WO2016095747A1 - 通信装置和通信系统 - Google Patents

通信装置和通信系统 Download PDF

Info

Publication number
WO2016095747A1
WO2016095747A1 PCT/CN2015/096999 CN2015096999W WO2016095747A1 WO 2016095747 A1 WO2016095747 A1 WO 2016095747A1 CN 2015096999 W CN2015096999 W CN 2015096999W WO 2016095747 A1 WO2016095747 A1 WO 2016095747A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication device
communication
communication interface
transmitted
Prior art date
Application number
PCT/CN2015/096999
Other languages
English (en)
French (fr)
Inventor
陈林
曹文财
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016095747A1 publication Critical patent/WO2016095747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to communication devices and communication systems.
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • the prior art proposes an independent antenna scheme, that is, the LTE network and other networks each use an independent antenna, wherein the other communication system uses the original antenna.
  • the LTE network uses a newly deployed antenna.
  • the independent antenna solution has disadvantages such as high cost and engineering difficulty.
  • the prior art introduces a common antenna scheme, that is, the LTE network and other communication systems use the same antenna, and the common antenna scheme has lower cost and the independent antenna scheme.
  • the engineering quantity is small and so on.
  • Fig. 1 schematically shows the structure of a base station 100 employing a common antenna scheme in the prior art.
  • the base station 100 includes a CDMA module 110, an LTE module 120, a first combiner 130, a second combiner 140, and an antenna array 150.
  • the CDMA module 110 includes a first baseband unit (Baseband Unit).
  • the LTE module 120 includes a second BBU 121, a second RF module 122, a first interface I1 for communicating with the first combiner 130, and for communicating with the second combiner 140
  • the second interface I2 has a communication interface I3 between the first combiner 130 and the second combiner 140 and the antenna array 150, respectively.
  • the base station 110 transmits a downlink signal.
  • the process is as follows: after processing the baseband signal generated by the first baseband unit 111 to obtain the first radio frequency signal, the first radio frequency module 112 in the CDMA module 110 passes the first radio frequency signal through the first interface 113 and the second interface 114, respectively.
  • the second RF module 122 in the LTE module 120 processes the baseband signal generated by the second baseband unit 121 to obtain a second RF signal.
  • the second RF module 122 in the LTE module 120 processes the baseband signal generated by the second baseband unit 121.
  • the second radio frequency signal is transmitted to the first combiner 130 and the second combiner 140 through the third interface 123 and the fourth interface 124 respectively; the first combiner 130 and the second combiner
  • the device 140 combines the first radio frequency signal transmitted by the first radio frequency module 112 and the second radio frequency signal transmitted by the second radio frequency module 122 to obtain a combined signal and communicates with the antenna array 150.
  • the interface transmits the combined signal to the antenna array 150.
  • the combiner is generally implemented by a 3dB bridge or a wideband coupler
  • the introduction of the first combiner 130 and the second combiner 140 increases the insertion loss of the CDMA system and the LTE system by at least 3 dB.
  • the combiner is implemented by a four-worker, the spectrum resources are lost due to the introduction of the guard band, thereby affecting the performance of the CDMA system and the LTE system.
  • how to implement the common antenna scheme of the LTE system and the CDMA system in the base station is an urgent problem to be solved in the field.
  • Embodiments of the present invention provide a communication device and a communication system, which can implement communication devices having different communication systems to share the same antenna array.
  • a communication device having a first communication system.
  • the communication device includes: a baseband unit, a radio frequency unit, a first communication interface, and a second communication interface, the radio frequency unit communicates with the antenna array through the first communication interface, and communicates with the second communication device through the second communication interface
  • the second communication device has a second communication system different from the first communication system;
  • the baseband unit is configured to generate a first signal and transmit the first signal to the radio frequency unit;
  • the radio frequency unit is configured to receive The first signal transmitted by the baseband unit receives the second signal sent by the second communication device through the second communication interface, and superimposes the first signal and the second signal to obtain a superimposed signal; the radio frequency unit Also used to transmit the superimposed signal to the antenna array through the first communication interface.
  • the radio frequency unit is further configured to: receive, by using the first communications interface, a third signal that is transmitted by the antenna array; and split the third signal Processing to obtain a first branch signal and a second branch signal; transmitting the first branch signal And to the baseband unit, and transmitting the second branch signal to the second communication device through the second communication interface.
  • the radio frequency unit includes: a first amplifier, a first mixer, an analog-to-digital converter, and a digital signal processor, where the An amplifier is connected to the second communication interface, and is configured to perform amplification processing on the second signal transmitted by the second communication interface, obtain the amplified second signal, and transmit the amplified second signal Up to the first mixer; the first mixer is configured to receive the amplified second signal transmitted by the first amplifier, and perform mixing processing on the amplified second signal to obtain a mixing And transmitting the mixed signal to the analog to digital converter; the analog to digital converter is configured to receive the mixed signal transmitted by the first mixer, convert the mixed signal into a digital signal, and convert the digital signal Transmitting a signal to the digital signal processor; the digital signal processor is configured to receive the digital signal transmitted by the analog to digital converter, and superimpose the digital signal with the first signal to obtain the stack Signal.
  • the An amplifier is connected to the second communication interface, and is configured to perform amplification processing on the second signal transmitted by the second communication interface, obtain the amplified second signal
  • the radio frequency unit further includes: a first filter, and the first amplifier and the second communication interface respectively Connecting, the second signal transmitted by the second communication interface is filtered, the filtered second signal is obtained, and the filtered second signal is transmitted to the first amplifier;
  • An amplifier is specifically configured to receive the filtered second signal transmitted by the first filter, and perform amplification processing on the filtered second signal to obtain the amplified second signal.
  • the radio frequency unit further includes: a first attenuator, and the first filter and the first amplifier respectively
  • the connection is configured to receive the filtered second signal transmitted by the first filter, reduce the power of the filtered second signal, obtain the second signal after the power reduction, and reduce the power
  • the second signal is transmitted to the first amplifier; the first amplifier is specifically configured to receive the second signal after the power reduction of the first attenuator, and perform the second signal after the power reduction
  • the amplification process is performed to obtain the second signal after the amplification process.
  • the radio frequency unit further includes: a digital-to-analog converter, a second mixer, a second amplifier, and a second filter, wherein the digital-to-analog converter is configured to receive the superimposed signal transmitted by the digital signal processor, convert the superimposed signal into an analog signal, and Transmitting the analog signal to the second mixer;
  • the second mixer is configured to receive the analog signal transmitted by the digital-to-analog converter, perform mixing processing on the analog signal, obtain a high-frequency signal, and Transmitting a frequency signal to the second amplifier;
  • the second amplifier is configured to receive the high frequency signal transmitted by the second mixer, and amplify the high frequency signal to obtain the amplified high frequency signal, and The amplified high frequency signal is transmitted to the second filter;
  • the second filter is configured to receive the amplified high frequency signal transmitted by the second amplifier, and the amplified high frequency signal Performing a filtering process to obtain
  • the second signal is a radio frequency signal.
  • the radio frequency unit further includes: a third filter, a third amplifier and a splitter, wherein the third filter is connected to the first communication interface, and configured to receive the third signal transmitted by the antenna array through the first communication interface, and filter the third signal Obtaining the third signal after filtering, and transmitting the filtered third signal to the third amplifier; the third amplifier is configured to receive the third processed filter after the third filter is transmitted a signal, performing amplification processing on the filtered third signal, obtaining the amplified third signal, and transmitting the amplified third signal to the splitter; the splitter is configured to receive The amplified third signal transmitted by the third amplifier separates the amplified third signal into the first branch signal and the second branch signal; the splitter is further configured to The first Tributary signal transmitted to the base band unit, and a second branch the signal transmitted to the second communication device through the second communication interface.
  • the third filter is connected to the first communication interface, and configured to receive the third signal transmitted by the antenna array through the first communication interface, and filter the third signal Obtaining the third
  • the first filter is a duplex filter, and the first filter is connected to the splitter
  • the first filter is further configured to receive the second branch signal transmitted by the splitter, perform filtering processing on the second branch signal, obtain the filtered second branch signal, and pass the first
  • the second communication interface transmits the filtered second branch signal to the second communication device.
  • the first communication system is Long Term Evolution (LTE)
  • the second communication system is Code Division Multiple Access (CDMA).
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • another communication device having a first communication system
  • the communication device comprising: a baseband unit, a radio frequency unit, a first communication interface, and a second communication interface
  • the frequency unit communicates with the antenna array through the first communication interface, and communicates with the second communication device through the second communication interface, wherein the second communication device has a second communication system different from the first communication system
  • the radio frequency unit is configured to receive a third signal transmitted by the antenna array through the first communication interface, and perform a branching process on the third signal to obtain a first branch signal and a second branch signal; the radio frequency unit further And transmitting the first branch signal to the baseband unit, and transmitting the second branch signal to the second communication device through the second communication interface.
  • the radio frequency unit includes: a filter, an amplifier, and a splitter, wherein the filter is connected to the first antenna, and is configured to pass the Receiving, by the first antenna interface, the third signal transmitted by the antenna array, performing filtering processing on the third signal to obtain the filtered third signal, and transmitting the filtered third signal to the amplifier
  • the amplifier is configured to receive the filtered third signal after the filter is transmitted, and perform amplification processing on the filtered third signal to obtain the amplified third signal, and the amplification
  • the processed third signal is transmitted to the splitter; the splitter is configured to receive the amplified third signal sent by the amplifier, and perform the splitting process on the third signal after the amplification process Obtaining a first branch signal and a second branch signal, transmitting the first branch signal to the baseband unit, and transmitting the second branch signal to the second through the second communication interface Communication device.
  • a communication system comprising: a first communication device, a second communication device, and an antenna array, the first communication device having a first communication system, the second communication device having a different communication system than the first communication system a second communication system having a first communication interface between the first communication device and the antenna array, and a second communication interface between the first communication device and the second communication device, wherein the first communication device For generating a first signal; the second communication device is configured to generate a second signal, and send the second signal to the first communication device through the second communication interface; the first communication device is further configured to pass the second The communication interface receives the second signal sent by the second communication device, performs superposition processing on the first signal and the second signal to obtain a superimposed signal, and transmits the superimposed signal to the antenna array through the first communication interface.
  • the antenna array is further configured to receive a third signal, and transmit the third signal to the first communications device by using the first communications interface;
  • the first communication device is further configured to receive, by using the first communication interface, a third signal transmitted by the antenna array, and perform a branching process on the third signal to obtain a first branch signal and a second branch signal, and pass the Transmitting, by the second communication interface, the second branch signal to the second communication device;
  • the second The communication device is further configured to receive the second tributary signal transmitted by the first communication device through the second communication interface.
  • the first communications device includes: a first baseband unit, a first radio frequency unit, and the first a communication interface and the second communication interface, wherein the first radio frequency unit is respectively connected to the first baseband unit, the first communication interface, and the second communication interface.
  • the first radio frequency unit includes: a first amplifier, a first mixer, an analog-to-digital converter, and a digital a signal processor, wherein the first amplifier is connected to the second communication interface, configured to receive the second signal through the second communication interface, and perform amplification processing on the second signal to obtain the amplified second signal Transmitting the second signal to the first mixer; the first mixer is configured to receive the second signal after the amplification process transmitted by the first amplifier, after the amplification process The second signal is subjected to mixing processing to obtain a mixed signal, and the mixed signal is transmitted to the analog to digital converter; the analog to digital converter is configured to receive the mixed signal transmitted by the first mixer, and Converting the mixed signal to a digital signal and transmitting the digital signal to the digital signal processor; the digital signal processor is respectively coupled to the analog to digital converter and the first communication interface for receiving the analog to digital conversion The digital signal transmission, the digital signal is superimposed to the first signal processing to
  • the second communication device includes: a second baseband a unit, a second radio frequency unit, and the second communication interface, wherein the second radio frequency unit is coupled to the second baseband unit and the second communication interface, respectively.
  • the first communication system is Long Term Evolution (LTE)
  • the second communication system is Code Division Multiple Access CDMA.
  • a communication device and a communication system include a first communication interface and a second communication interface between a radio frequency unit and an antenna array and a second communication device, wherein the communication device and the communication device
  • the second communication device has a different communication system
  • the radio frequency unit receives the second signal sent by the second communication device through the second communication interface, and superimposes the second signal and the first signal sent by the baseband unit to obtain an overlay.
