WO2017017765A1 - Automatic tube connection device - Google Patents

Automatic tube connection device Download PDF

Info

Publication number
WO2017017765A1
WO2017017765A1 PCT/JP2015/071262 JP2015071262W WO2017017765A1 WO 2017017765 A1 WO2017017765 A1 WO 2017017765A1 JP 2015071262 W JP2015071262 W JP 2015071262W WO 2017017765 A1 WO2017017765 A1 WO 2017017765A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
pressure
fluid
pipe
column
Prior art date
Application number
PCT/JP2015/071262
Other languages
French (fr)
Japanese (ja)
Inventor
努 大古場
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2017530502A priority Critical patent/JP6516010B2/en
Priority to PCT/JP2015/071262 priority patent/WO2017017765A1/en
Publication of WO2017017765A1 publication Critical patent/WO2017017765A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns

Definitions

  • the present invention provides an automatic pipe that automatically connects pipes to a container member such as an analysis column, a trap column, and an extraction container through which a fluid is passed in a liquid chromatograph or a supercritical fluid chromatograph using a needle seal structure.
  • the present invention relates to a connection device.
  • a needle seal structure as a structure for connecting pipes easily and quickly.
  • the needle provided at the tip of the pipe is inserted into the opening provided in the object to be connected, so that the inner peripheral surface of the opening and the outer peripheral surface of the needle tip are in line contact and the pipe is to be connected.
  • the needle seal structure is used for an injection port in an autosampler of a liquid chromatograph, for example.
  • Patent Document 1 proposes that the extraction container can be easily attached to and detached from the apparatus by connecting the pipe to the extraction container of the supercritical fluid component extraction apparatus using the above needle seal structure.
  • a plurality of extraction containers are installed in the apparatus, and movable needles are connected to these extraction containers by a needle seal structure, so that piping connection to the extraction containers to be used is automatically performed by moving the needles. It is also proposed to change it.
  • the needle seal structure is used, not only the piping connection to the extraction container in the supercritical fluid component extraction apparatus but also the piping connection to the analysis column or trap column in the liquid chromatograph can be automatically performed.
  • the residual pressure does not release immediately even after the mobile phase liquid supply is stopped, and immediately after the mobile phase liquid supply is stopped, the pipe connection needle is connected to a column, etc.
  • the container member is separated from the container member, there is a problem that the liquid is ejected from the needle tip or the opening of the container member. This is particularly noticeable when a mobile phase having a high compression rate is used.
  • a fixed time is set as a “depressurization time” for decreasing the residual pressure after the mobile phase liquid supply is stopped, and the needle is moved after the fixed time has elapsed. It is conceivable to take a method of pulling out from the container member. However, since the actual residual pressure varies depending on the flow rate of the liquid and the type of mobile phase, if the pressure release time is set short, the needle is not sufficiently reduced until the residual pressure is sufficiently reduced due to insufficient pressure release time. Will be pulled out and liquid will be ejected. Therefore, it is necessary to set the pressure release time longer than necessary.
  • an object of the present invention is to optimize the timing for detaching the pipe from the container member in an automatic pipe connecting device that attaches / detaches the pipe to / from the container member by the needle seal structure.
  • One embodiment of an automatic pipe connecting device includes a fluid feeding pipe for feeding a fluid, a needle provided at one end of the fluid feeding pipe, and a fluid feeding by inserting the needle.
  • a needle seal structure that allows fluid communication between the pipe and the internal space is provided at one end, and a needle for connecting or disconnecting the needle to the container member and a container member that allows fluid to flow in the internal space.
  • a needle drive mechanism for moving the pressure sensor, a pressure sensor for detecting the pressure in the fluid feed pipe, and a pressure state determination unit for judging whether or not the fluid feed pipe is in a pressurized state based on a detection value of the pressure sensor;
  • a control unit configured to control the operation of the needle drive mechanism, and based on the determination result of the pressure state determination unit, the needle is not detached from the container member when the fluid feeding pipe is in a pressurized state; It includes those were.
  • the inside of the fluid delivery pipe is in a pressurized state means that the pressure in the fluid delivery pipe is higher than the atmospheric pressure.
  • a pressure sensor for detecting the pressure in the fluid feed pipe, and whether or not the fluid feed pipe is in a pressurized state based on the detection value of the pressure sensor.
  • the pressure state judging unit that performs the control and the controller configured to prevent the needle from being detached from the container member when the inside of the fluid feeding pipe is in a pressurized state are provided.
  • the needle is not detached from the container member, and the liquid can be prevented from being ejected from the needle tip or the opening of the container member.
  • the needle can be detached from the container member at an appropriate timing without waiting for the needle for an unnecessarily long time after stopping the delivery of the mobile phase. It becomes possible to shorten the time required for analysis.
  • the control unit is configured to connect the needle to one container member selected from the plurality of container members. Is preferred. Then, the container member to be used can be automatically changed by moving the needle.
  • a sample is once captured in a trap column and concentrated, and then the concentrated sample is guided to an analysis column for separation analysis.
  • An autosampler 4 for injecting a sample is provided on the mobile phase liquid flow path 6 for concentration.
  • the concentration mobile phase feeding flow path 6 is a path through which the concentration mobile phase is fed by the liquid feed pump 2.
  • the concentration mobile phase liquid flow path 6 is connected to one of the ports provided in the rotary high pressure valve 8.
  • the high pressure valve 8 is a two-position valve having six ports and switching the connection between adjacent ports.
  • Each port of the high-pressure valve 8 includes a concentration mobile phase liquid flow path 6, a drain, a column inlet flow path 10, a column outlet flow path 14, an analysis mobile phase liquid flow path 18 and an analysis flow path 20. It is connected.
  • the high-pressure valve 8 is provided between the concentration mobile phase liquid flow path 6 and the column inlet flow path 10, between the column outlet flow path 14 and the drain, and to the analysis mobile phase liquid flow path 18 and the analysis flow path 20.
  • concentration mode The state shown in FIG. 6; hereinafter referred to as the concentration mode
  • analysis mode One of a state in which the channel 18 is connected and the column outlet channel 14 and the analysis channel 20 are connected.
  • the column inlet channel 10 is connected to the inlet 39 (see FIG. 2) of the column connecting device 12 (automatic pipe connecting device), and the column outlet channel 14 is connected to the outlet 52 (see FIG. 2) of the column connecting device 12.
