WO2017016476A1 - 一种信号传输方法及装置 - Google Patents

一种信号传输方法及装置 Download PDF

Info

Publication number
WO2017016476A1
WO2017016476A1 PCT/CN2016/091837 CN2016091837W WO2017016476A1 WO 2017016476 A1 WO2017016476 A1 WO 2017016476A1 CN 2016091837 W CN2016091837 W CN 2016091837W WO 2017016476 A1 WO2017016476 A1 WO 2017016476A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
lte
processing unit
power splitter
unit
Prior art date
Application number
PCT/CN2016/091837
Other languages
English (en)
French (fr)
Inventor
阳建军
孙杰
肖峻峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16829841.2A priority Critical patent/EP3319357B1/en
Priority to JP2018503546A priority patent/JP6642891B2/ja
Priority to KR1020187004226A priority patent/KR102058975B1/ko
Publication of WO2017016476A1 publication Critical patent/WO2017016476A1/zh
Priority to US15/880,773 priority patent/US10887772B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal transmission method and apparatus.
  • Wi-Fi Wireless-Fidelity
  • cellular technology With the rapid development of wireless communication technology, Wi-Fi (Wireless-Fidelity) technology and cellular technology have become the two most successful wireless technologies.
  • Wi-Fi technology operators can use the free 5GHZ unlicensed band to deploy wireless local area networks (WLANs) to offload cellular networks to reduce the communication pressure on cellular networks.
  • WLANs wireless local area networks
  • LTE-U Long Term Evolution
  • LTE-U Long Term Evolution
  • Wi-Fi technology and LTE-U technology will jointly use the 5GHZ unlicensed band. It is generally believed that Wi-Fi technology and LTE-U technology are mutually competitive solutions.
  • an LTE-U base station supporting LTE-U technology and a Wi-Fi access point (AP, Access Point) supporting Wi-Fi technology respectively provide wireless communication services for terminals supporting the corresponding technologies.
  • the embodiment of the invention discloses a signal transmission method and device, which is beneficial to the compatibility of the LTE-U technology and the Wi-Fi technology.
  • a first aspect of the embodiments of the present invention discloses a signal transmission apparatus, where the apparatus includes an unlicensed frequency band long-term evolution LTE-U processing unit, a wireless fidelity Wi-Fi processing unit, and an antenna unit, and the apparatus further includes a coupling device.
  • the coupling device is respectively connected to the LTE-U processing unit, the Wi-Fi a processing unit and the antenna unit, wherein:
  • the coupling device is configured to divide the air interface signal received by the antenna unit into a first path signal and a second path signal, and send the first path signal to the LTE-U processing unit and The second way signal is sent to the Wi-Fi processing unit;
  • the coupling device is further configured to receive an LTE-U signal sent by the LTE-U processing unit, and divide the LTE-U signal into a first LTE-U signal and a second LTE-U signal, where Transmitting, by the antenna unit, the first LTE-U signal to the antenna unit, so that the antenna unit transmits the first LTE-U signal, and sending the second LTE-U signal to the Wi- a Fi processing unit to cause the Wi-Fi processing unit not to transmit a Wi-Fi signal;
  • the coupling device is further configured to receive a Wi-Fi signal sent by the Wi-Fi processing unit, and divide the Wi-Fi signal into a first Wi-Fi signal and a second Wi-Fi signal, Transmitting the first Wi-Fi signal to the antenna unit to cause the antenna unit to transmit the first Wi-Fi signal, and transmitting the second Wi-Fi signal to the LTE-
  • the U processing unit is such that the LTE-U processing unit does not transmit the LTE-U signal.
  • the coupling device includes a first power splitter, a second power splitter, a third power splitter, and a fourth power splitter, where:
  • a first end of the first power splitter is connected to a first end of the second power splitter, and a second end of the first power splitter is connected to an output end of the LTE-U processing unit, where a third end of a power splitter is connected to an output end of the Wi-Fi processing unit, a second end of the second power splitter is connected to an input end of the antenna unit, and a third end of the second power splitter Connecting a third end of the third power splitter, a second end of the third power splitter is connected to an output end of the antenna unit, and a first end of the third power splitter is connected to the fourth end a first end of the power splitter, a second end of the fourth power splitter is connected to an input end of the LTE-U processing unit, and a third end of the fourth power splitter is connected to the Wi-Fi processing unit Input.
  • the coupling device includes a first power splitter, a second power splitter, a first coupler, and a first Two couplers, where:
  • a first end of the first power splitter is connected to a first end of the first coupler, and a second end of the first power splitter is connected to an output end of the LTE-U processing unit, the first end a third end of the power splitter is connected to an output end of the Wi-Fi processing unit, and a second end of the first coupler is connected to the output of the antenna unit
  • the third end of the first coupler is connected to the third end of the second coupler, and the first end of the second coupler is connected to the output end of the antenna unit, the second coupler
  • the second end is connected to the first end of the second power splitter, the second end of the second power splitter is connected to the input end of the LTE-U processing unit, and the second end of the second power splitter is The end is connected to the input of the Wi-Fi processing unit.
  • the coupling device includes a first power splitter, a second power splitter, and a third power splitter. a fourth power splitter, a fifth power splitter, and a sixth power splitter, wherein:
  • a first end of the first power splitter is connected to an output end of the Wi-Fi processing unit, and a second end of the first power splitter is connected to a second end of the second power splitter, the first a first end of the second power splitter is connected to the input end of the antenna unit, a third end of the first power splitter is connected to a third end of the fourth power splitter, and the fourth power splitter is The second end is connected to the second end of the third power splitter, the first end of the third power splitter is connected to the output end of the antenna unit, and the first end of the fourth power splitter is connected to the LTE An input end of the U processing unit, a first end of the sixth power splitter is connected to an output end of the LTE-U processing unit, and a third end of the sixth power splitter is connected to the second power splitter The third end of the sixth power splitter is connected to the second end of the fifth power splitter, and the third end of the fifth power splitter is connected to the third power splitter At the three ends, the
  • the coupling device further includes an attenuator, where:
  • An input end of the attenuator is connected to a third end of the second power splitter, and an output end of the attenuator is connected to a third end of the third power splitter.
  • the coupling device further includes an attenuator, where:
  • An input end of the attenuator is coupled to a third end of the first coupler, and an output end of the attenuator is coupled to a third end of the second coupler.
  • the coupling device further includes an attenuator, where:
  • the coupling device further includes a first attenuator and a second attenuator, wherein:
  • An input end of the first attenuator is connected to a third end of the first power splitter, the first attenuator The output end is connected to the third end of the fourth power splitter, the input end of the second attenuator is connected to the second end of the sixth power splitter, and the output end of the second attenuator is connected to the The second end of the fifth power splitter.
  • a second aspect of the embodiments of the present invention discloses another signal transmission apparatus, where the apparatus includes an LTE-U processing unit, a Wi-Fi processing unit, and an antenna unit, and the apparatus further includes a coupling device, and the coupling device is respectively connected to the An LTE-U processing unit, the Wi-Fi processing unit, and the antenna unit, wherein:
  • the coupling device is configured to divide the air interface signal received by the antenna unit into a first path signal and a second path signal, and send the first path signal to the LTE-U processing unit and The second way signal is sent to the Wi-Fi processing unit;
  • the coupling device is further configured to receive an LTE-U signal sent by the LTE-U processing unit, and send the LTE-U signal to the antenna unit, so that the antenna unit sends the LTE-U signal Launched
  • the coupling device is further configured to receive a Wi-Fi signal sent by the Wi-Fi processing unit, and send the Wi-Fi signal to the antenna unit to enable the antenna unit to transmit the Wi-Fi signal Launched
  • the LTE-U processing unit is configured to: when the LTE-U signal needs to be sent to the coupling device, send a first prompt message to the Wi-Fi processing unit, so that the Wi-Fi processing unit does not send Wi-Fi signal;
  • the Wi-Fi processing unit configured to: when the Wi-Fi signal needs to be sent to the coupling device, send a second prompt message to the LTE-U processing unit, so that the LTE-U processing unit does not send LTE-U signal.
  • the coupling device includes a first power splitter and a second power splitter, where:
  • a first end of the first power splitter is connected to an input end of the antenna unit, and a second end of the first power splitter is connected to an output end of the LTE-U processing unit, the first power splitter
  • the third end is connected to the output end of the Wi-Fi processing unit
  • the first end of the second power splitter is connected to the output end of the antenna unit
  • the second end of the second power splitter is connected to the An input end of the LTE-U processing unit
  • the third end of the second power splitter is connected to an input end of the Wi-Fi processing unit.
  • a third aspect of the embodiments of the present invention discloses another signal transmission apparatus, where the apparatus includes LTE-U a processing unit, a Wi-Fi processing unit, and an antenna unit, wherein the apparatus further includes a coupling device and a control unit, wherein the coupling device is respectively connected to the LTE-U processing unit, the Wi-Fi processing unit, and the a control unit and the antenna unit, the control unit is respectively connected to the LTE-U processing unit, the coupling device, and the Wi-Fi processing unit, wherein:
  • the coupling device is configured to divide the air interface signal received by the antenna unit into a first path signal, a second path signal, and a third path signal, and send the first path signal to the LTE-U process Unit, transmitting the second road signal to the Wi-Fi processing unit and transmitting the third road signal to the control unit;
  • the control unit is configured to: when the channel is idle, to compete for the channel, and when contending to the channel, control the LTE-U processing unit to send an LTE-U signal and control the Wi-Fi processing unit not to send a Wi-Fi signal, and controlling the Wi-Fi processing unit to transmit a Wi-Fi signal and controlling the LTE-U processing unit not to transmit an LTE-U signal;
  • the coupling device is further configured to receive an LTE-U signal sent by the LTE-U processing unit, and send the LTE-U signal to the antenna unit, so that the antenna unit sends the LTE-U signal Launched
  • the coupling device is further configured to receive a Wi-Fi signal sent by the Wi-Fi processing unit, and send the Wi-Fi signal to the antenna unit to enable the antenna unit to transmit the Wi-Fi signal Launched.
  • the coupling device includes a first power splitter and a second power splitter, where:
  • a first end of the first power splitter is connected to an input end of the antenna unit, and a second end of the first power splitter is connected to an output end of the LTE-U processing unit, the first power splitter
  • the third end is connected to the output end of the Wi-Fi processing unit
  • the first end of the second power splitter is connected to the output end of the antenna unit
  • the second end of the second power splitter is connected to the An input end of the LTE-U processing unit
  • a third end of the second power splitter is connected to an input end of the Wi-Fi processing unit
  • a fourth end of the second power splitter is connected to an input of the control unit end.
  • a fourth aspect of the embodiments of the present invention discloses a signal transmission method, where the method is applied to a signal transmission device, the device includes an antenna unit, and the method includes:
  • the LTE-U signal and the Wi-Fi signal are transmitted by the antenna unit by means of time division multiplexing
  • the method further includes:
  • the air interface signal is divided into a first path signal and a second path signal.
  • the device further includes a coupling device
  • the LTE-U signal When the LTE-U signal needs to be transmitted, the LTE-U signal is divided into a first LTE-U signal and a second LTE-U signal by the coupling device, and the first is performed by the antenna unit
  • the LTE-U signal is transmitted, and the second LTE-U signal is used to indicate that the Wi-Fi signal is not transmitted;
  • the Wi-Fi signal When the Wi-Fi signal needs to be transmitted, the Wi-Fi signal is divided into a first Wi-Fi signal and a second Wi-Fi signal by the coupling device, and the first is performed by the antenna unit The Wi-Fi signal is transmitted, and the second Wi-Fi signal is used to indicate that the LTE-U signal is not transmitted.
  • the LTE-U signal When the LTE-U signal needs to be transmitted, the LTE-U signal is sent to the antenna unit by the coupling device, and the first prompt message is sent to the Wi-Fi processing unit by the LTE-U processing unit Transmitting, by the antenna unit, the LTE-U signal, where the first prompt message is used to indicate that the Wi-Fi processing unit does not send a Wi-Fi signal to the antenna unit;
  • the apparatus further includes an LTE-U processing unit, a Wi-Fi processing unit, and a control unit;
  • the LTE-U processing unit is controlled by the control unit to send the LTE-U signal to the antenna unit and control the Wi-Fi processing unit not to the antenna unit Transmitting a Wi-Fi signal, and transmitting the LTE-U signal through the antenna unit;
  • the Wi-Fi processing unit is controlled by the control unit to send the Wi-Fi signal to the antenna unit and control the LTE-U processing unit not to the antenna unit
  • the LTE-U signal is transmitted, and the Wi-Fi signal is transmitted through the antenna unit.
  • the first possible implementation manner of the fourth aspect of the embodiment of the present invention when the channel is idle, the manner of time division multiplexing is used to transmit an LTE-U signal by the antenna unit. And before the Wi-Fi signal, the method further includes:
  • the operation of transmitting the LTE-U signal and the Wi-Fi signal by the antenna unit in a manner of time division multiplexing is performed when competing to the channel.
  • the signal transmission apparatus includes an LTE-U processing unit, a Wi-Fi processing unit, an antenna unit, and a coupling device, wherein the antenna unit is configured to receive an air interface signal; and the coupling device is configured to divide the air interface signal into the first And the second signal, and sending the first signal to the LTE-U processing unit and the second signal to the Wi-Fi processing unit; the coupling device is further configured to receive the LTE transmitted by the LTE-U processing unit a U signal, and dividing the LTE-U signal into a first LTE-U signal and a second LTE-U signal, and transmitting the first LTE-U signal to the antenna unit to enable the antenna unit to be the first LTE- The U signal is transmitted, and the second LTE-U signal is sent to the Wi-Fi processing unit to enable the Wi-Fi processing unit not to transmit the Wi-Fi signal; the coupling device is also configured to receive the Wi-Fi sent by the Wi-Fi processing unit.
  • the embodiment of the present invention can provide a signal transmission device that is easy to deploy, and realizes compatibility between the LTE-U technology and the Wi-Fi technology by means of time division multiplexing, and has small volume and low deployment cost.
  • FIG. 1 is a schematic diagram of a scenario in which a LTE-U base station and a Wi-Fi access point provide services for a corresponding terminal;
  • FIG. 2 is a schematic diagram of a scenario in which a base station supporting both LTE-U technology and Wi-Fi technology provides services for a corresponding terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart diagram of a signal transmission method according to an embodiment of the present invention.
  • the embodiment of the invention discloses a signal transmission method and device, which can not only support LTE-U technology and Wi-Fi technology at the same time, but also has small volume and low deployment cost. The details are described below separately.
  • FIG. 2 is a schematic diagram of a scenario in which a base station supporting both LTE-U technology and Wi-Fi technology provides services for a corresponding terminal according to an embodiment of the present invention. As shown in Figure 2, it supports both LTE-U.
  • the base station of the technology supporting the Wi-Fi technology is provided with a signal transmission apparatus including the LTE-U processing unit, the Wi-Fi processing unit, the antenna unit, and the coupling device disclosed in the embodiment of the present invention, and the LTE-U technology is supported.
  • the base station supporting the Wi-Fi technology may provide services for the LTE-U terminal, the Wi-Fi terminal, and the LTE-U&Wi-Fi terminal.
  • the LTE-U&Wi-Fi terminal may also be provided with the disclosure of the embodiment of the present invention, including LTE-U processing unit, Wi-Fi processing unit, antenna unit, and signal transmission device of the coupling device.
  • FIG. 3 is a schematic structural diagram of a signal transmission apparatus according to an embodiment of the present invention.
  • the signal transmission apparatus may include an LTE-U processing unit, a Wi-Fi processing unit, an antenna unit, and a coupling device, and the coupling device is respectively connected to the LTE-U processing unit, the Wi-Fi processing unit, and the antenna unit. among them:
  • the antenna unit is further configured to receive a signal (LTE-U signal or Wi-Fi signal) transmitted by the coupling device and transmit the signal.
  • a signal LTE-U signal or Wi-Fi signal
  • the coupling device is further configured to receive the LTE-U signal sent by the LTE-U processing unit, and divide the LTE-U signal into a first LTE-U signal and a second LTE-U signal, where the first LTE- The U signal is sent to the antenna unit to cause the antenna unit to transmit the first LTE-U signal, and the second LTE-U signal is sent to the Wi-Fi processing unit to enable the Wi-Fi processing unit not to transmit Wi-Fi signal.
  • the coupling device is further configured to receive a Wi-Fi signal sent by the Wi-Fi processing unit, and divide the Wi-Fi signal into a first Wi-Fi signal and a second Wi-Fi signal, where the first channel Wi- The Fi signal is sent to the antenna unit to cause the antenna unit to transmit the first Wi-Fi signal, and the second Wi-Fi signal is sent to the LTE-U processing unit to prevent the LTE-U processing unit from transmitting the LTE-U signal.
  • a random time is generated and timing is started. If the first channel is still an idle channel during the period of time to the random time, then the first channel is contending.
  • the Wi-Fi processing unit is configured to receive the second path signal, and determine whether the signal strength value of the second path signal is less than or equal to a second preset signal strength threshold. When the determination result is yes, determine that the second channel is an idle channel. Wherein the second channel is a channel for transmitting a Wi-Fi signal, and when the Wi-Fi signal needs to be transmitted, the second channel is contending, and when competing to the second channel, the Wi-Fi signal is sent to the coupling device.
  • the specific manner in which the Wi-Fi processing unit competes for the second channel is:
  • a random time is generated and the timing is started. If the second channel is still an idle channel during the period of time to the random time, the second channel is contending.
  • the signal transmission device comprises an LTE-U processing unit, a Wi-Fi processing unit, an antenna unit and a coupling device, which is easily deployed in a base station or a mobile communication device, and when the LTE-U processing unit transmits the LTE-U signal
  • the Wi-Fi processing unit does not transmit the Wi-Fi signal.
  • the Wi-Fi processing unit transmits the Wi-Fi signal
  • the LTE-U processing unit does not transmit the LTE-U signal, and implements the LTE-U technology in a time division multiplexing manner. It is compatible with Wi-Fi technology and can save a set of antenna units, which is small in size and low in deployment cost.
  • the antenna unit may include a power amplifier, a low noise amplifier, a radio frequency switch, and an antenna, where:
  • the foregoing LTE-U processing unit may include an LTE-U baseband processing unit and LTE-U radio frequency processing unit, where:
  • the LTE-U radio frequency processing unit is configured to receive the first radio frequency signal sent by the coupling device, perform down-conversion processing on the first radio frequency signal to obtain the first baseband signal, and send the first baseband signal to the LTE-U baseband a processing unit; the LTE-U baseband processing unit is configured to receive the first baseband signal, and determine whether the signal strength value of the first baseband signal is less than or equal to the first preset signal strength threshold, and if yes, determine the first channel
  • the LTE-U baseband processing unit is further configured to: when the LTE-U signal needs to be transmitted, compete for the first channel, and after competing to the first channel, encode and modulate the LTE-U signal into an LTE-U baseband signal and
  • the LTE-U radio frequency processing unit is further configured to perform up-conversion processing on the LTE-U baseband signal to obtain the LTE-U radio frequency signal and send the signal to the coupling device.
  • the Wi-Fi processing unit may include a Wi-Fi baseband processing unit and a Wi-Fi radio processing unit, where:
  • the Wi-Fi RF processing unit is configured to receive the second RF signal sent by the coupling device, perform a down conversion process on the second RF signal to obtain the second baseband signal, and send the second baseband signal to the Wi-Fi baseband.
  • a processing unit the Wi-Fi baseband processing unit is configured to receive the second baseband signal, and determine whether the signal strength value of the second baseband signal is less than or equal to the second preset signal strength threshold, and if yes, determine the second channel The idle channel; the Wi-Fi baseband processing unit is further configured to compete for the second channel when the Wi-Fi signal needs to be transmitted, and encode the Wi-Fi signal into a Wi-Fi baseband signal after competing for the second channel and
  • the Wi-Fi radio processing unit is further configured to perform up-conversion processing on the Wi-Fi baseband signal to obtain the Wi-Fi radio frequency signal and send the signal to the coupling device.
  • the foregoing coupling device may include a first power splitter, a second power splitter, a third power splitter, a fourth power splitter, and an attenuator.
  • the structure of the signal transmission device may be As shown in FIG. 4, FIG. 4 is a schematic structural diagram of another signal transmission apparatus according to an embodiment of the present invention. among them:
  • the first end of the first power splitter is connected to the first end of the second power splitter, and the second end of the first power splitter is connected to the output end of the LTE-U processing unit (ie, the output end of the LTE-U radio frequency processing unit)
  • the third end of the first power splitter is connected to the output end of the Wi-Fi processing unit (ie, the output end of the Wi-Fi radio processing unit), and the second end of the second power splitter is connected to the input end of the antenna unit ( That is, the input end of the power amplifier), the third end of the second power splitter is connected to the input end of the attenuator, the output end of the attenuator is connected to the third end of the third power splitter, and the second end of the third power splitter Connect the output of the antenna unit (ie the low noise amplifier described above)
  • the first end of the third power splitter is connected to the first end of the fourth power splitter, and the second end of the fourth power splitter is connected to the input end of the LTE-U processing
  • the third power splitter is configured to convert the air interface RF signal from the low noise amplifier into the third RF signal; the fourth power splitter is configured to convert the third RF signal into the first RF signal and the second RF Signaling, and transmitting the first RF signal to the LTE-U RF processing unit, and transmitting the second RF signal to the Wi-Fi RF processing unit; the first power splitter is used to transmit the LTE to the LTE-U RF processing unit -U radio frequency signal is converted into a third LTE-U radio frequency signal; the second power splitter is used to convert the third LTE-U radio frequency signal into a fourth LTE-U radio frequency signal and sent to the foregoing power amplifier One LTE-U radio frequency signal; the attenuator is used to attenuate the signal strength of the fourth LTE-U radio frequency signal and transmit the fourth LTE-U radio frequency signal after the signal strength is attenuated to the third power splitter; The three-power splitter is also used to convert the fourth LTE-U radio frequency signal with
  • the second LTE-U radio frequency signal is sent to the Wi-Fi radio frequency processing unit; the first power splitter is further configured to convert the Wi-Fi radio frequency signal sent by the Wi-Fi radio processing unit into the third Wi-Fi radio frequency signal, The second power splitter is further configured to convert the third Wi-Fi radio frequency signal into a fourth Wi-Fi radio frequency signal and the first Wi-Fi radio frequency signal sent to the power amplifier; the attenuator can also be used The fourth Wi-Fi RF signal that attenuates the signal strength of the fourth Wi-Fi RF signal and attenuates the signal strength is sent to the third power splitter; the third power splitter can also be used to convert the signal strength The attenuated fourth Wi-Fi RF signal is converted into a fifth Wi-Fi RF signal; the fourth power splitter can also be used to convert the fifth Wi-Fi RF signal into the second Wi-Fi RF Signal and send the second Wi-Fi RF signal to the LTE-U RF processing unit.
  • the use of the first power splitter, the second power splitter, the third power splitter, the fourth power splitter, and the attenuator not only enables the signal transmission device to transmit the LTE-U signal and the Wi-Fi signal, but also saves A power amplifier, low noise amplifier, RF switch, and antenna are small in size and low in deployment cost, and the attenuator in Figure 4 prevents the Wi-Fi processing unit and the LTE-U processing unit from receiving each other's strong signal strength.
  • the value of the signal reduces interference and prevents the signal transmission device from being blocked or burned out.
  • the coupling device may include a first power splitter, a second power splitter, a first coupler, a second coupler, and an attenuator.
  • the signal transmission device may be configured as FIG. 5 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention. among them:
  • the first end of the first power splitter is connected to the first end of the first coupler, and the second end of the first power splitter is connected to the output end of the LTE-U processing unit (ie, the output end of the LTE-U radio frequency processing unit)
  • the third end of the first power splitter is connected to the output end of the Wi-Fi processing unit (ie, the output end of the Wi-Fi radio processing unit), and the second end of the first coupler is connected to the input end of the antenna unit (ie, the above
  • the input end of the power amplifier, the third end of the first coupler is connected to the input end of the attenuator, the output end of the attenuator is connected to the third end of the second coupler, and the first end of the second coupler is connected to the output of the antenna unit
  • the second end of the second coupler is connected to the first end of the second power splitter, and the second end of the second power splitter is connected to the input end of the LTE-U processing unit ( That is, the input end of the
  • the second coupler is configured to convert the air interface RF signal from the low noise amplifier into the third RF signal; the second power splitter is configured to convert the third RF signal into the first RF signal and the second RF signal And transmitting the first radio frequency signal to the LTE-U radio frequency processing unit, and transmitting the second radio frequency signal to the Wi-Fi radio frequency processing unit; the first power splitter is used to send the LTE-U radio frequency processing unit to the LTE- The U RF signal is converted into a third LTE-U radio frequency signal; the first coupler is configured to convert the third LTE-U radio frequency signal into a fourth LTE-U radio frequency signal and the first LTE to be sent to the power amplifier -U radio frequency signal; the attenuator is configured to attenuate the signal strength of the fourth LTE-U radio frequency signal and transmit the fourth LTE-U radio frequency signal after the signal strength is attenuated to the second coupler; the second coupler further It can be used to convert the fourth LTE-U radio frequency signal after the signal strength is
  • the use of the first power splitter, the second power splitter, the first coupler, the second coupler, and the attenuator not only enables the signal transmission device to transmit the LTE-U signal and the Wi-Fi signal, but also saves a set.
  • Power amplifiers, low noise amplifiers, RF switches, and antennas are small in size and low in deployment cost, and the attenuator in Figure 5 prevents the Wi-Fi processing unit and the LTE-U processing unit from receiving each other's strong signal strength values.
  • the signal reduces interference and prevents the signal transmission device from being blocked or burned out.
  • the foregoing coupling device may include a first power splitter, a second power splitter, a third power splitter, a fourth power splitter, a fifth power splitter, and a sixth power splitter.
  • the first attenuator and the second attenuator, at this time, the structure of the signal transmission device can be as shown in FIG. 6.
  • FIG. 6 is a schematic structural diagram of still another signal transmission device disclosed in the embodiment of the present invention. among them:
  • the first end of the first power splitter is connected to the output end of the Wi-Fi processing unit (ie, the output end of the Wi-Fi radio processing unit), and the second end of the first splitter is connected to the second end of the second splitter
  • the first end of the second power splitter is connected to the input end of the antenna unit (ie, the input end of the power amplifier), and the third end of the first power splitter is connected to the input end of the first attenuator, the first attenuator
  • the output end is connected to the third end of the fourth power splitter, the second end of the fourth power splitter is connected to the second end of the third power splitter, and the first end of the third power splitter is connected to the output end of the antenna unit (ie The output end of the low noise amplifier, the first end of the fourth power splitter is connected to the input end of the LTE-U processing unit (ie, the input end of the LTE-U radio frequency processing unit), and the first end of the sixth power splitter Connecting the output end of the LTE-
  • the third power splitter is configured to convert the air interface RF signal from the low noise amplifier into the third RF signal and the fourth RF signal; the fourth power splitter is configured to convert the third RF signal into the first The radio frequency signal is sent to the LTE-U radio frequency processing unit; the fifth power splitter is used to convert the fourth radio frequency signal into the second radio frequency signal and sent to the Wi-Fi radio frequency processing unit; the sixth power splitter is used to The LTE-U radio frequency signal sent by the LTE-U radio frequency processing unit is converted into a third LTE-U radio frequency signal and a fourth LTE-U radio frequency signal; and the second power splitter is used to convert the third LTE-U radio frequency signal into The first LTE-U radio frequency signal is sent to the power amplifier; the second attenuator is used to attenuate the signal strength of the fourth LTE-U radio frequency signal; and the fifth power splitter can also be used to attenuate the signal strength.
  • the fourth LTE-U radio frequency signal is converted into the second LTE-U radio frequency signal and sent to the Wi-Fi radio processing unit;
  • the first power splitter is used to convert the Wi-Fi radio frequency signal sent by the Wi-Fi radio processing unit
  • the second power splitter can also be used to convert the third Wi-Fi radio frequency signal into the first Wi-Fi radio frequency signal and send the same To the power amplifier;
  • the first attenuator is used for the fourth way Wi-Fi RF signal Attenuates signal strength; fourth power splitter may also be used for Wi-Fi RF signal into a fourth signal path after the second passage of strength degradation Wi-Fi RF signal and transmits the RF to the LTE-U processing unit.
  • the first attenuator and the second attenuator can prevent the Wi-Fi processing unit and the LTE-U processing unit from receiving signals of relatively strong intensity values of each other, reduce interference, and prevent the signal transmission device from being blocked or burned out.
  • FIG. 7 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • the signal transmission device may include an LTE-U processing unit, a Wi-Fi processing unit, an antenna unit, and a coupling device, and the coupling device is respectively connected to the LTE-U processing unit, the Wi-Fi processing unit, and the antenna unit, and the LTE-U processing unit is connected.
  • Wi-Fi processing unit where:
  • the antenna unit is configured to receive the air interface signal and send the air interface signal to the coupling device.
  • the antenna unit is further configured to receive a signal (LTE-U signal or Wi-Fi signal) transmitted by the coupling device and transmit the signal.
  • a signal LTE-U signal or Wi-Fi signal
  • the coupling device is further configured to receive the LTE-U signal sent by the LTE-U processing unit, and the LTE-U signal
  • the antenna unit is sent to the antenna unit to transmit the LTE-U signal.
  • the coupling device is further configured to receive the Wi-Fi signal sent by the Wi-Fi processing unit, and send the Wi-Fi signal to the antenna unit to cause the antenna unit to transmit the Wi-Fi signal.
  • the LTE-U processing unit is configured to send a first prompt message to the Wi-Fi processing unit when the LTE-U signal needs to be sent to the coupling device to cause the Wi-Fi processing unit not to transmit the Wi-Fi signal.
  • the Wi-Fi processing unit is configured to send a second prompt message to the LTE-U processing unit when the Wi-Fi signal needs to be sent to the coupling device, so that the LTE-U processing unit does not transmit the LTE-U signal.
  • the specific process of the LTE-U processing unit transmitting the LTE-U signal to the coupling device may be as follows:
  • the LTE-U processing unit receives the first path signal, and determines whether the signal strength value of the first path signal is less than or equal to the first preset signal strength threshold. When the determination result is yes, determining that the first channel is an idle channel, where The first channel is a channel for transmitting an LTE-U signal, and when the LTE-U signal needs to be transmitted, the first channel is contending, and when contending to the first channel, the LTE-U signal is sent to the coupling device.
  • the specific manner in which the LTE-U processing unit competes for the first channel may be:
  • a random time is generated and timing is started. If the first channel is still an idle channel during the period of time to the random time, then the first channel is contending.
  • the specific process of the Wi-Fi processing unit transmitting the Wi-Fi signal to the coupling device may be as follows:
  • the Wi-Fi processing unit receives the second path signal, and determines whether the signal strength value of the second path signal is less than or equal to the second preset signal strength threshold. When the determination result is yes, determining that the second channel is an idle channel, where The second channel is a channel for transmitting a Wi-Fi signal, and when the Wi-Fi signal needs to be transmitted, competes for the second channel, and when competing for the second channel, transmits a Wi-Fi signal to the coupling device.
  • the specific manner in which the Wi-Fi processing unit competes for the second channel may be:
  • a random time is generated and the timing is started. If the second channel is still an idle channel during the period of time to the random time, the second channel is contending.
  • the signal transmission device comprises an LTE-U processing unit, a Wi-Fi processing unit, an antenna unit and a coupling device, which is easily deployed in a base station or a mobile communication device, and is at the LTE-U Notifying the Wi-Fi processing unit when the LTE-U signal is transmitted, so that the Wi-Fi processing unit does not transmit the Wi-Fi signal, and notifying the LTE-U processing unit when the Wi-Fi processing unit transmits the Wi-Fi signal, so that The LTE-U processing unit does not transmit the LTE-U signal, and implements the compatibility of the LTE-U technology and the Wi-Fi technology in a time division multiplexing manner, and can save a set of antenna units, is small in size, and has low deployment cost.
  • the antenna unit may include a power amplifier, a low noise amplifier, a radio frequency switch, and an antenna, where:
  • the antenna is configured to receive the air interface RF signal, and send the air interface RF signal to the low noise amplifier when the RF switch is in the receiving mode; the low noise amplifier is used to amplify the received air interface RF signal and send the amplified air interface RF signal to the coupling
  • the device is configured to cause the coupling device to divide the amplified air interface RF signal into a first RF signal and a second RF signal; the power amplifier is configured to receive the signal sent by the coupling device and amplify the power of the signal, and when the RF switch In the transmission mode, the power amplified signal is sent to the antenna, so that the antenna transmits the power amplified signal.
  • the LTE-U processing unit may include an LTE-U baseband processing unit and an LTE-U radio frequency processing unit, where:
  • the LTE-U radio frequency processing unit is configured to receive the first radio frequency signal sent by the coupling device, perform down-conversion processing on the first radio frequency signal to obtain the first baseband signal, and send the first baseband signal to the LTE-U baseband a processing unit; the LTE-U baseband processing unit is configured to receive the first baseband signal, and determine whether the signal strength value of the first baseband signal is less than or equal to the first preset signal strength threshold, and if yes, determine the first channel
  • the LTE-U baseband processing unit is further configured to: when the LTE-U signal needs to be sent, compete for the first channel, and after competing to the first channel, send the first prompt information to the Wi-Fi processing unit,
  • the LTE-U signal is coded and modulated into an LTE-U baseband signal and sent to the LTE-U radio frequency processing unit; the LTE-U radio frequency processing unit is further configured to perform upconversion processing on the LTE-U baseband signal to obtain the LTE-U radio frequency signal and send the signal.
  • the Wi-Fi processing unit may include a Wi-Fi baseband processing unit and a Wi-Fi radio processing unit, where:
  • the unit sends the second prompt information to encode and modulate the Wi-Fi signal into a Wi-Fi baseband signal and send the signal to the Wi-Fi radio processing unit; the Wi-Fi radio frequency processing unit is further configured to perform up-conversion processing on the Wi-Fi baseband signal. To obtain a Wi-Fi RF signal and send it to the coupling device.
  • the foregoing coupling device may include a first power splitter and a second power splitter.
  • the structure of the signal transmission device may be as shown in FIG. 8.
  • FIG. 8 is a disclosure of an embodiment of the present invention. Another schematic diagram of the structure of a signal transmission device. among them:
  • the first end of the first power splitter is connected to the input end of the antenna unit (ie, the input end of the power amplifier), and the second end of the first power splitter is connected to the output end of the LTE-U processing unit (ie, the LTE-U radio frequency mentioned above)
  • the output end of the processing unit), the third end of the first power splitter is connected to the output end of the Wi-Fi processing unit (ie, the output end of the Wi-Fi baseband processing unit), and the first end of the second power splitter is connected to the antenna
  • the output end of the unit (ie, the output end of the low noise amplifier), the second end of the second power splitter is connected to the input end of the LTE-U processing unit (ie, the input end of the LTE-U radio frequency processing unit), and the second work
  • the third end of the divider is connected to the input of the Wi-Fi processing unit (ie, the input of the Wi-Fi baseband processing unit described above).
  • the second power splitter is configured to convert the air interface RF signal sent by the low noise amplifier into the first RF signal and the second RF signal, and send the first signal to the LTE-U RF processing unit, and The second RF signal is sent to the Wi-Fi RF processing unit;
  • the first power splitter is configured to convert the LTE-U RF signal sent by the LTE-U RF processing unit into the first LTE-U RF signal and send the signal to the power amplifier.
  • the first power splitter is further configured to convert the Wi-Fi radio frequency signal sent by the Wi-Fi radio frequency processing unit into a first Wi-Fi radio frequency signal and send the signal to the power amplifier.
  • the use of the first power splitter and the second power splitter not only enables the signal transmission apparatus to transmit the LTE-U signal and the Wi-Fi signal, but also enables the LTE-U processing unit to notify the Wi- when transmitting the LTE-U radio frequency signal.
  • the Fi processing unit so that the Wi-Fi processing unit does not transmit the Wi-Fi radio frequency signal, enables the Wi-Fi processing unit to notify the LTE-U processing unit when transmitting the Wi-Fi radio frequency signal, so that the LTE-U processing unit does not transmit the LTE -U RF signal, which is compatible with LTE-U technology and Wi-Fi technology in time division multiplexing mode, and can save a set of power amplifier, low noise amplifier, RF switch and antenna, which is small in size and low in deployment cost.
  • the LTE-U processing unit and the Wi-Fi processing unit do not receive each other's signals, avoiding The occurrence of a situation in which the signal transmission device is blocked or burned due to receiving a signal of a strong signal strength value of the other party is high in safety and reduces interference.
  • FIG. 9 is a schematic structural diagram of still another signal transmission apparatus according to an embodiment of the present invention.
  • the signal transmission apparatus may include an LTE-U processing unit, a Wi-Fi processing unit, an antenna unit, a control unit, and a coupling device, and the coupling device is respectively connected to the LTE-U processing unit, the Wi-Fi processing unit, a control unit and an antenna unit, the control unit being respectively connected to the LTE-U processing unit, the Wi-Fi processing unit, and the coupling device, wherein:
  • the antenna unit is configured to receive the air interface signal and send the air interface signal to the coupling device.
  • the antenna unit is further configured to receive a signal (LTE-U signal or Wi-Fi signal) transmitted by the coupling device and transmit the signal.
  • a signal LTE-U signal or Wi-Fi signal
  • the coupling device is configured to divide the air interface signal sent by the antenna unit into the first channel signal, the second channel signal, and the third channel signal, and send the first channel signal to the LTE-U processing unit, and send the second channel signal to the Wi channel.
  • -Fi processing unit and send a third way signal to the control unit.
  • the control unit is configured to contend for the channel when the channel is idle, and when contending to the channel, control the LTE-U processing unit to transmit the LTE-U signal and control the Wi-Fi processing unit not to transmit the Wi-Fi signal, and control the Wi-Fi
  • the processing unit transmits the Wi-Fi signal and controls the LTE-U processing unit not to transmit the LTE-U signal.
  • the specific manner of the control unit detecting that the channel is idle may be: determining whether the signal strength value of the third channel signal is less than or equal to the preset signal strength threshold, and determining that the channel is idle when the determination result is yes.
  • the specific manner in which the control unit contends for the channel may be: generating a random time and starting timing, and if the channel is still an idle channel during the period of time to the random time, then the channel is contending.
  • the control unit may determine a signal to be transmitted according to a preset selection rule, that is, when the LTE-U processing unit is controlled to transmit the LTE-U signal, the control unit controls the Wi-Fi processing unit not to transmit the Wi-Fi.
  • the control unit controls the LTE-U processing unit not to transmit the LTE-U signal when the Wi-Fi processing unit is controlled to transmit the Wi-Fi signal, wherein the preset selection rule may be a random selection rule or a priority selection.
  • the rule (that is, the signal that carries the higher-priority service is preferentially selected) may also be a delay selection rule (that is, the signal that carries the service with a high latency requirement) is preferentially selected, which is not limited in the embodiment of the present invention.
  • the coupling device is further configured to receive the Wi-Fi signal sent by the Wi-Fi processing unit, and send the Wi-Fi signal to the antenna unit to cause the antenna unit to transmit the Wi-Fi signal.
  • the antenna unit may include a power amplifier, a low noise amplifier, a radio frequency switch, and an antenna, where:
  • the foregoing coupling device may include a first power splitter and a second power
  • the structure of the signal transmission device can be as shown in FIG. 10, and FIG. 10 is a schematic structural diagram of another signal transmission device disclosed in the embodiment of the present invention. among them:
  • the first end of the first power splitter is connected to the input end of the antenna unit (ie, the input end of the power amplifier), and the second end of the first power splitter is connected to the output end of the LTE-U processing unit (ie, the LTE-U radio frequency mentioned above)
  • the output end of the processing unit), the third end of the first power splitter is connected to the output end of the Wi-Fi processing unit (ie, the output end of the Wi-Fi radio processing unit), and the first end of the second power splitter is connected to the antenna
  • the output end of the unit ie, the output end of the low noise amplifier
  • the second end of the second power splitter is connected to the input end of the LTE-U processing unit (ie, the input end of the LTE-U radio frequency processing unit), and the second work
  • the third end of the splitter is connected to the input end of the Wi-Fi processing unit (ie, the input end of the Wi-Fi radio processing unit), and the fourth end of the second splitter is connected to the input end of the
  • the second power splitter converts the air interface RF signal from the low noise amplifier into a first RF signal, a second RF signal, and a third RF signal, and sends the first RF signal to the LTE-U RF processing unit. Sending the second RF signal to the Wi-Fi RF processing unit, and transmitting the third RF signal to the control unit; the first power splitter receives the LTE-U RF processing unit or the Wi-Fi processing RF processing unit sends the first An RF signal converts the first RF signal into a second RF signal and sends it to the power amplifier.
  • the signal transmission apparatus can implement LTE-U technology and Wi-Fi technology compatibility in a time division multiplexing manner, has small volume and low deployment cost, and the LTE-U processing unit and the Wi-Fi processing unit.
  • the signals of the other party are not received from each other, and the occurrence of the signal transmission device being blocked or burned due to the signal of the strong signal strength value of the other party is avoided, and the security is high and the interference is reduced.
  • FIG. 11 is a schematic flowchart diagram of a signal transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 11 can be applied to a signal transmission device, and the signal transmission device can include a set of antenna units.
  • the signal transmission method may include the following steps:
  • the LTE-U signal and the Wi-Fi signal are transmitted by the antenna unit in a time division multiplexing manner, that is, the Wi-Fi signal is not transmitted when the LTE-U signal is transmitted, and is not transmitted when the Wi-Fi signal is transmitted.
  • LTE-U signal is not transmitted when the LTE-U signal is transmitted, and is not transmitted when the Wi-Fi signal is transmitted.
  • the signal transmission method may further include the following steps:
  • the LTE-U signal that the LTE-U processing unit needs to transmit is divided into the first LTE-U signal and the second LTE-U signal by the coupling device, and is first through the antenna unit.
  • the LTE-U signal is transmitted out, and the second LTE-U signal is sent to the Wi-Fi processing unit through the coupling device, where the second LTE-U signal is used to indicate that the Wi-Fi processing unit does not send to the antenna unit.
  • Wi-Fi signal Wi-Fi signal
  • the Wi-Fi signal that the Wi-Fi processing unit needs to transmit is divided into a first Wi-Fi signal and a second Wi-Fi signal by a coupling device, and is first through the antenna unit.
  • the Wi-Fi signal is transmitted, and the second Wi-Fi signal is sent to the LTE-U processing unit by the coupling device, where the second Wi-Fi signal is used to indicate that the LTE-U processing unit does not send the LTE to the antenna unit.
  • -U signal the Wi-Fi signal that the Wi-Fi processing unit needs to transmit is divided into a first Wi-Fi signal and a second Wi-Fi signal by a coupling device, and is first through the antenna unit.
  • the Wi-Fi signal is transmitted, and the second Wi-Fi signal is sent to the LTE-U processing unit by the coupling device, where the second Wi-Fi signal is used to indicate that the LTE-U processing unit does not send the LTE to the antenna unit.
  • -U signal the Wi-Fi signal that the Wi-Fi processing unit needs to transmit is divided into a
  • the foregoing apparatus may further include an LTE-U processing unit, a Wi-Fi processing unit, and a coupling device.
  • the LTE-U signal and the Wi- are transmitted by the antenna unit in a time division multiplexing manner.
  • the Fi signal can include:
  • the Wi-Fi signal that needs to be transmitted is transmitted to the antenna unit through the coupling device, and the second prompt message is sent to the LTE-U processing unit through the Wi-Fi processing unit, and the Wi is transmitted through the antenna unit.
  • the -Fi signal is transmitted, wherein the second prompt message is used to indicate that the LTE-U processing unit does not transmit the LTE-U signal to the antenna unit.
  • the foregoing apparatus may further include an LTE-U processing unit, a Wi-Fi processing unit, and a control unit.
  • the LTE-U signal and the Wi- are transmitted by the antenna unit in a time division multiplexing manner.
  • the Fi signal can include:
  • the LTE-U processing unit is controlled by the control unit to transmit the LTE-U signal to be transmitted to the antenna unit and control the Wi-Fi processing unit not to transmit the Wi-Fi signal to the antenna unit, through the antenna unit. Transmitting the LTE-U signal that needs to be transmitted;
  • the Wi-Fi processing unit is controlled by the control unit to transmit the Wi-Fi signal to be transmitted to the antenna unit and control the LTE-U processing unit not to transmit the LTE-U signal to the antenna unit, through the antenna unit. Send the Wi-Fi signal out.
  • the implementation of the embodiments of the present invention can implement the compatibility of the Wi-Fi technology and the LTE-U technology in a time division multiplexing manner, and can save a set of antenna units for the signal transmission device, and reduce the volume and deployment cost of the signal transmission device.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Abstract

本发明实施例公开了一种信号传输方法及装置,该装置包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置,其中,耦合装置在接收到LTE-U处理单元发送的LTE-U信号后将其划分成发送至天线单元的第一路LTE-U信号以及发送至Wi-Fi处理单元的第二路LTE-U信号以使Wi-Fi处理单元不发送Wi-Fi信号;耦合装置在接收到Wi-Fi处理单元发送的Wi-Fi信号后将其划分成发送至天线单元的第一路Wi-Fi信号以及发送至LTE-U处理单元的第二路Wi-Fi信号以使LTE-U处理单元不发送LTE-U信号。可见,本发明实施例能够提供一种容易部署的信号传输装置,通过时分复用的方式实现了LTE-U技术以及Wi-Fi技术的兼容,且体积小,部署成本低。

Description

一种信号传输方法及装置
本申请要求于2015年7月28日提交中国专利局、申请号为201510449578.X、发明名称为“一种信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,具体涉及一种信号传输方法及装置。
背景技术
随着无线通信技术的快速发展,无线保真(Wi-Fi,Wireless-Fidelity)技术以及蜂窝技术已经成为了两大最为成功的无线技术。对于Wi-Fi技术,运营商可以利用免费的5GHZ未授权频段部署无线局域网(WLAN,Wireless Local Area Networks)为蜂窝网络分流,以减轻蜂窝网络的通信压力。
与此同时,为了应对Wi-Fi产业对蜂窝产业的侵蚀,第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)正式成立了针对非授权频段的长期演进(LTE-U,LTE-Unlicensed)技术的研究课题,利用免费的5GHZ未授权频段来弥补LTE技术中授权频段带宽不足的缺陷。Wi-Fi技术及LTE-U技术将共同使用5GHZ未授权频段,通常认为,Wi-Fi技术和LTE-U技术互为竞争方案。如图1所示,支持LTE-U技术的LTE-U基站与支持Wi-Fi技术的Wi-Fi接入点(AP,Access Point)分别为支持相应技术的终端提供无线通信服务。
发明内容
本发明实施例公开了一种信号传输方法及装置,有利于LTE-U技术以及Wi-Fi技术的兼容。
本发明实施例第一方面公开了一种信号传输装置,所述装置包括非授权频段的长期演进LTE-U处理单元、无线保真Wi-Fi处理单元以及天线单元,所述装置还包括耦合装置,所述耦合装置分别连接所述LTE-U处理单元、所述Wi-Fi 处理单元以及所述天线单元,其中:
所述耦合装置,用于将所述天线单元接收到的空口信号划分成第一路信号以及第二路信号,并将所述第一路信号发送至所述LTE-U处理单元以及将所述第二路信号发送至所述Wi-Fi处理单元;
所述耦合装置,还用于接收所述LTE-U处理单元发送的LTE-U信号,并将所述LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,将所述第一路LTE-U信号发送至所述天线单元以使所述天线单元将所述第一路LTE-U信号发射出去,将所述第二路LTE-U信号发送至所述Wi-Fi处理单元以使所述Wi-Fi处理单元不发送Wi-Fi信号;
所述耦合装置,还用于接收所述Wi-Fi处理单元发送的Wi-Fi信号,并将所述Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,将所述第一路Wi-Fi信号发送至所述天线单元以使所述天线单元将所述第一路Wi-Fi信号发射出去,将所述第二路Wi-Fi信号发送至所述LTE-U处理单元以使所述LTE-U处理单元不发送LTE-U信号。
在本发明实施例第一方面的第一种可能的实现方式中,所述耦合装置包括第一功分器、第二功分器、第三功分器以及第四功分器,其中:
所述第一功分器的第一端连接所述第二功分器的第一端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第二功分器的第二端连接所述天线单元的输入端,所述第二功分器的第三端连接所述第三功分器的第三端,所述第三功分器的第二端连接所述天线单元的输出端,所述第三功分器的第一端连接所述第四功分器的第一端,所述第四功分器的第二端连接所述LTE-U处理单元的输入端,所述第四功分器的第三端连接所述Wi-Fi处理单元的输入端。
结合本发明实施例第一方面,在本发明实施例第一方面的第二种可能的实现方式中,所述耦合装置包括第一功分器、第二功分器、第一耦合器以及第二耦合器,其中:
所述第一功分器的第一端连接所述第一耦合器的第一端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第一耦合器的第二端连接所述天线单元的输 入端,所述第一耦合器的第三端连接所述第二耦合器的第三端,所述第二耦合器的第一端连接所述天线单元的输出端,所述第二耦合器的第二端连接所述第二功分器的第一端,所述第二功分器的第二端连接所述LTE-U处理单元的输入端,所述第二功分器的第三端连接所述Wi-Fi处理单元的输入端。
结合本发明实施例第一方面,在本发明实施例第一方面的第三种可能的实现方式中,所述耦合装置包括第一功分器、第二功分器、第三功分器、第四功分器、第五功分器以及第六功分器,其中:
所述第一功分器的第一端连接所述Wi-Fi处理单元的输出端,所述第一功分器的第二端连接所述第二功分器的第二端,所述第二功分器的第一端连接所述天线单元的输入端,所述第一功分器的第三端连接所述第四功分器的第三端,所述第四功分器的第二端连接所述第三功分器的第二端,所述第三功分器的第一端连接所述天线单元的输出端,所述第四功分器的第一端连接所述LTE-U处理单元的输入端,所述第六功分器的第一端连接所述LTE-U处理单元的输出端,所述第六功分器的第三端连接所述第二功分器的第三端,所述第六功分器的第二端连接所述第五功分器的第二端,所述第五功分器的第三端连接所述第三功分器的第三端,所述第五功分器的第一端连接所述Wi-Fi处理单元的输入端。
结合本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第四种可能的实现方式中,所述耦合装置还包括衰减器,其中:
所述衰减器的输入端连接所述第二功分器的第三端,所述衰减器的输出端连接所述第三功分器的第三端。
结合本发明实施例第一方面的第二种可能的实现方式,在本发明实施例第一方面的第五种可能的实现方式中,所述耦合装置还包括衰减器,其中:
所述衰减器的输入端连接所述第一耦合器的第三端,所述衰减器的输出端连接所述第二耦合器的第三端。
结合本发明实施例第一方面的第三种可能的实现方式,在本发明实施例第一方面的第六种可能的实现方式中,所述耦合装置还包括衰减器,其中:
所述耦合装置还包括第一衰减器以及第二衰减器,其中:
所述第一衰减器的输入端连接所述第一功分器的第三端,所述第一衰减器 的输出端连接所述第四功分器的第三端,所述第二衰减器的输入端连接所述第六功分器的第二端,所述第二衰减器的输出端连接所述第五功分器的第二端。
本发明实施例第二方面公开了另一种信号传输装置,所述装置包括LTE-U处理单元、Wi-Fi处理单元以及天线单元,所述装置还包括耦合装置,所述耦合装置分别连接所述LTE-U处理单元、所述Wi-Fi处理单元以及所述天线单元,其中:
所述耦合装置,用于将所述天线单元接收到的空口信号划分成第一路信号以及第二路信号,并将所述第一路信号发送至所述LTE-U处理单元以及将所述第二路信号发送至所述Wi-Fi处理单元;
所述耦合装置,还用于接收所述LTE-U处理单元发送的LTE-U信号,并将所述LTE-U信号发送至所述天线单元以使所述天线单元将所述LTE-U信号发射出去;
所述耦合装置,还用于接收所述Wi-Fi处理单元发送的Wi-Fi信号,并将所述Wi-Fi信号发送至所述天线单元以使所述天线单元将所述Wi-Fi信号发射出去;
所述LTE-U处理单元,用于当需要向所述耦合装置发送所述LTE-U信号时,向所述Wi-Fi处理单元发送第一提示消息以使所述Wi-Fi处理单元不发送Wi-Fi信号;
所述Wi-Fi处理单元,用于当需要向所述耦合装置发送所述Wi-Fi信号时,向所述LTE-U处理单元发送第二提示消息以使所述LTE-U处理单元不发送LTE-U信号。
在本发明实施例第二方面的第一种可能的实现方式中,所述耦合装置包括第一功分器以及第二功分器,其中:
所述第一功分器的第一端连接所述天线单元的输入端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第二功分器的第一端连接所述天线单元的输出端,所述第二功分器的第二端连接所述LTE-U处理单元的输入端,所述第二功分器的第三端连接所述Wi-Fi处理单元的输入端。
本发明实施例第三方面公开了又一种信号传输装置,所述装置包括LTE-U 处理单元、Wi-Fi处理单元以及天线单元,其特征在于,所述装置还包括耦合装置以及控制单元,所述耦合装置分别连接所述LTE-U处理单元、所述Wi-Fi处理单元、所述控制单元以及所述天线单元,所述控制单元分别连接所述LTE-U处理单元、所述耦合装置以及所述Wi-Fi处理单元,其中:
所述耦合装置,用于将所述天线单元接收到的空口信号划分成第一路信号、第二路信号以及第三路信号,并将所述第一路信号发送至所述LTE-U处理单元、将所述第二路信号发送至所述Wi-Fi处理单元以及将所述第三路信号发送至所述控制单元;
所述控制单元,用于检测到信道空闲时竞争所述信道,且当竞争到所述信道时,控制所述LTE-U处理单元发送LTE-U信号并控制所述Wi-Fi处理单元不发送Wi-Fi信号,以及控制所述Wi-Fi处理单元发送Wi-Fi信号且控制所述LTE-U处理单元不发送LTE-U信号;
所述耦合装置,还用于接收所述LTE-U处理单元发送的LTE-U信号,并将所述LTE-U信号发送至所述天线单元以使所述天线单元将所述LTE-U信号发射出去;
所述耦合装置,还用于接收所述Wi-Fi处理单元发送的Wi-Fi信号,并将所述Wi-Fi信号发送至所述天线单元以使所述天线单元将所述Wi-Fi信号发射出去。
在本发明实施例第三方面的第一种可能的实现方式中,所述耦合装置包括第一功分器以及第二功分器,其中:
所述第一功分器的第一端连接所述天线单元的输入端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第二功分器的第一端连接所述天线单元的输出端,所述第二功分器的第二端连接所述LTE-U处理单元的输入端,所述第二功分器的第三端连接所述Wi-Fi处理单元的输入端,所述第二功分器的第四端连接所述控制单元的输入端。
本发明实施例第四方面公开了一种信号传输方法,所述方法应用于信号传输装置中,所述装置包括天线单元,所述方法包括:
检测信道是否空闲;
当所述信道空闲时,通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号;
其中,所述方法还包括:
通过所述天线单元接收空口信号;
将所述空口信号划分第一路信号以及第二路信号。
在本发明实施例第四方面的第一种可能的实现方式中,所述装置还包括耦合装置;
所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号,包括:
当需要发射LTE-U信号时,通过所述耦合装置将所述LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,并通过所述天线单元将所述第一路LTE-U信号发射出去,所述第二路LTE-U信号用于指示不发射Wi-Fi信号;
当需要发射Wi-Fi信号时,通过所述耦合装置将所述Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,并通过所述天线单元将所述第一路Wi-Fi信号发射出去,所述第二路Wi-Fi信号用于指示不发射LTE-U信号。
结合本发明实施例第四方面,在本发明实施例第四方面的第二种可能的实现方式中,所述装置还包括LTE-U处理单元、Wi-Fi处理单元以及耦合装置;
所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号,包括:
当需要发射LTE-U信号时,通过所述耦合装置将所述LTE-U信号发送至所述天线单元,并通过所述LTE-U处理单元向所述Wi-Fi处理单元发送第一提示消息,以及通过所述天线单元将所述LTE-U信号发射出去,所述第一提示消息用于指示所述Wi-Fi处理单元不向所述天线单元发送Wi-Fi信号;
当需要发射Wi-Fi信号时,通过所述耦合装置将所述Wi-Fi信号发送至所述天线单元,并通过所述Wi-Fi处理单元向所述LTE-U处理单元发送第二提示消息,以及通过所述天线单元将所述Wi-Fi信号发射出去,所述第二提示消息用于指示所述LTE-U处理单元不向所述天线单元发送LTE-U信号。
结合本发明实施例第四方面,在本发明实施例第四方面的第三种可能的实现方式中,所述装置还包括LTE-U处理单元、Wi-Fi处理单元以及控制单元;
所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号,包括:
当需要发射LTE-U信号时,通过所述控制单元控制所述LTE-U处理单元将所述LTE-U信号发送至所述天线单元并控制所述Wi-Fi处理单元不向所述天线单元发送Wi-Fi信号,通过所述天线单元将所述LTE-U信号发射出去;
当需要发射Wi-Fi信号时,通过所述控制单元控制所述Wi-Fi处理单元将所述Wi-Fi信号发送至所述天线单元并控制所述LTE-U处理单元不向所述天线单元发送LTE-U信号,通过所述天线单元将所述Wi-Fi信号发射出去。
结合本发明实施例第四方面、本发明实施例第四方面的第一种可能的实现方式、本发明实施例第四方面的第二种可能的实现方式或本发明实施例第四方面的第三种可能的实现方式,在本发明实施例第四方面的第四种可能的实现方式中,当所述信道空闲时,所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号之前,所述方法还包括:
判断是否竞争到所述信道;
当竞争到所述信道时,执行所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号的操作。
本发明实施例提供的信号传输装置包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置,其中,天线单元用于接收空口信号;耦合装置用于将该空口信号划分成第一路信号以及第二路信号,并将第一路信号发送至LTE-U处理单元以及将第二路信号发送至Wi-Fi处理单元;耦合装置还用于接收LTE-U处理单元发送的LTE-U信号,并将该LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,将第一路LTE-U信号发送至天线单元以使天线单元将第一路LTE-U信号发射出去,将第二路LTE-U信号发送至Wi-Fi处理单元以使Wi-Fi处理单元不发送Wi-Fi信号;耦合装置还用于接收Wi-Fi处理单元发送的Wi-Fi信号,并将Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,将第一路Wi-Fi信号发送至天线单元以使天线单元将第一路Wi-Fi信号发射出去,将第二路Wi-Fi信号发送至LTE-U处理单元以使LTE-U处理单元不发送LTE-U信号。可见,本发明实施例能够提供一种容易部署的信号传输装置,通过时分复用的方式实现了LTE-U技术以及Wi-Fi技术的兼容,且体积小,部署成本低。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术的LTE-U基站以及Wi-Fi接入点为对应的终端提供服务的场景示意图;
图2是本发明实施例公开的既支持LTE-U技术又支持Wi-Fi技术的基站为对应的终端提供服务的场景示意图;
图3是本发明实施例公开的一种信号传输装置的结构示意图;
图4是本发明实施例公开的另一种信号传输装置的结构示意图;
图5是本发明实施例公开的又一种信号传输装置的结构示意图;
图6是本发明实施例公开的又一种信号传输装置的结构示意图;
图7是本发明实施例公开的又一种信号传输装置的结构示意图;
图8是本发明实施例公开的又一种信号传输装置的结构示意图;
图9是本发明实施例公开的又一种信号传输装置的结构示意图;
图10是本发明实施例公开的又一种信号传输装置的结构示意图;
图11是本发明实施例公开的一种信号传输方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种信号传输方法及装置,不仅能够同时支持LTE-U技术以及Wi-Fi技术,而且体积较小,部署成本低。以下分别进行详细说明。
请参阅图2,图2是本发明实施例公开的既支持LTE-U技术又支持Wi-Fi技术的基站为对应的终端提供服务的场景示意图。如图2所示,既支持LTE-U 技术又支持Wi-Fi技术的基站中设置有本发明实施例公开的、包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置的信号传输装置,且该既支持LTE-U技术又支持Wi-Fi技术的基站可以为LTE-U终端、Wi-Fi终端以及LTE-U&Wi-Fi终端提供服务,其中,LTE-U&Wi-Fi终端中也可以设置有本发明实施例公开的、包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置的信号传输装置。
请参阅图3,图3是本发明实施例公开的一种信号传输装置的结构示意图。如图3所示,该信号传输装置可以包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置,且耦合装置分别连接LTE-U处理单元、Wi-Fi处理单元以及天线单元,其中:
天线单元用于接收空口信号,并将该空口信号发送至耦合装置。
天线单元还用于接收耦合装置发送的信号(LTE-U信号或Wi-Fi信号),并将该信号发射出去。
耦合装置用于接收上述空口信号,将上述空口信号划分成第一路信号以及第二路信号,并将该第一路信号发送至LTE-U处理单元以及将该第二路信号发送至Wi-Fi处理单元。
耦合装置还用于接收LTE-U处理单元发送的LTE-U信号,并将该LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,将该第一路LTE-U信号发送至天线单元以使天线单元将该第一路LTE-U信号发射出去,将该第二路LTE-U信号发送至Wi-Fi处理单元以使Wi-Fi处理单元不发送Wi-Fi信号。
耦合装置还用于接收Wi-Fi处理单元发送的Wi-Fi信号,并将该Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,将该第一路Wi-Fi信号发送至天线单元以使天线单元将该第一路Wi-Fi信号发射出去,将该第二路Wi-Fi信号发送至LTE-U处理单元以使LTE-U处理单元不发送LTE-U信号。
本发明实施例中,举例来说,LTE-U处理单元向耦合装置发送LTE-U信号的具体过程可以如下所述:
LTE-U处理单元接收上述第一路信号,并判断上述第一路信号的信号强度值是否小于等于第一预设信号强度阈值,当判断结果为是时,确定第一信道为 空闲信道,其中,第一信道为发送LTE-U信号的信道,且当需要发送LTE-U信号时,竞争该第一信道,当竞争到该第一信道时,向耦合装置发送LTE-U信号。其中,LTE-U处理单元竞争该第一信道的具体方式可以为:
生成一个随机时间,并开始计时,若第一信道在计时到该随机时间的时间段内仍为空闲信道,则竞争到该第一信道。
本发明实施例中,举例来说,Wi-Fi处理单元向耦合装置发送Wi-Fi信号的具体过程可以如下所述:
Wi-Fi处理单元用于接收上述第二路信号,并判断上述第二路信号的信号强度值是否小于等于第二预设信号强度阈值,当判断结果为是时,确定第二信道为空闲信道,其中,第二信道为发送Wi-Fi信号的信道,且当需要发送Wi-Fi信号时,竞争该第二信道,当竞争到该第二信道时,向耦合装置发送Wi-Fi信号。其中,Wi-Fi处理单元竞争该第二信道的具体方式为:
生成一个随机时间,并开始计时,若第二信道在计时到该随机时间的时间段内仍为空闲信道,则竞争到该第二信道。
可见,信号传输装置包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置,该信号传输装置容易部署在基站或移动通信设备中,且LTE-U处理单元发送LTE-U信号时,Wi-Fi处理单元不发送Wi-Fi信号,当Wi-Fi处理单元发送Wi-Fi信号时,LTE-U处理单元不发送LTE-U信号,以时分复用的方式实现了LTE-U技术以及Wi-Fi技术的兼容,且可以节省一套天线单元,体积小且部署成本低。
本发明实施例中,上述天线单元可以包括功率放大器、低噪声放大器、射频开关以及天线,其中:
天线用于接收空口射频信号,且当射频开关为接收模式时将空口射频信号发送至低噪声放大器;低噪声放大器用于放大其接收到的空口射频信号并将放大后的空口射频信号发送至耦合装置,以使耦合装置将放大后的空口射频信号划分成为第一路射频信号以及第二路射频信号;功率放大器用于接收耦合装置发送的信号并对该信号的功率进行放大,且当射频开关为发送模式时将功率放大后的信号发送至天线,以使天线将功率放大后的信号发射出去。
本发明实施例中,上述LTE-U处理单元可以包括LTE-U基带处理单元以及 LTE-U射频处理单元,其中:
LTE-U射频处理单元用于接收耦合装置发送的第一路射频信号,将第一路射频信号进行下变频处理以获取第一路基带信号并将该第一路基带信号发送至LTE-U基带处理单元;LTE-U基带处理单元用于接收该第一路基带信号,并判断该第一路基带信号的信号强度值是否小于等于上述第一预设信号强度阈值,若是,则确定第一信道为空闲信道;LTE-U基带处理单元还用于当需要发送LTE-U信号时,竞争第一信道,且在竞争到第一信道后,将LTE-U信号编码调制成LTE-U基带信号并发送至LTE-U射频处理单元;LTE-U射频处理单元还用于对LTE-U基带信号进行上变频处理以获取LTE-U射频信号并发送至耦合装置。
本发明实施例中,上述Wi-Fi处理单元可以包括Wi-Fi基带处理单元以及Wi-Fi射频处理单元,其中:
Wi-Fi射频处理单元用于接收耦合装置发送的第二路射频信号,将第二路射频信号进行下变频处理以获取第二路基带信号并将该第二路基带信号发送至Wi-Fi基带处理单元;Wi-Fi基带处理单元用于接收该第二路基带信号,并判断该第二路基带信号的信号强度值是否小于等于上述第二预设信号强度阈值,若是,则确定第二信道为空闲信道;Wi-Fi基带处理单元还用于当需要发送Wi-Fi信号时,竞争第二信道,且在竞争到第二信道后,将Wi-Fi信号编码调制成Wi-Fi基带信号并发送至Wi-Fi射频处理单元;Wi-Fi射频处理单元还用于对Wi-Fi基带信号进行上变频处理以获取Wi-Fi射频信号并发送至耦合装置。
作为一种可选的实施方式,上述耦合装置可以包括第一功分器、第二功分器、第三功分器、第四功分器以及衰减器,此时,信号传输装置的结构可以如图4所示,图4是本发明实施例公开的另一种信号传输装置的结构示意图。其中:
第一功分器的第一端连接第二功分器的第一端,第一功分器的第二端连接LTE-U处理单元的输出端(即上述LTE-U射频处理单元的输出端),第一功分器的第三端连接Wi-Fi处理单元的输出端(即上述Wi-Fi射频处理单元的输出端),第二功分器的第二端连接天线单元的输入端(即上述功率放大器的输入端),第二功分器的第三端连接衰减器的输入端,衰减器的输出端连接第三功分器的第三端,第三功分器的第二端连接天线单元的输出端(即上述低噪声放大器的 输出端),第三功分器的第一端连接第四功分器的第一端,第四功分器的第二端连接LTE-U处理单元的输入端(即上述LTE-U射频处理单元的输入端),第四功分器的第三端连接Wi-Fi处理单元的输入端(即上述Wi-Fi射频处理单元的输入端)。
具体的,图4中耦合装置的工作原理如下所述:
第三功分器用于将来自低噪声放大器的空口射频信号转化为第三路射频信号;第四功分器用于将该第三路射频信号转化为上述第一路射频信号以及上述第二路射频信号,并将第一路射频信号发送至LTE-U射频处理单元,以及将第二路射频信号发送至Wi-Fi射频处理单元;第一功分器用于将LTE-U射频处理单元发送的LTE-U射频信号转化为第三路LTE-U射频信号;第二功分器用于将该第三路LTE-U射频信号转化为第四路LTE-U射频信号以及发送至上述功率放大器的上述第一路LTE-U射频信号;衰减器用于对该第四路LTE-U射频信号的信号强度进行衰减并将信号强度衰减后的第四路LTE-U射频信号发送至第三功分器;第三功分器还用于将信号强度衰减后的第四路LTE-U射频信号转化为第五路LTE-U射频信号;第四功分器还用于将该第五路LTE-U射频信号转化为上述第二路LTE-U射频信号,并将第二路LTE-U射频信号发送至Wi-Fi射频处理单元;第一功分器还用于将Wi-Fi射频处理单元发送的Wi-Fi射频信号转化为第三路Wi-Fi射频信号,第二功分器还用于将该第三路Wi-Fi射频信号转化为第四路Wi-Fi射频信号以及发送至上述功率放大器的上述第一路Wi-Fi射频信号;衰减器还可以用于对第四路Wi-Fi射频信号的信号强度进行衰减并将信号强度衰减后的第四路Wi-Fi射频信号发送至第三功分器;第三功分器还可以用于将信号强度衰减后的第四路Wi-Fi射频信号转化为第五路Wi-Fi射频信号;第四功分器还可以用于将第五路Wi-Fi射频信号转化为上述第二路Wi-Fi射频信号,并将第二路Wi-Fi射频信号发送至LTE-U射频处理单元。其中,第一功分器、第二功分器、第三功分器、第四功分器以及衰减器的使用不仅能够使信号传输装置发送LTE-U信号以及Wi-Fi信号,还节省了一套功率放大器、低噪声放大器、射频开关以及天线,体积小及部署成本低,且图4中的衰减器能够防止Wi-Fi处理单元以及LTE-U处理单元相互接收到对方的较强信号强度值的信号,降低了干扰且避免了信号传输装置被阻塞或烧坏。
作为另一种可选的实施方式,上述耦合装置可以包括第一功分器、第二功分器、第一耦合器、第二耦合器以及衰减器,此时,信号传输装置的结构可以如图5所示,图5是本发明实施例公开的又一种信号传输装置的结构示意图。其中:
第一功分器的第一端连接第一耦合器的第一端,第一功分器的第二端连接LTE-U处理单元的输出端(即上述LTE-U射频处理单元的输出端),第一功分器的第三端连接Wi-Fi处理单元的输出端(即上述Wi-Fi射频处理单元的输出端),第一耦合器的第二端连接天线单元的输入端(即上述功率放大器的输入端),第一耦合器的第三端连接衰减器的输入端,衰减器的输出端连接第二耦合器的第三端,第二耦合器的第一端连接天线单元的输出端(即上述低噪声放大器的输出端),第二耦合器的第二端连接第二功分器的第一端,第二功分器的第二端连接LTE-U处理单元的输入端(即上述LTE-U射频处理单元的输入端),第二功分器的第三端连接Wi-Fi处理单元的输入端(即上述Wi-Fi射频处理单元的输入端)。
具体的,图5中耦合装置的工作原理如下所述:
第二耦合器用于将来自低噪声放大器的空口射频信号转化为第三路射频信号;第二功分器用于将该第三路射频信号转化为上述第一路射频信号以及上述第二路射频信号,并将第一路射频信号发送至LTE-U射频处理单元,以及将第二路射频信号发送至Wi-Fi射频处理单元;第一功分器用于将LTE-U射频处理单元发送的LTE-U射频信号转化为第三路LTE-U射频信号;第一耦合器用于将第三路LTE-U射频信号转化为第四路LTE-U射频信号以及发送至上述功率放大器的上述第一路LTE-U射频信号;衰减器用于对该第四路LTE-U射频信号的信号强度进行衰减并将信号强度衰减后的第四路LTE-U射频信号发送至第二耦合器;第二耦合器还可以用于将信号强度衰减后的第四路LTE-U射频信号转化为第五路LTE-U射频信号;第二功分器还可以用于将第五路LTE-U射频信号转化为上述第二路LTE-U射频信号,并将第二路LTE-U射频信号发送至Wi-Fi射频处理单元;第一功分器还用于将Wi-Fi射频处理单元发送的Wi-Fi射频信号转化为第三路Wi-Fi射频信号;第一耦合器还用于将该第三路Wi-Fi射频信号转化为第四路Wi-Fi射频信号以及发送至上述功率放大器的上述第一路Wi-Fi射 频信号;衰减器还可以用于对该第四路Wi-Fi射频信号的信号强度进行衰减并将信号强度衰减后的第四路Wi-Fi射频信号发送至第二耦合器;第二耦合器还可以用于将信号强度衰减后的第四路Wi-Fi射频信号转化为第五路Wi-Fi射频信号;第二功分器还可以用于将第五路Wi-Fi射频信号转化为上述第二路Wi-Fi射频信号,并将第二路Wi-Fi射频信号发送至LTE-U射频处理单元。其中,第一功分器、第二功分器、第一耦合器、第二耦合器以及衰减器的使用不仅能够使信号传输装置发送LTE-U信号以及Wi-Fi信号,还节省了一套功率放大器、低噪声放大器、射频开关以及天线,体积小及部署成本低,且图5中的衰减器能够防止了Wi-Fi处理单元以及LTE-U处理单元相互接收到对方的较强信号强度值的信号,降低了干扰且避免了信号传输装置被阻塞或烧坏。
作为又一种可选的实施方式,上述耦合装置可以包括第一功分器、第二功分器、第三功分器、第四功分器、第五功分器、第六功分器、第一衰减器以及第二衰减器,此时,信号传输装置的结构可以如图6所示,图6是本发明实施例公开的又一种信号传输装置的结构示意图。其中:
第一功分器的第一端连接Wi-Fi处理单元的输出端(即上述Wi-Fi射频处理单元的输出端),第一功分器的第二端连接第二功分器的第二端,第二功分器的第一端连接天线单元的输入端(即上述功率放大器的输入端),第一功分器的第三端连接第一衰减器的输入端,第一衰减器的输出端连接第四功分器的第三端,第四功分器的第二端连接第三功分器的第二端,第三功分器的第一端连接天线单元的输出端(即上述低噪声放大器的输出端),第四功分器的第一端连接LTE-U处理单元的输入端(即上述LTE-U射频处理单元的输入端),第六功分器的第一端连接LTE-U处理单元的输出端(即上述LTE-U射频处理单元的输出端),第六功分器的第三端连接第二功分器的第三端,第六功分器的第二端连接第二衰减器的输入端,第二衰减器的输出端连接第五功分器的第二端,第五功分器的第三端连接第三功分器的第三端,第五功分器的第一端连接Wi-Fi处理单元的输入端(即上述Wi-Fi射频处理单元的输入端)。
具体的,图6中耦合装置的工作原理如下所述:
第三功分器用于将来自低噪声放大器的空口射频信号转化为第三路射频信号以及第四路射频信号;第四功分器用于将第三路射频信号转化为上述第一 路射频信号并发送至LTE-U射频处理单元;第五功分器用于将第四路射频信号转化为上述第二路射频信号并发送至Wi-Fi射频处理单元;第六功分器用于将LTE-U射频处理单元发送的LTE-U射频信号转化为第三路LTE-U射频信号以及第四路LTE-U射频信号;第二功分器用于将第三路LTE-U射频信号转化为上述第一路LTE-U射频信号并发送至功率放大器;第二衰减器用于对第四路LTE-U射频信号的信号强度进行衰减;第五功分器还可以用于将信号强度衰减后的第四路LTE-U射频信号转化为上述第二路LTE-U射频信号并发送至Wi-Fi射频处理单元;第一功分器用于将Wi-Fi射频处理单元发送的Wi-Fi射频信号转化为第三路Wi-Fi射频信号以及第四路Wi-Fi射频信号;第二功分器还可以用于将第三路Wi-Fi射频信号转化为上述第一路Wi-Fi射频信号并发送至功率放大器;第一衰减器用于对第四路Wi-Fi射频信号的信号强度进行衰减;第四功分器还可以用于将信号强度衰减后的第四路Wi-Fi射频信号转化为上述第二路Wi-Fi射频信号并发送至LTE-U射频处理单元。这样不仅能够使信号传输装置发送LTE-U信号以及Wi-Fi信号,还节省了一套功率放大器、低噪声放大器、射频开关以及天线,体积小及部署成本低,且图6中的衰减器(第一衰减器以及第二衰减器)能够防止Wi-Fi处理单元以及LTE-U处理单元相互接收到对方的强度值比较强的信号,降低了干扰且避免了信号传输装置被阻塞或烧坏。
请参阅图7,图7是本发明实施例公开的又一种信号传输装置的结构示意图。该信号传输装置可以包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置,且耦合装置分别连接LTE-U处理单元、Wi-Fi处理单元以及天线单元,LTE-U处理单元连接Wi-Fi处理单元,其中:
天线单元用于接收空口信号,并将该空口信号发送至耦合装置。
天线单元还用于接收耦合装置发送的信号(LTE-U信号或Wi-Fi信号),并将该信号发射出去。
耦合装置用于接收上述空口信号,将上述空口信号划分成第一路信号以及第二路信号,并将该第一路信号发送至LTE-U处理单元以及将该第二路信号发送至Wi-Fi处理单元。
耦合装置还用于接收LTE-U处理单元发送的LTE-U信号,并将LTE-U信号 发送至天线单元以使天线单元将LTE-U信号发射出去。
耦合装置还用于接收Wi-Fi处理单元发送的Wi-Fi信号,并将Wi-Fi信号发送至天线单元以使天线单元将Wi-Fi信号发射出去。
可选的,上述第一提示信息可以为第一信道被占用的起始时间,上述第二提示信息可以为第二信道被占用的起始时间,本发明实施例不做限定。
LTE-U处理单元用于当需要向耦合装置发送LTE-U信号时,向Wi-Fi处理单元发送第一提示消息以使Wi-Fi处理单元不发送Wi-Fi信号。
Wi-Fi处理单元用于当需要向耦合装置发送Wi-Fi信号时,向LTE-U处理单元发送第二提示消息以使LTE-U处理单元不发送LTE-U信号。
本发明实施例中,举例来说,LTE-U处理单元向耦合装置发送LTE-U信号的具体过程可以如下所述:
LTE-U处理单元接收上述第一路信号,并判断上述第一路信号的信号强度值是否小于等于第一预设信号强度阈值,当判断结果为是时,确定第一信道为空闲信道,其中,第一信道为发送LTE-U信号的信道,且当需要发送LTE-U信号时,竞争该第一信道,当竞争到该第一信道时,向耦合装置发送LTE-U信号。其中,LTE-U处理单元竞争该第一信道的具体方式可以为:
生成一个随机时间,并开始计时,若第一信道在计时到该随机时间的时间段内仍为空闲信道,则竞争到该第一信道。
本发明实施例中,举例来说,Wi-Fi处理单元向耦合装置发送Wi-Fi信号的具体过程可以如下所述:
Wi-Fi处理单元接收上述第二路信号,并判断上述第二路信号的信号强度值是否小于等于第二预设信号强度阈值,当判断结果为是时,确定第二信道为空闲信道,其中,第二信道为发送Wi-Fi信号的信道,且当需要发送Wi-Fi信号时,竞争该第二信道,当竞争到该第二信道时,向耦合装置发送Wi-Fi信号。其中,Wi-Fi处理单元竞争该第二信道的具体方式可以为:
生成一个随机时间,并开始计时,若第二信道在计时到该随机时间的时间段内仍为空闲信道,则竞争到该第二信道。
可见,信号传输装置包括LTE-U处理单元、Wi-Fi处理单元、天线单元以及耦合装置,该信号传输装置容易部署在基站或移动通信设备中,且LTE-U处 理单元发送LTE-U信号时通知Wi-Fi处理单元,以使Wi-Fi处理单元不发送Wi-Fi信号,当Wi-Fi处理单元发送Wi-Fi信号时通知LTE-U处理单元,以使LTE-U处理单元不发送LTE-U信号,以时分复用的方式实现了LTE-U技术以及Wi-Fi技术的兼容,且可以节省一套天线单元,体积小且部署成本低。
本发明实施例中,上述天线单元可以包括功率放大器、低噪声放大器、射频开关以及天线,其中:
天线用于接收空口射频信号,且当射频开关为接收模式时将空口射频信号发送至低噪声放大器;低噪声放大器用于放大其接收到的空口射频信号并将放大后的空口射频信号发送至耦合装置,以使耦合装置将放大后的空口射频信号划分成为第一路射频信号以及第二路射频信号;功率放大器用于接收耦合装置发送的信号并对该信号的功率进行放大,且当射频开关为发送模式时将功率放大后的信号发送至天线,以使天线将功率放大后的信号发射出去。
本发明实施例中,上述LTE-U处理单元可以包括LTE-U基带处理单元以及LTE-U射频处理单元,其中:
LTE-U射频处理单元用于接收耦合装置发送的第一路射频信号,将第一路射频信号进行下变频处理以获取第一路基带信号并将该第一路基带信号发送至LTE-U基带处理单元;LTE-U基带处理单元用于接收该第一路基带信号,并判断该第一路基带信号的信号强度值是否小于等于上述第一预设信号强度阈值,若是,则确定第一信道为空闲信道;LTE-U基带处理单元还用于当需要发送LTE-U信号时,竞争第一信道,且在竞争到第一信道后,向Wi-Fi处理单元发送上述第一提示信息,将LTE-U信号编码调制成LTE-U基带信号并发送至LTE-U射频处理单元;LTE-U射频处理单元还用于对LTE-U基带信号进行上变频处理以获取LTE-U射频信号并发送至耦合装置。
本发明实施例中,上述Wi-Fi处理单元可以包括Wi-Fi基带处理单元以及Wi-Fi射频处理单元,其中:
Wi-Fi射频处理单元用于接收耦合装置发送的第二路射频信号,将第二路射频信号进行下变频处理以获取第二路基带信号并将该第二路基带信号发送至Wi-Fi基带处理单元;Wi-Fi基带处理单元用于接收该第二路基带信号,并判断该第二路基带信号的信号强度值是否小于等于上述第二预设信号强度阈值, 若是,则确定第二信道为空闲信道;Wi-Fi基带处理单元还用于当需要发送Wi-Fi信号时,竞争第二信道,且在竞争到第二信道后,向上述LTE-U基带处理单元发送上述第二提示信息,将Wi-Fi信号编码调制成Wi-Fi基带信号并发送至Wi-Fi射频处理单元;Wi-Fi射频处理单元还用于对Wi-Fi基带信号进行上变频处理以获取Wi-Fi射频信号并发送至耦合装置。
作为一种可选的实施方式,上述耦合装置可以包括第一功分器以及第二功分器,此时,信号传输装置的结构可以如图8所示,图8是本发明实施例公开的又一种信号传输装置的结构示意图。其中:
第一功分器的第一端连接天线单元的输入端(即上述功率放大器的输入端),第一功分器的第二端连接LTE-U处理单元的输出端(即上述LTE-U射频处理单元的输出端),第一功分器的第三端连接Wi-Fi处理单元的输出端(即上述Wi-Fi基带处理单元的输出端),第二功分器的第一端连接天线单元的输出端(即上述低噪声放大器的输出端),第二功分器的第二端连接LTE-U处理单元的输入端(即上述LTE-U射频处理单元的输入端),第二功分器的第三端连接Wi-Fi处理单元的输入端(即上述Wi-Fi基带处理单元的输入端)。
具体的,图8中耦合装置的工作原理如下所述:
第二功分器用于将低噪声放大器发送的空口射频信号转化为上述第一路射频信号以及上述第二路射频信号,并将上述第一路信号发送至LTE-U射频处理单元,以及将上述第二路射频信号发送至Wi-Fi射频处理单元;第一功分器用于将上述LTE-U射频处理单元发送的LTE-U射频信号转化为第一路LTE-U射频信号并发送至功率放大器;第一功分器还用于将上述Wi-Fi射频处理单元发送的Wi-Fi射频信号转化为第一路Wi-Fi射频信号并发送至功率放大器。其中,第一功分器以及第二功分器的使用不仅能够使信号传输装置发送LTE-U信号以及Wi-Fi信号,还能够使LTE-U处理单元发送LTE-U射频信号时通知Wi-Fi处理单元,以使Wi-Fi处理单元不发送Wi-Fi射频信号,能够使Wi-Fi处理单元发送Wi-Fi射频信号时通知LTE-U处理单元,以使LTE-U处理单元不发送LTE-U射频信号,以时分复用的方式实现了LTE-U技术以及Wi-Fi技术的兼容,且可以节省一套功率放大器、低噪声放大器、射频开关以及天线,体积小且部署成本低,此外,LTE-U处理单元以及Wi-Fi处理单元不会相互接收到对方的信号,避免 了因接收到对方的较强信号强度值的信号而导致的信号传输装置被阻塞或烧坏的情况的发生,安全性高且降低了干扰。
请参阅图9,图9是本发明实施例公开的又一种信号传输装置的结构示意图。如图9所示,该信号传输装置可以包括LTE-U处理单元、Wi-Fi处理单元、天线单元、控制单元以及耦合装置,且耦合装置分别连接LTE-U处理单元、Wi-Fi处理单元、控制单元以及天线单元,控制单元分别连接LTE-U处理单元、Wi-Fi处理单元以及耦合装置,其中:
天线单元用于接收空口信号,并将该空口信号发送至耦合装置。
天线单元还用于接收耦合装置发送的信号(LTE-U信号或Wi-Fi信号),并将该信号发射出去。
耦合装置用于将天线单元发送的空口信号划分成第一路信号、第二路信号以及第三路信号,并将第一路信号发送至LTE-U处理单元、将第二路信号发送至Wi-Fi处理单元以及将第三路信号发送至控制单元。
控制单元用于在检测到信道空闲时竞争信道,且当竞争到信道时,控制LTE-U处理单元发送LTE-U信号并控制Wi-Fi处理单元不发送Wi-Fi信号,以及控制Wi-Fi处理单元发送Wi-Fi信号且控制LTE-U处理单元不发送LTE-U信号。其中,控制单元检测信道空闲的具体方式可以为:判断第三路信号的信号强度值是否小于等于预设信号强度阈值,当判断结果为是时,确定信道空闲。控制单元竞争信道的具体方式可以为:生成一个随机时间,并开始计时,若信道在计时到该随机时间的时间段内仍为空闲信道,则竞争到该信道。当竞争到该信道后,控制单元可以根据预先设置的选择规则决定需要发送的信号,即当控制LTE-U处理单元发送LTE-U信号时,控制单元控制Wi-Fi处理单元不发送Wi-Fi信号;当控制Wi-Fi处理单元发送Wi-Fi信号时,控制单元控制LTE-U处理单元不发送LTE-U信号,其中,预先设置的选择规则可以为随机选择规则,也可以是优先级选择规则(即优先选择承载较高优先级业务的信号),还可以是时延选择规则(即优先选择承载对时延要求高的业务的信号),本发明实施例不做限定。
耦合装置还用于接收LTE-U处理单元发送的LTE-U信号,并将LTE-U信号 发送至天线单元以使天线单元将LTE-U信号发射出去。
耦合装置还用于接收Wi-Fi处理单元发送的Wi-Fi信号,并将Wi-Fi信号发送至天线单元以使天线单元将Wi-Fi信号发射出去。
本发明实施例中,上述天线单元可以包括功率放大器、低噪声放大器、射频开关以及天线,其中:
天线用于接收空口射频信号,且当射频开关为接收模式时将空口射频信号发送至低噪声放大器;低噪声放大器用于放大其接收到的空口射频信号并将放大后的空口射频信号发送至耦合装置,以使耦合装置将放大后的空口射频信号划分成为第一路射频信号、第二路射频信号以及第三路射频信号;功率放大器用于接收耦合装置发送的信号并对该信号的功率进行放大,且当射频开关为发送模式时将功率放大后的信号发送至天线,以使天线将功率放大后的信号发射出去。
本发明实施例中,上述LTE-U处理单元可以包括LTE-U基带处理单元以及LTE-U射频处理单元,其中:
LTE-U射频处理单元用于接收耦合装置发送第一路射频信号,并将第一路射频信号进行下变频处理以获取第一路基带信号并将该第一路基带信号发送至LTE-U基带处理单元;LTE-U基带处理单元用于接收该第一路基带信号;LTE-U基带处理单元还用于在控制单元的控制下将LTE-U信号编码调制成LTE-U基带信号并发送至LTE-U射频处理单元;LTE-U射频处理单元还用于对LTE-U基带信号进行上变频处理以获取LTE-U射频信号并发送至耦合装置。
本发明实施例中,上述Wi-Fi处理单元可以包括Wi-Fi基带处理单元以及Wi-Fi射频处理单元,其中:
Wi-Fi射频处理单元用于接收耦合装置发送的第二路射频信号,将第二路射频信号进行下变频处理以获取第二路基带信号并将该第二路基带信号发送至Wi-Fi基带处理单元;Wi-Fi基带处理单元用于接收该第二路基带信号;Wi-Fi基带处理单元还用于在控制单元的控制下将Wi-Fi信号编码调制成Wi-Fi基带信号并发送至Wi-Fi射频处理单元;Wi-Fi射频处理单元还用于对Wi-Fi基带信号进行上变频处理以获取Wi-Fi射频信号并发送至耦合装置。
作为一种可选的实施方式,上述耦合装置可以包括第一功分器以及第二功 分器,此时,信号传输装置的结构可以如图10所示,图10是本发明实施例公开的又一种信号传输装置的结构示意图。其中:
第一功分器的第一端连接天线单元的输入端(即上述功率放大器的输入端),第一功分器的第二端连接LTE-U处理单元的输出端(即上述LTE-U射频处理单元的输出端),第一功分器的第三端连接Wi-Fi处理单元的输出端(即上述Wi-Fi射频处理单元的输出端),第二功分器的第一端连接天线单元的输出端(即上述低噪声放大器的输出端),第二功分器的第二端连接LTE-U处理单元的输入端(即上述LTE-U射频处理单元的输入端),第二功分器的第三端连接Wi-Fi处理单元的输入端(即上述Wi-Fi射频处理单元的输入端),第二功分器的第四端连接控制单元的输入端。
具体的,图10中耦合装置的工作原理如下所述:
第二功分器将来自低噪声放大器的空口射频信号转化为第一路射频信号、第二路射频信号以及第三路射频信号,并将第一路射频信号发送至LTE-U射频处理单元,将第二路射频信号发送至Wi-Fi射频处理单元,将第三路射频信号发送至上述控制单元;第一功分器接收LTE-U射频处理单元或Wi-Fi处理射频处理单元发送的第一路射频信号,将该第一路射频信号转化为第二路射频信号并发送至上述功率放大器。
可见,本发明实施例提供的信号传输装置能够以时分复用的方式实现LTE-U技术以及Wi-Fi技术的兼容,体积小及部署成本低,且LTE-U处理单元以及Wi-Fi处理单元不会相互接收到对方的信号,避免了因接收到对方的较强信号强度值的信号而导致的信号传输装置被阻塞或烧坏的情况的发生,安全性高且降低了干扰。
请参阅图11,图11是本发明实施例公开的一种信号传输方法的流程示意图。其中,图11所示的方法可以应用于信号传输装置中,且该信号传输装置可以包括一套天线单元。如图11所示,该信号传输方法可以包括以下步骤:
S1101、检测信道是否空闲。
本发明实施例中,当步骤S1101的检测结果为是时,执行步骤S1102;当步骤S1101的检测结果为否时,可以继续执行步骤S1101。
S1102、当信道空闲时,通过时分复用的方式由天线单元发射LTE-U信号以及Wi-Fi信号。
本发明实施例中,通过时分复用的方式由天线单元发射LTE-U信号以及Wi-Fi信号即为在发射LTE-U信号时不发射Wi-Fi信号,在发射Wi-Fi信号时不发射LTE-U信号。
其中,该信号传输方法还可以包括以下步骤:
接收空口信号,并将空口信号划分成第一路信号以及第二路信号。
可选的,当信道空闲时,在执行步骤S1102之前,还可以执行以下操作:
判断是否竞争到信道,当竞争到信道时,执行上述通过时分复用的方式由天线单元发射LTE-U信号以及Wi-Fi信号的操作。
作为一种可选的实施方式,上述信号传输装置还可以包括LTE-U处理单元、Wi-Fi处理单元以及耦合装置,此时,通过时分复用的方式由天线单元发射LTE-U信号以及Wi-Fi信号可以包括:
当需要发射LTE-U信号时,通过耦合装置将LTE-U处理单元需要发射的LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,并通过天线单元将第一路LTE-U信号发射出去,通过耦合装置将第二路LTE-U信号发送至Wi-Fi处理单元,其中,该第二路LTE-U信号用于指示Wi-Fi处理单元不向天线单元发送Wi-Fi信号;
当需要发射Wi-Fi信号时,通过耦合装置将Wi-Fi处理单元需要发射的Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,并通过天线单元将第一路Wi-Fi信号发射出去,通过耦合装置将第二路Wi-Fi信号发送至LTE-U处理单元,其中,第二路Wi-Fi信号用于指示LTE-U处理单元不向天线单元发送LTE-U信号。
作为另一种可选的实施方式,上述装置还可以包括LTE-U处理单元、Wi-Fi处理单元以及耦合装置,此时,通过时分复用的方式由天线单元发射LTE-U信号以及Wi-Fi信号可以包括:
当需要发射LTE-U信号时,通过耦合装置将需要发射的LTE-U信号发送至天线单元,并通过LTE-U处理单元向Wi-Fi处理单元发送第一提示消息,以及通过天线单元将LTE-U信号发射出去,其中,该第一提示消息用于指示Wi-Fi 处理单元不向天线单元发送Wi-Fi信号;
当需要发射Wi-Fi信号时,通过耦合装置将需要发射的Wi-Fi信号发送至天线单元,并通过Wi-Fi处理单元向LTE-U处理单元发送第二提示消息,以及通过天线单元将Wi-Fi信号发射出去,其中,该第二提示消息用于指示LTE-U处理单元不向天线单元发送LTE-U信号。
作为又一种可选的实施方式,上述装置还可以包括LTE-U处理单元、Wi-Fi处理单元以及控制单元,此时,通过时分复用的方式由天线单元发射LTE-U信号以及Wi-Fi信号可以包括:
当需要发射LTE-U信号时,通过控制单元控制LTE-U处理单元将需要发射的LTE-U信号发送至天线单元并控制Wi-Fi处理单元不向天线单元发送Wi-Fi信号,通过天线单元将需要发射的LTE-U信号发射出去;
当需要发射Wi-Fi信号时,通过控制单元控制Wi-Fi处理单元将需要发射的Wi-Fi信号发送至天线单元并控制LTE-U处理单元不向天线单元发送LTE-U信号,通过天线单元将Wi-Fi信号发射出去。
可见,实施本发明实施例能够以时分复用的方式实现Wi-Fi技术以及LTE-U技术的兼容,且能够为信号传输装置节省一套天线单元,降低了信号传输装置的体积及部署成本。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本发明所必须的。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种信号传输方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施 例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (16)

  1. 一种信号传输装置,所述装置包括非授权频段的长期演进LTE-U处理单元、无线保真Wi-Fi处理单元以及天线单元,其特征在于,所述装置还包括耦合装置,所述耦合装置分别连接所述LTE-U处理单元、所述Wi-Fi处理单元以及所述天线单元,其中:
    所述耦合装置,用于将所述天线单元接收到的空口信号划分成第一路信号以及第二路信号,并将所述第一路信号发送至所述LTE-U处理单元以及将所述第二路信号发送至所述Wi-Fi处理单元;
    所述耦合装置,还用于接收所述LTE-U处理单元发送的LTE-U信号,并将所述LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,将所述第一路LTE-U信号发送至所述天线单元以使所述天线单元将所述第一路LTE-U信号发射出去,将所述第二路LTE-U信号发送至所述Wi-Fi处理单元以使所述Wi-Fi处理单元不发送Wi-Fi信号;
    所述耦合装置,还用于接收所述Wi-Fi处理单元发送的Wi-Fi信号,并将所述Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,将所述第一路Wi-Fi信号发送至所述天线单元以使所述天线单元将所述第一路Wi-Fi信号发射出去,将所述第二路Wi-Fi信号发送至所述LTE-U处理单元以使所述LTE-U处理单元不发送LTE-U信号。
  2. 根据权利要求1所述的装置,其特征在于,所述耦合装置包括第一功分器、第二功分器、第三功分器以及第四功分器,其中:
    所述第一功分器的第一端连接所述第二功分器的第一端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第二功分器的第二端连接所述天线单元的输入端,所述第二功分器的第三端连接所述第三功分器的第三端,所述第三功分器的第二端连接所述天线单元的输出端,所述第三功分器的第一端连接所述第四功分器的第一端,所述第四功分器的第二端连接所述LTE-U处理单元的输入端,所述第四功分器的第三端连接所述Wi-Fi处理单元的输入端。
  3. 根据权利要求1所述的装置,其特征在于,所述耦合装置包括第一功分器、第二功分器、第一耦合器以及第二耦合器,其中:
    所述第一功分器的第一端连接所述第一耦合器的第一端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第一耦合器的第二端连接所述天线单元的输入端,所述第一耦合器的第三端连接所述第二耦合器的第三端,所述第二耦合器的第一端连接所述天线单元的输出端,所述第二耦合器的第二端连接所述第二功分器的第一端,所述第二功分器的第二端连接所述LTE-U处理单元的输入端,所述第二功分器的第三端连接所述Wi-Fi处理单元的输入端。
  4. 根据权利要求1所述的装置,其特征在于,所述耦合装置包括第一功分器、第二功分器、第三功分器、第四功分器、第五功分器以及第六功分器,其中:
    所述第一功分器的第一端连接所述Wi-Fi处理单元的输出端,所述第一功分器的第二端连接所述第二功分器的第二端,所述第二功分器的第一端连接所述天线单元的输入端,所述第一功分器的第三端连接所述第四功分器的第三端,所述第四功分器的第二端连接所述第三功分器的第二端,所述第三功分器的第一端连接所述天线单元的输出端,所述第四功分器的第一端连接所述LTE-U处理单元的输入端,所述第六功分器的第一端连接所述LTE-U处理单元的输出端,所述第六功分器的第三端连接所述第二功分器的第三端,所述第六功分器的第二端连接所述第五功分器的第二端,所述第五功分器的第三端连接所述第三功分器的第三端,所述第五功分器的第一端连接所述Wi-Fi处理单元的输入端。
  5. 根据权利要求2所述的装置,其特征在于,所述耦合装置还包括衰减器,其中:
    所述衰减器的输入端连接所述第二功分器的第三端,所述衰减器的输出端连接所述第三功分器的第三端。
  6. 根据权利要求3所述的装置,其特征在于,所述耦合装置还包括衰减器,其中:
    所述衰减器的输入端连接所述第一耦合器的第三端,所述衰减器的输出端连接所述第二耦合器的第三端。
  7. 根据权利要求4所述的装置,其特征在于,所述耦合装置还包括第一衰减器以及第二衰减器,其中:
    所述第一衰减器的输入端连接所述第一功分器的第三端,所述第一衰减器的输出端连接所述第四功分器的第三端,所述第二衰减器的输入端连接所述第六功分器的第二端,所述第二衰减器的输出端连接所述第五功分器的第二端。
  8. 一种信号传输装置,所述装置包括LTE-U处理单元、Wi-Fi处理单元以及天线单元,其特征在于,所述装置还包括耦合装置,所述耦合装置分别连接所述LTE-U处理单元、所述Wi-Fi处理单元以及所述天线单元,所述LTE-U处理单元连接所述Wi-Fi处理单元,其中:
    所述耦合装置,用于将所述天线单元接收到的空口信号划分成第一路信号以及第二路信号,并将所述第一路信号发送至所述LTE-U处理单元以及将所述第二路信号发送至所述Wi-Fi处理单元;
    所述耦合装置,还用于接收所述LTE-U处理单元发送的LTE-U信号,并将所述LTE-U信号发送至所述天线单元以使所述天线单元将所述LTE-U信号发射出去;
    所述耦合装置,还用于接收所述Wi-Fi处理单元发送的Wi-Fi信号,并将所述Wi-Fi信号发送至所述天线单元以使所述天线单元将所述Wi-Fi信号发射出去;
    所述LTE-U处理单元,用于当需要向所述耦合装置发送所述LTE-U信号时,向所述Wi-Fi处理单元发送第一提示消息以使所述Wi-Fi处理单元不发送Wi-Fi信号;
    所述Wi-Fi处理单元,用于当需要向所述耦合装置发送所述Wi-Fi信号时,向所述LTE-U处理单元发送第二提示消息以使所述LTE-U处理单元不发送 LTE-U信号。
  9. 根据权利要求8所述的装置,其特征在于,所述耦合装置包括第一功分器以及第二功分器,其中:
    所述第一功分器的第一端连接所述天线单元的输入端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第二功分器的第一端连接所述天线单元的输出端,所述第二功分器的第二端连接所述LTE-U处理单元的输入端,所述第二功分器的第三端连接所述Wi-Fi处理单元的输入端。
  10. 一种信号传输装置,所述装置包括LTE-U处理单元、Wi-Fi处理单元以及天线单元,其特征在于,所述装置还包括耦合装置以及控制单元,所述耦合装置分别连接所述LTE-U处理单元、所述Wi-Fi处理单元、所述控制单元以及所述天线单元,所述控制单元分别连接所述LTE-U处理单元、所述耦合装置以及所述Wi-Fi处理单元,其中:
    所述耦合装置,用于将所述天线单元接收到的空口信号划分成第一路信号、第二路信号以及第三路信号,并将所述第一路信号发送至所述LTE-U处理单元、将所述第二路信号发送至所述Wi-Fi处理单元以及将所述第三路信号发送至所述控制单元;
    所述控制单元,用于检测到信道空闲时竞争所述信道,且当竞争到所述信道时,控制所述LTE-U处理单元发送LTE-U信号并控制所述Wi-Fi处理单元不发送Wi-Fi信号,以及控制所述Wi-Fi处理单元发送Wi-Fi信号且控制所述LTE-U处理单元不发送LTE-U信号;
    所述耦合装置,还用于接收所述LTE-U处理单元发送的LTE-U信号,并将所述LTE-U信号发送至所述天线单元以使所述天线单元将所述LTE-U信号发射出去;
    所述耦合装置,还用于接收所述Wi-Fi处理单元发送的Wi-Fi信号,并将所述Wi-Fi信号发送至所述天线单元以使所述天线单元将所述Wi-Fi信号发射出去。
  11. 根据权利要求10所述的装置,其特征在于,所述耦合装置包括第一功分器以及第二功分器,其中:
    所述第一功分器的第一端连接所述天线单元的输入端,所述第一功分器的第二端连接所述LTE-U处理单元的输出端,所述第一功分器的第三端连接所述Wi-Fi处理单元的输出端,所述第二功分器的第一端连接所述天线单元的输出端,所述第二功分器的第二端连接所述LTE-U处理单元的输入端,所述第二功分器的第三端连接所述Wi-Fi处理单元的输入端,所述第二功分器的第四端连接所述控制单元的输入端。
  12. 一种信号传输方法,其特征在于,所述方法应用于信号传输装置中,所述装置包括天线单元,所述方法包括:
    检测信道是否空闲;
    当所述信道空闲时,通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号;
    其中,所述方法还包括:
    通过所述天线单元接收空口信号;
    将所述空口信号划分第一路信号以及第二路信号。
  13. 根据权利要求12所述的方法,其特征在于,所述装置还包括耦合装置;
    所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号,包括:
    当需要发射LTE-U信号时,通过所述耦合装置将所述LTE-U信号划分成第一路LTE-U信号以及第二路LTE-U信号,并通过所述天线单元将所述第一路LTE-U信号发射出去,所述第二路LTE-U信号用于指示不发射Wi-Fi信号;
    当需要发射Wi-Fi信号时,通过所述耦合装置将所述Wi-Fi信号划分成第一路Wi-Fi信号以及第二路Wi-Fi信号,并通过所述天线单元将所述第一路Wi-Fi信号发射出去,所述第二路Wi-Fi信号用于指示不发射LTE-U信号。
  14. 根据权利要求12所述的方法,其特征在于,所述装置还包括LTE-U处 理单元、Wi-Fi处理单元以及耦合装置;
    所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号,包括:
    当需要发射LTE-U信号时,通过所述耦合装置将所述LTE-U信号发送至所述天线单元,并通过所述LTE-U处理单元向所述Wi-Fi处理单元发送第一提示消息,以及通过所述天线单元将所述LTE-U信号发射出去,所述第一提示消息用于指示所述Wi-Fi处理单元不向所述天线单元发送Wi-Fi信号;
    当需要发射Wi-Fi信号时,通过所述耦合装置将所述Wi-Fi信号发送至所述天线单元,并通过所述Wi-Fi处理单元向所述LTE-U处理单元发送第二提示消息,以及通过所述天线单元将所述Wi-Fi信号发射出去,所述第二提示消息用于指示所述LTE-U处理单元不向所述天线单元发送LTE-U信号。
  15. 根据权利要求12所述的方法,其特征在于,所述装置还包括LTE-U处理单元、Wi-Fi处理单元以及控制单元;
    所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号,包括:
    当需要发射LTE-U信号时,通过所述控制单元控制所述LTE-U处理单元将所述LTE-U信号发送至所述天线单元并控制所述Wi-Fi处理单元不向所述天线单元发送Wi-Fi信号,通过所述天线单元将所述LTE-U信号发射出去;
    当需要发射Wi-Fi信号时,通过所述控制单元控制所述Wi-Fi处理单元将所述Wi-Fi信号发送至所述天线单元并控制所述LTE-U处理单元不向所述天线单元发送LTE-U信号,通过所述天线单元将所述Wi-Fi信号发射出去。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,当所述信道空闲时,所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号之前,所述方法还包括:
    判断是否竞争到所述信道;
    当竞争到所述信道时,执行所述通过时分复用的方式由所述天线单元发射LTE-U信号以及Wi-Fi信号的操作。
PCT/CN2016/091837 2015-07-28 2016-07-27 一种信号传输方法及装置 WO2017016476A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16829841.2A EP3319357B1 (en) 2015-07-28 2016-07-27 Signal transmission method and apparatus
JP2018503546A JP6642891B2 (ja) 2015-07-28 2016-07-27 信号伝送装置
KR1020187004226A KR102058975B1 (ko) 2015-07-28 2016-07-27 신호 송신 방법 및 장치
US15/880,773 US10887772B2 (en) 2015-07-28 2018-01-26 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510449578.XA CN106412476B (zh) 2015-07-28 2015-07-28 一种信号传输方法及装置
CN201510449578.X 2015-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/880,773 Continuation US10887772B2 (en) 2015-07-28 2018-01-26 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017016476A1 true WO2017016476A1 (zh) 2017-02-02