  • Signal and pass the The first communication interface transmits the superimposed signal to the antenna array, so that the communication device having different communication systems and the second communication device share the same antenna array.
  • FIG. 1 is a schematic diagram of a base station employing a common antenna scheme in the prior art.
  • FIG. 2 is a schematic block diagram of a communication device in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a radio frequency module of a communication device according to an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of a radio frequency module of a communication device according to an embodiment of the present invention.
  • FIG. 5 is still another schematic diagram of a radio frequency module of a communication device according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of a communication system in accordance with an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a user equipment may be referred to as a terminal, a mobile station (Mobile Station, MS), and a mobile terminal (Mobile).
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment can be a cellular phone, a cordless phone, or a SIP (Session Initiation Protocol). Protocol) Telephone, WLL (Wireless Local Loop) station, PDA (Personal Digital Assistant, personal digital processing), handheld device with wireless communication capabilities, computing device or other processing device connected to the wireless modem.
  • the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the base station may be an AP (Access Point, wireless access point) of GSM, or a Global System of Mobile communication (GSM) or CDMA (Code Division Multiple Access).
  • the BTS (Base Transceiver Station) in the code division multiple access) may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be LTE (Long Term Evolution).
  • eNB or eNodeB Evolved Node B
  • a relay station or an access point or a base station device in a future 5G network.
  • the communication device 200 has a first communication system, and the communication device 200 can be a base station or other device, or a module of the independent device.
  • the first communication system can be LTE or other communication systems. This is not limited.
  • the communication device 200 includes:
  • the baseband unit 210 is configured to generate a first signal, and transmit the first signal to the radio frequency unit 220;
  • the radio frequency unit 220 is configured to receive the first signal transmitted by the baseband unit 210, receive the second signal sent by the second communication device by using the second communication interface 240, and superimpose the first signal and the second signal. Processing to obtain a superimposed signal;
  • the radio frequency unit 220 is further configured to transmit the superposition signal to the antenna array through the first communication interface 230.
  • a communication device includes a radio frequency unit and an antenna array and The second communication device has a first communication interface and a second communication interface, respectively, wherein the communication device and the second communication device have different communication systems, and the radio frequency unit receives the second communication through the second communication interface a second signal sent by the device, superimposing the second signal and the first signal sent by the baseband unit to obtain a superimposed signal, and transmitting the superimposed signal to the antenna array through the first communication interface, which can implement different communication systems
  • the communication device shares the same antenna array as the second communication device.
  • the antenna array may send the superimposed signal to a communication peer end, for example, a user equipment, but the embodiment of the present invention is not limited thereto.
  • the communication device 200 may have a different communication system from the second communication device and be manufactured by different vendors.
  • the first communication system and the second communication system can be any two different communication systems.
  • the first communication system is LTE
  • the second communication system is CDMA.
  • the second communication system may also be other communication systems, such as GSM or WCDMA, but the embodiment of the present invention does not limit this.
  • the communication device 200 may be specifically an LTE module in a base station, and the second communication device may be specifically a CDMA module in a base station.
  • the communication device 200 adds a second communication device (ie, a CDMA module) to the first communication interface that communicates with the antenna array.
  • a second communication interface that communicates; at the same time, the second communication device may only have a second communication interface in communication with the communication device 200, but may not have a communication interface to communicate with the antenna array.
  • the second signal generated by the second communication device can be transmitted to the communication device 200 through the second communication interface, the communication device 200 generates a first signal, and performs the second signal and the first signal.
  • Superimposing processing to obtain a superimposed signal thereby avoiding impact on system performance due to adding additional modules on the basis of the LTE module and the CDMA module, for example, adding a combiner based on the LTE module and the CDMA module Additional damage or protective tape.
  • the first signal transmitted by the baseband unit 210 received by the radio frequency unit 220 may be a baseband signal, and the baseband unit 210 and the radio frequency unit 220 may have a common public radio interface (CPRI), where The baseband unit 210 may transmit the generated first signal to the radio frequency unit 220 in the form of a digital signal through the CPRI interface, but the embodiment of the present invention does not limit this.
  • CPRI public radio interface
  • the second signal transmitted by the second communication device may be a baseband signal or a high frequency signal, for example, a radio frequency signal.
  • the radio frequency unit 220 can have the second communication interface with the baseband unit of the second communication device or the second communication interface with the radio frequency unit of the second communication device.
  • the second signal is a radio frequency signal.
  • the radio frequency unit 220 and the radio frequency unit of the second communication device have the second communication interface, but the embodiment of the present invention is not limited thereto.
  • the second signal received by the radio frequency unit 220 through the second communication interface may be an analog signal.
  • the radio frequency unit 220 may perform analog-to-digital conversion processing on the second signal to obtain a corresponding signal corresponding to the second signal.
  • the digital signal is superimposed on the digital signal corresponding to the second signal and the first signal, but the embodiment of the present invention is not limited thereto.
  • the first signal and the second signal may be analog signals or digital signals.
  • the radio frequency unit 220 may be specifically configured to superimpose two analog signals or superimpose two digital signals, which is in the embodiment of the present invention. This is not limited.
  • the first signal may be a digital signal
  • the second signal may be an analog signal.
  • the radio frequency unit 220 is specifically configured to convert the second signal into a digital signal, and superimpose the first signal and the digital signal, but the embodiment of the present invention is not limited thereto.
  • the radio frequency unit 220 can perform the superposition processing on the first signal and the second signal in various manners.
  • the radio frequency unit 220 includes: a first amplifier 221, a first mix. a frequency converter 222, an analog to digital converter (ADC) 223, and a digital signal processor 224, wherein
  • the first amplifier 221 is connected to the second communication interface 240, and is configured to perform amplification processing on the second signal to obtain the amplified second signal, and transmit the amplified second signal to the second signal.
  • the first mixer 222 is configured to receive the amplified second signal sent by the first amplifier 221, perform a mixing process on the amplified second signal, obtain a mixed signal, and Mixing signal is transmitted to the analog to digital converter 223;
  • the analog-to-digital converter 223 is configured to receive the mixed signal transmitted by the first mixer 222, convert the mixed signal into a digital signal, and transmit the digital signal to the digital signal processor 224;
  • the digital signal processor 224 is configured to receive the digital signal transmitted by the analog to digital converter 223 and superimpose the digital signal with the first signal.
  • the first amplifier 221 can be connected to the second communication interface 240 and the first mixer 222, respectively, for receiving the second signal transmitted by the second communication device through the second communication interface 240, And the second signal is amplified to obtain the second signal after the amplification process, and the second signal after the amplification process is transmitted to the first mixer 222.
  • the first amplifier 221 may be a low noise amplifier, and the gain value of the first amplifier 221 may also be less than 1.
  • the first amplifier 221 is specifically configured to reduce the power of the second signal.
  • the first amplifier 221 may be an automatic gain controller (AGC) for performing amplification processing on the second signal according to the target output level, so that the second signal after the amplification process is performed.
  • AGC automatic gain controller
  • the absolute difference between the amplitude of the target and the target output level is less than a preset value, wherein the target output level may be preset, or the communication device 200 acquires from other network devices, which is not Make a limit.
  • the first mixer 222 can be connected to the first amplifier 221, the analog-to-digital converter 223, and the first signal source, respectively, for receiving the amplified second signal transmitted by the first amplifier 221, and acquiring
  • the first local oscillator signal generated by the first signal source is subjected to mixing processing by using the first local oscillator signal to obtain the mixed signal, and the mixed signal is transmitted to the first local oscillator signal.
  • the first local oscillator signal may be an intermediate frequency or a high frequency signal
  • the first mixer 222 may specifically perform upconversion processing on the amplified second signal by using the first local oscillator signal or
  • the down conversion process is such that the mixed signal obtained by the mixing process can be supported by the analog to digital converter 223.
  • the mixing signal is an intermediate frequency signal, but the embodiment of the present invention does not limit this.
  • the analog-to-digital converter 223 can be connected to the first mixer 222 and the digital signal processor 224, respectively, for receiving the mixed signal transmitted by the first mixer 222, and modulating the mixed signal.
  • the digital conversion process obtains a digital signal corresponding to the mixed signal, and transmits the digital signal corresponding to the mixed signal to the digital signal processor 224.
  • the digital signal processor 224 can be coupled to the analog-to-digital converter 223 and the baseband unit 210 for receiving a digital signal corresponding to the mixed signal transmitted by the analog-to-digital converter 223, and receiving the transmitted by the baseband unit 210.
  • the first signal is subjected to superposition processing on the first signal and the digital signal corresponding to the mixed signal to obtain a superimposed signal.
  • the digital signal processor 224 may directly superimpose the first signal and the digital signal corresponding to the mixed signal, or first process at least one of the first signal and the digital signal corresponding to the mixed signal, and then
  • the superposition operation is not limited in this embodiment of the present invention.
  • the digital signal processor 224 can also be connected to the first communication interface 230. Accordingly, the digital signal processor 224 can also be configured to pass the superimposed signal through the first communication interface. 230 is transmitted to the antenna array, but embodiments of the present invention are not limited thereto.
  • the communication device 200 in the embodiment of the present invention performs superimposition processing on the first signal and the second signal by using the digital signal processor, and does not introduce additional difference loss, and uses a combiner pair in the prior art. Signal quality and system performance can be improved compared to signal overlay processing.
  • the term "the first component is connected to the second component” may mean that the first component is directly connected to the second component without other components in the middle, and may also represent the first component and the first component.
  • the second component is indirectly connected by other components.
  • the radio frequency unit 220 further includes:
  • the first filter 225 is connected to the first amplifier 221 and the second communication interface 240, and is configured to perform filtering processing on the second signal transmitted by the second communication interface 240 to obtain the filtered second signal. And transmitting the filtered second signal to the first amplifier 221.
  • the first amplifier 221 is specifically configured to receive the filtered second signal transmitted by the first filter 225, and perform amplification processing on the filtered second signal to obtain the amplification process. The second signal.
  • the first filter 225 can be a normal filter or a duplex filter.
  • the first filter 225 can receive the second signal transmitted by the second communication device through the second communication interface 240, and perform the second signal on the second signal.
  • the filtering process is performed to obtain the second signal after the filtering process.
  • the first filter 225 may further transmit the filtered second signal to the first amplifier 221, and correspondingly, the first amplifier 221 receives the filtered processed portion of the first filter 225
  • the two signals are subjected to amplification processing on the received signals, but the embodiment of the present invention is not limited thereto.
  • the first filter 225 and the first amplifier 221 may be directly or indirectly connected.
  • the radio frequency unit 220 further includes:
  • the first attenuator 226 is connected to the first filter 225 and the first amplifier 221, and configured to receive the filtered second signal transmitted by the first filter 225, and reduce the filtered processing.
  • the power of the second signal, the second signal after the power reduction is obtained, and the second signal after the power reduction is transmitted to the first amplifier 221;
  • the first amplifier 221 is specifically configured to receive the second signal after the power reduction by the first attenuator 226, and perform amplification processing on the second signal after the power reduction to obtain the amplification.
  • the second signal after processing is specifically configured to receive the second signal after the power reduction by the first attenuator 226, and perform amplification processing on the second signal after the power reduction to obtain the amplification.
  • the second communication device may transmit the second signal to the communication device 200 without performing power control on the second signal, and accordingly, the communication device 200 receives the second signal.
  • the first attenuator 226 can be used to perform power control on the second signal.
  • the first attenuator 226 can be an adjustable attenuator, and the first attenuator 226 can receive the filtered second signal transmitted by the first filter 225, and power the received signal.
  • the power-controlled second signal is subjected to amplification processing on the power-controlled second signal, but the embodiment of the present invention is not limited thereto.
  • the radio frequency unit 220 may not include the first filter 225.
  • the first attenuator 226 may be directly connected to the second communication interface 240, and through the second communication interface. The second signal transmitted by the second communication device is received by the second communication device, but the embodiment of the present invention is not limited thereto.
  • the digital signal processor 224 can be directly or indirectly connected to the first communication interface 230.
  • the radio frequency unit 220 further includes: a digital to analog converter (DAC) 227-2, a second mixer 227-4, and a second amplifier 227- 6 and a second filter 227-8, wherein
  • DAC digital to analog converter
  • the digital-to-analog converter 227-2 is configured to receive the superimposed signal transmitted by the digital signal processor 224, convert the superimposed signal into an analog signal, and transmit the analog signal to the second mixer 227-4;
  • the second mixer 227-4 is configured to receive the analog signal transmitted by the digital-to-analog converter 227-2, perform mixing processing on the analog signal, obtain a high-frequency signal, and transmit the high-frequency signal to the first Two amplifiers 227-6;
  • the second amplifier 227-6 is configured to receive the high frequency signal transmitted by the second mixer 227-4, perform amplification processing on the high frequency signal, obtain the amplified high frequency signal, and the amplification processing The subsequent high frequency signal is transmitted to the second filter 227-8;
  • the second filter 227-8 is configured to receive the amplified high frequency signal transmitted by the second amplifier 227-6, and perform filtering processing on the amplified high frequency signal to obtain the filtered processed signal.
  • the high frequency signal is transmitted to the antenna array through the first communication interface 230.
  • the digital-to-analog converter 227-2 can be connected to the digital signal processor 224 and the second mixer 228, respectively, for receiving the superimposed signal transmitted by the digital signal processor 224, and performing digital-to-analog conversion on the superimposed signal. Processing, obtaining an analog signal corresponding to the superposed signal, and transmitting an analog signal corresponding to the superimposed signal to the second mixer 227-4.
  • the second mixer 227-4 can be respectively connected to the digital-to-analog converter 227-2, the second amplifier 227-6 and the second signal source for receiving the superposition transmitted by the digital-to-analog converter 227-2.
  • the analog signal corresponding to the signal receives the second local oscillator signal generated by the second signal source, and uses the second local oscillator signal to perform mixing processing on the analog signal corresponding to the superposed signal.
  • the second mixer 227-4 may perform mixing processing on the analog signal corresponding to the superposed signal by using the second local oscillator signal, for example, up-conversion processing or down-conversion processing to obtain high The frequency signal, but the embodiment of the invention is not limited thereto.
  • the second amplifier 227-6 can be respectively connected to the second mixer 227-4 and the second filter 227-8 for receiving the high frequency signal transmitted by the second mixer 227-4.
  • the high frequency signal is amplified to obtain the amplified high frequency signal.
  • the second amplifier 227-6 may be a variable gain amplifier (VGA), but the embodiment of the present invention is not limited thereto.
  • VGA variable gain amplifier
  • the second filter 227-8 can be respectively connected to the second amplifier 227-6 and the first communication interface 230 for receiving the amplified high frequency signal transmitted by the second amplifier 227-6 for receiving The received signal is subjected to filtering processing, and the filtered signal is transmitted to the antenna array through the first communication interface 230.
  • the radio frequency unit 220 may further include:
  • the filter 228-2 is connected to the digital-to-analog converter 227-2 and the second mixer 227-4, respectively, for receiving an analog signal corresponding to the superposed signal transmitted by the digital-to-analog converter 227-2.
  • the analog signal corresponding to the superimposed signal is subjected to filtering processing to obtain the filtered analog signal, and the filtered analog signal is transmitted to the second mixer 227-4.
  • the second mixer 227-4 is indirectly connected to the digital-to-analog converter 227-2 through the filter 228-2, and is configured to receive the filtered analog signal transmitted by the filter 228-2. And performing the mixing processing on the filtered analog signal, but the embodiment of the present invention is not limited thereto.
  • the radio frequency unit 220 may further include:
  • the power amplifier 228-4 is connected to the second filter 227-8 and the second amplifier 227-6, respectively, for receiving the amplified high frequency signal transmitted by the second amplifier 227-6, and The high-frequency signal after the amplification process is subjected to power amplification processing to obtain the high-frequency signal after power amplification processing.
  • the second filter 227-8 is specifically configured to receive the high-frequency signal after the power amplification process transmitted by the power amplifier 228-4, and perform filtering processing on the power-controlled high-frequency signal.
  • the power amplifier 228-4 and the digital signal processor 224 may further have a feedback circuit, and the feedback circuit may amplify the power outputted by the power amplifier 228-4. A small portion of the high frequency signal is transmitted to the digital signal processor 224. At this time, the digital signal processor 224 can receive the feedback signal transmitted by the feedback circuit, and optimize the second superimposed signal according to the received feedback signal, for example, performing digital pre-distortion (DPD).
  • DPD digital pre-distortion
  • the second superimposed signal is obtained by superimposing, by the digital signal processor 224, the fourth signal transmitted by the second communication device through the second communication interface and the fifth signal generated by the baseband unit 210, and
  • the timing at which the digital signal processor 224 obtains the second superimposed signal may be later than the timing at which the digital signal processor 224 obtains the superimposed signal, which can improve the signal quality of the output signal of the communication device, but the embodiment of the present invention is not limited thereto. this.
  • the communication device 200 can also receive signals transmitted by the antenna array. Accordingly, the radio frequency unit 200 is further configured to:
  • the first branch signal is transmitted to the baseband unit 210, and the second branch signal is transmitted to the second communication device through the second communication interface 240.
  • the radio frequency unit 220 can receive the third signal transmitted by the antenna array through the first communication interface 230, where the third signal can be obtained by the antenna array from other devices, for example, the third signal is sent by the user equipment.
  • the uplink signal is not limited in this embodiment of the present invention.
  • the radio frequency unit 220 can separate the third signal into a first branch signal and a second branch signal, and transmit the second branch signal to the second communication device through the second communication interface 240, the first The branch signal is transmitted to the baseband unit 210.
  • the separation processing of the third signal by the radio frequency unit 220 can be implemented by a splitter included in the radio frequency unit 220. As shown in FIG. 5, the radio frequency unit 220 further includes: the third filter 228-6, the third amplifier 228-8, and the splitter 229-2, where
  • the third filter 228-6 is connected to the first communication interface 230, and configured to receive the third signal transmitted by the antenna array through the first communication interface 230, and perform filtering processing on the third signal to obtain a filtering process.
  • the third signal, and the filtered third signal is transmitted to the third amplifier 228-8;
  • the third amplifier 228-8 is configured to receive the filtered third signal transmitted by the third filter 228-6, and perform amplification processing on the filtered third signal to obtain the amplified processing Three signals, and the amplified third signal is transmitted to the splitter 229-2;
  • the splitter 229-2 is configured to receive the third signal after the amplification process transmitted by the third amplifier 228-8, and separate the amplified third signal into the first branch signal and the first Two-way signal;
  • the splitter 229-2 is further configured to transmit the first branch signal to the baseband unit 210, and transmit the second branch signal to the second communication device through the second communication interface 240.
  • the third filter 228-6 may be a duplex filter, and the third filter 228-6 may be respectively connected to the first communication interface 230 and the third amplifier 228-8, optionally, the third The filter 228-6 and the second filter 227-8 may be the same duplex filter, but the embodiment of the present invention is not limited thereto.
  • the third amplifier 228-8 can be a low noise amplifier, and the third amplifier 228-8 can be connected to the third filter 228-2 and the splitter 229-2, respectively, wherein the third amplifier 228- 8 can be directly or indirectly connected to the splitter 229-2.
  • FIG. 1 As an optional embodiment, as shown in FIG.
  • the radio frequency unit may further include a second attenuator 229-3, a fifth filter 229-4, and a fourth amplifier 229-5, wherein the second attenuator 229 -3 is coupled to the third amplifier 228-8 and the fifth filter 229-4, the fourth amplifier 229-5 may be a low noise amplifier, and the fifth filter 229-4 and the splitter, respectively 229-2 is connected, but the embodiment of the present invention is not limited thereto.
  • the splitter 229-2 may be a coupler, and the splitter 229-2 is respectively connected to the baseband unit 210 and the second communication interface 240 for separating the received signal into a first branch signal and a second branch signal, and transmitting the first branch signal and the second branch signal to the baseband unit and the second communication device, respectively, but the embodiment of the invention is not limited thereto.
  • the splitter 229-2 may directly transmit the first branch signal to the baseband unit 210, or may first process the first branch signal, and then transmit the processed first branch signal to the Baseband unit 210.
  • the radio frequency unit 220 further includes: a fifth filter 229-6, a third mixer 229-7, and a second analog-to-digital converter 229-8, where
  • the fifth filter 229-6 is connected to the splitter 229-2 and the third mixer 229-7, respectively, for receiving the first branch signal transmitted by the splitter 229-2, The first branch signal is filtered to obtain the filtered first branch signal, and the filtered first branch signal is transmitted to the third mixer 229-7;
  • the third mixer 229-7 is connected to the fifth filter 229-6, the second analog to digital converter 229-8, and the third signal source, respectively, for receiving the transmission of the fifth filter 229-6.
  • the first branch signal after filtering is received, the third local oscillator signal generated by the third signal source is received, and the first local signal is mixed and processed by the third local oscillator signal to obtain a second mixed signal. And transmitting the second mixing signal to the second analog to digital converter 229-8;
  • the second analog-to-digital converter 229-8 is connected to the third mixer 229-7 and the baseband unit 210, respectively, for receiving the second mixed signal transmitted by the third mixer 229-7,
  • the second mixing signal performs an analog-to-digital conversion process to obtain a second digital signal corresponding to the second mixed signal, and transmits the second digital signal to the baseband unit 210.
  • the third mixer 229-7 can use the third local oscillator signal to up-convert or down-convert the first tributary signal, which is not limited in this embodiment of the present invention.
  • the second analog-to-digital converter 229-8 may have a CPRI interface with the baseband unit, and may transmit the digital signal corresponding to the first branch signal through a CPRI interface with the baseband unit 210.
  • the embodiment of the invention is not limited thereto.
  • the radio frequency unit 220 may directly transmit the second tributary signal to the second communication device, or may process the second tributary signal, and then transmit the processed second tributary signal to
  • the second communication device is not limited in this embodiment of the present invention.
  • the first filter 225 is a duplex filter and the first filter 225 is coupled to the splitter 229-2.
  • the first filter 225 is further configured to receive the second branch signal transmitted by the splitter 229-2, perform filtering processing on the second branch signal, and obtain the filtered second branch signal, and The second branch signal after the filtering process is transmitted to the second communication device through the second communication interface 240.
  • the communication device has a first communication interface and a second communication interface between the radio frequency unit and the antenna array and the second communication device, wherein the communication device and the second communication device have a different communication system, and the radio frequency unit receives the second signal sent by the second communication device through the second communication interface, and sends the second signal and the baseband unit
  • the first signal is superimposed to obtain a superimposed signal, and the superimposed signal is transmitted to the antenna array through the first communication interface, so that the communication device having different communication systems and the second communication device share the same antenna array.
  • the communication device does not introduce an additional difference by superimposing the first signal and the second signal by using a digital signal processor, and superimposing the signal by using a combiner in the prior art. Compared with processing, it can improve signal quality and system performance.
  • an embodiment of the present invention further provides another communication device, where the communication device has a first communication system, and the communication device may be a base station or other device, or a module in an independent device, the first
  • the communication system may be LTE or other communication system, which is not limited by the embodiment of the present invention.
  • the communication device includes:
  • a baseband unit a radio frequency unit, a first communication interface, and a second communication interface
  • the radio frequency unit communicates with the antenna array through the first communication interface, and communicates with the second communication device through the second communication interface, wherein the The second communication device has a second communication system different from the first communication system
  • the radio frequency unit is configured to receive a third signal transmitted by the antenna array through the first communication interface, and perform a branching process on the third signal to obtain a first branch signal and a second branch signal;
  • the radio frequency unit is further configured to transmit the first branch signal to the baseband unit, and transmit the second branch signal to the second communication device through the second communication interface.
  • the radio frequency unit includes: a filter, an amplifier, and a splitter, where
  • the filter is connected to the first antenna, and is configured to receive the third signal transmitted by the antenna array through the first antenna interface, and perform filtering processing on the third signal to obtain the filtered third signal. And transmitting the filtered third signal to the amplifier;
  • the amplifier is configured to receive the filtered third signal after the filter is transmitted, and perform amplification processing on the filtered third signal to obtain the amplified third signal, and the amplification processing
  • the third signal is transmitted to the splitter;
  • the splitter is configured to receive the amplified third signal sent by the amplifier, and perform the split processing on the third signal to obtain a first branch signal and a second branch signal, and Transmitting the first branch signal to the baseband unit and transmitting the second branch signal to the second communication device via the second communication interface.
  • the communication device is used as a receiving end, and the splitter may be specifically a coupler.
  • the filter, the amplifier and the splitter may correspond to the third filter 228-6 and the third amplifier in the foregoing embodiment. 228-8 and splitter 229-2, but embodiments of the present invention are not limited thereto.
  • the radio frequency unit may further include another filter, and the other filter may be respectively connected to the splitter and the second communication interface, for receiving the second branch signal, The second branch signal is subjected to filtering processing to obtain the filtered second branch signal, and the filtered second branch signal is transmitted to the second communication device through the second communication interface.
  • the first communication system may be LTE, and the second communication system may be CDMA, but the embodiment of the present invention is not limited thereto.
  • the communication device has a first communication interface and a second communication interface between the radio frequency unit and the antenna array and the second communication device, wherein the communication device and the second communication device have Different communication systems, and the radio frequency unit can receive the third signal transmitted by the antenna array through the first communication interface, and divide the third signal to obtain the first branch signal and the second branch signal, and pass the The second communication interface transmits the second branch signal to the second communication device, so that the communication device having different communication systems and the second communication device share the same antenna array.
  • the communication device may perform filtering and amplification processing on the third signal before separating the third signal, thereby improving the signal quality of the first branch signal and the second branch signal, and further Improve system performance.
  • FIG. 6 is a schematic diagram showing the structure of a communication system 300 according to an embodiment of the present invention.
  • the communication system 300 may include:
  • first communication device 310 a first communication device 310, a second communication device 320, and an antenna array 330
  • the first communication device 310 having a first communication system
  • the second communication device 320 having a second communication system different from the first communication system
  • the A communication device 310 and the antenna array 330 have a first communication interface L1
  • the first communication device 310 and the second communication device 320 have a second communication interface L2.
  • the first communication device 310 is configured to generate a first signal
  • the second communication device 320 is configured to generate a second signal, and transmit the second signal to the first communication device 310 through the second communication interface;
  • the first communication device 310 is further configured to receive the second communication device by using the second communication interface 320 transmitting the second signal, performing superimposition processing on the first signal and the second signal to obtain a superimposed signal, and transmitting the superimposed signal to the antenna array 330 through the first communication interface;
  • the antenna array 330 is configured to receive the superposed signal transmitted by the first communication device through the first communication interface, and send the superimposed signal to the communication peer end.
  • the first communication device and the antenna array and the second communication device respectively have a first communication interface and a second communication interface, wherein the first communication device and the second communication device Having a different communication system, and the first communication device receives the second signal transmitted by the second communication device through the second communication interface, and performs superposition processing on the second signal and the first signal generated by the first communication device, To obtain a superimposed signal and transmit the superimposed signal to the antenna array through the first communication interface, the first communication device and the second communication device can share the same antenna array.
  • the first communication device may have a different communication system than the second communication device and be manufactured by a different manufacturer, and thus the same module in the first communication device and the second communication device may have different implementations.
  • the first communication device and the second communication device can be two different devices, for example two base stations having different communication systems, or the first communication device and the second communication device are in the same device
  • the two modules may be user equipments or other network devices, which are not limited in this embodiment of the present invention.
  • the number of the first communication interfaces may be one or more, and the number of the second communication interfaces may also be one or more, which is not limited by the embodiment of the present invention.
  • the antenna array 330 is configured to receive a third signal sent by the communication peer, and transmit the third signal to the first communication device 310 through the first communication interface;
  • the first communication device 310 is configured to receive a third signal transmitted by the antenna array 330 through the first communication interface, and perform a branching process on the third signal to obtain a first branch signal and a second branch signal, and pass the The second communication interface transmits the second branch signal to the second communication device 320;
  • the second communication device 320 is further configured to receive the second tributary signal transmitted by the first communication device 310 through the second communication interface.
  • the first communication system is LTE
  • the second communication system is CDMA
  • the first communication device 310 includes: a first baseband unit, a first radio frequency unit, the first communication interface, and the second communication interface, wherein the first radio frequency unit and the first The baseband unit, the first communication interface, and the second communication interface are connected.
  • the first radio frequency unit includes: a first amplifier, a first mixer, an analog-to-digital converter, and a digital signal processor, where
  • the first amplifier is connected to the second communication interface, and is configured to perform amplification processing on the second signal to obtain the amplified second signal, and transmit the amplified second signal to the first hybrid Frequency converter
  • the first mixer is configured to receive the amplified second signal transmitted by the first amplifier, perform a mixing process on the amplified second signal, obtain a mixed signal, and mix the mixed signal Transfer to the analog to digital converter;
  • the analog-to-digital converter is configured to receive the mixed signal transmitted by the first mixer, convert the mixed signal into a digital signal, and transmit the digital signal to the digital signal processor;
  • the digital signal processor is respectively connected to the analog to digital converter and the first communication interface, and configured to receive the digital signal transmitted by the analog to digital converter, and superimpose the digital signal with the first signal to obtain an overlay. And transmitting the superposed signal to the antenna array 330 through the first communication interface.
  • the second communication device 320 includes: a second baseband unit, a second radio frequency unit, and the second communication interface, wherein the second radio frequency unit and the second baseband unit and the second communication respectively Interface connection.
  • the second baseband unit is configured to generate a second baseband signal, and transmit the second baseband signal to the second radio frequency unit, where the second radio frequency unit may perform frequency conversion processing on the second baseband signal to obtain the second signal.
  • the second signal is transmitted to the first communication device 310 through the second communication interface.
  • the second signal is a high frequency signal, or is specifically a radio frequency signal, but the embodiment of the present invention is not limited thereto.
  • the second communication device 320 may be the same as the CDMA module 110 in the base station 100, but the embodiment of the present invention is not limited thereto.
  • the first communication device 310 may correspond to the communication device 200 of the above embodiment, and the second communication device 310 may correspond to the second communication device in the above embodiment, and details are not described herein for brevity.
  • the first communication device and the antenna array and the second communication device respectively have a first communication interface and a second communication interface, wherein the first communication device and the second communication device Having a different communication system, and the first communication device receives the second signal transmitted by the second communication device through the second communication interface, and performs superposition processing on the second signal and the first signal generated by the first communication device, To obtain a superimposed signal and pass the first communication
  • the interface transmits the superimposed signal to the antenna array, so that the first communication device and the second communication device share the same antenna array.
  • the first communication device performs superimposition processing on the first signal and the second signal by using a digital signal processor without introducing additional difference, and adopts a combination with the prior art.
  • the signal quality and system performance can be improved compared to the signal superimposition process.
  • the communication device and the communication system provided by the embodiment of the present invention are described in detail above with reference to FIG. 2 to FIG. 6.
  • the communication method provided by the embodiment of the present invention is described in detail below, wherein the communication method can be performed by the communication device of the above embodiment.
  • the embodiment of the present invention further provides a communication method, which is applied to a communication device having a first communication system, and the communication method includes:
  • the first superimposed signal is transmitted to the antenna array through the first communication interface.
  • the communication method according to the embodiment of the present invention is applied to a communication device having a first communication system, which is generated by converting the first analog signal transmitted by the received second communication device into a second digital signal. And superimposing the first digital signal and the second digital signal to obtain a first superimposed signal, and transmitting the first superimposed signal to the antenna array, enabling the communication device having the first communication system and having the second communication
  • the second communication device of the system shares the antenna array.
  • the first communication device has a first communication interface in communication with the antenna array and a second communication interface in communication with the second communication device.
  • the first analog signal can be a baseband signal or a radio frequency signal.
  • the first analog signal is a radio frequency signal.
  • performing analog-to-digital conversion processing on the first analog signal includes: performing mixing processing on the first analog signal to obtain an intermediate frequency signal; converting the intermediate frequency signal Is the second digital signal.
  • the method before the superimposing the second digital signal and the first digital signal, the method further includes:
  • the second digital signal and the first digital signal are superimposed to obtain a first superimposed signal, including:
  • the optimization process may include DPD processing, but embodiments of the present invention are not limited thereto.
  • DPD processing DPD processing
  • the method before the transmitting the first superimposed signal to the antenna array by using the first communications interface, the method further includes:
  • the third analog signal is optimized to obtain the third analog signal after the optimization process.
  • the transmitting the first superimposed signal to the antenna array through the first communications interface includes:
  • the optimized third analog signal is transmitted to the antenna array through the first communication interface.
  • the optimization process may include one or more of a filtering process, a power amplifying process, an amplitude amplifying process, and a mixing process, which are not limited by the embodiment of the present invention.
  • the method before performing the analog-to-digital conversion processing on the first analog signal, the method further includes:
  • performing analog-to-digital conversion processing on the first analog signal includes: performing analog-to-digital conversion processing on the first analog signal after the mixing processing to obtain the second digital signal.
  • the communication method may be performed by the communication device 200 in the foregoing embodiment, and the respective processes of the communication method may be specifically implemented by modules in the communication device of the foregoing embodiment. For brevity, details are not described herein again.
  • the communication method according to the embodiment of the present invention is applied to a communication device having a first communication system, which is generated by converting the first analog signal transmitted by the received second communication device into a second digital signal. And superimposing the first digital signal and the second digital signal to obtain a first superimposed signal, and transmitting the first superimposed signal to the antenna array, enabling the communication device having the first communication system and having the second communication
  • the second communication device of the system shares the antenna array.
  • association relationship describing the associated object indicates that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character / in this paper generally indicates that the contextual object is an OR relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种通信装置和通信系统,能够实现具有不同通信制式的通信装置与第二通信装置共用相同的天线阵列。该通信装置包括:基带单元、射频单元、第一通信接口和第二通信接口,该射频单元通过该第一通信接口与天线阵列进行通信,并且通过该第二通信接口与第二通信装置进行通信,其中,该第二通信装置具有不同于该第一通信制式的第二通信制式;该基带单元用于生成第一信号,并将该第一信号传输至该射频单元;该射频单元用于接收该基带单元传输的该第一信号,通过该第二通信接口接收该第二通信装置发送的第二信号,并且对该第一信号和该第二信号进行叠加处理以获得叠加信号;该射频单元还用于通过该第一通信接口将该叠加信号传输至该天线阵列。

Description

通信装置和通信系统
本申请要求于2014年12月15日提交中国专利局、申请号为201410776430.2、发明名称为“通信装置和通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及通信装置和通信系统。
背景技术
随着长期演进(Long Term Evolution,LTE)技术的发展和普及,LTE网络将逐渐替代现有的具有其它通信制式的网络,例如,码分多址(Code Division Multiple Access,CDMA),而在网络替代的过程中,不可避免地会出现LTE网络与其它通信制式的网络在同一个基站中共存的场景,并且该LTE网络与该其它通信制式的网络可以属于不同厂商。
针对LTE网络和其它通信制式的网络共存于同一个基站的场景,现有技术中提出了独立天线方案,即LTE网络和其它网络各自采用独立的天线,其中,其它通信制式的网络采用原有天线,而LTE网络采用新部署的天线。然而,该独立天线方案存在成本较高、工程难度大等缺点。为解决独立天线方案中存在的各种问题,现有技术引入共天线方案,即LTE网络和其它通信制式的网络使用同样的天线,与独立天线方案相比,该共天线方案具有成本较低和工程量较小等优点。
图1示意性地示出了现有技术中采用共天线方案的基站100的结构。如图1所示,该基站100包括CDMA模块110、LTE模块120、第一合路器130、第二合路器140和天线阵列150,其中,该CDMA模块110包括第一基带单元(Baseband Unit,BBU)111、第一射频(Radio Frequency,RF)模块112、用于与该第一合路器130进行通信的第一接口I1和用于与该第二合路器140进行通信的第二接口I2,该LTE模块120包括第二BBU 121、第二RF模块122、用于与该第一合路器130进行通信的第一接口I1和用于与该第二合路器140进行通信的第二接口I2,该第一合路器130和该第二合路器140分别与天线阵列150之间具有通信接口I3。具体地,该基站110发射下行信号的 过程如下:CDMA模块110中的第一射频模块112在对第一基带单元111生成的基带信号进行处理得到第一射频信号之后,分别通过第一接口113和第二接口114将该第一射频信号传输至该第一合路器130和该第二合路器140,类似地,该LTE模块120中的第二射频模块122在对第二基带单元121生成的基带信号进行处理得到第二射频信号之后,分别通过第三接口123和第四接口124将该第二射频信号传输至该第一合路器130和该第二合路器140;该第一合路器130和该第二合路器140分别对该第一射频模块112传输的第一射频信号和该第二射频模块122传输的第二射频信号进行合路处理,得到合路信号,并通过与该天线阵列150之间的通信接口将该合路信号传输至天线阵列150。
然而,由于合路器一般采用3dB电桥或宽带耦合器实现,因此,该第一合路器130和该第二合路器140的引入对使得CDMA系统和LTE系统各增加至少3dB的插损,而如果合路器采用四工器实现,则会由于引入保护带而损失频谱资源,从而影响CDMA系统和LTE系统的性能。目前,如何实现基站中的LTE系统与CDMA系统的共天线方案是本领域亟待解决的问题。
发明内容
本发明实施例提供了一种通信装置和通信系统,能够实现具有不同通信制式的通信装置共用相同的天线阵列。
第一方面,提供了一种通信装置,该通信装置具有第一通信制式。该通信装置包括:基带单元、射频单元、第一通信接口和第二通信接口,该射频单元通过该第一通信接口与天线阵列进行通信,并且通过该第二通信接口与第二通信装置进行通信,其中,该第二通信装置具有不同于该第一通信制式的第二通信制式;该基带单元用于生成第一信号,并将该第一信号传输至该射频单元;该射频单元用于接收该基带单元传输的该第一信号,通过该第二通信接口接收该第二通信装置发送的第二信号,并且对该第一信号和该第二信号进行叠加处理以获得叠加信号;该射频单元还用于通过该第一通信接口将该叠加信号传输至该天线阵列。
结合第一方面,在第一方面的第一种可能的实现方式中,该射频单元还用于:通过该第一通信接口接收该天线阵列传输的第三信号;对该第三信号进行分路处理以获得第一支路信号和第二支路信号;将该第一支路信号传输 至该基带单元,并且通过该第二通信接口将该第二支路信号传输至该第二通信装置。
结合上述可能的实现方式,在第一方面的第二种可能的实现方式中,该射频单元包括:第一放大器、第一混频器、模数转换器和数字信号处理器,其中,该第一放大器与该第二通信接口连接,用于对该第二通信接口传输的该第二信号进行放大处理,得到放大处理后的该第二信号,并将该放大处理后的该第二信号传输至该第一混频器;该第一混频器用于接收该第一放大器传输的该放大处理后的该第二信号,对该放大处理后的该第二信号进行混频处理,得到混频信号,并将该混频信号传输至该模数转换器;该模数转换器用于接收该第一混频器传输的该混频信号,将该混频信号转换为数字信号,并将该数字信号传输至该数字信号处理器;该数字信号处理器用于接收该模数转换器传输的该数字信号,并将该数字信号与该第一信号进行叠加处理,以获得该叠加信号。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该射频单元还包括:第一滤波器,分别与该第一放大器和该第二通信接口连接,用于对该第二通信接口传输的该第二信号进行滤波处理,得到滤波处理后的该第二信号,并将该滤波处理后的该第二信号传输至该第一放大器;该第一放大器具体用于接收该第一滤波器传输的该滤波处理后的该第二信号,并对该滤波处理后的该第二信号进行放大处理,得到该放大处理后的该第二信号。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,该射频单元还包括:第一衰减器,分别与该第一滤波器和该第一放大器连接,用于接收该第一滤波器传输的该滤波处理后的该第二信号,降低该滤波处理后的该第二信号的功率,得到功率降低后的该第二信号,并将该功率降低后的该第二信号传输至该第一放大器;该第一放大器具体用于接收该第一衰减器传输的该功率降低后的该第二信号,并对该功率降低后的该第二信号进行放大处理,得到该放大处理后的该第二信号。
结合第一方面的第二至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该射频单元还包括:数模转换器、第二混频器、第二放大器和第二滤波器,其中,该数模转换器用于接收该数字信号处理器传输的该叠加信号,将该叠加信号转换为模拟信号,并 将该模拟信号传输至该第二混频器;该第二混频器用于接收该数模转换器传输的该模拟信号,对该模拟信号进行混频处理,得到高频信号,并将该高频信号传输至该第二放大器;该第二放大器用于接收该第二混频器传输的该高频信号,对该高频信号进行放大处理,得到放大处理后的该高频信号,并将该放大处理后的该高频信号传输至该第二滤波器;该第二滤波器用于接收该第二放大器传输的该放大处理后的该高频信号,对该放大处理后的该高频信号进行滤波处理,得到滤波处理后的该高频信号,并通过该第一通信接口将该滤波处理后的该高频信号传输至该天线阵列。
结合上述可能的实现方式,在第一方面的第六种可能的实现方式中,该第二信号为射频信号。
结合第一方面的第二至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该射频单元还包括:第三滤波器、第三放大器和分路器,其中,该第三滤波器与该第一通信接口连接,用于接收该天线阵列通过该第一通信接口传输的该第三信号,对该第三信号进行滤波处理,得到滤波处理后的该第三信号,并将该滤波处理后的该第三信号传输至该第三放大器;该第三放大器用于接收该第三滤波器传输的该滤波处理后的第三信号,对该滤波处理后的该第三信号进行放大处理,得到放大处理后的该第三信号,并将该放大处理后的该第三信号传输至该分路器;该分路器用于接收该第三放大器传输的该放大处理后的该第三信号,将该放大处理后的该第三信号分离为该第一支路信号和该第二支路信号;该分路器还用于将该第一支路信号传输至该基带单元,并通过该第二通信接口将该第二支路信号传输至该第二通信装置。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,该第一滤波器为双工滤波器,并且该第一滤波器与该分路器连接;该第一滤波器还用于接收该分路器传输的该第二支路信号,对该第二支路信号进行滤波处理,得到滤波处理后的该第二支路信号,并通过该第二通信接口将该滤波处理后的该第二支路信号传输至该第二通信装置。
结合上述可能的实现方式,在第一方面的第九种可能的实现方式中,该第一通信制式为长期演进LTE,该第二通信制式为码分多址CDMA。
第二方面,提供了另一种通信装置,该通信装置具有第一通信制式,该通信装置包括:基带单元、射频单元、第一通信接口和第二通信接口,该射 频单元通过该第一通信接口与天线阵列进行通信,并且通过该第二通信接口与第二通信装置进行通信,其中,该第二通信装置具有不同于该第一通信制式的第二通信制式;该射频单元用于通过该第一通信接口接收该天线阵列传输的第三信号,并对该第三信号进行分路处理,以获得第一支路信号和第二支路信号;该射频单元还用于将该第一支路信号传输至该基带单元,并将该第二支路信号通过该第二通信接口传输至该第二通信装置。
结合第二方面,在第二方面的第一种可能的实现方式中,该射频单元包括:滤波器、放大器和分路器,其中,该滤波器与该第一天线接口连接,用于通过该第一天线接口接收该天线阵列传输的该第三信号,将该第三信号进行滤波处理,以获得滤波处理后的该第三信号,并将该滤波处理后的该第三信号传输至该放大器;该放大器用于接收该滤波器传输的该滤波处理后的该第三信号,对该滤波处理后的该第三信号进行放大处理,以获得放大处理后的该第三信号,并将该放大处理后的该第三信号传输至该分路器;该分路器用于接收该放大器传输的该放大处理后的该第三信号,将该放大处理后的该第三信号进行分路处理,以获得第一支路信号和第二支路信号,并将该第一支路信号传输至该基带单元,以及将该第二支路信号通过该第二通信接口传输至该第二通信装置。
第三方面,提供了一种通信系统,包括:第一通信装置、第二通信装置和天线阵列,该第一通信装置具有第一通信制式,该第二通信装置具有不同于该第一通信制式的第二通信制式,该第一通信装置与该天线阵列之间具有第一通信接口,并且该第一通信装置与该第二通信装置之间具有第二通信接口,其中,该第一通信装置用于生成第一信号;该第二通信装置用于生成第二信号,并通过该第二通信接口向该第一通信装置发送该第二信号;该第一通信装置还用于通过该第二通信接口接收该第二通信装置发送的该第二信号,将该第一信号和该第二信号进行叠加处理以获得叠加信号,并通过该第一通信接口向该天线阵列发送该叠加信号。
结合第三方面,在第三方面的第一种可能的实现方式中,该天线阵列还用于接收第三信号,并通过该第一通信接口将该第三信号传输至该第一通信装置;该第一通信装置还用于通过该第一通信接口接收该天线阵列传输的第三信号,对该第三信号进行分路处理以获得第一支路信号和第二支路信号,并且通过该第二通信接口将该第二支路信号传输至该第二通信装置;该第二 通信装置还用于通过该第二通信接口接收该第一通信装置传输的该第二支路信号。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该第一通信装置包括:第一基带单元、第一射频单元、该第一通信接口和该第二通信接口,其中,该第一射频单元分别与该第一基带单元、该第一通信接口和该第二通信接口连接。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该第一射频单元包括:第一放大器、第一混频器、模数转换器和数字信号处理器,其中,该第一放大器与该第二通信接口连接,用于通过该第二通信接口接收该第二信号,对该第二信号进行放大处理,得到放大处理后的该第二信号,并将该放大处理后的该第二信号传输至该第一混频器;该第一混频器用于接收该第一放大器传输的该放大处理后的该第二信号,对该放大处理后的该第二信号进行混频处理,得到混频信号,并将该混频信号传输至该模数转换器;该模数转换器用于接收该第一混频器传输的该混频信号,将该混频信号转换为数字信号,并将该数字信号传输至该数字信号处理器;该数字信号处理器分别与该模数转换器和该第一通信接口连接,用于接收该模数转换器传输的该数字信号,将该数字信号与该第一信号进行叠加处理,以获得叠加信号,并将该叠加信号通过该第一通信接口传输至该天线阵列。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第四种可能的实现方式中,该第二通信装置包括:第二基带单元、第二射频单元和该第二通信接口,其中该第二射频单元分别与该第二基带单元和该第二通信接口连接。
结合第三方面或第三方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,该第一通信制式为长期演进LTE,该第二通信制式为码分多址CDMA。
基于上述技术方案,根据本发明实施例的通信装置和通信系统,包括的射频单元与天线阵列和第二通信装置之间分别具有第一通信接口和第二通信接口,其中,该通信装置和该第二通信装置具有不同的通信制式,并且该射频单元通过该第二通信接口接收该第二通信装置发送的第二信号,对该第二信号和基带单元发送的第一信号进行叠加处理得到叠加信号,并且通过该 第一通信接口将该叠加信号传输至该天线阵列,能够实现具有不同通信制式的该通信装置与该第二通信装置共用相同的天线阵列。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的采用共天线方案的基站的示意图。
图2是本发明实施例的通信装置的示意性框图。
图3是本发明实施例的通信装置的射频模块的示意图。
图4是本发明实施例的通信装置的射频模块的另一示意图。
图5是本发明实施例的通信装置的射频模块的再一示意图。
图6是本发明实施例的通信系统的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)、移动终端(Mobile  Terminal)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
还应理解,在本发明实施例中,基站,可以是WiFi的AP(Access Point,无线接入点),或者是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
图2是本发明实施例的通信装置200的示意性框图。该通信装置200具有第一通信制式,该通信装置200可以为基站或其它设备,或者为独立设备中的一个模块,该第一通信制式可以为LTE,或者为其它通信制式,本发明实施例对此不做限定。如图2所示,该通信装置200包括:
基带单元210、射频单元220、第一通信接口230和第二通信接口240,该射频单元220通过该第一通信接口230与天线阵列进行通信,并且通过该第二通信接口240与第二通信装置进行通信,其中,该第二通信装置具有不同于该第一通信制式的第二通信制式;
该基带单元210用于生成第一信号,并将该第一信号传输至该射频单元220;
该射频单元220用于接收该基带单元210传输的该第一信号,通过该第二通信接口240接收该第二通信装置发送的第二信号,并且对该第一信号和该第二信号进行叠加处理以获得叠加信号;
该射频单元220还用于通过该第一通信接口230将该叠加信号传输至该天线阵列。
因此,根据本发明实施例的通信装置,所包括的射频单元与天线阵列和 第二通信装置之间分别具有第一通信接口和第二通信接口,其中,该通信装置和该第二通信装置具有不同的通信制式,并且该射频单元通过该第二通信接口接收该第二通信装置发送的第二信号,对该第二信号和基带单元发送的第一信号进行叠加处理得到叠加信号,并且通过该第一通信接口将该叠加信号传输至该天线阵列,能够实现具有不同通信制式的该通信装置与该第二通信装置共用相同的天线阵列。
该天线阵列在接收到该叠加信号之后,可以将该叠加信号发送至通信对端,例如,用户设备,但本发明实施例不限于此。
在本发明实施例中,该通信装置200可以与该第二通信装置可以具有不同的通信制式,并且由不同的厂商制造。该第一通信制式和该第二通信制式可以为任意两个不同的通信制式。可选地,该第一通信制式为LTE,该第二通信制式为CDMA。
可选地,该第二通信制式也可以为其它通信制式,例如,GSM或WCDMA,但本发明实施例对此不做限定。
当该第一通信制式为LTE并且该第二通信制式为CDMA时,该通信装置200可以具体为基站中的LTE模块,并且该第二通信装置可以具体为基站中的CDMA模块。与图1所示的基站100中的LTE模块120相比,该通信装置200在具有与天线阵列进行通信的第一通信接口的基础上,新增了与该第二通信装置(即CDMA模块)进行通信的第二通信接口;同时,该第二通信装置可以只具有与该通信装置200进行通信的第二通信接口,而可以不具有与天线阵列进行通信的通信接口。这样,该第二通信装置(CDMA模块)生成的第二信号可以通过第二通信接口传输至该通信装置200,该通信装置200生成第一信号,并且将该第二信号和该第一信号进行叠加处理以获得叠加信号,从而避免由于在该LTE模块和该CDMA模块的基础上增加额外模块而对系统性能造成影响,例如,在该LTE模块和该CDMA模块的基础上增加合路器而引入额外差损或保护带。
该射频单元220接收到的该基带单元210传输的第一信号可以为基带信号,其中,该基带单元210与该射频单元220之间可以具有通用公共无线接口(Common Public Radio Interface,CPRI),其中,该基带单元210可以将生成的该第一信号通过该CPRI接口以数字信号的形式传输至该射频单元220,但本发明实施例对此不做限定。
该第二通信装置传输的该第二信号可以为基带信号或高频信号,例如,射频信号。该射频单元220可以与该第二通信装置的基带单元之间具有该第二通信接口,或者与该第二通信装置的射频单元之间具有该第二通信接口。优选地,该第二信号为射频信号。此时,该射频单元220与该第二通信装置的射频单元之间具有该第二通信接口,但本发明实施例不限于此。
该射频单元220通过该第二通信接口接收到的该第二信号可以为模拟信号,此时,该射频单元220可以对该第二信号进行模数转换处理,以获得与该第二信号对应的数字信号,并对该与该第二信号对应的数字信号与该第一信号进行叠加处理,但本发明实施例不限于此。
该第一信号和该第二信号可以为模拟信号或数字信号,相应地,该射频单元220可以具体用于将两个模拟信号进行叠加或将两个数字信号进行叠加处理,本发明实施例对此不做限定。作为一个优选实施例,该第一信号可以为数字信号,该第二信号可以为模拟信号。此时,该射频单元220具体用于将该第二信号转换为数字信号,并将该第一信号和该数字信号进行叠加处理,但本发明实施例不限于此。
该射频单元220可以通过多种方式对该第一信号和该第二信号进行叠加处理,作为一个可选实施例,如图3所示,该射频单元220包括:第一放大器221、第一混频器222、模数转换器(Analog to Digital Converter,ADC)223和数字信号处理器224,其中,
该第一放大器221与该第二通信接口240连接,用于对该第二信号进行放大处理,得到放大处理后的该第二信号,并将该放大处理后的该第二信号传输至该第一混频器222;
该第一混频器222用于接收该第一放大器221传输的该放大处理后的该第二信号,对该放大处理后的该第二信号进行混频处理,得到混频信号,并将该混频信号传输至该模数转换器223;
该模数转换器223用于接收该第一混频器222传输的该混频信号,将该混频信号转换为数字信号,并将该数字信号传输至该数字信号处理器224;
该数字信号处理器224用于接收该模数转换器223传输的该数字信号,并将该数字信号与该第一信号进行叠加处理。
该第一放大器221可以分别与该第二通信接口240和该第一混频器222连接,用于通过该第二通信接口240接收该第二通信装置传输的该第二信号, 并且对该第二信号进行放大处理,得到放大处理后的该第二信号,并将该放大处理后的该第二信号传输至该第一混频器222。可选地,该第一放大器221可以为低噪放大器,该第一放大器221的增益值也可以小于1,此时,该第一放大器221具体用于降低该第二信号的功率。可选地,该第一放大器221可以为自动增益控制器(Automatic Gain Control,AGC),用于根据目标输出电平,对该第二信号进行放大处理,以使得放大处理后的该第二信号的幅度与该目标输出电平的绝对差值小于预设值,其中,该目标输出电平可以是预设的,或者是该通信装置200从其它网络设备获取的,本发明实施例对此不做限定。
该第一混频器222可以分别与该第一放大器221、该模数转换器223和第一信号源连接,用于接收该第一放大器221传输的该放大处理后的该第二信号,获取该第一信号源生成的第一本振信号,采用该第一本振信号对该放大处理后的该第二信号进行混频处理,以获得混频信号,并将该混频信号传输至该模数转换器223。可选地,该第一本振信号可以为中频或高频信号,并且该第一混频器222可以具体采用该第一本振信号对该放大处理后的该第二信号进行上变频处理或下变频处理,以使得该混频处理得到的混频信号能够被该模数转换器223支持。优选地,该混频信号为中频信号,但本发明实施例对此不做限定。
该模数转换器223可以分别与该第一混频器222和该数字信号处理器224连接,用于接收该第一混频器222传输的该混频信号,并且对该混频信号进行模数转换处理,得到与该混频信号对应的数字信号,并将该与该混频信号对应的数字信号传输至该数字信号处理器224。
该数字信号处理器224可以分别与该模数转换器223和该基带单元210连接,用于接收该模数转换器223传输的该混频信号对应的数字信号,接收该基带单元210传输的该第一信号,并对该第一信号和该混频信号对应的数字信号进行叠加处理,获得叠加信号。其中,该数字信号处理器224可以直接叠加该第一信号和该混频信号对应的数字信号,也可以首先对该第一信号和该混频信号对应的数字信号中的至少一个进行处理,然后进行叠加操作,本发明实施例对此不做限定。
可选地,该数字信号处理器224还可以和该第一通信接口230连接,相应地,该数字信号处理器224还可以用于将该叠加信号通过该第一通信接口 230传输至该天线阵列,但本发明实施例不限于此。
因此,本发明实施例中的该通信装置200采用该数字信号处理器对该第一信号和该第二信号进行叠加处理,不会引入额外的差损,与现有技术中采用合路器对信号进行叠加处理相比,能够提高信号质量和系统性能。
应理解,在本发明实施例中,术语“第一部件与第二部件连接”可以表示该第一部件与该第二部件直接连接而中间不具有其它部件,也可以表示该第一部件与该第二部件通过其它部件间接连接。
在本发明实施例中,该第一放大器221与该第二通信接口240可以直接连接或间接连接。作为一个可选实施例,如图3所示,该射频单元220还包括:
第一滤波器225,分别与该第一放大器221和该第二通信接口240连接,用于对该第二通信接口240传输的该第二信号进行滤波处理,得到滤波处理后的该第二信号,并将该滤波处理后的该第二信号传输至该第一放大器221。此时,该第一放大器221具体用于接收该第一滤波器225传输的该滤波处理后的该第二信号,并对该滤波处理后的该第二信号进行放大处理,得到该放大处理后的该第二信号。
此时,该第一放大器221和该第二通信接口240通过该第一滤波器225间接连接。该第一滤波器225可以为普通滤波器或双工滤波器,该第一滤波器225可以通过该第二通信接口240接收该第二通信装置传输的该第二信号,对该第二信号进行滤波处理以获得滤波处理后的该第二信号。该第一滤波器225还可以将该滤波处理后的该第二信号传输至该第一放大器221,相应地,该第一放大器221接收该第一滤波器225传输的该滤波处理后的该第二信号,并对接收到的信号进行放大处理,但本发明实施例不限于此。
该第一滤波器225和该第一放大器221可以直接或间接连接,作为另一个可选实施例,如图3所示,该射频单元220还包括:
第一衰减器226,分别与该第一滤波器225和该第一放大器221连接,用于接收该第一滤波器225传输的该滤波处理后的该第二信号,降低该滤波处理后的该第二信号的功率,得到功率降低后的该第二信号,并将该功率降低后的该第二信号传输至该第一放大器221;
该第一放大器221具体用于接收该第一衰减器226传输的该功率降低后的该第二信号,并对该功率降低后的该第二信号进行放大处理,得到该放大 处理后的该第二信号。
此时,该第二通信装置在生成该第二信号之后,可以不对该第二信号进行功率控制而将该第二信号传输至该通信装置200,相应地,该通信装置200在接收到该第二信号之后,可以采用该第一衰减器226对该第二信号进行功率控制。具体地,该第一衰减器226可以为可调衰减器,该第一衰减器226可以接收该第一滤波器225传输的该滤波处理后的该第二信号,并对接收到的信号进行功率控制,以获得功率控制后的该第二信号,并将该功率控制后的该第二信号传输至该第一放大器221;相应地,该第一放大器221可以接收该第一衰减器226传输的该功率控制后的该第二信号,并对该功率控制后的该第二信号进行放大处理,但本发明实施例不限于此。
作为另一个可选实施例,该射频单元220也可以不包括该第一滤波器225,此时,该第一衰减器226可以直接与该第二通信接口240连接,并且通过该第二通信接口240接收该第二通信装置传输的该第二信号,但本发明实施例不限于此。
在本发明实施例中,该数字信号处理器224可以直接或间接与该第一通信接口230连接。作为一个可选实施例,如图4所示,该射频单元220还包括:数模转换器(Digital to Analog Converter,DAC)227-2、第二混频器227-4、第二放大器227-6和第二滤波器227-8,其中,
该数模转换器227-2,用于接收该数字信号处理器224传输的该叠加信号,将该叠加信号转换为模拟信号,并将该模拟信号传输至该第二混频器227-4;
该第二混频器227-4用于接收该数模转换器227-2传输的该模拟信号,对该模拟信号进行混频处理,得到高频信号,并将该高频信号传输至该第二放大器227-6;
该第二放大器227-6用于接收该第二混频器227-4传输的该高频信号,对该高频信号进行放大处理,得到放大处理后的该高频信号,并将该放大处理后的该高频信号传输至该第二滤波器227-8;
该第二滤波器227-8用于接收该第二放大器227-6传输的该放大处理后的该高频信号,对该放大处理后的该高频信号进行滤波处理,得到滤波处理后的该高频信号,并通过该第一通信接口230将该滤波处理后的该高频信号传输至该天线阵列。
该数模转换器227-2可以分别与该数字信号处理器224和该第二混频器228连接,用于接收该数字信号处理器224传输的该叠加信号,对该叠加信号进行数模转换处理,获得该叠加信号对应的模拟信号,并将该叠加信号对应的模拟信号传输至该第二混频器227-4。
该第二混频器227-4可以分别与该数模转换器227-2、该第二放大器227-6和第二信号源连接,用于接收该数模转换器227-2传输的该叠加信号对应的模拟信号,接收该第二信号源生成的第二本振信号,并采用该第二本振信号对该叠加信号对应的模拟信号进行混频处理。作为一个可选实施例,该第二混频器227-4可以采用该第二本振信号对该叠加信号对应的模拟信号进行混频处理,例如,上变频处理或下变频处理,以获得高频信号,但本发明实施例不限于此。
该第二放大器227-6可以分别与该第二混频器227-4和该第二滤波器227-8连接,用于接收该第二混频器227-4传输的高频信号,对该高频信号进行放大处理,获得放大处理后的该高频信号。可选地,该第二放大器227-6可以为可变增益放大器(Variable Gain Amplifier,VGA),但本发明实施例不限于此。
该第二滤波器227-8可以分别与该第二放大器227-6和该第一通信接口230连接,用于接收该第二放大器227-6传输的该放大处理后的高频信号,对接收到的信号进行滤波处理,并将滤波处理后的信号通过该第一通信接口230传输至该天线阵列。
作为另一个可选实施例,如图4所示,该射频单元220还可以包括:
滤波器228-2,分别与该数模转换器227-2和该第二混频器227-4连接,用于接收该数模转换器227-2传输的该叠加信号对应的模拟信号,对该叠加信号对应的模拟信号进行滤波处理,得到滤波处理后的该模拟信号,并将滤波处理后的该模拟信号传输至该第二混频器227-4。此时,该第二混频器227-4通过该滤波器228-2与该数模转换器227-2间接连接,用于接收该滤波器228-2传输的该滤波处理后的模拟信号,并对该滤波处理后的该模拟信号进行混频处理,但本发明实施例不限于此。
作为另一个可选实施例,如图4所示,该射频单元220还可以包括:
功率放大器228-4,分别与该第二滤波器227-8和该第二放大器227-6连接,用于接收该第二放大器227-6传输的该放大处理后的该高频信号,并 对该放大处理后的该高频信号进行功率放大处理,以获得功率放大处理后的该高频信号。
此时,该第二滤波器227-8具体用于接收该功率放大器228-4传输的该功率放大处理后的该高频信号,并对该功率控制后的该高频信号进行滤波处理。
作为另一个可选实施例,该功率放大器228-4与该数字信号处理器224之间还可以具有一个反馈电路,该反馈电路可以将该功率放大器228-4输出的该功率放大处理后的该高频信号的一小部分传输至该数字信号处理器224。此时,该数字信号处理器224可以接收该反馈电路传输的反馈信号,并根据接收到的该反馈信号对第二叠加信号进行优化处理,例如,进行数字预失真(Digital Pre-Distortion,DPD)处理,其中,该第二叠加信号是该数字信号处理器224将该第二通信装置通过该第二通信接口传输的第四信号和该基带单元210生成的第五信号进行叠加处理获得的,并且该数字信号处理器224获得该第二叠加信号的时刻可以晚于该数字信号处理器224获得该叠加信号的时刻,这样能够提高该通信设备的输出信号的信号质量,但本发明实施例不限于此。
作为另一个可选实施例,该通信装置200还可以接收天线阵列传输的信号,相应地,该射频单元200还用于:
通过该第一通信接口230接收该天线阵列传输的第三信号;
对该第三信号进行分路处理以获得第一支路信号和第二支路信号;
将该第一支路信号传输至该基带单元210,并且通过该第二通信接口240将该第二支路信号传输至该第二通信装置。
该射频单元220可以通过该第一通信接口230接收该天线阵列传输的第三信号,其中,该第三信号可以是该天线阵列从其他设备获取的,例如,该第三信号是用户设备发送的上行信号,但本发明实施例对此不做限定。该射频单元220可以将该第三信号分离为第一支路信号和第二支路信号,并将第二支路信号通过该第二通信接口240传输至该第二通信装置,将该第一支路信号传输至该基带单元210。其中,作为一个可选实施例,该射频单元220对该第三信号的分离处理可以由该射频单元220中包括的分路器实现。如图5所示,该射频单元220还包括:该第三滤波器228-6、第三放大器228-8和分路器229-2,其中,
该第三滤波器228-6与该第一通信接口230连接,用于接收该天线阵列通过该第一通信接口230传输的该第三信号,对该第三信号进行滤波处理,得到滤波处理后的该第三信号,并将该滤波处理后的该第三信号传输至该第三放大器228-8;
该第三放大器228-8用于接收该第三滤波器228-6传输的该滤波处理后的第三信号,对该滤波处理后的该第三信号进行放大处理,得到放大处理后的该第三信号,并将该放大处理后的该第三信号传输至该分路器229-2;
该分路器229-2用于接收该第三放大器228-8传输的该放大处理后的该第三信号,将该放大处理后的该第三信号分离为该第一支路信号和该第二支路信号;
该分路器229-2还用于将该第一支路信号传输至该基带单元210,并通过该第二通信接口240将该第二支路信号传输至该第二通信装置。
该第三滤波器228-6可以为双工滤波器,并且该第三滤波器228-6可以分别与该第一通信接口230和该第三放大器228-8连接,可选地,该第三滤波器228-6和该第二滤波器227-8可以为同一个双工滤波器,但本发明实施例不限于此。该第三放大器228-8可以为低噪放大器,并且该第三放大器228-8可以分别与该第三滤波器228-2和该分路器229-2连接,其中,该第三放大器228-8可以与该分路器229-2直接连接或间接连接。作为一个可选实施例,如图5所示,该射频单元还可以包括第二衰减器229-3、第五滤波器229-4和第四放大器229-5,其中,该第二衰减器229-3与该第三放大器228-8和该第五滤波器229-4连接,该第四放大器229-5可以为低噪放大器,并且分别与该第五滤波器229-4和该分路器229-2连接,但本发明实施例不限于此。
该分路器229-2可以为耦合器,并且该分路器229-2分别与该基带单元210和该第二通信接口240连接,用于将接收到的信号分离为第一支路信号和第二支路信号,并且将该第一支路信号和该第二支路信号分别传输至该基带单元和该第二通信装置,但本发明实施例不限于此。
该分路器229-2可以直接将该第一支路信号传输至该基带单元210,也可以先对该第一支路信号进行处理,然后将处理后的该第一支路信号传输至该基带单元210。作为一个可选实施例,如图5所示,该射频单元220还包括:第五滤波器229-6、第三混频器229-7和第二模数转换器229-8,其中,
该第五滤波器229-6分别与该分路器229-2和该第三混频器229-7连接,用于接收该分路器229-2传输的该第一支路信号,对该第一支路信号进行滤波处理以获得滤波处理后的该第一支路信号,并将该滤波处理后的该第一支路信号传输至该第三混频器229-7;
该第三混频器229-7分别与该第五滤波器229-6、第二模数转换器229-8和第三信号源连接,用于接收该第五滤波器229-6传输的该滤波处理后的该第一支路信号,接收该第三信号源生成的第三本振信号,采用该第三本振信号对该第一支路信号进行混频处理获得第二混频信号,并将该第二混频信号传输至该第二模数转换器229-8;
该第二模数转换器229-8分别与该第三混频器229-7和该基带单元210连接,用于接收该第三混频器229-7传输的该第二混频信号,对该第二混频信号进行模数转换处理,获得与该第二混频信号对应的第二数字信号,并将该第二数字信号传输至该基带单元210。
该第三混频器229-7可以采用该第三本振信号对该第一支路信号进行上变频或下变频处理,本发明实施例对此不做限定。
可选地,该第二模数转换器229-8可以与该基带单元之间具有CPRI接口,并且可以通过与该基带单元210之间的CPRI接口将该第一支路信号对应的数字信号传输至该基带单元210,但本发明实施例不限于此。
类似地,该射频单元220可以直接将该第二支路信号传输至该第二通信装置,也可以先对该第二支路信号进行处理,然后将处理后的该第二支路信号传输至该第二通信装置,本发明实施例对此不做限定。作为一个可选实施例,该第一滤波器225为双工滤波器,并且该第一滤波器225与该分路器229-2连接。
该第一滤波器225还用于接收该分路器229-2传输的该第二支路信号,对该第二支路信号进行滤波处理,得到滤波处理后的该第二支路信号,并通过该第二通信接口240将该滤波处理后的该第二支路信号传输至该第二通信装置。
因此,根据本发明实施例的通信装置,所包括的射频单元与天线阵列和第二通信装置之间分别具有第一通信接口和第二通信接口,其中,该通信装置和该第二通信装置具有不同的通信制式,并且该射频单元通过该第二通信接口接收该第二通信装置发送的第二信号,对该第二信号和基带单元发送的 第一信号进行叠加处理得到叠加信号,并且通过该第一通信接口将该叠加信号传输至该天线阵列,能够实现具有不同通信制式的该通信装置与该第二通信装置共用相同的天线阵列。
此外,根据本发明实施例的通信装置,通过采用数字信号处理器对第一信号和第二信号进行叠加处理,不会引入额外的差损,与现有技术中采用合路器对信号进行叠加处理相比,能够提高信号质量和系统性能。
如图2所示,本发明实施例还提供了另一种通信装置,该通信装置具有第一通信制式,该通信装置可以为基站或其它设备,或者为独立设备中的一个模块,该第一通信制式可以为LTE,或者为其它通信制式,本发明实施例对此不做限定。该通信装置包括:
基带单元、射频单元、第一通信接口和第二通信接口,该射频单元通过该第一通信接口与天线阵列进行通信,并且通过该第二通信接口与第二通信装置进行通信,其中,该第二通信装置具有不同于该第一通信制式的第二通信制式;
该射频单元用于通过该第一通信接口接收该天线阵列传输的第三信号,并对该第三信号进行分路处理,以获得第一支路信号和第二支路信号;
该射频单元还用于将该第一支路信号传输至该基带单元,并将该第二支路信号通过该第二通信接口传输至该第二通信装置。
可选地,该射频单元包括:滤波器、放大器和分路器,其中,
该滤波器与该第一天线接口连接,用于通过该第一天线接口接收该天线阵列传输的该第三信号,将该第三信号进行滤波处理,以获得滤波处理后的该第三信号,并将该滤波处理后的该第三信号传输至该放大器;
该放大器用于接收该滤波器传输的该滤波处理后的该第三信号,对该滤波处理后的该第三信号进行放大处理,以获得放大处理后的该第三信号,并将该放大处理后的该第三信号传输至该分路器;
该分路器用于接收该放大器传输的该放大处理后的该第三信号,将该放大处理后的该第三信号进行分路处理,以获得第一支路信号和第二支路信号,并将该第一支路信号传输至该基带单元,以及将该第二支路信号通过该第二通信接口传输至该第二通信装置。
其中,该通信装置作为接收端,该分路器可以具体为耦合器,该滤波器、放大器和分路器可以对应于上述实施例中的第三滤波器228-6、第三放大器 228-8和分路器229-2,但本发明实施例不限于此。
作为另一个可选实施例,该射频单元还可以包括另一个滤波器,该另一个滤波器可以分别与该分路器和该第二通信接口连接,用于接收该第二支路信号,对该第二支路信号进行滤波处理,以获得滤波处理后的该第二支路信号,并将该滤波处理后的该第二支路信号通过该第二通信接口传输至该第二通信装置。
优选地,该第一通信制式可以为LTE,该第二通信制式可以为CDMA,但本发明实施例不限于此。
因此,根据本发明实施例的通信装置,所包括的射频单元与天线阵列和第二通信装置之间分别具有第一通信接口和第二通信接口,其中,该通信装置和该第二通信装置具有不同的通信制式,并且该射频单元可以通过第一通信接口接收天线阵列传输的第三信号,将该第三信号进行分路处理以获得第一支路信号和第二支路信号,并通过该第二通信接口将该第二支路信号传输至该第二通信装置,能够实现具有不同通信制式的该通信装置与该第二通信装置共用相同的天线阵列。
此外,根据本发明实施例的通信装置,在对第三信号进行分离之前,可以对该第三信号进行滤波和放大处理,能够提高第一支路信号和第二支路信号的信号质量,进而提高系统性能。
上文中结合图2至图5,详细描述了根据本发明实施例的通信装置,下面将结合图6,描述根据本发明实施例的通信系统。
图6示意性地示出了根据本发明实施例的通信系统300的结构,该通信系统300可以包括:
第一通信装置310、第二通信装置320和天线阵列330,该第一通信装置310具有第一通信制式,该第二通信装置320具有不同于该第一通信制式的第二通信制式,该第一通信装置310与该天线阵列330之间具有第一通信接口L1,并且该第一通信装置310和该第二通信装置320之间具有第二通信接口L2。