  • the column connection device 12 will be described later, a trap column for concentrating the sample is accommodated in the column connection device 12.
  • the mobile phase feeding flow path for analysis 18 is a flow path through which the mobile phase fed by the mobile phase feeding apparatus 16 flows.
  • the mobile phase liquid feeding device 16 includes liquid feeding pumps 16a and 16b for feeding different solvents, and a mixer 16c for mixing the solvents fed by the liquid feeding pumps 16a and 16b.
  • an analysis column 22 for separating a sample for each component, and a detector 24 for detecting the sample component separated by the analysis column 22.
  • the column connection device 12 will be described with reference to FIG.
  • the inlet 39 and the outlet 52 are provided in the casing of the column connection device 12.
  • the column inlet channel 10 is connected to the inlet 39, and the column outlet channel 14 is connected to the outlet 52.
  • the inlet 39 is connected to the upper needle 38 via a pipe 40 (fluid feed pipe).
  • the upper needle 38 is moved by the needle drive mechanism 44 in the horizontal plane direction and the vertical direction with the tip thereof directed vertically downward.
  • a plurality of lower needles 28 are provided at a position below the upper needle 38.
  • the lower needle 28 is supported by a support table 30 with the tip thereof facing vertically upward.
  • Each lower needle 28 is connected to a port of a rotary column selection valve 46 through a flow path 45.
  • the column selection valve 46 has a common port at the center, and an outlet channel 50 leading to the outlet 52 is connected to the common port.
  • the column selection valve 46 selectively switches and connects any one of the lower needles 28 to the outlet channel 50 by rotating the rotor provided with the channel 48.
  • a trap column 32 (container member) is installed above each lower needle 28.
  • the trap column 32 is installed on the lower needle 28 while being held by the rack 31.
  • Needle seal structures 34 and 36 are provided at the lower end and the upper end of each trap column 32, respectively.
  • the needle seal structure is an opening that communicates with the internal space. By inserting the needle tip into the opening, the needle seal structure is in line contact with the outer peripheral surface of the needle tip so that the inner space and the inner flow path of the needle are kept liquid-tight. It is a structure that allows communication.
  • the tip of the lower needle 28 is inserted and connected to the needle seal structure 34 at the lower end of each trap column 32.
  • the needle seal structure 36 at the upper end of each trap column 32 is for inserting and connecting the upper needle 38.
  • a pressure sensor 42 is provided on the proximal end side of the upper needle 38.
  • the pressure sensor 42 detects the pressure in the pipe 40.
  • the pressure value detected by the pressure sensor 42 is taken into the control device 56 via the control unit 54 described later (see FIG. 3).
  • the concentration feeding pump 2, the analysis feeding device 16, the autosampler 4, the high pressure valve 8 and the column exchange device 12 are connected to a common control device 56.
  • the control device 56 is realized by, for example, a general-purpose personal computer or a dedicated computer.
  • the column connection device 12 is provided with a control unit 54 that controls the operation of the needle drive mechanism 44 and the column selection valve 46.
  • the control unit 54 is a computer dedicated to the column connection device 12.
  • the detection signal of the pressure sensor 42 is taken into the control device 56 via the control unit 54.
  • the control device 56 includes an analysis operation management unit 58, a pressure state determination unit 60, and a threshold value holding unit 62.
  • the analysis operation management unit 58 manages the operations of the concentration liquid delivery pump 2, the analysis liquid delivery device 16, the autosampler 4, the high-pressure valve 8, and the column exchange device 12 so that a series of analysis operations to be described later is executed. Is.
  • the pressure state determination unit 60 applies the pressure in the pipe 40 when the upper needle 38 is connected to one of the trap columns 32 by comparing the output signal of the pressure sensor 42 with a preset threshold value. It is comprised so that it may determine whether it is a pressure state.
  • the threshold value used by the pressure state determination unit 60 is set based on, for example, the atmospheric pressure measured in advance. The set threshold value is held in the threshold value holding unit 62. When the output signal of the pressure sensor 42 exceeds the threshold value, the pressure state determination unit 60 determines that the inside of the pipe 40 is in a pressurized state.
  • the upper needle 38 is connected to the trap column 32 to be used, the high-pressure valve 8 is set to the concentration mode, and the feeding of the concentration mobile phase is started (see FIG. 6). Then, the sample is injected into the concentration mobile phase liquid flow path 6 by the autosampler 4, and the sample is captured by the trap column 32.
  • the high pressure valve 8 is set to the sample introduction mode, the analysis mobile phase is fed by the analysis mobile phase feeding device 16, and the sample is introduced into the analysis channel 20 (FIG. 7). reference.).
  • the sample captured by the trap column 32 is guided to the analysis column 22 and separated for each component. Sample components separated by the analysis column 22 are detected by a detector 24.
  • the mobile phase liquid feeding by the analysis mobile phase liquid feeding device 16 is stopped. Immediately after stopping the mobile phase liquid feeding, the trap column 32, the upper needle 38, and the inside of the pipe 40 are pressurized by the residual pressure. If the upper needle 38 is detached from the trap column 32 in this state, there is a problem that liquid is ejected from the tip of the upper needle 38 or the opening of the needle seal structure 36 at the upper end of the trap column 32 and the inside of the apparatus is contaminated. is there.
  • the pressure in the pipe 40 is monitored by the pressure sensor 42 so that the upper needle 38 is not detached from the trap column 32 when the inside of the pipe 40 is in a pressurized state. Whether or not the pressure in the pipe 40 is in a pressurized state is determined by comparing the output value of the pressure sensor 42 with a preset threshold value.
  • FIG. 5 is a graph showing an example of the time change of the pressure in the pipe 40 detected by the pressure sensor 40. As shown in this graph, there is a residual pressure in the pipe 40 immediately after the mobile phase liquid feeding is stopped, and the residual pressure decreases with time. Then, when the output value of the pressure sensor 40 becomes equal to or less than a threshold value (for example, atmospheric pressure + 10%) set based on the atmospheric pressure, the upper needle 38 is separated from the trap column 32, whereby the inside of the pipe 40 is It drops to atmospheric pressure. Thereby, the ejection of the liquid from the tip of the needle 38 or the trap column 32 can be prevented.
  • a threshold value for example, atmospheric pressure + 10%
  • the automatic pipe connection device is applied to a concentrated liquid chromatograph.
  • the automatic pipe connection device of the present invention includes a plurality of extraction containers in a supercritical fluid extraction apparatus, and the extraction container to be used is needle-sealed. It can also be applied as a device that automatically changes depending on the pipe connection by structure. Further, the present invention can also be applied as a device that includes a plurality of analysis columns used for separating a sample of a liquid chromatograph and that changes the analysis column used by pipe connection with a needle seal structure.

