖。Fig. 2 is a schematic view showing the structure of a conventional composite piezoelectric power generator.
第3圖:本發明複合壓電發電裝置較佳實施例之立體組合圖。Fig. 3 is a perspective assembled view of a preferred embodiment of the composite piezoelectric power generator of the present invention.
第4a圖:本發明複合壓電發電裝置較佳實施例向上擺動發電之示意圖。Fig. 4a is a schematic view showing the upward swing power generation of the preferred embodiment of the composite piezoelectric power generator of the present invention.
第4b圖:本發明複合壓電發電裝置較佳實施例向下擺動發電之示意圖。Fig. 4b is a schematic view showing a preferred embodiment of the composite piezoelectric power generator of the present invention which swings downward to generate electricity.
1...基板1. . . Substrate
11...第一結合面11. . . First joint surface
12...第二結合面12. . . Second joint
2...第一壓電層2. . . First piezoelectric layer
21...表面twenty one. . . surface
22...表面twenty two. . . surface
3...第一導電層3. . . First conductive layer
4...隔離層4. . . Isolation layer
5...第二壓電層5. . . Second piezoelectric layer
51...表面51. . . surface
52...表面52. . . surface
6...第二導電層6. . . Second conductive layer
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100131734A TWI469495B (en) | 2011-09-02 | 2011-09-02 | Piezoelectric generator with a composite piezoelectric structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100131734A TWI469495B (en) | 2011-09-02 | 2011-09-02 | Piezoelectric generator with a composite piezoelectric structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201312924A TW201312924A (en) | 2013-03-16 |
TWI469495B true TWI469495B (en) | 2015-01-11 |
Family
ID=48482693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100131734A TWI469495B (en) | 2011-09-02 | 2011-09-02 | Piezoelectric generator with a composite piezoelectric structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI469495B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017018222A1 (en) * | 2015-07-24 | 2018-06-07 | 株式会社ユーテック | Piezoelectric film and manufacturing method thereof, bimorph element, piezoelectric element and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200939612A (en) * | 2008-03-12 | 2009-09-16 | Univ Nat Sun Yat Sen | Piezoelectric generator having a composite piezoelectric structure |
TW201114022A (en) * | 2009-09-28 | 2011-04-16 | Macronix Int Co Ltd | Charge trapping memory cell having bandgap engineered tunneling structure with oxynitride isolation layer |
-
2011
- 2011-09-02 TW TW100131734A patent/TWI469495B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200939612A (en) * | 2008-03-12 | 2009-09-16 | Univ Nat Sun Yat Sen | Piezoelectric generator having a composite piezoelectric structure |
TW201114022A (en) * | 2009-09-28 | 2011-04-16 | Macronix Int Co Ltd | Charge trapping memory cell having bandgap engineered tunneling structure with oxynitride isolation layer |
Non-Patent Citations (1)
Title |
---|
Wei-Tsai Chang, Ying-Chung Chen, Re-Ching Lin, Chien-Chuan Cheng, Kuo-Sheng Kao, Bing-Rung Wu, Yu-Chang Huang, "Design and fabrication of a piezoelectric transducer for wind-power generator", Thin Solid Films, Volume 519, Issue 15, 31 May 2011, PP. 4687-4693. * |
Also Published As
Publication number | Publication date |
---|---|
TW201312924A (en) | 2013-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates | |
EP2109931B1 (en) | Energy harvesting device | |
US5849125A (en) | Method of manufacturing flextensional transducer using pre-curved piezoelectric ceramic layer | |
US10075102B2 (en) | System for converting thermal energy into electrical power | |
JP5632643B2 (en) | Ferroelectric device | |
JP4767369B1 (en) | Piezoelectric power generation element and power generation method using piezoelectric power generation element | |
JP5520239B2 (en) | Power generation device and power generation module using the same | |
JP3866258B2 (en) | Piezoelectric device and piezoelectric switch including the same | |
JP5493562B2 (en) | Thermoelectric conversion module | |
CN102859737B (en) | Method for manufacturing ferroelectric device | |
KR101871106B1 (en) | Piezoeletric energy harvestor and piezoeletric sensor | |
TW201810744A (en) | Electricity generator comprising a magnetoelectric converter and method for manufacturing same | |
JP2013500695A (en) | Bending device for deforming piezoelectric bending element, piezoelectric energy converter for converting mechanical energy into electric energy using the bending device, and method for converting mechanical energy into electric energy | |
JP2009278859A (en) | Battery alternative power generation unit | |
Li et al. | High-performance low-frequency MEMS energy harvester via partially covering PZT thick film | |
JP2013110920A (en) | Power generator | |
KR101526254B1 (en) | Vibration power generation device and method for manufacturing same | |
TWI469495B (en) | Piezoelectric generator with a composite piezoelectric structure | |
JP5760172B2 (en) | Power generation device and power generation module using the same | |
TWI412223B (en) | Piezoelectric transducer | |
KR101899385B1 (en) | Triboelectric energy harvester and manufacturing method thereof | |
TW201312923A (en) | Piezoelectric generator | |
JP2007264095A (en) | Vibration plate and vibration wave driving device | |
TWI422082B (en) | Piezoelectric transducer with a composite piezoelectric structure | |
JP2019009309A (en) | Piezoelectric generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |