WO2017017881A1 - 基地局、端末、送信方法および受信方法 - Google Patents

基地局、端末、送信方法および受信方法 Download PDF

Info

Publication number
WO2017017881A1
WO2017017881A1 PCT/JP2016/002719 JP2016002719W WO2017017881A1 WO 2017017881 A1 WO2017017881 A1 WO 2017017881A1 JP 2016002719 W JP2016002719 W JP 2016002719W WO 2017017881 A1 WO2017017881 A1 WO 2017017881A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrowband
prbs
rbg
epdcch set
epdcch
Prior art date
Application number
PCT/JP2016/002719
Other languages
English (en)
French (fr)
Inventor
綾子 堀内
鈴木 秀俊
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2017530989A priority Critical patent/JP6666347B2/ja
Publication of WO2017017881A1 publication Critical patent/WO2017017881A1/ja
Priority to US15/810,589 priority patent/US11343661B2/en
Priority to US17/725,089 priority patent/US20220248197A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Definitions

  • the present disclosure relates to a base station, a terminal, a transmission method, and a reception method used for MTC® (Machine-Type® Communication).
  • MTC Machine-Type Communications
  • MTC Machine-Type Communications
  • MTC is considered to be used for smart meter automatic meter reading, inventory management, physical distribution management using location information, pet / livestock management, or mobile approval.
  • MTC it is assumed that an MTC terminal and a network are connected. Although a large number of MTC terminals are arranged, it is expected that the traffic volume of each MTC terminal is not so large. Therefore, it is desired that the MTC terminal has low cost and low power consumption.
  • the resources used by MTC terminals for communication are limited to 6 PRB (Physical resource block) or less, regardless of the system bandwidth, in order to realize low-cost MTC terminals. It is being considered.
  • 6 PRB Physical resource block
  • the MTC terminal receives and transmits only a part of the system band.
  • the PRB used for transmission and reception can be changed by retuning.
  • This resource below 6PRB is called Narrowband. Narrowband is defined to consist of continuous PRBs.
  • Narrowband As a definition of Narrowband, a method of forming Narrowband by dividing 6 PRBs from the end of the band, a method of forming Narrowband by dividing from the center of the band, and the like have been proposed (for example, see Non-Patent Document 2).
  • an RBG size indicating the number of RBs constituting one RBG is defined according to the number of RBs included in the system band.
  • the RBG is a resource obtained by dividing the number of consecutive PRBs defined by the RBG size in order from the end of the band.
  • the RBG size is a parameter used for DL resource allocation type 0 and type 1.
  • resource allocation type 0 resources are allocated in RBG units.
  • type IV 1 a plurality of RBs constituting each RBG belong to any subset. The number of subsets is the same as the RBG size.
  • Resource allocation is performed by first selecting a subset and allocating the PRB in the RBG belonging to the selected subset for each PRB.
  • the RBG is related to the resource allocation unit of the conventional terminal (legacy) UE).
  • MPDCCH that expands EPDCCH (Enhanced Physical Downlink Control Channel) for MTC is being studied as a control signal for MTC terminals.
  • MPDCCH is arranged in Narrowband.
  • a method of assigning MPDCCH to all six PRB pairs included in Narrowband is under consideration.
  • the number of ECCEs included in the six PRB pairs is 24.
  • ECCE and EREG are units for assigning EPDCCH, and 16 EREG is included per 1 PRB pair.
  • ECCE has a localized allocation composed of a plurality of EREGs in which one ECCE belongs to the same PRB pair, and a distributed allocation composed of a plurality of EREGs in which one ECCE belongs to different PRB pairs.
  • PRB pair is a unit of resource and is 1 subframe (time direction) ⁇ 12 subcarriers (frequency). When showing only on the frequency axis, the PRB pair may be simply called PRB.
  • the Narrowband definition set for MTC terminals may vary from cell to cell.
  • the definition of Narrowband is which PRB constitutes Narrowband.
  • a PUCCH resource is reserved for a conventional terminal (legacy) UE), and it may be set so that the PUCCH resource for the conventional terminal is not included in the narrowband of MTC. Since the amount of PUCCH resources varies from cell to cell, the definition of Narrowband may vary from cell to cell.
  • TDD specifies that DL and UL have the same Narrowband definition. In FDD, there may be a requirement to maintain a constant interval between DL Narrowband and UL Narrowband. In this case, it is required that DL and UL have the same Narrowband definition. When DL and UL have the same Narrowband definition, DL Narrowband is affected by the UL PUCCH resource amount.
  • the RBG included in the Narrowband may be different for each cell.
  • the relationship between the MPDCCH arrangement and the RBG also varies from cell to cell, and depending on the MPDCCH, the RBG that cannot be used by a conventional terminal also varies from cell to cell, and one MPDCCH may occupy an unnecessarily large number of RBGs.
  • One aspect of the present disclosure provides a base station and a terminal that can reduce the number of RBGs that cannot be used due to the use of MPDCCH, and do not need to notify the setting of MPDCCH in detail according to different offsets for each base station .
  • a base station includes an offset for defining a frequency position of a narrowband to which an MPDCCH that is a PDCCH (Physical Downlink Control Channel) used for MTC is allocated, and a resource block group (RBG: Based on (Resource Block Group) size, the arrangement of the first EPDCCH (Enhanced Physical Downlink Control Channel) set constituting the MPDCCH, and the first PRDC (Physical resource block) number different from the first EPDCCH set
  • a determination unit that determines the arrangement of two EPDCCH sets, and a transmission unit that transmits a control signal based on the arrangement of the first EPDCCH set and the arrangement of the second EPDCCH set.
  • the first EPDCCH set and the second EPDCCH set are arranged so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • the base station includes an offset for defining a narrowband frequency position composed of a plurality of continuous PRBs (Physical Resource Block), and a resource block group (RBG: Resource Block Group in the system band).
  • a determination unit that determines a PRB in which PDSCH (Physical Downlink Shared Shared Channel) is arranged in Narrowband, a resource allocation bit for notifying the determined PRB, and a determination
  • a transmitter that transmits PDSCH arranged in the PRB, and the RBG size is 4PRB
  • the plurality of PRBs is 6PRB
  • Narrowband is a first group of 4PRBs having lower frequencies among 6PRBs.
  • the second group consisting of the remaining 2 PRBs corresponding to one RBG and having a higher frequency is the first type Narrowband corresponding to a part of the RBG, and the frequency among 6 PRBs is higher 4
  • a third group of PRBs corresponding to one RBG, and a fourth group of remaining 2 PRBs having lower frequencies corresponding to a part of the RBG, and a second type of narrowband A resource included in one group and a resource included in the third group of the second Narrowband are associated with the same value of the resource allocation bits, and included in the second group of the first Narrowband;
  • the resources included in the fourth group of the second narrowband are associated with the same value of the resource allocation bits.
  • a terminal includes an offset for defining a narrowband frequency position to which an MPDCCH that is a PDCCH (Physical Downlink Control Channel) used for MTC is allocated, and a resource block group (RBG: Resource) in the system band Based on the block (Group) size, the arrangement of the first EPDCCH (Enhanced Physical Downlink Control Channel) set constituting the MPDCCH, and the number of PRB (Physical resource block) different from the first EPDCCH set
  • a determining unit that determines the arrangement of two EPDCCH sets, and a receiving unit that receives a control signal based on the arrangement of the first EPDCCH set and the second EPDCCH, wherein the determining unit includes: The EPDCCH set and the second EPDCCH set are arranged so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • a terminal includes a receiving unit that receives resource allocation bits from a base station and PDSCH (Physical Downlink Shared Channel) arranged in PRB (Physical Downlink Shared Block), and a plurality of continuous PRBs PDSCH is arranged in the Narrowband based on the offset to define the frequency position of the configured Narrowband, the resource block group (RBG) size of the system band, the Narrowband type, and the resource allocation bit
  • the PRB is determined, the RBG size is 4 PRB, and the plurality of PRBs is 6 PRBs, Narrowband has a first group of 4 PRBs having lower frequencies among 6 PRBs as one RBG.
  • the second group consisting of the remaining 2 PRBs with higher frequencies is the first type of narrowband corresponding to a part of RBG, and 4 PRBs with higher frequency among 6 PRBs
  • the resource included in the third group of the second Narrowband are associated with the same value of the resource allocation bits
  • the resource included in the second group of the first Narrowband, and the second The resources included in the fourth group of Narrowband are associated with the same value of the resource allocation bits.
  • the number of RBGs that cannot be used due to the use of MPDCCH can be reduced, and it is not necessary to report the setting of MPDCCH in detail according to different offsets for each base station.
  • the block diagram which shows the principal part structure of the base station which concerns on embodiment The block diagram which shows the principal part structure of the terminal which concerns on embodiment Diagram showing the relationship between Narrowband and RBG when RBG is 2 Diagram showing placement method for offset 0 Diagram showing the placement method for offset 1 Diagram showing the relationship between Narrowband and RBG when RBG is 3 Diagram showing placement method for offset 0 Diagram showing the placement method for offset 1, 2 Diagram showing the relationship between Narrowband and RBG when RBG is 4 Diagram showing the placement method for offset 0, 2 Diagram showing the placement method for offset 1 Diagram showing the placement method for offset 3
  • the block diagram which shows the structure of the base station which concerns on embodiment The block diagram which shows the structure of the terminal which concerns on embodiment
  • the figure which shows the example of resource allocation when the repetition with frequency hopping is applied The figure which shows the operation
  • FIG. 1 is a block diagram showing a main configuration of base station 100 according to Embodiments 1 and 2 of the present disclosure.
  • the determination unit (MPDCCH arrangement determination unit) 103 includes a PRB (different from the first EPDCCH (Enhanced Physical Downlink Control Control CHannel) set and the first EPDCCH set that configure the MPDCCH.
  • the arrangement of the second EPDCCH set having the number of Physical resource block) is determined.
  • the determination of the first EPDCCH set and the second EPDCCH set is based on the offset for defining the frequency position of the narrowband to which the MPDCCH is allocated and the resource block group (RBG: Resource Block Group) size of the system band. Done.
  • RBG Resource Block Group
  • MPDCCH indicates PDCCH (Physical Downlink Control Channel) used for MTC.
  • Transmitting section 107 transmits a control signal based on the arrangement of the first EPDCCH set and the second EPDCCH set. Also, the determination unit 103 arranges the first EPDCCH set and the second EPDCCH set so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • FIG. 2 is a block diagram illustrating a main configuration of the terminal 200 according to Embodiments 1 and 2 of the present disclosure.
  • determining section (MPDCCH arrangement determining section) 207 includes a first EPDCCH set and a second EPDCCH set having a different PRB number from the first EPDCCH set, which constitute MPDCCH. Determine placement.
  • the determination of the first EPDCCH set and the second EPDCCH set is based on the offset for defining the frequency position of the narrowband to which the MPDCCH is allocated and the resource block group (RBG: Resource Block Group) size of the system band. Done.
  • the receiving unit 108 receives a control signal based on the arrangement of the first EPDCCH set and the second EPDCCH.
  • the determination unit 207 arranges the first EPDCCH set and the second EPDCCH set so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • the narrowband size is 6 PRBs
  • the MPDCCH is formed by two EPDCCH PRB sets.
  • EPDCCH set 0 is composed of four PRBs
  • EPDCCH set 1 is composed of 2 PRBs.
  • RBG size 2 When the RBG size is 2, the positional relationship between Narrowband and RBG has two patterns depending on the offset value, as shown in FIG. When the offset is 0, three RBGs are included in one narrowband. When the offset is 1, four RBGs are included in one narrowband, and among the four RBGs, the RBGs at both ends include 1 PRB.
  • EPDCCH set 1 2PRBs
  • EPDCCH set 0 4PRBs
  • PRB bundling which improves the reception quality of DMRS (demodulation reference signal)
  • Case 2 has a frequency diversity effect within the narrow band of EPDCCH 1 set 0 because EPDCCH 1 set 0 is arranged in 2 PRBs at both ends.
  • EPDCCH ⁇ set 0DC (4PRBs) corresponds to two RBGs in the narrowband
  • MPDCCH is arranged so that EPDCCH set 1 corresponds to the remaining RBGs.
  • MPDCCH is arranged so that EPDCCH set 1 2 (2PRBs) corresponds to one RBG in Narrowband and EPDCCH set ⁇ ⁇ 0 corresponds to the remaining RBG. That is, in Case C1, EPDCCH set 0 is arranged in two RBGs, and EPDCCH set 1 is arranged in two RBGs.
  • Case 1 is suitable when the frequency of using EPDCCH set 0 is high because the number of RBGs in which EPDCCH set 0 is arranged is smaller than in Case 2 and Case 3.
  • Case 2 and Case 3 are suitable when the frequency of using EPDCCH set 1 is high because the number of RBGs in which EPDCCH set 1 is arranged is smaller than in Case 1.
  • RBG size 3 When the RBG size is 3, the positional relationship between Narrowband and RBG has three patterns depending on the offset value, as shown in FIG. When the offset is 0, two RBGs are included in one narrowband. When the offset is 1 and the offset is 2, three RBGs are included in one Narrowband, and the resources used as Narrowband among the resources of each RBG are 3PRBs, 2PRBs, and 1PRBs, respectively.
  • EPDCCH set 1 (2PRBs) is placed in 2PRB of one RBG, and EPDCCH set0 is placed in the remaining 4PRBs of the remaining 1PRB and 3PRBs of the other RBG.
  • Case 1 and Case 4 are allocated to 4 PRBs in which EPDCCH set 0 is continuous, and therefore are suitable for PRB bundling of EPDCCH set 0.
  • Case 2 Case 3, Case 5, and Case 6 have a frequency diversity effect within the narrow band of EPDCCH set 0.
  • EPDCCH set 1 (2PRBs) is placed in the PRB corresponding to the RBG included in 2PRBs in Narrowband, and EPDCCH set 0 (4PRBs) is included in the PRB and 3PRBs corresponding to the RBG included in 1 PRB Place in the PRB corresponding to the RBG.
  • EPDCCH set 0 (4PRBs) is included in the PRB and 3PRBs corresponding to the RBG included in 1 PRB Place in the PRB corresponding to the RBG.
  • the arrangement of EPDCCH is uniquely determined.
  • RBG size 3 by arranging in this way, the number of RBGs where EPDCCH set 1 is placed can always be 1, and the number of RBGs where EPDCCH set 0 is placed can always be 2.
  • RBG size 4 When the RBG size is 4, the positional relationship between Narrowband and RBG has four patterns depending on the offset value, as shown in FIG. In addition, two consecutive Narrowbands have different arrangements of RBGs included in the Narrowband. In the case of offset 0 and offset 2, two RBGs are included in one Narrowband, the resource used for Narrowband among the resources of one RBG is 4PRBs, and the resource used for Narrowband among the resources of the other RBG is 2PRBs. The case where the RBG of 4PRBs is arranged at the upper end of Narrowband and the case where it is arranged at the lower end are alternated.
  • the resources used for the Narrowband among the resources of each of the two RBGs are both 3PRBs.
  • the resources used for Narrowband among all the RBG resources are all 4PRBs, and among the other two RBG resources, the resources used for Narrowband are one PRB.
  • EPDCCH set 0 (4PRBs) is placed in the PRBs corresponding to the RBG including 4PRBs in the narrowband
  • EPDCCH set 1 (2PRBs) is placed in the PRBs corresponding to the RBG including 2 PRBs in the narrowband To do.
  • the arrangement of EPDCCH is uniquely determined as shown in FIG.
  • EPDCCH allocation is changed depending on whether two RBGs are included in one narrowband or three RBGs.
  • the number of PRBs included in each RBG is three. Therefore, EPDCCH set 1 (2PRBs) is placed in 2PRB of one RBG, and EPDCCH set 0 (4PRBs) is placed in the remaining 1PRB and 3PRB of the other RBG.
  • EPDCCH set 1 (2PRBs) is placed in 2PRB of one RBG
  • EPDCCH set 0 (4PRBs) is placed in the remaining 1PRB and 3PRB of the other RBG.
  • FIGS. 11 and 12 there are four cases of arrangement methods. With this arrangement, the number of RBGs in which EPDCCH set 1 (2PRBs) is arranged can be made one.
  • EPDCCHEPset0 (4PRBs) is placed in PRBs corresponding to RBGs including 4PRBs located at the center of Narrowband, and two RBGs each including 1PRB located at both ends of Narrowband.
  • EPDCCH set1 (2PRBs) is placed in In this way, the number of RBGs in which EPDCCH set 0 (4PRBs) is arranged can be made one.
  • the base station and the MTC terminal may be allowed to share or use which case beforehand, using which case Alternatively, the MTC terminal may be notified from the base station.
  • the same case may be set, such as Case 1 with offset 0 and Case 1 with offset 1. Different cases such as Case 2 with offset 1 may be used.
  • the same case of RBG size 2 has a cyclic shift relationship with offset 0 and offset 1.
  • the EPDCCH set assigned to PRB # 0 at offset 0 is assigned to PRB # 6 at offset 1
  • the EPDCCH set assigned to PRB # 1 to PRB5 at offset 0 is the same EPDCCH at offset 1. set is assigned.
  • FIG. 13 is a block diagram showing a configuration of the base station according to the present embodiment.
  • the base station 100 includes a narrowband setting unit 101, an MPDCCH generation unit 102, an MPDCCH arrangement determination unit 103, an error correction coding unit 104, a modulation unit 105, a signal allocation unit 106, and a transmission unit 107.
  • a receiver 108, a signal separator 109, a demodulator 110, and an error correction decoder 111 included in the base station 100.
  • the Narrowband setting unit 101 determines the Narrowband setting, that is, the offset from information such as the number of users held by other base stations (not shown), the required amount of PUCCH resources, and the line quality of the MTC terminal. From this offset, the relationship between RBG and Narrowband is determined. In order to notify the narrowband setting by higher layer signaling, the offset amount set by the narrowband setting unit 101 is output to the error correction coding unit 104. The offset amount is also output to the MPDCCH arrangement determining unit 103 and the signal separating unit 109.
  • the MPDCCH arrangement determining unit 103 determines the arrangement of EPDCCH set 0 and EPDCCH set 1 from the Narrowband offset amount input from the Narrowband setting unit 101 and the RBG size determined from the bandwidth (not shown).
  • the base of the arrangement method is previously held in common for the base station and the MTC terminal, and is arranged so that the number of RBGs in which EPDCCH set 0 or EPDCCH set 1 is arranged is minimized.
  • the determined arrangement of MPDCCH is output to signal allocation section 106.
  • the MPDCCH generation unit 102 generates MPDCCH that is control information addressed to the MTC terminal, generates a signal to be transmitted to either or both of EPDCCH set 0 and EPDCCH set 1, and outputs the signal to the signal allocation unit 106.
  • the error correction encoding unit 104 receives the transmission data signal (DL data signal) and the higher layer signaling received from the narrowband setting unit 101 as input, performs error correction encoding on the input signal, and outputs the signal to the modulation unit 105.
  • Modulation section 105 performs modulation processing on the signal received from error correction coding section 104 and outputs the modulated signal to signal allocation section 106.
  • the signal allocation unit 106 allocates a transmission data signal, upper layer signaling, and MPDCCH which is a control signal.
  • MPDCCH is assigned based on the arrangement of EPDCCH set 0 and EPDCCH set 1 input from MPDCCH arrangement determining section 103 in the narrowband.
  • the signal for the MTC terminal is assigned to the narrowband.
  • a transmission data signal and higher layer signaling can also be assigned to resources where MPDCCH is not allocated.
  • a transmission signal is formed by assigning the control signal and the data signal to predetermined resources. The formed transmission signal is output to transmission section 107.
  • the transmitting unit 107 performs wireless transmission processing such as up-conversion on the input signal and transmits the input signal to the terminal 200 via the antenna.
  • the reception unit 108 receives a signal transmitted from the terminal 200 via an antenna and outputs the signal to the signal separation unit 109.
  • the signal separation unit 109 separates the received signal based on the information input from the narrowband setting unit 101 and outputs it to the demodulation unit 110.
  • Demodulation section 110 performs demodulation processing on the input signal and outputs the obtained signal to error correction decoding section 111.
  • Error correction decoding section 111 decodes the input signal and obtains a received data signal from terminal 200.
  • FIG. 14 is a block diagram showing a configuration of the MTC terminal according to the present embodiment.
  • terminal 200 includes receiving section 201, signal separating section 202, demodulating section 203, error correction decoding section 204, narrowband setting section 205, MPDCCH receiving section 206, MPDCCH arrangement determining section 207, An error correction coding unit 208, a modulation unit 209, a signal allocation unit 210, and a transmission unit 211 are included.
  • the receiving unit 201 identifies which Narrowband is assigned a signal based on the Narrowband definition received from the Narrowband setting unit 205 based on a predetermined pattern, and retuns to the Narrowband.
  • the receiving unit 201 receives a received signal via an antenna, performs a receiving process such as down-conversion, and outputs the received signal to the signal separating unit 202.
  • the signal separation unit 202 separates the MPDCCH signal based on the EPDCCHDCset 0 and the EPDCCH set 1 input from the MPDCCH allocation determination unit 207, and outputs them to the MPDCCH reception unit 206. Also, based on the DL allocation information input from MPDCCH receiving section 206, DL data signals and higher layer signaling are output to demodulation section 203.
  • Demodulation section 203 demodulates the received signal and outputs the demodulated signal to error correction decoding section 204.
  • the error correction decoding unit 204 decodes the demodulated signal output from the demodulating unit 203 and outputs the obtained received data signal. Further, error correction decoding section 204 outputs narrowband offset information obtained as higher layer signaling to narrowband setting section 205.
  • the Narrowband setting unit 205 sets the Narrowband definition based on the bandwidth and the Narrowband offset information.
  • the definition of narrowband is output to the MPDCCH arrangement determination unit 207, the transmission unit 211, and the reception unit 201.
  • the MPDCCH arrangement determining unit 207 determines the arrangement of EPDCCH set 0 and EPDCCH set 1 from the Narrowband offset amount input from the Narrowband setting unit 205 and the RBG size determined from the bandwidth (not shown).
  • the base of the arrangement method is previously held in common for the base station and the MTC terminal, and is arranged so that the number of RBGs in which EPDCCH set 0 or EPDCCH set 1 is arranged is minimized.
  • the determined arrangement of MPDCCH is output to signal separation section 202.
  • the MPDCCH reception unit 206 performs blind decoding on the MPDCCH signal received from the signal separation unit 202 with respect to the search space for each of EPDCCH set 0 and EPDCCH set 1, or a combination of both, and assigns DL signal allocation information or UL signal.
  • MPDCCH which is a control signal including the allocation information, is detected.
  • the error correction coding unit 208 receives the transmission data signal (UL data signal), performs error correction coding on the transmission data signal, and outputs it to the modulation unit 209.
  • Modulation section 209 modulates the signal from error correction coding section 208 and outputs the modulated signal to signal allocation section 210.
  • the signal allocation unit 210 allocates the input transmission signal based on the UL allocation information received from the MPDCCH reception unit 206 and outputs the allocation to the transmission unit 211.
  • the transmission unit 211 identifies Narrowband resources to which UL data is assigned based on the Narrowband definition input from the Narrowband setting unit 205 and a predetermined pattern, performs retuning, and transmits the input signal such as up-conversion. Process and send.
  • RBG size 2 2 PRBs EPDCCH set is assigned to RBGs including 2PRBs in Narrowband, and 3PRBs EPDCCH set is assigned to the remaining PRBs.
  • RBG size 3 3 PRBs EPDCCH set is assigned to RBG including 3PRBs in Narrowband, and 2PRBs EPDCCH set is assigned to the remaining PRBs.
  • RBG size 4 2 PRBs EPDCCH set is assigned if there is an RBG containing 2PRBs in the Narrowband, and 3PRBs EPDCCH set is assigned if there is an RBG containing 3PRBs in the Narrowband.
  • the arrangement of the MPDCCH may be changed. If there are PRBs that overlap PSS / SSS / PBCH and non-overlapping PRBs in Narrowband, if non-overlapping PRBs are 4 PRBs or more, place EPDCCH set0 (4PRBs) in non-overlapping PRBs, and non-overlapping PRBs are 3 PRBs or more and 2 PRBs In the following cases, EPDCCH set 1 (2PRBs) is allocated to non-overlapping PRBs.
  • Embodiment 2 MPDCCH allocation by higher layer signaling (RRC signaling) is presented.
  • the base station notifies information about which PRB in Narrowband to which EPDCCH set 0 and EPDCCH set 1 are assigned by RRC signaling.
  • the allocation method of the first embodiment is included in the parameters notified by signaling. Since the base station can select the MPDCCH allocation method from a plurality of allocation methods, the flexibility of MPDCCH allocation is improved.
  • the parameter notified by signaling includes the allocation method according to the first embodiment, it is not necessary to notify the setting of the MPDCCH in detail according to an offset that differs for each base station. In particular, in the case of RBG4, the correspondence relationship with the RBG is different for each narrowband, but it is not necessary to notify the setting of the MPDCCH for each correspondence relationship.
  • FIG. 15 shows an example in which, when allocating MPDDCH in Narrowband by 1-bit RRC signaling per band, bit 0 is a predetermined arrangement and bit 1 is an arrangement determined by the size and offset of the first embodiment.
  • Case 1 is used when there are multiple cases at the same offset.
  • the base station uses RRC signaling to allocate based on Embodiment 1, that is, to allocate less RBG in which EPDCCHDCset is arranged, or to perform other allocation, for example, allocation as shown in RRC signaling bit 0 in FIG. To select and notify the MTC terminal.
  • the notified MTC terminal recognizes the predetermined arrangement in the case of bit 0, and recognizes the arrangement of MPDCCH from the number of RBGs and the offset in the case of bit 1.
  • RBG size 4 there are two types of MPDCCH arrangement patterns even with the same offset due to the positional relationship between Narrowband and RBG.
  • the arrangement shown in bit 0 of the RRC signaling in FIG. 15 is such that the PRDC arrangement ends of EPDCCHEPset 0 and EPDCCH set 1 are 5 PRBs, and both EPDCCH set 0 and EPDCCH set 1 can obtain a frequency diversity effect. It is assigned. Therefore, the base station notifies bit 0 by RRC signaling when importance is attached to the frequency diversity effect, and can notify flexible setting by notifying bit 1 when importance is attached to RBG units.
  • bits 00, 01, 10 are arranged in advance, and bit 11 is arranged by the size and offset of the first embodiment.
  • An example is shown in FIG. In this example, if there are multiple cases at the same offset, all cases are set to Case IV2.
  • the arrangement notified by bit 00 and the arrangement of RBG size 3 and offset 1 are the same.
  • the MTC terminal recognizes the same arrangement regardless of which bit is assigned. Further, the arrangement corresponding to bit 01 is the same as the arrangement corresponding to bit 0 in FIG. 16, and is an arrangement having a high frequency diversity effect.
  • RBG size 4 As shown in FIG. 9, even when the Narrowband offset is determined, the arrangement of RBGs included in the Narrowband differs depending on the Narrowband.
  • offset 0 and offset 2 two RBGs are included in one narrowband, one is 4PRBs, and the other is 2PRBs.
  • the case where the RBG of 4PRBs is arranged at the upper end of Narrowband (Type) B) and the case where it is arranged at the lower end (Type A) are alternately on the frequency axis.
  • RBG size 4 when repetition with frequency hopping is applied, PDSCHs are allocated across Narrowbands having different RBG arrangements within the Narrowband. However, in DCI transmitted by MPDCCH, it is considered that resource allocation during repetition is allocated all at once.
  • FIG. 17 shows an example of assignment.
  • PDSCH is assigned with Narrowband # 1 as a reference. Narroband # 1 is Type B.
  • PDSCH is assigned to the same PRB # 8 to # 11 as RBG # 2.
  • Narrowband # 2 which is Type A
  • the assignment in Narrowband is the same, but it will be assigned to PRB # 14 to # 17 across two RBGs of RBG # 3 and RBG # 4 .
  • the PDSCH to be repeated may occupy an unnecessarily large number of RBGs.
  • the allocation of DL data (PDSCH) for MTC terminals in the case of RBG size 4 is presented.
  • the PDSCH for MTC terminals allocated by MPDCCH changes the allocated resources depending on the narrowband and RBG arrangement.
  • the number of RBGs in which MTC terminal PDSCHs are allocated can be limited even when transitioning to narrowband, and PDSCHs and other signals of other terminals can be easily allocated to RBGs. .
  • FIG. 18 shows an operation example.
  • PDSCH is allocated with Narrowband # 1 being Type B as a reference.
  • PDSCH is assigned to the same PRB # 8 to # 11 as RBG # 2.
  • PRB # 12 to 15 are the same as RBG # 3. Therefore, only one RBG can be occupied in Narrobadn # 2.
  • the first is mirroring and the second is cyclic shift.
  • RIV Resource Indication Value
  • the PRB with the lowest PRB number in Narrowband is associated in order from the lower bit in the binary notation of RIV.
  • RIV22 is 010110 in bit notation, and indicates that resources are allocated to VRB # 4, VRB # 2, and VRB # 1 when VRB (Virtual resource block) in the narrowband is VRB # 0 to # 5.
  • VRB indicates an RB that is used to determine allocation in Narrowband at the stage before resource allocation to PRB.
  • the assignment of Type B reverses the resource assignment and the PRB arrangement in the frequency direction.
  • the terminal changes the resource in Narrowband indicated by the notified RIV depending on whether the allocated resource is Narrowband Type A or Type B.
  • VRBs are assigned by RIV of a 6-bit bitmap, and VRBs are mapped to PRBs for each Narrowband type and Narrowband.
  • the mapping from VRB to PRB is obtained by the following formula.
  • Y indicates the assigned VRB number
  • X indicates the minimum PRB number in the narrowband
  • Z indicates the assigned PRB number.
  • the assignment of Type B cyclically shifts the resource assignment and the PRB arrangement by 2PRB.
  • the terminal changes the resource in Narrowband indicated by the notified RIV depending on whether the allocated resource is Narrowband Type A or Type B.
  • VRB is first allocated by RIV of a 6-bit bitmap, and VRB is mapped to PRB for each narrowband type and narrowband.
  • the mapping from VRB to PRB is obtained by the following equation (2).
  • Y indicates the assigned VRB number
  • X indicates the minimum PRB number in the narrowband
  • Z indicates the assigned PRB number.
  • Type A is the same formula as mirroring.
  • Type B represents the shift amount by +2, and the cyclic shift operation in Narrowband is represented by modulo operation.
  • both the mirroring and cyclic shift will be allocated in RBG units even when transitioning Narrowband when PDSCH for MTC terminals is allocated in RBG units as shown in RIV15. Can easily assign PDSCH and other signals of the terminal to RBG. Also, instead of applying mirroring and cyclic shift only to allocation in RBG units, mirroring and cyclic shift are applied to all resource allocation, so when RIV15 and RIV48 are allocated to different MTCs simultaneously, It can be used at the same time even if you change Narrowband.
  • Type C and Type D may be defined in addition to Narrowband Type A and Type B.
  • Type (C) when two RBGs are included in one Narrowband and both are 3 PRBs (Type (C), three RBGs are included in one Narrowband, and two RBGs are included. Is 1PRB and arranged at both ends, and one PRB is arranged at the center of 4PRB (Type D). Type C and Type D are alternately arranged on the frequency axis.
  • the mapping from VRB to PRB is first obtained by the following equation (3) as in Type A and Type B.
  • Y indicates the assigned VRB number
  • X indicates the minimum PRB number in the narrowband
  • Z indicates the assigned PRB number.
  • FIGS. 19 to 21 show examples in which PDSCHs for MTC terminals are allocated using a 6-bit bitmap.
  • other allocation methods such as DL Type 2 allocation in which continuous allocation is applied to VRB are mirrored or salicated. A shift may be applied.
  • FIG. 22 is a block diagram showing a configuration of the base station according to the present embodiment.
  • the base station 300 includes a narrowband setting unit 101, a PDSCH arrangement determining unit 301, an MPDCCH generating unit 302, an error correction coding unit 104, a modulating unit 105, a signal allocating unit 106, a transmitting unit 107, and a receiving unit. 108, a signal separation unit 109, a demodulation unit 110, and an error correction decoding unit 111.
  • FIG. 22 the description of the same part as in FIG. 13 is omitted.
  • the Narrowband setting unit 101 determines the Narrowband setting, that is, the offset from information such as the number of users held by other base stations (not shown), the required amount of PUCCH resources, and the line quality of the MTC terminal. From this offset, the relationship between RBG and Narrowband is determined. In order to notify the narrowband setting by higher layer signaling, the offset amount set by the narrowband setting unit 101 is output to the error correction coding unit 104. The offset amount is also output to the PDSCH arrangement determining unit 301 and the signal separating unit 109.
  • the PDSCH arrangement determining unit 301 determines the DL data signal of the MTC terminal from the Narrowband offset amount input from the Narrowband setting unit 101, the RBG size determined from the bandwidth not shown, and the subframe number not shown. Narrowband to which higher layer signaling is allocated and resources in the narrowband are determined.
  • the PDSCH arrangement determination unit 301 determines allocation to the VRB in the narrowband, specifies the type of the narrowband, and determines a resource to which the PDSCH is allocated according to the type.
  • the assignment of Type B inverts the assignment of resources and the arrangement of PRBs in the frequency direction based on the assignment of Narrowband Type A.
  • the assignment of Type B shifts the resource assignment and the PRB placement by 2PRB cyclically with reference to the assignment of Narrowband Type A.
  • the determined PDSCH arrangement is output to signal allocation section 106. Also, the assignment to the VRB in the narrowband is output to the MPDCCH generation unit 302.
  • the MPDCCH generating unit 302 receives the PDSCH allocation information output from the PDSCH allocation determining unit 301 as an input, generates MPDCCH that is control information addressed to the MTC terminal, and outputs the MPDCCH to the signal allocation unit 106.
  • PDSCH arrangement information is an assignment to a VRB before applying mirroring and cyclic shift.
  • the signal allocation unit 106 allocates a DL data signal allocated to the PDSCH, upper layer signaling, and MPDCCH that is a control signal to a resource.
  • the PDSCH for MTC is assigned according to the PDSCH arrangement determining unit 301.
  • a transmission signal is formed by assigning the control signal and the data signal to predetermined resources.
  • the formed transmission signal is output to transmission section 107.
  • FIG. 23 is a block diagram showing a configuration of the MTC terminal according to the present embodiment.
  • a terminal 400 includes a receiving unit 201, a signal separating unit 202, a demodulating unit 203, an error correction decoding unit 204, a narrowband setting unit 205, an MPDCCH receiving unit 401, a PDSCH arrangement determining unit 402, An error correction coding unit 208, a modulation unit 209, a signal allocation unit 210, and a transmission unit 211 are included. 23, the description of the same part as in FIG. 14 is omitted.
  • the signal separation unit 202 outputs the DL data signal arranged in the PDSCH and the higher layer signaling to the demodulation unit 203 based on the PDSCH arrangement information input from the PDSCH arrangement determination unit 402. Further, the signal separation unit 202 separates the MPDCCH signal and outputs it to the MPDCCH reception unit 401.
  • the Narrowband setting unit 205 sets the Narrowband definition based on the bandwidth and the Narrowband offset information.
  • the narrowband setting unit 205 outputs the narrowband definition to the PDSCH arrangement determining unit 402, the transmitting unit 211, and the receiving unit 201.
  • the PDSCH arrangement determining unit 402 identifies the narrowband type from the narrowband offset amount input from the narrowband setting unit 205 and the subframe number (not shown). PDSCH arrangement determining section 402 identifies the resource to which the PDSCH is allocated from the allocation information to the VRB input from MPDCCH receiving section 401 and the type of narrowband.
  • the assignment of Type B inverts the assignment of resources and the arrangement of PRBs in the frequency direction based on the assignment of Narrowband Type A.
  • the assignment of Type B shifts the resource assignment and the PRB placement by 2PRB cyclically with reference to the assignment of Narrowband Type A.
  • the determined PDSCH arrangement is output to the signal separation unit 202.
  • the MPDCCH reception unit 401 performs blind decoding on the MPDCCH signal received from the signal separation unit 202, and detects MPDCCH, which is a control signal including DL signal allocation information or UL signal allocation information.
  • the predetermined arrangement may be changed for each bandwidth. This makes it easy to set the predetermined arrangement and the arrangement determined by the offset so as not to overlap.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit.
  • the integrated circuit may control each functional block used in the description of the above embodiment, and may include an input and an output. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable / processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
  • the base station of the present disclosure includes an offset for defining a frequency position of a narrowband to which an MPDCCH, which is a PDCCH (Physical Downlink Control Channel) used for MTC (Machine-Type Communication), and a resource block group (RBG) of a system band are allocated.
  • MPDCCH Physical Downlink Control Channel
  • MTC Machine-Type Communication
  • RBG resource block group
  • Resource Block Group Resource Block Group size, the arrangement of the first EPDCCH (EnhancedCHPhysical Downlink Control Channel) set constituting the MPDCCH, and the number of PRB (Physical resource block) different from the first EPDCCH set
  • a determination unit that determines an arrangement of a second EPDCCH set having a transmission unit, and a transmission unit that transmits a control signal based on the arrangement of the first EPDCCH set and the arrangement of the second EPDCCH set, The determination unit allocates the first EPDCCH set and the second EPDCCH set so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • the determination unit when the RBG size is 2, the determination unit includes four PRBs in which the first EPDCCH set including two consecutive PRBs corresponds to one RBG in the narrowband.
  • the MPDCCH is arranged so that the second set of EPDCCHs corresponds to the remaining PRBs in the narrowband.
  • the determination unit when the RBG size is 3, includes two PRBs in which the first EPDCCH set including four consecutive PRBs corresponds to two RBGs in the narrowband.
  • the MPDCCH is arranged so that the second EPDCCH set corresponds to the remaining PRBs in the narrowband.
  • the determination unit corresponds to an RBG including two or more PRBs in the narrowband in which the first EPDCCH set including two PRBs corresponds to four PRBs.
  • the MPDCCH is arranged so that the second EPDCCH set consisting of: corresponds to the remaining PRBs.
  • the determination unit corresponds to an RBG in which the first EPDCCH set including four PRBs includes four PRBs in the narrowband, and from the two PRBs
  • the MPDCCH is arranged so that the second EPDCCH set to correspond to the remaining PRBs.
  • the determination unit when the RBG size is 4 and there is no RBG including four PRBs in the Narrowband, the determination unit includes the first EPDCCH set including two PRBs in the Narrowband.
  • the MPDCCH is arranged so as to correspond to an RBG including three PRBs, and the second EPDCCH set including four PRBs corresponds to the remaining PRBs.
  • the base station of the present disclosure includes an offset for defining a narrowband frequency position composed of a plurality of consecutive PRBs (Physical Resource Block), a resource block group (RBG: Resource Block Group) size of the system band, Based on the type of narrowband, a determination unit that determines a PRB in which PDSCH (Physical Downlink Shared Shared Channel) is arranged in the narrowband, a resource allocation bit for notifying the determined PRB, and the determined PRB A transmitter that transmits the arranged PDSCH, and when the RBG size is 4PRB and the plurality of PRBs is 6PRB, the narrowband includes a 4PRB having a lower frequency among the 6PRBs.
  • PRB Physical Resource Block
  • RBG Resource Block Group
  • One group corresponds to one RBG
  • the second group consisting of the remaining 2 PRBs having higher frequencies corresponds to the first type of narrowband corresponding to a part of the RBG, and the 6 PRBs.
  • the resource included in the first group of the first Narrowband and the resource included in the third group of the second Narrowband are associated with the same value of the resource allocation bit
  • the first Narrowband The resource included in the second group and the resource included in the fourth group of the second narrowband are associated with the same value of the resource allocation bit.
  • the relationship between the PRB that arranges the PDSCH in the first type of narrowband and the PRB that arranges the PDSCH in the second type of narrowband is an inverted relationship in the frequency direction.
  • the relationship between the PRB that arranges the PDSCH in the first type of narrowband and the PRB that arranges the PDSCH in the second type of narrowband is a relationship that is cyclically shifted by two PRBs. .
  • the terminal of the present disclosure includes an offset for defining a frequency position of a narrowband to which an MPDCCH that is a PDCCH (Physical Downlink Control Channel) used in MTC (Machine-Type Communications) and a resource block group (RBG: Based on the resource block size, the arrangement of the first EPDCCH (Enhanced Physical Downlink Control Channel) set constituting the MPDCCH, and the number of PRB (Physical resource block) different from the first EPDCCH set are set.
  • a determination unit configured to determine an arrangement of the second EPDCCH set, and a reception unit configured to receive a control signal based on the arrangement of the first EPDCCH set and the arrangement of the second EPDCCH. The unit arranges the first EPDCCH set and the second EPDCCH set so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • the terminal of the present disclosure includes a receiving unit that receives resource allocation bits from a base station and PDSCH (Physical Downlink Shared Channel) arranged in a PRB (Physical Resource Down Block), and a narrowband composed of a plurality of continuous PRBs PDSCH is arranged in the Narrowband based on the offset for defining the frequency position of the system, the resource block group (RBG) size of the system band, the type of the Narrowband, and the resource allocation bit A PRB determination unit, and when the RBG size is 4 PRBs and the plurality of PRBs are 6 PRBs, the narrowband includes a first group of 4 PRBs having a lower frequency among the 6 PRBs.
  • PDSCH Physical Downlink Shared Channel
  • PRB Physical Resource Down Block
  • the second group consisting of the remaining 2 PRBs corresponding to two RBGs and having a higher frequency is a first type of narrowband corresponding to a part of the RBG, and the frequency of the 6 PRBs.
  • a third group of 4 PRBs having a higher number corresponds to one RBG, and a fourth group of remaining 2 PRBs having a lower frequency corresponds to a part of the RBG, and a second type of narrowband.
  • a resource included in the first group of one Narrowband and a resource included in the third group of the second Narrowband are associated with the same value of the resource allocation bit, and the first Narrowband
  • the resource included in the second group and the resource included in the fourth group of the second narrowband are associated with the same value of the resource allocation bit.
  • the transmission method of the present disclosure includes an offset for defining a narrowband frequency position to which an MPDCCH, which is a PDCCH (Physical Downlink Control Channel) used in MTC (Machine-Type Communication), and a resource block group ( Based on the RBG: Resource Block ⁇ ⁇ ⁇ Group) size, the arrangement of the first EPDCCH (Enhanced Physical Downlink Control Channel) set constituting the MPDCCH, and the PRB (Physical resource block) different from the first EPDCCH set A second EPDCCH set having a number is determined, and a control signal is transmitted based on the first EPDCCH set arrangement and the second EPDCCH set arrangement, and the first EPDCCH set and the second EPDCCH set
  • the EPDCCH sets are arranged so that the number of RBGs that collide with at least one of the EPDCCH sets is minimized.
  • the reception method of the present disclosure includes an offset for defining a frequency position of a narrowband to which an MPDCCH, which is a PDCCH (Physical Downlink Control Channel) used in MTC (Machine-Type Communications), and a resource block group (RBG) of a system band are assigned.
  • an MPDCCH Physical Downlink Control Channel
  • MTC Machine-Type Communications
  • RBG resource block group
  • a control signal is received based on the placement of the first EPDCCH set and the placement of the second EPDCCH, and the first EPDCCH set and the second EPDCCH set.
  • the EPDCCH set is arranged so that the number of RBGs with which at least one EPDCCH set collides is minimized.
  • This disclosure can be applied to a base station, a terminal, a transmission method, and a reception method used for MTC® (Machine-Type® Communication).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局において、決定部は、MTCに用いられるPDCCHであるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループサイズと、に基づいて、MPDCCHを構成する、第1のEPDCCHセットの配置、および、第1のEPDCCHセットと異なるPRB数を有する第2のEPDCCHセットの配置を決定する。送信部は、第1のEPDCCHセットの配置および第2のEPDCCHセットの配置に基づいて、制御信号を送信する。また、決定部は、第1のEPDCCHセットおよび第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。

Description

基地局、端末、送信方法および受信方法
 本開示は、MTC (Machine-Type Communications)に用いられる基地局、端末、送信方法および受信方法に関する。
 近年、セルラネットワークを使用したMachine-Type Communications (MTC)が検討されている(例えば非特許文献1参照)。MTCは、スマートメータの自動検針、在庫管理、位置情報を利用した物流管理、ペット・家畜管理、またはモバイル決裁等への用途が考えられている。MTCでは、MTC端末とネットワークとが接続することが想定されている。MTC端末は大量に配置されるが、1つ1つのMTC端末のトラフィック量はそれほど多くないことが予想されている。そのため、MTC端末は低コスト、低消費電力であることが望まれる。また、MTC端末を電波が届きにくいビルの地下などに配置することも考えられるので、カバレッジの拡張も求められている。
 3GPPで標準化されているLTE-Advancedの拡張では、MTC端末の低コスト実現のため、MTC端末が通信に使用するリソースを、システム帯域にかかわらず、6つのPRB(Physical resource block)以下に限定することが検討されている。システム帯域が6つのPRBよりも広い場合、MTC端末はシステム帯域の一部のみを受信して送受信する。送受信に使用するPRBはretuningにより変更できる。この6PRB以下のリソースをNarrowbandと呼ぶ。Narrowbandは連続するPRBで構成することが定められている。Narrowbandの定義として、帯域の端から6PRBずつ分割してNarrowbandを構成する方法や、帯域の中心から分割してNarrowbandを構成する方法などが提案されている(例えば非特許文献2参照)。
 LTEでは、システム帯域に含まれるRB数に応じて、1つのRBG(Resource Block Group)を構成するRB数を示すRBGサイズが定められている。RBGは、RBGサイズで規定される個数の連続するPRBを帯域の端から順に区切ることにより得られるリソースである。RBGサイズは、DLのリソース割り当てtype 0、type 1に使用されるパラメータである。リソース割り当てtype 0では、RBG単位でリソースが割り当てられる。type 1では、それぞれのRBGを構成する複数のRBは、いずれかのサブセットに所属する。サブセットの数はRBGサイズと同一である。リソース割り当ては、まずサブセットが選択され、選択されたサブセットに属するRBG内のPRBに対してPRBごとに割り当てることにより行われる。このように、RBGは、従来端末(legacy UE)のリソース割り当ての単位にかかわっている。
 MTC端末用の制御信号として、EPDCCH(Enhanced Physical Downlink Control CHannel)をMTC用に拡張するMPDCCHが検討されている。MPDCCHはNarrowbandに配置される。カバレッジ拡張のため、MPDCCHをNarrowbandに含まれる6つのPRB pairすべてに割り当てる方法が検討されている。このとき、1つのECCEが4つのEREGで構成される場合、6つのPRB pairに含まれるECCEの数は24となる。ECCEおよびEREGは、EPDCCHを割り当てる際の単位であり、1PRB pairあたり、16EREGが含まれる。ECCEは、1つのECCEが同一PRB pairに属する複数のEREGで構成されるlocalized割り当てと、1つのECCEが異なるPRB pairに属する複数のEREGで構成されるdistributed割り当てがある。なお、PRB pairとはリソースの単位であり、1subframe(時間方向)×12サブキャリア(周波数)である。周波数軸上のみを示す場合、PRB pairは単にPRBと呼ばれることもある。
3GPP TR 36.888 V12.0.0 Machine-Type Communications (MTC) User Equipments (UEs) based on LTE R1-153567 "WF on Narrowband Definition for Rel-13 MTC UEs"
 MTC端末用に設定されるNarrowbandの定義は、セルごとに異なる可能性がある。Narrowbandの定義とは、どのPRBでNarrowbandが構成されるかである。特にULでは、従来端末(legacy UE)向けにPUCCHリソースが確保され、その従来端末向けのPUCCHリソースがMTCのNarrowbandに含まれないように設定することが考えられる。PUCCHリソースの量はセルごとに異なるので、Narrowbandの定義もセルごとに異なることが考えられる。さらに、TDDではDLとULが同じNarrowbandの定義となることが定められており、FDDでも、DLのNarrowbandとULのNarrowbandの間隔を一定に保つという要求がある場合がある。この場合、DLとULとで、Narrowbandの定義を同一にすることが求められる。DLとULとでNarrowbandの定義が同一である場合、DLのNarrowbandは、ULのPUCCHリソース量に影響を受ける。
 セルごとにNarrowbandの定義が異なると、Narrowband内に含まれるRBGが、セルごとに異なる場合がある。MPDCCH配置とRBGとの関係もセルごとに異なり、MPDCCHによって、従来端末に使用できなくなるRBGもセルごとに異なり、1つのMPDCCHが不必要に多くのRBGを占領する可能性がある。
 本開示の一態様は、MPDCCHの使用に起因して使用できなくなるRBG数を低減でき、基地局ごとに異なるオフセットに合わせて細かくMPDCCHの設定を通知する必要がない、基地局および端末を提供する。
 本開示の一態様に係る基地局は、MTCに用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する決定部と、第1のEPDCCHセットの配置および第2のEPDCCHセットの配置に基づいて、制御信号を送信する送信部と、を具備し、上記決定部は、第1のEPDCCHセットおよび第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。
 本開示の一態様に係る基地局は、連続する複数のPRB(Physical Resource Block)で構成されるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、Narrowbandのタイプとに基づいて、NarrowbandにおいてPDSCH(Physical Downlink Shared Channel)を配置するPRBを決定する決定部と、決定されたPRBを通知するためのリソース割当ビット、および、決定されたPRBに配置されたPDSCHを送信する送信部と、を具備し、RBGサイズが4PRBであり、複数のPRBが6PRBである場合、Narrowbandは、6PRBうちの周波数がより低い4PRBからなる第1グループが1つのRBGに対応し、周波数がより高い残りの2PRBからなる第2グループがRBGの一部に対応する第1タイプのNarrowbandと、6PRBうちの周波数がより高い4PRBからなる第3グループが1つのRBGに対応し、周波数がより低い残りの2PRBから成る第4グループがRBGの一部に対応する第2タイプのNarrowbandと、を含み、第1のNarrowbandの第1グループに含まれるリソースと、第2のNarrowbandの前記第3グループに含まれるリソースとは、リソース割当ビットの同一の値に対応付けられ、第1のNarrowbandの第2グループに含まれるリソースと、第2のNarrowbandの前記第4グループに含まれるリソースとは、リソース割当ビットの同一の値に対応付けられる。
 本開示の一態様に係る端末は、MTCに用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、第1のEPDCCHセットとは異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する決定部と、第1のEPDCCHセットおよび第2のEPDCCHの配置に基づいて、制御信号を受信する受信部と、を具備し、上記決定部は、第1のEPDCCHセットおよび第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。
 本開示の一態様に係る端末は、基地局からのリソース割当ビット、および、PRB(Physical Resource Block)に配置されたPDSCH(Physical Downlink Shared Channel)を受信する受信部と、連続する複数のPRBで構成されるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、Narrowbandのタイプと、リソース割当ビットとに基づいて、NarrowbandにおいてPDSCHが配置されたPRBを決定する決定部と、を具備し、RBGサイズが4PRBであり、複数のPRBが6PRBである場合、Narrowbandは、6PRBうちの周波数がより低い4PRBからなる第1グループが1つのRBGに対応し、周波数がより高い残りの2PRBからなる第2グループがRBGの一部に対応する第1タイプのNarrowbandと、6PRBうちの周波数がより高い4PRBからなる第3グループが1つのRBGに対応し、周波数がより低い残りの2PRBからなる第4グループがRBGの一部に対応する第2タイプのNarrowbandと、を含み、第1のNarrowbandの第1グループに含まれるリソースと、第2のNarrowbandの第3グループに含まれるリソースとは、リソース割当ビットの同一の値に対応付けられ、第1のNarrowbandの第2グループに含まれるリソースと、第2のNarrowbandの第4グループに含まれるリソースとは、リソース割当ビットの同一の値に対応付けられる。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、MPDCCHの使用に起因して使用できなくなるRBG数を低減でき、基地局ごとに異なるオフセットに合わせて細かくMPDCCHの設定を通知する必要がなくなる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
実施の形態に係る基地局の要部構成を示すブロック図 実施の形態に係る端末の要部構成を示すブロック図 RBG サイズが2の場合の、Narrowband とRBGの関係を示す図 オフセット0の場合の配置方法を示す図 オフセット1の場合の配置方法を示す図 RBG サイズが3の場合の、Narrowband とRBGの関係を示す図 オフセット0の場合の配置方法を示す図 オフセット1, 2の場合の配置方法を示す図 RBG サイズが4の場合の、Narrowband とRBGの関係を示す図 オフセット0, 2の場合の配置方法を示す図 オフセット1の場合の配置方法を示す図 オフセット3の場合の配置方法を示す図 実施の形態に係る基地局の構成を示すブロック図 実施の形態に係る端末の構成を示すブロック図 帯域あたり1ビットのRRCシグナリングで、Narrowband内のMPDDCHを割り当てる場合の配置例を示す図 帯域あたり2ビットのRRCシグナリングで、Narrowband内のMPDDCHを割り当てる場合の配置例を示す図 周波数ホッピングを伴うリピティションが適用された場合のリソース割り当て例を示す図 PDSCHが割り当てられるNarrowbandがType AかType Bかによって、Narrowband内でPDSCHを割り当てるPRBの配置を変更する動作例を示す図 実施の形態3のミラーリングの説明に供する図 実施の形態3のサイクリックシフトの説明に供する図 実施の形態3のサイクリックシフトの説明に供する図 実施の形態3の基地局の構成を示すブロック図 実施の形態3の端末の構成を示すブロック図
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。
 図1は本開示の実施の形態1、2に係る基地局100の要部構成を示すブロック図である。図1に示す基地局100において、決定部(MPDCCH配置決定部)103は、MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control CHannel)セット、および、第1のEPDCCHセットとは異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する。第1のEPDCCHセット及び第2のEPDCCHセットの決定は、MPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて行われる。ここで、MPDCCH は、MTCに用いられるPDCCH(Physical Downlink Control Channel)を示す。送信部107は、第1のEPDCCHセットおよび第2のEPDCCHセットの配置に基づいて、制御信号を送信する。また、決定部103は、第1のEPDCCHセットおよび第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。
 図2は、本開示の実施の形態1、2に係る端末200の要部構成を示すブロック図である。図2に示す端末200において、決定部(MPDCCH配置決定部)207は、MPDCCHを構成する、第1のEPDCCHセット、および、第1のEPDCCHセットとは異なるPRB数を有する第2のEPDCCHセットの配置を決定する。第1のEPDCCHセット及び第2のEPDCCHセットの決定は、MPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、行われる。受信部108は、第1のEPDCCHセットおよび第2のEPDCCHの配置に基づいて、制御信号を受信する。また、決定部207は、第1のEPDCCHセットおよび第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。
 (実施の形態1)
 本実施の形態では、Narrowbandのサイズを6PRBsとし、MPDCCHを2つのEPDCCH PRB setで形成する。EPDCCH set 0は4つのPRBで構成され、EPDCCH set 1は2PRBで構成されるとする。
 <動作例 RBGサイズ 2>
 RBG サイズが2の場合、Narrowband とRBGとの位置関係は、図3に示すように、オフセットの値によって2パターンある。オフセットが0の場合、1つのNarrowband内に3つのRBGが含まれる。オフセットが1の場合、1つのNarrowband内に4つのRBGが含まれ、4つのRBGのうち、両端のRBGは1PRBずつと含む。
 オフセットが0の場合、EPDCCH set 1 (2PRBs)がNarrowband中の1つのRBGに対応し、EPDCCH set 0(4PRBs)が残りの2つのRBGに対応するようにMPDCCHを配置する。配置方法は、図4に示すように、3つのケースがある。Case 1とCase 3では、EPDCCH set 0が連続する4PRBsに配置されている。これらの配置は、EPDCCH set 0に対して、この4PRBsに対応するアンテナのプリコーディングを同一に設定するため、DMRS(demodulation reference signal)の受信品質を向上させるPRB bundlingに適した割り当てである。一方、Case 2は、EPDCCH set 0が両端の2PRBsに配置されているので、EPDCCH set0のNarrowband内で周波数ダイバーシチ効果がある。
 オフセットが1の場合の配置方法は、図5に示すように3つのケースがある。Case 1では、EPDCCH set 0 (4PRBs)がNarrowband中の2つのRBGに対応し、EPDCCH set 1が残りのRBGに対応するようにMPDCCHを配置する方法。Case 2とCase 3では、EPDCCH set 1 (2PRBs)がNarrowband中の1つのRBGに対応し、EPDCCH set 0が残りのRBGに対応するようにMPDCCHを配置する。すなわち、Case 1では、EPDCCH set 0が2つのRBGに配置され、EPDCCH set 1が2つのRBGに配置される。Case 2とCase 3では、EPDCCH set 0が3つのRBGに配置され、EPDCCH set 1が1つのRBGに配置される。したがって、Case 1では、EPDCCH set 0が配置されるRBG数がCase 2とCase 3と比較して少ないので、EPDCCH set 0を使用する頻度が高い場合に適している。一方、Case 2とCase 3では、EPDCCH set 1が配置されるRBG数がCase 1と比較して少ないので、EPDCCH set 1を使う頻度が高い場合に適している。
 <動作例 RBGサイズ 3>
 RBG サイズが3の場合、Narrowband とRBGとの位置関係は、図6に示すように、オフセットの値によって3パターンある。オフセットが0の場合、1つのNarrowband内に2つのRBGが含まれる。オフセットが1の場合とオフセットが2の場合、1つのNarrowband内に3つのRBGが含まれ、各RBGのリソースの中でNarrowbandとして用いられるリソースは、それぞれ3PRBs, 2PRBs, 1PRBsとなる。
 オフセットが0の場合、EPDCCH set 1(2PRBs)を片方のRBGの2PRBに配置し、EPDCCH set0を残りの1PRBと、もう片方のRBGの3PRBsの合計4PRBsに配置する。オフセットが0の場合の配置方法は図7に示すように6ケース考えられる。Case 1と Case 4は、EPDCCH set 0が連続する4PRBsに配置されているので、EPDCCH set 0のPRB bundlingに適した割り当てである。また、Case 2、Case 3、Case 5、Case 6は、EPDCCH set 0のNarrowband内で周波数ダイバーシチ効果がある。
 オフセットが1またはオフセットが2の場合、EPDCCH set 1(2PRBs)を、Narrowbandに2PRBs含まれるRBGに対応するPRBに配置し、EPDCCH set 0(4PRBs)を1PRB含まれるRBGに対応するPRBと3PRBs含まれるRBGに対応するPRBに配置する。オフセット1とオフセット2の場合、図8に示すようにEPDCCHの配置は一意に決まる。
 RBGサイズ3の場合、このように配置することで、EPDCCH set 1が配置されるRBGの数を常に1にでき、EPDCCH set 0が配置されるRBGの数を常に2にできる。
 <動作例 RBGサイズ 4>
 RBG サイズが4の場合、NarrowbandとRBGとの位置関係は、図9に示すように、オフセットの値によって4パターンある。また、連続する2つのNarrowbandでは、Narrowband内に含まれるRBGの配置が異なる。オフセット0とオフセット2の場合、1つのNarrowband内に2つのRBGを含み、1つのRBGのリソースのうちNarrowbandに用いられるリソースは4PRBsであり、もう片方のRBGのリソースのうちNarrowbandに用いられるリソースは2PRBsである。4PRBsのRBGがNarrowbandの上端に配置される場合と、下端に配置される場合が交互にある。オフセット1とオフセット3の場合、1つのNarrowband内に2つのRBGを含む場合と、3つのRBGを含む場合が交互にある。1つのNarrowband内に2つのRBGを含む場合、2つのRBGの各々のリソースのうちNarrowbandに用いられるリソースは、ともに3PRBsとなる。1つのNarrowbandに3つのRBGを含む場合、1つのRBGのリソースのうちNarrowbandに用いられるリソースは4PRBsすべてであり、その他2つのRBGのリソースのうちNarrowbandに用いられるリソースは、1PRBずつとなる。
 オフセット0とオフセット2の場合、EPDCCH set 0(4PRBs)がNarrowband内に4PRBsを含むRBGに対応するPRBsに配置し、EPDCCH set 1(2PRBs)をNarrowband内に2PRBsを含むRBGに対応するPRBsに配置する。オフセット0とオフセット2では、図10に示すようにEPDCCHの配置は一意に決まる。
 オフセット1とオフセット3の場合、1つのNarrowband内に2つのRBGを含む場合と、3つのRBGを含む場合で、EPDCCHの割り当てを変える。1つのNarrowband内に2つのRBGを含む場合、それぞれのRBGに含まれるPRB数は3である。そこで、EPDCCH set 1(2PRBs)を片方のRBGの2PRBに配置し、EPDCCH set 0(4PRBs)を残りの1PRBと、もう片方のRBGの3PRBに配置する。配置方法は図11および図12に示すように、4つのケースが考えられる。このように配置すると、EPDCCH set 1(2PRBs)が配置されるRBG数を1にできる。また、1つのNarrowband内に3つのRBGを含む場合、EPDCCH set0(4PRBs)をNarrowbandの中心に位置する4PRBsを含むRBGに対応するPRBsに配置し、Narrowbandの両端に位置する1PRBをそれぞれ含むRBG2つにEPDCCH set1(2PRBs)を配置する。このようにすると、EPDCCH set 0(4PRBs)が配置されるRBG数を1にできる。
 このように、オフセット1とオフセット3の場合、NarrowbandとRBGとの位置関係においてNarrowbandごとにEPDCCH setの割り当てを変えると、それぞれのNarrowband内で1つのEPDCCH setが配置されるRBG数を低くすることができる。これにより、EPDCCHに使用しないRBGを他の端末や、MTC端末のデータ信号に割り当てることができる。
 RBGサイズ4の場合、NarrowbandごとにRBGとの対応関係が異なるが、本実施の形態により、対応関係ごとにMPDCCHの設定を通知する必要がなくなる。
 <1つのオフセットに対して、複数のケースがある場合>
 1つのオフセットに対して、NarrowbandとRBGとの位置関係として複数のケースがある場合、基地局とMTC端末は、あらかじめどのケースを使用するか共有しておいてもよいし、どのケースを使用するか基地局からMTC端末に通知してもよい。どのケースを使用するかを共有している場合、RBGサイズ2では、オフセット0のCase 1とオフセット1のCase 1というように、同一のケースを設定してもよいし、オフセット0のCase 1とオフセット1のCase 2というように異なるケースでもよい。RBGサイズ2の同一ケースは、オフセット0とオフセット1でサイクリックシフトの関係になっている。オフセット0においてPRB#0に割り当てられていたEPDCCH setが、オフセット1のPRB#6に割り当てられており、オフセット0においてPRB#1~5に割り当てられていたEPDCCH setは、オフセット1においても同一EPDCCH setが割り当てられている。
 <基地局の構成>
 図13は、本実施の形態に係る基地局の構成を示すブロック図である。図13において、基地局100は、Narrowband設定部101と、MPDCCH生成部102と、MPDCCH配置決定部103と、誤り訂正符号化部104と、変調部105と、信号割当部106と、送信部107と、受信部108と、信号分離部109と、復調部110と、誤り訂正復号部111とを有する。
 Narrowband設定部101は、図示していない他の基地局が保持しているユーザ数、PUCCHリソースの必要量、MTC端末の回線品質等の情報より、Narrowbandの設定すなわちオフセットを決定する。このオフセットより、RBGとNarrowbandの関係が決定する。Narrowbandの設定を上位レイヤのシグナリングで通知するため、Narrowband設定部101によって設定されたオフセット量は、誤り訂正符号化部104へ出力される。また、オフセット量は、MPDCCH配置決定部103および信号分離部109へも出力される。
 MPDCCH配置決定部103は、Narrowband設定部101から入力されるNarrowbandのオフセット量と、図示していない帯域幅から定まるRBGサイズから、EPDCCH set 0とEPDCCH set 1の配置を決定する。配置方法の基準は、基地局とMTC端末とあらかじめ共通に保持されており、EPDCCH set 0またはEPDCCH set 1が配置されるRBG数が最小となるように配置される。決定したMPDCCHの配置は、信号割当部106へ出力される。
 MPDCCH生成部102は、MTC端末宛の制御情報であるMPDCCHを生成し、EPDCCH set 0またはEPDCCH set 1のどちらかあるいは両方に送信する信号を生成し、信号割当部106へ出力する。
 誤り訂正符号化部104は、送信データ信号(DLデータ信号)、および、Narrowband設定部101から受け取る上位レイヤのシグナリングを入力とし、入力された信号を誤り訂正符号化し、変調部105へ出力する。変調部105は、誤り訂正符号化部104から受け取った信号に対して変調処理を施し、変調後の信号を信号割当部106へ出力する。
 信号割当部106は、送信データ信号、上位レイヤのシグナリング、制御信号であるMPDCCHを割り当てる。MPDCCHは、MPDCCH配置決定部103から入力されるEPDCCH set 0およびEPDCCH set 1のNarrowbandにおける配置に基づき、割り当てられる。送信データ信号および上位レイヤのシグナリングも、MTC端末向けの信号は、Narrowbandに割り当てられる。MPDCCHを配置しなかったリソースには、送信データ信号および上位レイヤのシグナリングを割り当てることもできる。こうして制御信号およびデータ信号が所定のリソースに割り当てられることにより、送信信号が形成される。形成された送信信号は、送信部107へ出力される。
 送信部107は、入力信号に対してアップコンバート等の無線送信処理を施し、アンテナを介して端末200へ送信する。
 受信部108は、端末200から送信された信号をアンテナを介して受信し、信号分離部109へ出力する。信号分離部109は、Narrowband設定部101から入力される情報に基づき受信信号を分離し、復調部110へ出力する。復調部110は、入力信号に対して復調処理を施し、得られた信号を誤り訂正復号部111へ出力する。誤り訂正復号部111は、入力信号を復号し、端末200からの受信データ信号を得る。
 <MTC端末の構成>
 図14は、本実施の形態に係るMTC端末の構成を示すブロック図である。図14において、端末200は、受信部201と、信号分離部202と、復調部203と、誤り訂正復号部204と、Narrowband設定部205と、MPDCCH受信部206と、MPDCCH配置決定部207と、誤り訂正符号化部208と、変調部209と、信号割当部210と、送信部211とを有する。
 受信部201は、Narrowband設定部205から受け取るNarrowbandの定義に基づき、どのNarrowbandに信号が割り当てられているかを、あらかじめ定められているパターンに基づいて特定し、Narrowbandにretuningする。受信部201は、受信信号をアンテナを介して受信し、ダウンコンバート等の受信処理を施した後に信号分離部202へ出力する。
 信号分離部202は、MPDCCH配置決定部207から入力されるEPDCCH set 0およびEPDCCH set 1に基づき、MPDCCH信号を分離し、MPDCCH受信部206へ出力する。また、MPDCCH受信部206から入力されるDLの割り当て情報に基づき、DLデータ信号をおよび上位レイヤのシグナリングを復調部203へ出力する。
 復調部203は、受信信号を復調し、当該復調された信号を誤り訂正復号部204へ出力する。
 誤り訂正復号部204は、復調部203から出力された復調信号を復号し、得られた受信データ信号を出力する。また、誤り訂正復号部204は、上位レイヤのシグナリングとして得られたNarrowbandのオフセット情報をNarrowband設定部205へ出力する。
 Narrowband設定部205は、帯域幅およびNarrowbandのオフセット情報に基づき、Narrowbandの定義を設定する。Narrowbandの定義は、MPDCCH配置決定部207、送信部211、受信部201へ出力する。
 MPDCCH配置決定部207では、Narrowband設定部205から入力されるNarrowbandのオフセット量と、図示していない帯域幅から定まるRBGサイズから、EPDCCH set 0とEPDCCH set 1の配置を決定する。配置方法の基準は、基地局とMTC端末とあらかじめ共通に保持されており、EPDCCH set 0またはEPDCCH set 1が配置されるRBG数が最小となるように配置される。決定したMPDCCHの配置は、信号分離部202へ出力される。
 MPDCCH受信部206は、信号分離部202から受け取るMPDCCH信号を、EPDCCH set 0およびEPDCCH set 1ごとのサーチスペースまたは両方をあわせたサーチスペースに対してブラインド復号をし、DL信号の割り当て情報またはUL信号の割り当て情報を含む制御信号であるMPDCCHを検出する。
 誤り訂正符号化部208は、送信データ信号(ULデータ信号)を入力とし、その送信データ信号を誤り訂正符号化し、変調部209へ出力する。変調部209は、誤り訂正符号化部208からの信号を変調し、変調信号を信号割当部210へ出力する。
 信号割当部210は、入力された送信信号を、MPDCCH受信部206から受け取るUL割り当て情報に基づき割り当て、送信部211へ出力する。
 送信部211は、Narrowband設定部205から入力されるNarrowbandの定義と、あらかじめ定められているパターンに基づいてULデータを割り当てるNarrowbandリソースを特定し、retuningし、入力信号に対してアップコンバート等の送信処理を施し、送信する。
 <他の形態>
 なお、上記実施の形態1では、1つのNarrowbandが6つのPRBsを含む場合を示したが、1つのNarrowbandが5PRBsを含み、3PRBsのEPDCCH setと2PRBsのEPDCCH setを配置する場合にも適用できる。
 この場合、RBGサイズ2では、2PRBsのEPDCCH setをNarrowband中に2PRBsを含むRBGに割り当て、残りのPRBsに3PRBsのEPDCCH setを割り当てる。
 RBGサイズ3では、3PRBsのEPDCCH setをNarrowband中に3PRBsを含むRBGに割り当て、残りのPRBsに2PRBsのEPDCCH setを割り当てる。
 RBGサイズ4では、2PRBsのEPDCCH setをNarrowband中に2PRBsを含むRBGがあれば割り当て、3PRBsのEPDCCH setをNarrowband中に3PRBsを含むRBGがあれば割り当てる。
 なお、中心周波数付近において、PSS/SSS/PBCHが配置されるPRBとNarrowbandが重なる場合、MPDCCHの配置を変更してもよい。Narrowband内に、PSS/SSS/PBCHと重なるPRBsと、重ならないPRBsがある場合、重ならないPRBsが4PRBs以上の場合、重ならないPRBsにEPDCCH set0(4PRBs)を配置し、重ならないPRBsが3PRBs以上2PRBs以下の場合、重ならないPRBsにEPDCCH set 1(2PRBs)を配置する。
 (実施の形態2)
 本実施の形態では、上位レイヤのシグナリング(RRCシグナリング)による、MPDCCHの割り当てについて提示する。基地局は、Narrowband内のどのPRBにEPDCCH set 0とEPDCCH set 1を割り当てるかについての情報を、RRCシグナリングで通知する。その際、シグナリングで通知されるパラメータの中に、実施の形態1の割り当て方法が含まれる。基地局は、MPDCCHの配置方法を複数の配置方法から選択できるので、MPDCCH配置の柔軟性が向上する。シグナリングで通知されるパラメータが実施の形態1の割り当て方法を含むことで、基地局ごとに異なるオフセットに合わせて細かくMPDCCHの設定を通知する必要がない。また、特にRBG4の場合、NarrowbandごとにRBGとの対応関係が異なるが、対応関係ごとにMPDCCHの設定を通知する必要がない。
 <動作例 帯域あたり1ビット>
 帯域あたり1ビットのRRCシグナリングで、Narrowband内のMPDDCHを割り当てる場合、ビット0をあらかじめ定めている配置、ビット1を実施の形態1のサイズおよびオフセットによって定まる配置とする例を、図15に示す。本例では、同一オフセットに複数ケースがある場合、すべてCase 1とした。
 基地局は、RRCシグナリングで実施の形態1に基づく割り当て、すなわちEPDCCH setが配置されるRBGを少なくする割り当てとするか、他の割り当て、例えば図15のRRCシグナリングビット0に示すような割り当てとするかを選択し、MTC端末に通知する。
 通知されたMTC端末は、ビット0の場合、あらかじめ定められた配置と認識し、ビット1の場合、RBG数およびオフセットから、MPDCCHの配置を認識する。特に、RBGサイズ4の場合、NarrowbandとRBGとの位置関係から、同一のオフセットであっても、2種類のMPDCCH配置パターンがある。
 図15のRRCシグナリングのビット0に示す配置は、EPDCCH set 0とEPDCCH set 1のPRBの配置の端と端が5PRBとなっており、EPDCCH set 0とEPDCCH set 1ともに、周波数ダイバーシチ効果を得られる割り当てになっている。したがって、基地局は、周波数ダイバーシチ効果を重視する場合、RRCシグナリングでビット0を通知し、RBG単位での割り当てを重視する場合はビット1を通知することで、柔軟な設定が可能となる。
 帯域あたり2ビットのRRCシグナリングで、Narrowband内のMPDDCHを割り当てる場合、ビット00, 01, 10をあらかじめ定めている配置、ビット11を実施の形態1のサイズおよびオフセットによって定まる配置とする。例を図16に示す。本例では、同一オフセットに複数ケースがある場合、すべてCase 2とした。この配置では、ビット00で通知される配置と、RBGサイズ3、オフセット1の配置が同じとなる。MTC端末はどちらのビットで割り当てられても、同じ配置と認識する。また、ビット01に対応する配置は、図16のビット0に対応する配置と同様であり、周波数ダイバーシチ効果が高い配置である。
 (実施の形態3)
 <前提>
 MTCでは、セルのカバレッジを拡張(coverage enhancement)するために、信号のリピティションを行うことが検討されている。基地局が同一の信号を複数サブフレームにまたがって繰り返し送信することで、MTC端末は複数の信号を合成し受信品質を向上させる。さらに、周波数ホッピングを適用し、ある一定周期ごとに送受信に使用するNarrowbandの周波数位置を変更し、周波数ダイバーシチゲインを得ることも検討されている。また、複数のホッピングのパターンは、基地局と端末で事前に共有しておき、ホッピングパターンごとに、どのNarrowbandにホッピングするかを定めておく。この場合、MPDCCHで送信されるDCI(Downlink Control Information)では、どの周波数ホッピングパターンを割り当てるかを通知する。
 また、RBGサイズ4の場合、図9に示すように、Narrowbandのオフセットが定まっても、NarrowbandによってNarrowband内に含まれるRBGの配置が異なる。オフセット0とオフセット2の場合、1つのNarrowband内に2つのRBGを含み、1つは4PRBsであり、もう片方は2PRBsである。4PRBsのRBGがNarrowbandの上端に配置される場合(Type B)と、下端に配置される場合(Type A)が周波数軸上に交互にある。
 <課題および対策>
 RBGサイズ4において、周波数ホッピングを伴うリピティションが適用されると、Narrowband内のRBG配置が異なるNarrowbandにまたがって、PDSCHが割り当てられる。しかしながら、MPDCCHで送信されるDCIでは、リピティション中のリソース割り当ては一括で割り当てられることが考えられている。図17に割り当て例を示す。この例ではNarrowband#1を基準としてPDSCHが割り当てられている。Narroband#1はType Bである。PDSCHはRBG#2と同じPRB#8~#11に割り当てられている。周波数ホッピングによりType AであるNarrowband#2に遷移すると、Narrowband内の割り当ては同じであるが、RBG#3とRBG#4の2つのRBGにまたがったPRB#14~#17に割り当てられるようになる。このように、RBGサイズ4では、Narrowbandごとに、Narrowband内に含まれるRBGの配置が異なるので、リピティションするPDSCHが不必要に多くのRBGを占領する可能性がある。
 そこで、本実施の形態では、RBGサイズ4の場合のMTC端末用DLデータ(PDSCH)の割り当てについて提示する。MPDCCHで割り当てられるMTC端末用PDSCHは、RBGサイズ4の場合、NarrowbandとRBG配置によって、割り当てられるリソースを変更する。このようにすると、RBG単位でPDSCHを割り当てた場合、Narrowbandを遷移しても、MTC端末用PDSCHが配置されるRBG数を制限でき、他の端末のPDSCHや他の信号をRBGに割り当てやすくできる。
 <動作例>
 RBGサイズ4で、PDSCHを割り当てる例を示す。PDSCHが割り当てられるNarrowbandがType AかType Bかによって、Narrowband内でPDSCHを割り当てるPRBの配置を変更する。図18に動作例を示す。本例では、Type BであるNarrowband#1を基準としてPDSCHが割り当てられている。PDSCHはRBG#2と同じPRB#8~#11に割り当てられている。周波数ホッピングによりNarrowband Type Aに遷移すると、PDSCHはRBG#3と同じPRB#12~15に割り当てられる。したがって、Narrobadn#2においても、占領するRBGは1つのみとできる。
 本動作例を実現する方法として、2つの方法がある。1つ目はミラーリングで2つ目はサイクリックシフトである。Narrowband内のPRBを割り当てるDCIに含まれるRIV(Resource Indication Value)を6ビットと仮定し、RIV0~63を用いてビットマップでNarrowband内PRBを割り当てる場合を例として、2つの方法を説明する。6ビットのビットマップでは、RIVの2進数表記の下位ビットからNarrowband内のPRB番号の低いPRBを順に対応させる。RIV22はビット表記では010110であり、Narrowband内のVRB(Virtual resource block)がVRB#0~#5の場合、VRB#4、VRB#2、VRB#1にリソースを割り当てることを示す。ここでVRBは、PRBにリソース割り当てる前段階で、Narrowband内の割り当てを定めるために使用するRBを示す。
 ミラーリングでは図19に示すように、Narrowband Type Aの割り当てを基準として、Type Bの割り当ては、リソースの割り当てとPRBの配置を周波数方向で反転させる。端末は、割り当てられたリソースがNarrowband Type AかType Bかによって、通知されたRIVが示すNarrowband内のリソースを変える。本例では、まず、6ビットのビットマップのRIVでVRBを割り当て、VRBをNarrowbandのタイプとNarrowbandごとにPRBにマッピングする。VRBからPRBへのマッピングは以下の式で求める。ここで、Yは割り当てられたVRB番号、XはNarrowband内の最小PRB番号を示し、Zは割り当てられるPRB番号を示す。
Figure JPOXMLDOC01-appb-M000001
 上記の式1は、図19において、VRB#2(Y=2)が割り当てられた場合、Narroband#0 Type A では、Narrowband内の最小PRB#がPRB#0(X=0)であるので、割り当てられるPRBはPRB#2(0+2=2)となり、Narrowand#1 Type B では、Narrowband内の最小PRB#がPRB#6(X=6)であるので、割り当てられるPRBはPRB#9(6+5-2=9)となる。
 サイクリックシフトでは、図20に示すように、Narrowband Type Aの割り当てを基準として、Type Bの割り当ては、リソースの割り当てとPRBの配置を2PRBだけサイクリックシフトする。端末は、割り当てられたリソースがNarrowband Type AかType Bかによって、通知されたRIVが示すNarrowband内のリソースを変える。本例では、ミラーリングと同様にまず、6ビットのビットマップのRIVでVRBを割り当て、VRBをNarrowbandのタイプとNarrowbandごとにPRBにマッピングする。VRBからPRBへのマッピングは以下の式(2)で求める。ここで、Yは割り当てられたVRB番号、XはNarrowband内の最小PRB番号を示し、Zは割り当てられるPRB番号を示す。
Figure JPOXMLDOC01-appb-M000002
 Type Aはミラーリングと同一の式である。Type Bは、シフト量を+2で表し、Narrowband内のサイクリックシフト演算をモジュロ演算で表している。図20において、VRB#2(Y=2)が割り当てられた場合、Narrowand#1 Type Bでは、Narrowband内の最小PRB#がPRB#6(X=6)であるので、割り当てられるPRBはPRB#10(6+mod(2+2,6)=10)となる。
 このように、Narrowband内のリソースを割り当てると、ミラーリング、サイクリックシフトともに、RIV15に示すようにRBG単位でMTC端末用PDSCHを割り当てた場合、Narrowbandを遷移しても、RBG単位の割り当てとなり、他の端末のPDSCHや他の信号をRBGに割り当てやすくできる。また、RBG単位での割り当てのみにミラーリング、サイクリックシフトを適用するのではなく、すべてのリソース割り当てに対してミラーリング、サイクリックシフトを適用するので、RIV15とRIV48を異なるMTCに同時に割り当てた場合、Narrowbandを遷移しても同時に使用できる。
 また、サイクリックシフトでは、Narrowband Type A、Type Bに加えて、Type C、Type Dを定義してもよい。図9に示すオフセット1とオフセット3の場合、1つのNarrowband内に2つのRBGを含み、2つとも3PRBsである場合(Type C)と、1つのNarrowband内に3つのRBGを含み、2つのRBGが1PRBであり両端に配置され、1つのPRBが4PRBで中央に配置される場合(Type D)がある。Type CとType Dが周波数軸上に交互に配置される。
 図21では、Type A、Type Bと同様にまず、VRBからPRBへのマッピングは以下の式(3)で求める。ここで、Yは割り当てられたVRB番号、XはNarrowband内の最小PRB番号を示し、Zは割り当てられるPRB番号を示す。
Figure JPOXMLDOC01-appb-M000003
 なお、図19から図21では、6ビットのビットマップでMTC端末用のPDSCHを割り当てる例を示したが、他の割り当て方法、たとえばVRBに連続割り当てを適用するDL Type 2割り当てにミラーリングまたはサリクリックシフトを適用してもよい。
 <基地局の構成>
 図22は、本実施の形態に係る基地局の構成を示すブロック図である。基地局300は、Narrowband設定部101と、PDSCH配置決定部301と、MPDCCH生成部302と、誤り訂正符号化部104と、変調部105と、信号割当部106と、送信部107と、受信部108と、信号分離部109と、復調部110と、誤り訂正復号部111とを有する。図22において、図13と同じ部分は説明を省略する。
 Narrowband設定部101は、図示していない他の基地局が保持しているユーザ数、PUCCHリソースの必要量、MTC端末の回線品質等の情報より、Narrowbandの設定すなわちオフセットを決定する。このオフセットより、RBGとNarrowbandの関係が決定する。Narrowbandの設定を上位レイヤのシグナリングで通知するため、Narrowband設定部101によって設定されたオフセット量は、誤り訂正符号化部104へ出力される。また、オフセット量は、PDSCH配置決定部301および信号分離部109へも出力される。
 PDSCH配置決定部301は、Narrowband設定部101から入力されるNarrowbandのオフセット量と、図示していない帯域幅から定まるRBGサイズと、図示していないサブフレーム番号とから、MTC端末のDLデータ信号および上位レイヤのシグナリングを割り当てるNarrowbandとNarrowband内のリソースを決定する。PDSCH配置決定部301は、RBGサイズが4の場合、Narrowband内のVRBへの割り当てを決定し、NarrowbandのTypeを特定し、Typeに応じてPDSCHを割り当てるリソースを決定する。ミラーリングを適用する場合、Narrowband Type Aの割り当てを基準として、Type Bの割り当ては、リソースの割り当てとPRBの配置を周波数方向で反転させる。サイクリックシフトを適用する場合、Narrowband Type Aの割り当てを基準として、Type Bの割り当ては、リソースの割り当てとPRBの配置を2PRBサイクリックシフトする。決定されたPDSCHの配置は、信号割当部106へ出力される。また、Narrowband内のVRBへの割り当てはMPDCCH生成部302へ出力される。
 MPDCCH生成部302は、PDSCH配置決定部301から出力されたPDSCH配置情報を入力とし、MTC端末宛の制御情報であるMPDCCHを生成し、信号割当部106へ出力する。PDSCH配置情報は、ミラーリングおよびサイクリックシフトを適用する前のVRBへの割り当てである。
 信号割当部106は、PDSCHに割り当てられるDLデータ信号、上位レイヤのシグナリング、制御信号であるMPDCCHをリソースに割り当てる。MTC用PDSCHは、PDSCH配置決定部301に従い割り当てを決める。こうして制御信号およびデータ信号が所定のリソースに割り当てられることにより、送信信号が形成される。形成された送信信号は、送信部107へ出力される。
 <MTC端末の構成>
 図23は、本実施の形態に係るMTC端末の構成を示すブロック図である。図23において、端末400は、受信部201と、信号分離部202と、復調部203と、誤り訂正復号部204と、Narrowband設定部205と、MPDCCH受信部401と、PDSCH配置決定部402と、誤り訂正符号化部208と、変調部209と、信号割当部210と、送信部211とを有する。図23において、図14と同じ部分は説明を省略する。
 信号分離部202は、PDSCH配置決定部402から入力されるPDSCH配置情報に基づき、PDSCHに配置されているDLデータ信号および上位レイヤのシグナリングを復調部203へ出力する。また、信号分離部202は、MPDCCH信号を分離し、MPDCCH受信部401へ出力する。
 Narrowband設定部205は、帯域幅およびNarrowbandのオフセット情報に基づき、Narrowbandの定義を設定する。Narrowband設定部205は、Narrowbandの定義を、PDSCH配置決定部402、送信部211、受信部201へ出力する。
 PDSCH配置決定部402は、RBGサイズが4の場合、Narrowband設定部205から入力されるNarrowbandのオフセット量と、図示していないサブフレーム番号とから、NarrowbandのTypeを特定する。PDSCH配置決定部402は、MPDCCH受信部401から入力されるVRBへの割り当て情報とNarrowbandのTypeとから、PDSCHが割り当てられているリソースを特定する。ミラーリングを適用する場合、Narrowband Type Aの割り当てを基準として、Type Bの割り当ては、リソースの割り当てとPRBの配置を周波数方向で反転させる。サイクリックシフトを適用する場合、Narrowband Type Aの割り当てを基準として、Type Bの割り当ては、リソースの割り当てとPRBの配置を2PRBサイクリックシフトする。決定されたPDSCHの配置は、信号分離部202へ出力される。
 MPDCCH受信部401は、信号分離部202から受け取ったMPDCCH信号をブラインド復号し、DL信号の割り当て情報またはUL信号の割り当て情報を含む制御信号であるMPDCCHを検出する。
 <他の形態>
 なお、上記実施の形態2では、帯域あたり1ビットまたは2ビットのRRCシグナリングを用いてNarrowband内のMPDDCHを割り当てる場合を示したが、NarrowbandごとにRRCシグナリングを通知してもよい。Narrowbandごとに通知する場合、Narrowband数×Narrowbandごとの通知ビット数のビットを必要とする。このように細かく設定すると、Narrowbandごとに設定を変えることができる。
 また帯域幅ごとにあらかじめ定める配置を変えてもよい。このようにすると、あらかじめ定める配置と、オフセットによって定まる配置を重複しないように設定しやすくなる。
 また、本開示の一態様は、上記各実施の形態に限定されず、種々変更して実施することが可能である。
 また、上記各実施の形態では、本開示の一態様をハードウェアで構成する場合を例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)または、LSI内部の回路セルの接続若しくは設定を再構成可能なリコンフィギュラブル/プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示の基地局は、MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する決定部と、前記第1のEPDCCHセットの配置および前記第2のEPDCCHセットの配置に基づいて、制御信号を送信する送信部と、を具備し、前記決定部は、前記第1のEPDCCHセットおよび前記第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。
 本開示の基地局において、前記決定部は、前記RBGサイズが2の場合、連続する2つのPRBからなる前記第1のEPDCCHセットが前記Narrowband中の1つのRBGに対応し、4つのPRBからなる前記第2のEPDCCHのセットが前記Narrowband中の残りのPRBに対応するように、前記MPDCCHを配置する。
 本開示の基地局において、前記決定部は、前記RBGサイズが3の場合、連続する4つのPRBからなる前記第1のEPDCCHセットが前記Narrowband中の2つのRBGに対応し、2つのPRBからなる前記第2のEPDCCHセットが前記Narrowband中の残りのPRBに対応するように、前記MPDCCHを配置する。
 本開示の基地局において、前記決定部は、前記RBGサイズが3の場合、2つのPRBからなる前記第1のEPDCCHセットが前記Narrowband中の2以上のPRBを含むRBGに対応し、4つのPRBからなる前記第2のEPDCCHセットが残りのPRBに対応するように、前記MPDCCHを配置する。
 本開示の基地局において、前記決定部は、前記RBGサイズが4の場合、4つのPRBからなる前記第1のEPDCCHセットが前記Narrowband内に4つのPRBを含むRBGに対応し、2つのPRBからなる前記第2のEPDCCHセットが残りのPRBに対応するように、前記MPDCCHを配置する。
 本開示の基地局において、前記決定部は、前記RBGサイズ4の場合で、前記Narrowband内に4つのPRBを含むRBGがない場合、2つのPRBからなる前記第1のEPDCCHセットが前記Narrowband内に3つのPRBを含むRBGに対応し、4つのPRBからなる前記第2のEPDCCHセットが残りのPRBに対応するように、前記MPDCCHを配置する。
 本開示の基地局は、連続する複数のPRB(Physical Resource Block)で構成されるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、前記Narrowbandのタイプに基づいて、前記NarrowbandにおいてPDSCH(Physical Downlink Shared Channel)を配置するPRBを決定する決定部と、前記決定されたPRBを通知するためのリソース割当ビット、および、前記決定されたPRBに配置されたPDSCHを送信する送信部と、を具備し、前記RBGサイズが4PRBであり、前記複数のPRBが6PRBである場合、前記Narrowbandは、前記6PRBのうちの周波数がより低い4PRBからなる第1グループが1つのRBGに対応し、周波数がより高い残りの2PRBからなる第2グループがRBGの一部に対応する第1タイプのNarrowbandと、前記6PRBうちの周波数がより高い4PRBからなる第3グループが1つのRBGに対応し、周波数がより低い残りの2PRBから成る第4グループがRBGの一部に対応する第2タイプのNarrowbandと、を含み、前記第1のNarrowbandの前記第1グループに含まれるリソースと、前記第2のNarrowbandの前記第3グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられ、前記第1のNarrowbandの前記第2グループに含まれるリソースと、前記第2のNarrowbandの前記第4グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられる。
 本開示の基地局において、前記第1タイプのNarrowbandにおけるPDSCHを配置するPRBと、前記第2タイプのNarrowbandにおけるPDSCHを配置するPRBとの関係は、周波数方向で反転した関係である。
 本開示の基地局において、前記第1タイプのNarrowbandにおけるPDSCHを配置するPRBと、前記第2タイプのNarrowbandにおけるPDSCHを配置するPRBとの関係は、2つのPRB分だけサイクリックシフトした関係である。
 本開示の端末は、MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する決定部と、前記第1のEPDCCHセットの配置および前記第2のEPDCCHの配置に基づいて、制御信号を受信する受信部と、を具備し、前記決定部は、前記第1のEPDCCHセットおよび前記第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する。
 本開示の端末は、基地局からのリソース割当ビット、および、PRB(Physical Resource Block)に配置されたPDSCH(Physical Downlink Shared Channel)を受信する受信部と、連続する複数のPRBで構成されるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、前記Narrowbandのタイプと、前記リソース割当ビットとに基づいて、前記NarrowbandにおいてPDSCHが配置されたPRBを決定する決定部と、を具備し、前記RBGサイズが4PRBであり、前記複数のPRBが6PRBである場合、前記Narrowbandは、前記6PRBうちの周波数がより低い4PRBから成る第1グループが1つのRBGに対応し、周波数がより高い残りの2PRBから成る第2グループがRBGの一部に対応する第1タイプのNarrowbandと、前記6PRBうちの周波数がより高い4PRBから成る第3グループが1つのRBGに対応し、周波数がより低い残りの2PRBから成る第4グループがRBGの一部に対応する第2タイプのNarrowbandと、を含み、前記第1のNarrowbandの前記第1グループに含まれるリソースと、前記第2のNarrowbandの前記第3グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられ、前記第1のNarrowbandの前記第2グループに含まれるリソースと、前記第2のNarrowbandの前記第4グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられる。
 本開示の送信方法は、MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定し、前記第1のEPDCCHセットの配置および前記第2のEPDCCHの配置に基づいて、制御信号を送信し、前記第1のEPDCCHセットおよび前記第2のEPDCCHセットは、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置される。
 本開示の受信方法は、MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定し、前記第1のEPDCCHセットの配置および前記第2のEPDCCHの配置に基づいて、制御信号を受信し、前記第1のEPDCCHセットおよび前記第2のEPDCCHセットは、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置される。
 本開示は、MTC (Machine-Type Communications)に用いられる基地局、端末、送信方法および受信方法に適用し得る。
 100,300 基地局
 101,205 Narrowband設定部
 102,302 MPDCCH生成部
 103,207 MPDCCH配置決定部
 104,208 誤り訂正符号化部
 105,209 変調部
 106,210 信号割当部
 107,211 送信部
 108,201 受信部
 109,202 信号分離部
 110,203 復調部
 111,204 誤り訂正復号部
 200,400 端末
 206,401 MPDCCH受信部
 301,402 PDSCH配置決定部

Claims (13)

  1.  MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットとは異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する決定部と、
     前記第1のEPDCCHセットの配置および前記第2のEPDCCHセットの配置に基づいて、制御信号を送信する送信部と、
     を具備し、
     前記決定部は、前記第1のEPDCCHセットおよび前記第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する、
     基地局。
  2.  前記決定部は、前記RBGサイズが2の場合、連続する2つのPRBからなる前記第1のEPDCCHセットが前記Narrowband中の1つのRBGに対応し、4つのPRBからなる前記第2のEPDCCHのセットが前記Narrowband中の残りのPRBに対応するように、前記MPDCCHを配置する、
     請求項1に記載の基地局。
  3.  前記決定部は、前記RBGサイズが3の場合、連続する4つのPRBからなる前記第1のEPDCCHセットが前記Narrowband中の2つのRBGに対応し、2つのPRBからなる前記第2のEPDCCHセットが前記Narrowband中の残りのPRBに対応するように、前記MPDCCHを配置する、
     請求項1に記載の基地局。
  4.  前記決定部は、前記RBGサイズが3の場合、2つのPRBからなる前記第1のEPDCCHセットが前記Narrowband中の2以上のPRBを含むRBGに対応し、4つのPRBからなる前記第2のEPDCCHセットが残りのPRBに対応するように、前記MPDCCHを配置する、
     請求項1に記載の基地局。
  5.  前記決定部は、前記RBGサイズが4の場合、4つのPRBからなる前記第1のEPDCCHセットが前記Narrowband内に4つのPRBを含むRBGに対応し、2つのPRBからなる前記第2のEPDCCHセットが残りのPRBに対応するように、前記MPDCCHを配置する、
     請求項1に記載の基地局。
  6.  前記決定部は、前記RBGサイズ4の場合で、前記Narrowband内に4つのPRBを含むRBGがない場合、2つのPRBからなる前記第1のEPDCCHセットが前記Narrowband内に3つのPRBを含むRBGに対応し、4つのPRBからなる前記第2のEPDCCHセットが残りのPRBに対応するように、前記MPDCCHを配置する、
     請求項1に記載の基地局。
  7.  連続する複数のPRB(Physical Resource Block)で構成されるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、前記Narrowbandのタイプとに基づいて、前記NarrowbandにおいてPDSCH(Physical Downlink Shared Channel)を配置するPRBを決定する決定部と、
     前記決定されたPRBを通知するためのリソース割当ビット、および、前記決定されたPRBに配置されたPDSCHを送信する送信部と、
     を具備し、
     前記RBGサイズが4PRBであり、前記複数のPRBが6PRBである場合、前記Narrowbandは、
      前記6PRBのうちの周波数がより低い4PRBからなる第1グループが1つのRBGに対応し、周波数がより高い残りの2PRBからなる第2グループがRBGの一部に対応する第1タイプのNarrowbandと、
      前記6PRBうちの周波数がより高い4PRBからなる第3グループが1つのRBGに対応し、周波数がより低い残りの2PRBから成る第4グループがRBGの一部に対応する第2タイプのNarrowbandと、を含み、
     前記第1のNarrowbandの前記第1グループに含まれるリソースと、前記第2のNarrowbandの前記第3グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられ、
     前記第1のNarrowbandの前記第2グループに含まれるリソースと、前記第2のNarrowbandの前記第4グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられる、
     基地局。
  8.  前記第1タイプのNarrowbandにおけるPDSCHを配置するPRBと、前記第2タイプのNarrowbandにおけるPDSCHを配置するPRBとの関係は、周波数方向で反転した関係である、
     請求項7に記載の基地局。
  9.  前記第1タイプのNarrowbandにおけるPDSCHを配置するPRBと、前記第2タイプのNarrowbandにおけるPDSCHを配置するPRBとの関係は、2つのPRB分だけサイクリックシフトした関係である、
     請求項7に記載の基地局。
  10.  MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットとは異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定する決定部と、
     前記第1のEPDCCHセットおよび前記第2のEPDCCHの配置に基づいて、制御信号を受信する受信部と、
     を具備し、
     前記決定部は、前記第1のEPDCCHセットの配置および前記第2のEPDCCHセットを、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置する、
     端末。
  11.  基地局からのリソース割当ビット、および、PRB(Physical Resource Block)に配置されたPDSCH(Physical Downlink Shared Channel)を受信する受信部と、
     連続する複数のPRBで構成されるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、前記Narrowbandのタイプと、前記リソース割当ビットとに基づいて、前記NarrowbandにおいてPDSCHが配置されたPRBを決定する決定部と、
     を具備し、
     前記RBGサイズが4PRBであり、前記複数のPRBが6PRBである場合、前記Narrowbandは、
      前記6PRBうちの周波数がより低い4PRBから成る第1グループが1つのRBGに対応し、周波数がより高い残りの2PRBから成る第2グループがRBGの一部に対応する第1タイプのNarrowbandと、
      前記6PRBうちの周波数がより高い4PRBから成る第3グループが1つのRBGに対応し、周波数がより低い残りの2PRBから成る第4グループがRBGの一部に対応する第2タイプのNarrowbandと、を含み、
     前記第1のNarrowbandの前記第1グループに含まれるリソースと、前記第2のNarrowbandの前記第3グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられ、
     前記第1のNarrowbandの前記第2グループに含まれるリソースと、前記第2のNarrowbandの前記第4グループに含まれるリソースとは、前記リソース割当ビットの同一の値に対応付けられる、
     端末。
  12.  MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域中のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定し、
     前記第1のEPDCCHセットの配置および前記第2のEPDCCHの配置に基づいて、制御信号を送信し、
     前記第1のEPDCCHセットおよび前記第2のEPDCCHセットは、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置される、
     送信方法。
  13.  MTC(Machine-Type Communications)に用いられるPDCCH(Physical Downlink Control Channel)であるMPDCCHが割り当てられるNarrowbandの周波数位置を定義するためのオフセットと、システム帯域のリソースブロックグループ(RBG:Resource Block Group)サイズと、に基づいて、前記MPDCCHを構成する、第1のEPDCCH(Enhanced Physical Downlink Control Channel)セットの配置、および、前記第1のEPDCCHセットと異なるPRB(Physical resource block)数を有する第2のEPDCCHセットの配置を決定し、
     前記第1のEPDCCHセットの配置および前記第2のEPDCCHの配置に基づいて、制御信号を受信し、
     前記第1のEPDCCHセットおよび前記第2のEPDCCHセットは、少なくとも一方のEPDCCHセットが衝突するRBG数が最小となるように配置される、
     受信方法。
PCT/JP2016/002719 2015-07-24 2016-06-06 基地局、端末、送信方法および受信方法 WO2017017881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017530989A JP6666347B2 (ja) 2015-07-24 2016-06-06 基地局、端末、送信方法および受信方法
US15/810,589 US11343661B2 (en) 2015-07-24 2017-11-13 Base station, terminal, transmission method, and reception method
US17/725,089 US20220248197A1 (en) 2015-07-24 2022-04-20 Base station, terminal, transmission method, and reception method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015147014 2015-07-24
JP2015-147014 2015-07-24
JP2015156990 2015-08-07
JP2015-156990 2015-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/810,589 Continuation US11343661B2 (en) 2015-07-24 2017-11-13 Base station, terminal, transmission method, and reception method

Publications (1)

Publication Number Publication Date
WO2017017881A1 true WO2017017881A1 (ja) 2017-02-02

Family

ID=57884152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002719 WO2017017881A1 (ja) 2015-07-24 2016-06-06 基地局、端末、送信方法および受信方法

Country Status (3)

Country Link
US (2) US11343661B2 (ja)
JP (1) JP6666347B2 (ja)
WO (1) WO2017017881A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017026089A1 (ja) * 2015-08-07 2018-05-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末、送信方法及び受信方法
WO2018229954A1 (ja) * 2017-06-15 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110149706A (zh) * 2018-02-13 2019-08-20 中兴通讯股份有限公司 Pdsch资源分配的方法、装置、基站和存储介质
JP2020509686A (ja) * 2018-01-12 2020-03-26 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法、ネットワークデバイス、および端末デバイス
US11043994B2 (en) 2018-01-12 2021-06-22 Huawei Technologies Co., Ltd. Communication method, network device, and terminal device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666347B2 (ja) * 2015-07-24 2020-03-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末、送信方法および受信方法
US11419134B2 (en) * 2016-03-25 2022-08-16 Lg Electronics Inc. Method for transmitting and receiving uplink signal in wireless communication system supporting non-licensed band, and apparatus for supporting same
CN109479268B (zh) * 2016-08-17 2023-08-22 联想创新有限公司(香港) 用于进一步emtc的资源指配指示
US11012112B2 (en) * 2018-02-09 2021-05-18 Qualcomm Incorporated Techniques for flexible resource allocation
US11290999B2 (en) * 2018-09-06 2022-03-29 Qualcomm Incorporated Techniques for flexible resource allocation
US11147072B2 (en) * 2018-09-28 2021-10-12 Qualcomm Incorporated Retuning for flexible resource allocation
CN114270895A (zh) * 2019-08-16 2022-04-01 Lg电子株式会社 用于在支持物联网的无线通信系统中发送/接收下行链路信息的方法及其装置
EP4097896A4 (en) * 2020-01-30 2023-07-05 Telefonaktiebolaget Lm Ericsson (Publ) NETWORK NODE AND METHOD FOR SELECTING AN ASSIGNMENT STRATEGY IN SPECTRUM SHARING
US11424851B2 (en) * 2020-12-09 2022-08-23 Qualcomm Incorporated Dynamic bit width determination for resource block group mask

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044948A1 (en) * 2011-09-28 2013-04-04 Nokia Siemens Networks Oy Configuring a communication with user equipments operating with a different system bandwidth

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605603A4 (en) * 2010-08-10 2017-11-29 Panasonic Intellectual Property Corporation of America Base station, relay station, transmission method, and reception method
JP6048892B2 (ja) * 2011-02-22 2016-12-21 サン パテント トラスト 中継局、基地局、及び通信方法
US9473279B2 (en) * 2011-11-04 2016-10-18 Blackberry Limited Inter-cell interference coordination for E-PDCCH
KR20130049695A (ko) * 2011-11-04 2013-05-14 주식회사 팬택 전송단, 자원 할당 방법, 단말, 및 자원 할당 정보 수신 방법
WO2013141583A1 (ko) * 2012-03-19 2013-09-26 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
US9515759B2 (en) * 2012-05-11 2016-12-06 Lg Electronics Inc. Method of demodulating data on new type of carrier wave
JP6666347B2 (ja) * 2015-07-24 2020-03-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末、送信方法および受信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044948A1 (en) * 2011-09-28 2013-04-04 Nokia Siemens Networks Oy Configuring a communication with user equipments operating with a different system bandwidth

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS ET AL.: "WF on Narrowband Definition for Rel-13 MTC UEs", 3GPP TSG RAN WG1 #81 R1-153498, 1 June 2015 (2015-06-01), XP050978554, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg- ran/WG1_RL1/TSGR1_81/Docs/R1-153498.zip> [retrieved on 20160804] *
PANASONIC: "MPDCCH allocation in narrowband", 3GPP TSG RAN WG1 MEETING #82BIS R1- 155338, 25 September 2015 (2015-09-25), XP051039636, Retrieved from the Internet <URL:http://www. 3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_82b/Docs/ Rl-155338.zip> [retrieved on 20160804] *
PANASONIC: "Resource allocation of PDSCH for Rel.13 MTC", 3GPP TSG RAN WG1 MEETING #83 R1- 156946, 6 November 2015 (2015-11-06), XP051039964, Retrieved from the Internet <URL:http://www. 3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/ Rl-156946.zip> [retrieved on 20160804] *
ZTE: "PRB group definition and frequency hopping for MTC enhancement", 3GPP TSG RAN WG1 MEETING #81 RL-152954, 15 May 2015 (2015-05-15), XP050969460, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1_81/Docs/R1-152954.zip> [retrieved on 20160804] *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017026089A1 (ja) * 2015-08-07 2018-05-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末、送信方法及び受信方法
WO2018229954A1 (ja) * 2017-06-15 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
RU2746019C1 (ru) * 2017-06-15 2021-04-06 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
JP2020509686A (ja) * 2018-01-12 2020-03-26 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法、ネットワークデバイス、および端末デバイス
US11043994B2 (en) 2018-01-12 2021-06-22 Huawei Technologies Co., Ltd. Communication method, network device, and terminal device
JP7059294B2 (ja) 2018-01-12 2022-04-25 華為技術有限公司 通信方法、ネットワークデバイス、および端末デバイス
US11381288B2 (en) 2018-01-12 2022-07-05 Huawei Technologies Co., Ltd. Communication method, network device, and terminal device
CN110149706A (zh) * 2018-02-13 2019-08-20 中兴通讯股份有限公司 Pdsch资源分配的方法、装置、基站和存储介质

Also Published As

Publication number Publication date
JPWO2017017881A1 (ja) 2018-05-10
US20180070339A1 (en) 2018-03-08
US11343661B2 (en) 2022-05-24
JP6666347B2 (ja) 2020-03-13
US20220248197A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US20220248197A1 (en) Base station, terminal, transmission method, and reception method
US11646841B2 (en) Base station, terminal, transmission method, and reception method for using PDCCH (physical downlink control channel) to indicate resource assignment for PDSCH (physical downlink shared channel)
US10805917B2 (en) Determination of resource block groups in a user equipment bandwidth part
JP7088970B2 (ja) 基地局、端末および通信方法
WO2013168389A1 (ja) 送信装置、受信装置、送信方法、及び受信方法
JP6633646B2 (ja) 通信装置、通信方法及び集積回路
TWI631868B (zh) 基地台裝置、終端裝置、傳送方法、及接收方法
CN110337833B (zh) 基站、终端以及通信方法
CN111601382B (zh) 一种数据传输方法及通信装置
WO2018173442A1 (ja) 基地局および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829990

Country of ref document: EP

Kind code of ref document: A1