Abstract

This automatic tube connection device is provided with a pressure sensor for detecting the pressure inside a fluid feeding tube, a pressure state determination unit for determining whether the inside of the fluid feeding tube is pressurized on the basis of a detection value from the pressure sensor, and a control unit configured so as to prevent a needle from separating from a container member when the inside of the fluid feeding tube is pressurized.

Description

自動配管接続装置Automatic pipe connection device
 本発明は、液体クロマトグラフや超臨界流体クロマトグラフにおいて流体が通液される分析カラムやトラップカラム、抽出容器などの容器部材に対し、ニードルシール構造を用いて配管接続を自動的に行なう自動配管接続装置に関するものである。 The present invention provides an automatic pipe that automatically connects pipes to a container member such as an analysis column, a trap column, and an extraction container through which a fluid is passed in a liquid chromatograph or a supercritical fluid chromatograph using a needle seal structure. The present invention relates to a connection device.
 配管を簡易迅速に接続するための構造としてニードルシール構造がある。ニードルシール構造とは、配管の先端に設けられたニードルを接続対象物に設けられた開口に挿入することで、開口の内周面とニードル先端の外周面とが線接触して配管が接続対象物に液密を保って接続される構造である。ニードルシール構造は、例えば液体クロマトグラフのオートサンプラにおける注入ポートに用いられている。 There is a needle seal structure as a structure for connecting pipes easily and quickly. With the needle seal structure, the needle provided at the tip of the pipe is inserted into the opening provided in the object to be connected, so that the inner peripheral surface of the opening and the outer peripheral surface of the needle tip are in line contact and the pipe is to be connected. It is a structure that is connected to an object while maintaining liquid tightness. The needle seal structure is used for an injection port in an autosampler of a liquid chromatograph, for example.
 例えば特許文献1では、超臨界流体成分抽出装置の抽出容器への配管接続を上記のニードルシール構造を用いて行なうことで、装置に対する抽出容器の着脱を容易にすることが提案されている。また、複数の抽出容器を装置に設置し、それらの抽出容器に対してニードルシール構造によって移動式のニードルを接続するようにすることで、使用する抽出容器への配管接続をニードルの移動によって自動的に変更することも提案されている。 For example, Patent Document 1 proposes that the extraction container can be easily attached to and detached from the apparatus by connecting the pipe to the extraction container of the supercritical fluid component extraction apparatus using the above needle seal structure. In addition, a plurality of extraction containers are installed in the apparatus, and movable needles are connected to these extraction containers by a needle seal structure, so that piping connection to the extraction containers to be used is automatically performed by moving the needles. It is also proposed to change it.
特開2014-160055号公報JP 2014-160055 A
 上記ニードルシール構造を用いれば、超臨界流体成分抽出装置における抽出容器への配管接続だけでなく、液体クロマトグラフにおける分析カラムやトラップカラムへの配管接続も自動で行なうことができる。液体クロマトグラフや超臨界流体成分抽出装置で、移動相の送液を停止した直後も残留圧力がすぐには抜けず、移動相の送液を停止した直後に配管接続用のニードルをカラム等の容器部材から離脱させると、ニードル先端や容器部材の開口から液が噴出するという問題がある。このことは、特に圧縮率の高い移動相を使用した場合に顕著である。 If the needle seal structure is used, not only the piping connection to the extraction container in the supercritical fluid component extraction apparatus but also the piping connection to the analysis column or trap column in the liquid chromatograph can be automatically performed. With a liquid chromatograph or a supercritical fluid component extraction device, the residual pressure does not release immediately even after the mobile phase liquid supply is stopped, and immediately after the mobile phase liquid supply is stopped, the pipe connection needle is connected to a column, etc. When the container member is separated from the container member, there is a problem that the liquid is ejected from the needle tip or the opening of the container member. This is particularly noticeable when a mobile phase having a high compression rate is used.
 上記の問題を解決するため、移動相の送液を停止した後の一定時間を、残留圧力が減少するための「圧抜き時間」として固定値で設定し、その一定時間が経過した後にニードルを容器部材から引き抜くという方法を採ることが考えられる。しかし、実際の残留圧力の大きさは送液流量や移動相の種類によって異なるため、圧抜き時間を短く設定していると、圧抜き時間が不足して残留圧力が十分に減少する前にニードルが引き抜かれてしまい、液が噴出することとなる。そのため、圧抜き時間は必要以上に長く設定しておく必要がある。 In order to solve the above problem, a fixed time is set as a “depressurization time” for decreasing the residual pressure after the mobile phase liquid supply is stopped, and the needle is moved after the fixed time has elapsed. It is conceivable to take a method of pulling out from the container member. However, since the actual residual pressure varies depending on the flow rate of the liquid and the type of mobile phase, if the pressure release time is set short, the needle is not sufficiently reduced until the residual pressure is sufficiently reduced due to insufficient pressure release time. Will be pulled out and liquid will be ejected. Therefore, it is necessary to set the pressure release time longer than necessary.
 液体クロマトグラフや超臨界流体クロマトグラフによる分析では、分析に要する時間を少しでも短縮したいという要求があるが、上記のように、ニードルを容器部材から引き抜くまでの圧抜き時間が必要以上に長い場合には、その分だけ分析に要する時間が長くなる。 When analyzing with a liquid chromatograph or supercritical fluid chromatograph, there is a need to reduce the time required for analysis as much as possible, but as described above, when the pressure release time until the needle is pulled out from the container member is longer than necessary Therefore, the time required for the analysis becomes longer accordingly.
 そこで、本発明は、ニードルシール構造によって容器部材への配管の着脱を行なう自動配管接続装置において、容器部材から配管を離脱させるタイミングの適正化を図ることを目的とするものである。 Therefore, an object of the present invention is to optimize the timing for detaching the pipe from the container member in an automatic pipe connecting device that attaches / detaches the pipe to / from the container member by the needle seal structure.
 本発明に係る自動配管接続装置の一実施形態は、流体を送液するための流体送液配管と、流体送液配管の一端部に設けられたニードルと、ニードルを挿入させることによって流体送液配管と内部空間との間を液密を保って連通させるニードルシール構造を一端に有し、内部空間において流体を通液させる容器部材と、容器部材に対するニードルの接続又は離脱を行なうために、ニードルを移動させるニードル駆動機構と、流体送液配管内の圧力を検出する圧力センサと、圧力センサの検出値に基づいて流体送液配管内が加圧状態か否かを判定する圧力状態判定部と、ニードル駆動機構の動作を制御し、圧力状態判定部の判定結果に基づき、流体送液配管内が加圧状態のときはニードルを容器部材から離脱させないように構成された制御部と、を備えたものである。
 ここで、「流体送液配管内が加圧状態」とは、流体送液配管内の圧力が大気圧よりも高い状態であることを意味する。
One embodiment of an automatic pipe connecting device according to the present invention includes a fluid feeding pipe for feeding a fluid, a needle provided at one end of the fluid feeding pipe, and a fluid feeding by inserting the needle. A needle seal structure that allows fluid communication between the pipe and the internal space is provided at one end, and a needle for connecting or disconnecting the needle to the container member and a container member that allows fluid to flow in the internal space. A needle drive mechanism for moving the pressure sensor, a pressure sensor for detecting the pressure in the fluid feed pipe, and a pressure state determination unit for judging whether or not the fluid feed pipe is in a pressurized state based on a detection value of the pressure sensor; A control unit configured to control the operation of the needle drive mechanism, and based on the determination result of the pressure state determination unit, the needle is not detached from the container member when the fluid feeding pipe is in a pressurized state; It includes those were.
Here, “the inside of the fluid delivery pipe is in a pressurized state” means that the pressure in the fluid delivery pipe is higher than the atmospheric pressure.
 本発明に係る自動配管接続装置の一実施形態では、流体送液配管内の圧力を検出する圧力センサ、及び圧力センサの検出値に基づいて流体送液配管内が加圧状態か否かを判定する圧力状態判定部、及び流体送液配管内が加圧状態のときはニードルを容器部材から離脱させないように構成された制御部を備えているので、流体送液配管内が加圧状態のときにニードルが容器部材から離脱することがなくなり、ニードル先端や容器部材の開口から液が噴出することを防止できる。そして、流体送液配管内の圧力状態を監視できるため、移動相の送液を停止してから必要以上に長い時間にわたってニードルを待機させることなく、適切なタイミングでニードルを容器部材から離脱させることができるようになり、分析に要する時間を短縮することが可能になる。 In one embodiment of the automatic pipe connection device according to the present invention, a pressure sensor for detecting the pressure in the fluid feed pipe, and whether or not the fluid feed pipe is in a pressurized state based on the detection value of the pressure sensor. When the inside of the fluid feeding pipe is in a pressurized state, the pressure state judging unit that performs the control and the controller configured to prevent the needle from being detached from the container member when the inside of the fluid feeding pipe is in a pressurized state are provided. Thus, the needle is not detached from the container member, and the liquid can be prevented from being ejected from the needle tip or the opening of the container member. And since the pressure state in the fluid delivery pipe can be monitored, the needle can be detached from the container member at an appropriate timing without waiting for the needle for an unnecessarily long time after stopping the delivery of the mobile phase. It becomes possible to shorten the time required for analysis.
自動配管接続装置を備えた濃縮液体クロマトグラフの一実施例を概略的に示す流路構成図である。It is a flow-path block diagram which shows roughly one Example of the concentrated liquid chromatograph provided with the automatic piping connection apparatus. 同実施例におけるカラム接続装置(自動配管接続装置)を概略的に示す断面構成図である。It is a section lineblock diagram showing roughly the column connection device (automatic pipe connection device) in the example. 同実施例の構成を概略的に示すブロック図である。It is a block diagram which shows the structure of the Example schematically. 同実施例の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the Example. 圧力センサの検出圧力の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the detection pressure of a pressure sensor. 同実施例における試料濃縮時の状態を示す流路構成図である。It is a flow-path block diagram which shows the state at the time of sample concentration in the Example. 同実施例における分析時の状態を示す流路構成図である。It is a flow-path block diagram which shows the state at the time of the analysis in the Example.
 本発明の自動配管接続装置における圧力状態判定部としては、圧力センサの出力信号が予め設定されたしきい値を超えているときは流体送液配管内が加圧状態であると判定するように構成されているものが挙げられる。 As a pressure state determination unit in the automatic pipe connection device of the present invention, when the output signal of the pressure sensor exceeds a preset threshold value, it is determined that the inside of the fluid feeding pipe is in a pressurized state. What is comprised is mentioned.
 また、本発明の自動配管接続装置においては、容器部材を複数備え、制御部は、複数の容器部材のうちから選択された一つの容器部材に対してニードルを接続するように構成されていることが好ましい。そうすれば、ニードルの移動によって使用する容器部材の変更を自動で行なうことができる。 In the automatic pipe connection device of the present invention, a plurality of container members are provided, and the control unit is configured to connect the needle to one container member selected from the plurality of container members. Is preferred. Then, the container member to be used can be automatically changed by moving the needle.
 自動配管接続装置を有する液体クロマトグラフの一実施例について図面を用いて説明する。まず、図1を用いて、この実施例の流路構成を説明する。 An example of a liquid chromatograph having an automatic pipe connection device will be described with reference to the drawings. First, the flow channel configuration of this embodiment will be described with reference to FIG.
 この実施例は、試料を一旦トラップカラムに捕捉して濃縮した後、濃縮された試料を分析カラムに導いて分離分析を行なうものである。試料を注入するオートサンプラ4が濃縮用移動相送液流路6上に設けられている。濃縮用移動相送液流路6は濃縮用の移動相が送液ポンプ2によって送液される流路である。濃縮用移動相送液流路6は、ロータリー式の高圧バルブ8に設けられたポートの1つに接続されている。 In this embodiment, a sample is once captured in a trap column and concentrated, and then the concentrated sample is guided to an analysis column for separation analysis. An autosampler 4 for injecting a sample is provided on the mobile phase liquid flow path 6 for concentration. The concentration mobile phase feeding flow path 6 is a path through which the concentration mobile phase is fed by the liquid feed pump 2. The concentration mobile phase liquid flow path 6 is connected to one of the ports provided in the rotary high pressure valve 8.
 高圧バルブ8は6つのポートを備え、互いに隣接するポート間の接続を切り替える2ポジションバルブである。高圧バルブ8の各ポートには、濃縮用移動相送液流路6のほか、ドレイン、カラム入口流路10、カラム出口流路14、分析用移動相送液流路18及び分析流路20が接続されている。 The high pressure valve 8 is a two-position valve having six ports and switching the connection between adjacent ports. Each port of the high-pressure valve 8 includes a concentration mobile phase liquid flow path 6, a drain, a column inlet flow path 10, a column outlet flow path 14, an analysis mobile phase liquid flow path 18 and an analysis flow path 20. It is connected.
 高圧バルブ8は、濃縮用移動相送液流路6とカラム入口流路10との間、カラム出口流路14とドレインとの間、及び分析用移動相送液流路18と分析流路20との間を接続した状態(図6に示す状態。以下、濃縮モードという。)と、濃縮用移動相送液流路6とドレインとの間、カラム入口流路10と分析用移動相送液流路18との間、及びカラム出口流路14と分析流路20との間を接続した状態(図7に示す状態。以下、分析モードという。)のいずれか一方の状態となる。 The high-pressure valve 8 is provided between the concentration mobile phase liquid flow path 6 and the column inlet flow path 10, between the column outlet flow path 14 and the drain, and to the analysis mobile phase liquid flow path 18 and the analysis flow path 20. (The state shown in FIG. 6; hereinafter referred to as the concentration mode), between the concentration mobile phase liquid flow path 6 and the drain, between the column inlet flow path 10 and the analysis mobile phase liquid supply. One of a state (a state shown in FIG. 7, hereinafter referred to as an analysis mode) in which the channel 18 is connected and the column outlet channel 14 and the analysis channel 20 are connected.
 カラム入口流路10はカラム接続装置12(自動配管接続装置)の入口部39(図2参照)に接続され、カラム出口流路14はカラム接続装置12の出口部52(図2参照)に接続されている。カラム接続装置12については後述するが、カラム接続装置12内に試料を濃縮するためのトラップカラムが収容されている。 The column inlet channel 10 is connected to the inlet 39 (see FIG. 2) of the column connecting device 12 (automatic pipe connecting device), and the column outlet channel 14 is connected to the outlet 52 (see FIG. 2) of the column connecting device 12. Has been. Although the column connection device 12 will be described later, a trap column for concentrating the sample is accommodated in the column connection device 12.
 分析用移動相送液流路18は移動相送液装置16によって送液される移動相が流れる流路である。移動相送液装置16は互いに異なる溶媒を送液する送液ポンプ16a,16bと、それらの送液ポンプ16a,16bによって送液された溶媒を混合するミキサ16cを備えている。 The mobile phase feeding flow path for analysis 18 is a flow path through which the mobile phase fed by the mobile phase feeding apparatus 16 flows. The mobile phase liquid feeding device 16 includes liquid feeding pumps 16a and 16b for feeding different solvents, and a mixer 16c for mixing the solvents fed by the liquid feeding pumps 16a and 16b.
 分析流路20上には、試料を成分ごとに分離する分析カラム22と、分析カラム22で分離された試料成分を検出する検出器24が設けられている。 On the analysis flow path 20, there are provided an analysis column 22 for separating a sample for each component, and a detector 24 for detecting the sample component separated by the analysis column 22.
 カラム接続装置12について図2を用いて説明する。 The column connection device 12 will be described with reference to FIG.
 カラム接続装置12の筐体に入口部39と出口部52が設けられている。入口部39にはカラム入口流路10が接続され、出口部52にはカラム出口流路14が接続されている。入口部39は配管40(流体送液配管)を介して上側ニードル38に接続されている。上側ニードル38は、ニードル駆動機構44によって、先端が鉛直下方を向いた状態で水平面内方向と鉛直方向へ移動させられる。 The inlet 39 and the outlet 52 are provided in the casing of the column connection device 12. The column inlet channel 10 is connected to the inlet 39, and the column outlet channel 14 is connected to the outlet 52. The inlet 39 is connected to the upper needle 38 via a pipe 40 (fluid feed pipe). The upper needle 38 is moved by the needle drive mechanism 44 in the horizontal plane direction and the vertical direction with the tip thereof directed vertically downward.
 上側ニードル38よりも下方の位置に、複数の下側ニードル28が設けられている。下側ニードル28は支持テーブル30によって先端が鉛直上方を向いた状態で支持されている。各下側ニードル28は流路45を介してロータリー式のカラム選択バルブ46のポートに接続されている。カラム選択バルブ46は中央部に共通ポートを有し、その共通ポートに出口部52へ通じる出口流路50が接続されている。カラム選択バルブ46は、流路48の設けられたロータを回転させることによって、出口流路50にいずれか一つの下側ニードル28を選択的に切り替えて接続するものである。 A plurality of lower needles 28 are provided at a position below the upper needle 38. The lower needle 28 is supported by a support table 30 with the tip thereof facing vertically upward. Each lower needle 28 is connected to a port of a rotary column selection valve 46 through a flow path 45. The column selection valve 46 has a common port at the center, and an outlet channel 50 leading to the outlet 52 is connected to the common port. The column selection valve 46 selectively switches and connects any one of the lower needles 28 to the outlet channel 50 by rotating the rotor provided with the channel 48.
 各下側ニードル28の上方にそれぞれトラップカラム32(容器部材)が設置されている。トラップカラム32はラック31に保持された状態で下側ニードル28上に設置されている。各トラップカラム32の下端と上端のそれぞれにニードルシール構造34,36が設けられている。ニードルシール構造とは、内部空間に通じる開口であって、その開口にニードル先端を挿入することでニードル先端の外周面と線接触して内部空間とニードルの内側流路とを液密を保って連通させる構造である。 A trap column 32 (container member) is installed above each lower needle 28. The trap column 32 is installed on the lower needle 28 while being held by the rack 31. Needle seal structures 34 and 36 are provided at the lower end and the upper end of each trap column 32, respectively. The needle seal structure is an opening that communicates with the internal space. By inserting the needle tip into the opening, the needle seal structure is in line contact with the outer peripheral surface of the needle tip so that the inner space and the inner flow path of the needle are kept liquid-tight. It is a structure that allows communication.
 各トラップカラム32の下端のニードルシール構造34に下側ニードル28の先端が挿入されて接続されている。各トラップカラム32の上端のニードルシール構造36は、上側ニードル38を挿入して接続するためのものである。 The tip of the lower needle 28 is inserted and connected to the needle seal structure 34 at the lower end of each trap column 32. The needle seal structure 36 at the upper end of each trap column 32 is for inserting and connecting the upper needle 38.
 上側ニードル38の基端側に圧力センサ42が設けられている。圧力センサ42は配管40内の圧力を検出するものである。圧力センサ42により検出された圧力値は、後述する制御部54を介して制御装置56に取り込まれる(図3参照。)。 A pressure sensor 42 is provided on the proximal end side of the upper needle 38. The pressure sensor 42 detects the pressure in the pipe 40. The pressure value detected by the pressure sensor 42 is taken into the control device 56 via the control unit 54 described later (see FIG. 3).
 図3を用いて、この液体クロマトグラフ全体の構成について説明する。 The configuration of the entire liquid chromatograph will be described with reference to FIG.
 濃縮用送液ポンプ2、分析用送液装置16、オートサンプラ4、高圧バルブ8及びカラム交換装置12は共通の制御装置56に接続されている。制御装置56は例えば汎用のパーソナルコンピュータ又は専用のコンピュータによって実現される。カラム接続装置12には、ニードル駆動機構44及びカラム選択バルブ46の動作制御を行なう制御部54が設けられている。制御部54はカラム接続装置12の専用のコンピュータである。圧力センサ42の検出信号は制御部54を介して制御装置56に取り込まれる。 The concentration feeding pump 2, the analysis feeding device 16, the autosampler 4, the high pressure valve 8 and the column exchange device 12 are connected to a common control device 56. The control device 56 is realized by, for example, a general-purpose personal computer or a dedicated computer. The column connection device 12 is provided with a control unit 54 that controls the operation of the needle drive mechanism 44 and the column selection valve 46. The control unit 54 is a computer dedicated to the column connection device 12. The detection signal of the pressure sensor 42 is taken into the control device 56 via the control unit 54.
 制御装置56は、分析動作管理部58、圧力状態判定部60及びしきい値保持部62を備えている。分析動作管理部58は、後述する一連の分析動作が実行されるように濃縮用送液ポンプ2、分析用送液装置16、オートサンプラ4、高圧バルブ8及びカラム交換装置12の動作管理を行なうものである。圧力状態判定部60は、圧力センサ42の出力信号と予め設定されたしきい値との比較により、上側ニードル38がいずれかのトラップカラム32に接続されている際の配管40内の圧力が加圧状態か否かを判定するように構成されている。圧力状態判定部60が使用するしきい値は、例えば予め測定された大気圧に基づいて設定されたものである。設定されたしきい値は、しきい値保持部62に保持されている。圧力状態判定部60は、圧力センサ42の出力信号がしきい値を超えているときは、配管40内が加圧状態であると判定する。 The control device 56 includes an analysis operation management unit 58, a pressure state determination unit 60, and a threshold value holding unit 62. The analysis operation management unit 58 manages the operations of the concentration liquid delivery pump 2, the analysis liquid delivery device 16, the autosampler 4, the high-pressure valve 8, and the column exchange device 12 so that a series of analysis operations to be described later is executed. Is. The pressure state determination unit 60 applies the pressure in the pipe 40 when the upper needle 38 is connected to one of the trap columns 32 by comparing the output signal of the pressure sensor 42 with a preset threshold value. It is comprised so that it may determine whether it is a pressure state. The threshold value used by the pressure state determination unit 60 is set based on, for example, the atmospheric pressure measured in advance. The set threshold value is held in the threshold value holding unit 62. When the output signal of the pressure sensor 42 exceeds the threshold value, the pressure state determination unit 60 determines that the inside of the pipe 40 is in a pressurized state.
 次に、この実施例の動作の一例を図4のフローチャートを図2、図6及び図7とともに用いて説明する。 Next, an example of the operation of this embodiment will be described with reference to the flowchart of FIG. 4 together with FIG. 2, FIG. 6 and FIG.
 まず、カラム接続装置12において、使用するトラップカラム32に上側ニードル38を接続し、高圧バルブ8を濃縮モードにして、濃縮用移動相の送液を開始する(図6参照。)。そして、オートサンプラ4により試料を濃縮用移動相送液流路6に注入し、試料をトラップカラム32に捕捉する。 First, in the column connection device 12, the upper needle 38 is connected to the trap column 32 to be used, the high-pressure valve 8 is set to the concentration mode, and the feeding of the concentration mobile phase is started (see FIG. 6). Then, the sample is injected into the concentration mobile phase liquid flow path 6 by the autosampler 4, and the sample is captured by the trap column 32.
 トラップカラム32に試料を捕捉した後、高圧バルブ8を試料導入モードにし、分析用移動相送液装置16による分析用移動相の送液を行ない、試料を分析流路20に導入する(図7参照。)。これにより、トラップカラム32に捕捉された試料が分析カラム22に導かれ、成分ごとに分離される。分析カラム22で分離された試料成分は検出器24によって検出される。 After the sample is captured in the trap column 32, the high pressure valve 8 is set to the sample introduction mode, the analysis mobile phase is fed by the analysis mobile phase feeding device 16, and the sample is introduced into the analysis channel 20 (FIG. 7). reference.). As a result, the sample captured by the trap column 32 is guided to the analysis column 22 and separated for each component. Sample components separated by the analysis column 22 are detected by a detector 24.
 試料の分析が終了した後、分析用移動相送液装置16による移動相の送液を停止する。移動相の送液を停止した直後は、トラップカラム32や上側ニードル38、配管40内が残存圧力によって加圧状態となっている。この状態で、上側ニードル38をトラップカラム32から離脱させると、上側ニードル38の先端やトラップカラム32上端部のニードルシール構造36の開口から液が噴出し、装置内が汚染されるなどの問題がある。 After the analysis of the sample is completed, the mobile phase liquid feeding by the analysis mobile phase liquid feeding device 16 is stopped. Immediately after stopping the mobile phase liquid feeding, the trap column 32, the upper needle 38, and the inside of the pipe 40 are pressurized by the residual pressure. If the upper needle 38 is detached from the trap column 32 in this state, there is a problem that liquid is ejected from the tip of the upper needle 38 or the opening of the needle seal structure 36 at the upper end of the trap column 32 and the inside of the apparatus is contaminated. is there.
 そのため、この実施例では、圧力センサ42によって配管40内の圧力を監視し、配管40内が加圧状態のときは上側ニードル38をトラップカラム32から離脱させないようになっている。配管40内の圧力が加圧状態か否かは、圧力センサ42の出力値と予め設定されたしきい値との比較により判定する。 Therefore, in this embodiment, the pressure in the pipe 40 is monitored by the pressure sensor 42 so that the upper needle 38 is not detached from the trap column 32 when the inside of the pipe 40 is in a pressurized state. Whether or not the pressure in the pipe 40 is in a pressurized state is determined by comparing the output value of the pressure sensor 42 with a preset threshold value.
 図5は、圧力センサ40により検出される配管40内の圧力の時間変化の一例を示すグラフである。このグラフに示されているように、移動相の送液が停止された直後の配管40内には残存圧力が存在し、時間の経過とともにその残存圧力が低下していく。そして、圧力センサ40の出力値が大気圧を基準に設定されたしきい値(例えば大気圧+10%)以下となったときに上側ニードル38をトラップカラム32から離脱させることで、配管40内が大気圧にまで低下する。これにより、ニードル38の先端やトラップカラム32からの液の噴出を防止できる。 FIG. 5 is a graph showing an example of the time change of the pressure in the pipe 40 detected by the pressure sensor 40. As shown in this graph, there is a residual pressure in the pipe 40 immediately after the mobile phase liquid feeding is stopped, and the residual pressure decreases with time. Then, when the output value of the pressure sensor 40 becomes equal to or less than a threshold value (for example, atmospheric pressure + 10%) set based on the atmospheric pressure, the upper needle 38 is separated from the trap column 32, whereby the inside of the pipe 40 is It drops to atmospheric pressure. Thereby, the ejection of the liquid from the tip of the needle 38 or the trap column 32 can be prevented.
 上記実施例は、自動配管接続装置を濃縮液体クロマトグラフに適用したものであるが、本発明の自動配管接続装置は、超臨界流体抽出装置における抽出容器を複数備え、使用する抽出容器をニードルシール構造による配管接続によって自動的に変更する装置として適用することもできる。また、液体クロマトグラフの試料の分離に用いる分析カラムを複数備え、ニードルシール構造による配管接続によって使用する分析カラムの変更を行なう装置としても適用することができる。 In the above embodiment, the automatic pipe connection device is applied to a concentrated liquid chromatograph. However, the automatic pipe connection device of the present invention includes a plurality of extraction containers in a supercritical fluid extraction apparatus, and the extraction container to be used is needle-sealed. It can also be applied as a device that automatically changes depending on the pipe connection by structure. Further, the present invention can also be applied as a device that includes a plurality of analysis columns used for separating a sample of a liquid chromatograph and that changes the analysis column used by pipe connection with a needle seal structure.
   2   濃縮用移動相送液ポンプ
   4   オートサンプラ
   6   濃縮用移動相送液流路
   8   高圧バルブ
  10   カラム入口流路
  12   カラム接続装置(自動配管接続装置)
  14   カラム出口流路
  16   分析用移動相送液装置
  18   分析用移動相送液流路
  20   分析流路
  22   分析カラム
  24   検出器
  28   下側ニードル
  30   支持テーブル
  31   ラック
  32   トラップカラム(容器部材)
  34,36   ニードルシール構造
  38   上側ニードル
  39   入口部
  40   配管(流体送液配管)
  42   圧力センサ
  44   ニードル駆動機構
  46   カラム選択バルブ
  50   出口流路
  52   出口部
  54   制御部
  56   制御装置
  58   分析動作管理部
  60   圧力状態判定部
  62   しきい値保持部
2 Mobile phase feeding pump for concentration 4 Autosampler 6 Mobile phase feeding flow path for concentration 8 High pressure valve 10 Column inlet flow path 12 Column connection device (automatic pipe connection device)
14 Column outlet flow path 16 Analytical mobile phase liquid feeding device 18 Analytical mobile phase liquid flow path 20 Analytical flow path 22 Analysis column 24 Detector 28 Lower needle 30 Support table 31 Rack 32 Trap column (container member)
34, 36 Needle seal structure 38 Upper needle 39 Inlet part 40 Piping (fluid feed pipe)
42 Pressure sensor 44 Needle drive mechanism 46 Column selection valve 50 Outlet flow path 52 Outlet part 54 Control part 56 Control device 58 Analysis operation management part 60 Pressure state determination part 62 Threshold holding part

Claims (3)

  1.  流体を送液するための流体送液配管と、
     前記流体送液配管の一端部に設けられたニードルと、
     前記ニードルを挿入させることによって前記流体送液配管と内部空間との間を液密を保って連通させるニードルシール構造を一端に有し、前記内部空間において流体を通液させる容器部材と、
     前記容器部材に対する前記ニードルの接続又は離脱を行なうために、前記ニードルを移動させるニードル駆動機構と、
     前記流体送液配管内の圧力を検出する圧力センサと、
     前記圧力センサの検出値に基づいて前記流体送液配管内が加圧状態か否かを判定する圧力状態判定部と、
     前記ニードル駆動機構の動作を制御し、前記圧力状態判定部の判定結果に基づき、前記流体送液配管内が加圧状態のときは前記ニードルを前記容器部材から離脱させないように構成された制御部と、を備えた自動配管接続装置。
    A fluid delivery pipe for delivering fluid;
    A needle provided at one end of the fluid feed pipe;
    A container member that has a needle seal structure at one end to allow fluid communication between the fluid feeding pipe and the internal space by inserting the needle and maintaining fluid tightness;
    A needle drive mechanism for moving the needle to connect or disconnect the needle to or from the container member;
    A pressure sensor for detecting the pressure in the fluid feed pipe;
    A pressure state determination unit that determines whether or not the inside of the fluid feeding pipe is in a pressurized state based on a detection value of the pressure sensor;
    A control unit configured to control the operation of the needle driving mechanism and based on the determination result of the pressure state determination unit, so that the needle is not detached from the container member when the fluid feeding pipe is in a pressurized state. And an automatic pipe connecting device.
  2.  前記圧力状態判定部は、前記圧力センサの出力信号が予め設定されたしきい値を超えているときは前記流体送液配管内が加圧状態であると判定するように構成されている請求項1に記載の自動配管接続装置。 The pressure state determination unit is configured to determine that the fluid feeding pipe is in a pressurized state when an output signal of the pressure sensor exceeds a preset threshold value. 1. The automatic pipe connection device according to 1.
  3.  前記容器部材を複数備え、
     前記制御部は、複数の前記容器部材のうちから選択された一つの前記容器部材に前記ニードルを接続するように構成されている請求項1又は2に記載の自動配管接続装置。
    A plurality of the container members;
    The automatic pipe connection device according to claim 1 or 2, wherein the control unit is configured to connect the needle to one container member selected from the plurality of container members.
PCT/JP2015/071262 2015-07-27 2015-07-27 Automatic tube connection device WO2017017765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017530502A JP6516010B2 (en) 2015-07-27 2015-07-27 Automatic piping connection device
PCT/JP2015/071262 WO2017017765A1 (en) 2015-07-27 2015-07-27 Automatic tube connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071262 WO2017017765A1 (en) 2015-07-27 2015-07-27 Automatic tube connection device