Family

ID=57884402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091837 WO2017016476A1 (zh) 2015-07-28 2016-07-27 一种信号传输方法及装置

Country Status (6)

Country Link
US (1) US10887772B2 (zh)
EP (1) EP3319357B1 (zh)
JP (1) JP6642891B2 (zh)
KR (1) KR102058975B1 (zh)
CN (1) CN106412476B (zh)
WO (1) WO2017016476A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US10129757B2 (en) * 2016-08-01 2018-11-13 Apple Inc. Transceiver architecture for license assisted access systems
CN109788486A (zh) 2017-11-14 2019-05-21 中兴通讯股份有限公司 无线通信方法及装置
CN109981157A (zh) * 2019-03-01 2019-07-05 维沃移动通信有限公司 一种射频链路控制方法及终端
CN110120824B (zh) * 2019-04-30 2022-05-10 维沃移动通信有限公司 终端及数据传输方法
CN112134592B (zh) * 2020-09-24 2022-10-25 Oppo(重庆)智能科技有限公司 射频电路和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174800A1 (en) * 2012-05-24 2013-11-28 Nokia Siemens Networks Oy Method, system and apparatus using unique preambles for d2d communications in lte
CN204119535U (zh) * 2014-11-18 2015-01-21 德明通讯(上海)股份有限公司 一种大功率tdd-lte无线网关设备
TW201524167A (zh) * 2013-12-03 2015-06-16 Apple Inc 使用未經授權頻帶之載波聚合
CN104796218A (zh) * 2014-01-17 2015-07-22 电信科学技术研究院 信号传输方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274704A1 (en) * 2005-06-01 2006-12-07 Prasanna Desai Method and apparatus for collaborative coexistence between Bluetooth and IEEE 802.11 G with both technologies integrated onto a system-on-a-chip (SOC) device
US8260214B2 (en) * 2006-10-31 2012-09-04 Hewlett-Packard Development Company, L.P. Shared antenna architecture for multiple co-located radio modules
US8265017B2 (en) * 2008-04-11 2012-09-11 Apple Inc. Methods and apparatus for network capacity enhancement for wireless device coexistence
US8320842B2 (en) * 2008-05-19 2012-11-27 Nokia Corporation Apparatus method and computer program for radio-frequency path selection and tuning
US8848676B1 (en) * 2009-03-30 2014-09-30 Marvell International Ltd. Apparatus and method for coexistent wireless and bluetooth communication employing interruption of arbitration requests to allocate use of a shared antenna
US9002282B1 (en) * 2011-12-15 2015-04-07 Marvell International Ltd. Method and apparatus for priority based coexistence arbitration
US9967752B2 (en) * 2013-08-12 2018-05-08 Qualcomm Incorporated Transmission and reception of common channel in an unlicensed or shared spectrum
US20150155891A1 (en) 2013-12-03 2015-06-04 Qualcomm Incorporated Dual mode wwan and wlan transceiver systems and methods
US9516356B2 (en) 2013-12-06 2016-12-06 Cable Television Laboratories, Inc. Parallel scheduling of multilayered media
CN104780544B (zh) * 2014-01-09 2018-11-23 上海朗帛通信技术有限公司 一种利用非授权频谱的通信方法和装置
US9549080B2 (en) 2014-02-05 2017-01-17 Apple Inc. Wi-Fi signaling by cellular devices for coexistence in unlicensed frequency bands
GB2539363A (en) 2014-06-12 2016-12-21 Nec Corp Communication system
US20160345345A1 (en) * 2015-05-21 2016-11-24 Qualcomm Incorporated Methods and apparatus for signal timing detection, sharing, and interference avoidance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174800A1 (en) * 2012-05-24 2013-11-28 Nokia Siemens Networks Oy Method, system and apparatus using unique preambles for d2d communications in lte
TW201524167A (zh) * 2013-12-03 2015-06-16 Apple Inc 使用未經授權頻帶之載波聚合
CN104796218A (zh) * 2014-01-17 2015-07-22 电信科学技术研究院 信号传输方法和装置
CN204119535U (zh) * 2014-11-18 2015-01-21 德明通讯(上海)股份有限公司 一种大功率tdd-lte无线网关设备

Also Published As

Publication number Publication date
EP3319357A4 (en) 2018-10-31
CN106412476A (zh) 2017-02-15
EP3319357B1 (en) 2020-01-29
EP3319357A1 (en) 2018-05-09
US10887772B2 (en) 2021-01-05
CN106412476B (zh) 2019-08-27
JP6642891B2 (ja) 2020-02-12
KR102058975B1 (ko) 2019-12-24
US20180152847A1 (en) 2018-05-31
KR20180030641A (ko) 2018-03-23
JP2018530188A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017016476A1 (zh) 一种信号传输方法及装置
US10420161B1 (en) Controlling RF communication in a dual-connectivity scenario
US10257751B2 (en) User equipment and circuit switched fallback switching method
US10945297B2 (en) Terminal device, base station device, and usable architecture determination method
JP2019506804A (ja) ネットワーク制御ハンドオーバー及びue自律的ハンドオーバーのためのハイブリッド解決策
KR20150086593A (ko) 이중 연결을 지원하는 무선 통신 시스템에서 단말과 기지국 사이의 연결 구성 결정 및 핸드 오버 수행 방법 및 장치
US20190165823A1 (en) Wireless Device and Wireless Local Area Network Signal Receiving Method
US20230022607A1 (en) Methods and apparatuses for generating quasi co-located configurations
US10542522B2 (en) Image communication system, image reception apparatus, image transmission apparatus, image reception method, image transmission method, and recording medium
CN112911727B (zh) 无线通信方法、客户前置设备、用户设备以及网络侧设备
CN113242076B (zh) 目标链路的增益控制方法及装置、存储介质、中继设备
KR20230049619A (ko) 휴면 상태에 있는 2 차 셀 그룹에 대한 무선 링크 실패 복구 및 빔 실패 복구를 위한 기법들
JP2023537453A (ja) Epsフォールバック後にlteからnrにリダイレクトする方法及び装置
CN107318172B (zh) 终端间建立通信连接的方法和装置
CN110167127B (zh) 通信方法和装置
US20220399934A1 (en) Methods and apparatus for port mapping for a repeater
KR20180080482A (ko) 이동 통신 ICS(Interference Cancellation System) 중계 시스템의 안정적인 커버리지 확보를 위한 LTE(Long Term Evolution), WCDMA(Wideband Code Division Multiple Access) 이득 설정 방법
CN111211823B (zh) 切换发送天线的方法和装置,存储介质和电子设备
US10375712B2 (en) Method of handling normal bandwidth and narrow bandwidth coexistence
JP5195683B2 (ja) 無線通信装置および無線通信装置の制御プログラム
KR20200106702A (ko) 사용자 장치의 능력 정보를 전송하기 위한 방법 및 그 전자 장치
US20160212622A1 (en) Enhanced back-to-back security procedure handling
CN113114359B (zh) 一种通信方法、网络设备及通信系统
US20240155690A1 (en) Method and apparatus for controlling random access, and terminal device
WO2016095747A1 (zh) 通信装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018503546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016829841

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187004226

Country of ref document: KR

Kind code of ref document: A