Publications (1)

Publication Number Publication Date
WO2017017765A1 true WO2017017765A1 (en) 2017-02-02

Family

ID=57884350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071262 WO2017017765A1 (en) 2015-07-27 2015-07-27 Automatic tube connection device

Country Status (2)

Country Link
JP (1) JP6516010B2 (en)
WO (1) WO2017017765A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173214A1 (en) * 2017-03-23 2018-09-27 株式会社日立ハイテクノロジーズ Separation column housing holder, separation column replacement device, and replacement method
WO2018189966A1 (en) * 2017-04-11 2018-10-18 株式会社島津製作所 Component extraction device
WO2019006710A1 (en) * 2017-07-05 2019-01-10 深圳迈瑞生物医疗电子股份有限公司 Liquid phase analysis device, and analysis method for liquid phase analysis device
JPWO2021171508A1 (en) * 2020-02-27 2021-09-02
JP7058402B1 (en) 2021-02-26 2022-04-22 株式会社プレッパーズ Liquid chromatograph nozzle and liquid chromatograph
JP7336104B2 (en) 2021-02-26 2023-08-31 株式会社プレッパーズ column unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278438A (en) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd Method for automatically isolating/refining nucleic acid and system therefor
JP2014160055A (en) * 2013-01-22 2014-09-04 Shimadzu Corp Supercritical fluid component extraction device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880269B2 (en) * 2012-05-15 2016-03-08 株式会社島津製作所 Preparative purification equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278438A (en) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd Method for automatically isolating/refining nucleic acid and system therefor
JP2014160055A (en) * 2013-01-22 2014-09-04 Shimadzu Corp Supercritical fluid component extraction device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173214A1 (en) * 2017-03-23 2019-11-07 株式会社日立ハイテクノロジーズ Separation column storage holder, separation column exchange apparatus and exchange method
WO2018173214A1 (en) * 2017-03-23 2018-09-27 株式会社日立ハイテクノロジーズ Separation column housing holder, separation column replacement device, and replacement method
WO2018189966A1 (en) * 2017-04-11 2018-10-18 株式会社島津製作所 Component extraction device
JPWO2018189966A1 (en) * 2017-04-11 2020-02-20 株式会社島津製作所 Component extraction device
US20200147515A1 (en) * 2017-04-11 2020-05-14 Shimadzu Corporation Component extraction apparatus
US11565193B2 (en) 2017-04-11 2023-01-31 Shimadzu Corporation Component extraction apparatus
US11204338B2 (en) 2017-07-05 2021-12-21 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Liquid phase analysis device and analysis method for liquid phase analysis device
WO2019006710A1 (en) * 2017-07-05 2019-01-10 深圳迈瑞生物医疗电子股份有限公司 Liquid phase analysis device, and analysis method for liquid phase analysis device
JPWO2021171508A1 (en) * 2020-02-27 2021-09-02
WO2021171508A1 (en) * 2020-02-27 2021-09-02 株式会社島津製作所 Column accommodation device and liquid chromatograph
JP7347645B2 (en) 2020-02-27 2023-09-20 株式会社島津製作所 Column housing equipment and liquid chromatograph
JP7058402B1 (en) 2021-02-26 2022-04-22 株式会社プレッパーズ Liquid chromatograph nozzle and liquid chromatograph
JP2022131302A (en) * 2021-02-26 2022-09-07 株式会社プレッパーズ Nozzle for liquid chromatograph and liquid chromatograph
JP7336104B2 (en) 2021-02-26 2023-08-31 株式会社プレッパーズ column unit

Also Published As

Publication number Publication date
JP6516010B2 (en) 2019-05-22
JPWO2017017765A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2017017765A1 (en) Automatic tube connection device
JP5152406B2 (en) Liquid chromatograph
US11867669B2 (en) Sampler for liquid chromatography
JP6409971B2 (en) Autosampler and liquid chromatograph
US11009488B2 (en) Fluid chromatograph
CN109154291B (en) switching valve, binary pump, and liquid chromatograph equipped with the binary pump
US10302604B2 (en) Solvent delivery device and liquid chromatograph
US20120096932A1 (en) Automated Sample Injection Apparatus, Multiport Valve, and Methods of Making and Using the Same
JP6398867B2 (en) Autosampler
JP2011089955A (en) Liquid sample analysis device and liquid sample introduction device
JP6341081B2 (en) Supercritical fluid separator
JP4077674B2 (en) Gradient liquid feeding device and liquid feeding method for nano / micro liquid chromatograph
JP2018520356A5 (en)
JP2014106213A (en) Liquid chromatograph auto-sampler
JP4597841B2 (en) Feed pump
JP7307267B2 (en) LIQUID CHROMATOGRAPH DEVICE AND BUBBLE REMOVAL METHOD FOR LIQUID CHROMATOGRAPH
JP6365323B2 (en) Auto sampler
JP6672781B2 (en) Flow path mechanism and liquid chromatograph provided with the same
US11465074B2 (en) Degassing device
JP2016205944A (en) Auto sampler
JPWO2021187172A5 (en)
JP6489129B2 (en) Method and sample recovery mechanism for sample flowing out from supercritical fluid device
US11946913B2 (en) Operation of an injector of a sample separation device
US20200197831A1 (en) Quantitative online co2-based extraction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899599

Country of ref document: EP

Kind code of ref document: A1