作为一个可选实施例,该第一通信装置310用于生成第一信号;
该第二通信装置320用于生成第二信号,并通过该第二通信接口向该第一通信装置310传输该第二信号;
该第一通信装置310还用于通过该第二通信接口接收该第二通信装置 320传输的该第二信号,将该第一信号和该第二信号进行叠加处理以获得叠加信号,并通过该第一通信接口向该天线阵列330传输该叠加信号;
该天线阵列330用于通过该第一通信接口接收该第一通信装置传输的该叠加信号,并向通信对端发送该叠加信号。
因此,根据本发明实施例的通信系统,第一通信装置与天线阵列和第二通信装置之间分别具有第一通信接口和第二通信接口,其中,该第一通信装置和该第二通信装置具有不同的通信制式,并且该第一通信装置通过该第二通信接口接收该第二通信装置传输的第二信号,对该第二信号和该第一通信装置生成的第一信号进行叠加处理,以得到叠加信号,并且通过该第一通信接口将该叠加信号传输至该天线阵列,能够实现该第一通信装置与该第二通信装置共用相同的天线阵列。
该第一通信装置可以与该第二通信装置可以具有不同的通信制式,并且由不同的厂商制造,因此,该第一通信装置和该第二通信装置中相同的模块可以具有不同的实现方式。此外,该第一通信装置和该第二通信装置可以为两个不同的设备,例如,两个具有不同通信制式的基站,或者该第一通信装置和该第二通信装置为同一个设备中的两个模块,该通信对端可以为用户设备或其它网络设备,本发明实施例对此不做限定。
该第一通信接口可以为一个或多个,该第二通信接口的数量也可以为一个或多个,本发明实施例对此不做限定。
作为另一个可选实施例,该天线阵列330用于接收通信对端发送的第三信号,并通过该第一通信接口将该第三信号传输至该第一通信装置310;
该第一通信装置310用于通过该第一通信接口接收该天线阵列330传输的第三信号,对该第三信号进行分路处理以获得第一支路信号和第二支路信号,并且通过该第二通信接口将该第二支路信号传输至该第二通信装置320;
该第二通信装置320还用于通过该第二通信接口接收该第一通信装置310传输的该第二支路信号。
作为另一个可选实施例,该第一通信制式为LTE,该第二通信制式为CDMA。
作为另一个可选实施例,该第一通信装置310包括:第一基带单元、第一射频单元、该第一通信接口和该第二通信接口,其中,该第一射频单元分别与该第一基带单元、该第一通信接口和该第二通信接口连接。
作为另一个可选实施例,该第一射频单元包括:第一放大器、第一混频器、模数转换器和数字信号处理器,其中,
该第一放大器与该第二通信接口连接,用于对该第二信号进行放大处理,得到放大处理后的该第二信号,并将该放大处理后的该第二信号传输至该第一混频器;
该第一混频器用于接收该第一放大器传输的该放大处理后的该第二信号,对该放大处理后的该第二信号进行混频处理,得到混频信号,并将该混频信号传输至该模数转换器;
该模数转换器用于接收该第一混频器传输的该混频信号,将该混频信号转换为数字信号,并将该数字信号传输至该数字信号处理器;
该数字信号处理器分别与该模数转换器和该第一通信接口连接,用于接收该模数转换器传输的该数字信号,将该数字信号与该第一信号进行叠加处理,以获得叠加信号,并将该叠加信号通过该第一通信接口传输至该天线阵列330。
作为另一个可选实施例,该第二通信装置320包括:第二基带单元、第二射频单元和该第二通信接口,其中该第二射频单元分别与该第二基带单元和该第二通信接口连接。
该第二基带单元用于生成第二基带信号,并将该第二基带信号传输至该第二射频单元,该第二射频单元可以对该第二基带信号进行变频处理,获得该第二信号,并将该第二信号通过该第二通信接口传输至该第一通信装置310,此时,该第二信号为高频信号,或者具体为射频信号,但本发明实施例不限于此。可选地,该第二通信装置320可以与基站100中的CDMA模块110相同,但本发明实施例不限于此。
根据本发明实施例的第一通信装置310可对应于上述实施例的通信装置200,并且第二通信装置310可以对应于上述实施例中的第二通信装置,为了简洁,在此不再赘述。
因此,根据本发明实施例的通信系统,第一通信装置与天线阵列和第二通信装置之间分别具有第一通信接口和第二通信接口,其中,该第一通信装置和该第二通信装置具有不同的通信制式,并且该第一通信装置通过该第二通信接口接收该第二通信装置传输的第二信号,对该第二信号和该第一通信装置生成的第一信号进行叠加处理,以得到叠加信号,并且通过该第一通信 接口将该叠加信号传输至该天线阵列,能够实现该第一通信装置与该第二通信装置共用相同的天线阵列。
此外,根据本发明实施例的通信系统,该第一通信装置通过采用数字信号处理器对第一信号和第二信号进行叠加处理,不会引入额外的差损,与现有技术中采用合路器对信号进行叠加处理相比,能够提高信号质量和系统性能。
上文结合图2至图6详细描述了本发明实施例提供的通信装置和通信系统,下面详细描述本发明实施例提供的通信方法,其中,该通信方法可以由上述实施例的通信装置执行。
本发明实施例还提供了一种通信方法,应用于具有第一通信制式的通信装置,该通信方法包括:
生成第一数字信号;
通过第二通信接口接收第二通信装置发送的第一模拟信号,其中,该第二通信装置具有不同于该第一通信制式的第二通信制式;
对该第一模拟信号进行模数转换处理,以获得与该第一模拟信号对应的第二数字信号;
对该第一数字信号和该第二数字信号进行叠加处理,以获得第一叠加信号;
将该第一叠加信号通过该第一通信接口传输至天线阵列。
因此,根据本发明实施例的通信方法,应用于具有第一通信制式的通信装置,通过将接收到的第二通信装置传输的第一模拟信号转换为第二数字信号,对该通信装置生成的第一数字信号和该第二数字信号进行叠加处理,以获得第一叠加信号,并将该第一叠加信号传输至天线阵列,能够实现具有该第一通信制式的该通信装置和具有第二通信制式的第二通信装置共用该天线阵列。
该第一通信装置具有与该天线阵列进行通信的第一通信接口和与该第二通信装置进行通信的第二通信接口。
该第一模拟信号可以为基带信号或射频信号。优选地,该第一模拟信号为射频信号,此时,该对该第一模拟信号进行模数转换处理包括:对该第一模拟信号进行混频处理,以获得中频信号;将该中频信号转换为该第二数字信号。
可选地,在该对该第二数字信号和该第一数字信号进行叠加处理之前,该方法还包括:
接收反馈信号,其中,该反馈信号是对第二叠加信号进行处理获得的,该第二叠加信号是通过对生成的第三数字信号和该第二通信装置传输的第二模拟信号所对应的第三数字信号进行叠加处理获得的。
此时,该对该第二数字信号和该第一数字信号进行叠加处理,以获得第一叠加信号,包括:
对该第一数字信号和该第二数字信号进行叠加处理,以获得初始叠加信号;
根据该反馈信号,对该初始叠加信号进行优化处理,以获得该第一叠加信号。
该优化处理可以包括DPD处理,但本发明实施例不限于此。这样,通过根据反馈信号对由该第一数字信号和该第二数字信号获得的初始叠加信号进行优化处理,获得该第一叠加信号,能够提高该第一叠加信号的信号质量,从而提高系统性能。
可选地,作为另一实施例,在该将该第一叠加信号通过该第一通信接口传输至天线阵列之前,该方法还包括:
对该第一叠加信号进行数模转换处理,以获得与该第一叠加信号对应的第三模拟信号;
对该第三模拟信号进行优化处理,以获得优化处理后的该第三模拟信号。
此时,该将该第一叠加信号通过该第一通信接口传输至天线阵列,包括:
将该优化处理后的该第三模拟信号通过该第一通信接口传输至天线阵列。
其中,该优化处理可以包括滤波处理、功率放大处理、振幅放大处理和混频处理中的一种或多种,本发明实施例对此不做限定。
可选地,作为另一实施例,该对该第一模拟信号进行模数转换处理之前,该方法还包括:
对该第一模拟信号进行放大处理,以获得该放大处理后的该第一模拟信号;
对该放大处理后的该第一模拟信号进行混频处理,以获得混频处理后的 该第一模拟信号。
此时,该对该第一模拟信号进行模数转换处理,包括:对该混频处理后的该第一模拟信号进行模数转换处理,以获得该第二数字信号。
该通信方法可以由上述实施例中的通信装置200执行,该通信方法的各个流程具体可以由上述实施例的通信装置中的模块实现,为了简洁,这里不再赘述。
因此,根据本发明实施例的通信方法,应用于具有第一通信制式的通信装置,通过将接收到的第二通信装置传输的第一模拟信号转换为第二数字信号,对该通信装置生成的第一数字信号和该第二数字信号进行叠加处理,以获得第一叠加信号,并将该第一叠加信号传输至天线阵列,能够实现具有该第一通信制式的该通信装置和具有第二通信制式的第二通信装置共用该天线阵列。
应理解,在本发明实施例中,术语和/或仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符/,一般表示前后关联对象是一种或的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种通信装置,所述通信装置具有第一通信制式,其特征在于,所述通信装置包括:
    基带单元、射频单元、第一通信接口和第二通信接口,所述射频单元通过所述第一通信接口与天线阵列进行通信,并且通过所述第二通信接口与第二通信装置进行通信,其中,所述第二通信装置具有不同于所述第一通信制式的第二通信制式;
    所述基带单元用于生成第一信号,并将所述第一信号传输至所述射频单元;
    所述射频单元用于接收所述基带单元传输的所述第一信号,通过所述第二通信接口接收所述第二通信装置发送的第二信号,并且对所述第一信号和所述第二信号进行叠加处理以获得叠加信号;
    所述射频单元还用于通过所述第一通信接口将所述叠加信号传输至所述天线阵列。
  2. 根据权利要求1所述的通信装置,其特征在于,所述射频单元还用于:
    通过所述第一通信接口接收所述天线阵列传输的第三信号;
    对所述第三信号进行分路处理以获得第一支路信号和第二支路信号;
    将所述第一支路信号传输至所述基带单元,并且通过所述第二通信接口将所述第二支路信号传输至所述第二通信装置。
  3. 根据权利要求1或2所述的通信装置,其特征在于,所述射频单元包括:第一放大器、第一混频器、模数转换器和数字信号处理器,其中,
    所述第一放大器与所述第二通信接口连接,用于对所述第二通信接口传输的所述第二信号进行放大处理,得到放大处理后的所述第二信号,并将所述放大处理后的所述第二信号传输至所述第一混频器;
    所述第一混频器用于接收所述第一放大器传输的所述放大处理后的所述第二信号,对所述放大处理后的所述第二信号进行混频处理,得到混频信号,并将所述混频信号传输至所述模数转换器;
    所述模数转换器用于接收所述第一混频器传输的所述混频信号,将所述混频信号转换为数字信号,并将所述数字信号传输至所述数字信号处理器;
    所述数字信号处理器用于接收所述模数转换器传输的所述数字信号,并 将所述数字信号与所述第一信号进行叠加处理,以获得所述叠加信号。
  4. 根据权利要求3所述的通信装置,其特征在于,所述射频单元还包括:
    第一滤波器,分别与所述第一放大器和所述第二通信接口连接,用于对所述第二通信接口传输的所述第二信号进行滤波处理,得到滤波处理后的所述第二信号,并将所述滤波处理后的所述第二信号传输至所述第一放大器;
    所述第一放大器具体用于接收所述第一滤波器传输的所述滤波处理后的所述第二信号,并对所述滤波处理后的所述第二信号进行放大处理,得到所述放大处理后的所述第二信号。
  5. 根据权利要求4所述的通信装置,其特征在于,所述射频单元还包括:
    第一衰减器,分别与所述第一滤波器和所述第一放大器连接,用于接收所述第一滤波器传输的所述滤波处理后的所述第二信号,降低所述滤波处理后的所述第二信号的功率,得到功率降低后的所述第二信号,并将所述功率降低后的所述第二信号传输至所述第一放大器;
    所述第一放大器具体用于接收所述第一衰减器传输的所述功率降低后的所述第二信号,并对所述功率降低后的所述第二信号进行放大处理,得到所述放大处理后的所述第二信号。
  6. 根据权利要求3至5中任一项所述的通信装置,其特征在于,所述射频单元还包括:数模转换器、第二混频器、第二放大器和第二滤波器,其中,
    所述数模转换器用于接收所述数字信号处理器传输的所述叠加信号,将所述叠加信号转换为模拟信号,并将所述模拟信号传输至所述第二混频器;
    所述第二混频器用于接收所述数模转换器传输的所述模拟信号,对所述模拟信号进行混频处理,得到高频信号,并将所述高频信号传输至所述第二放大器;
    所述第二放大器用于接收所述第二混频器传输的所述高频信号,对所述高频信号进行放大处理,得到放大处理后的所述高频信号,并将所述放大处理后的所述高频信号传输至所述第二滤波器;
    所述第二滤波器用于接收所述第二放大器传输的所述放大处理后的所述高频信号,对所述放大处理后的所述高频信号进行滤波处理,得到滤波处 理后的所述高频信号,并通过所述第一通信接口将所述滤波处理后的所述高频信号传输至所述天线阵列。
  7. 根据权利要求1至6中任一项所述的通信装置,其特征在于,所述第二信号为射频信号。
  8. 根据权利要求3至7中任一项所述的通信装置,其特征在于,所述射频单元还包括:第三滤波器、第三放大器和分路器,其中,
    所述第三滤波器与所述第一通信接口连接,用于接收所述天线阵列通过所述第一通信接口传输的所述第三信号,对所述第三信号进行滤波处理,得到滤波处理后的所述第三信号,并将所述滤波处理后的所述第三信号传输至所述第三放大器;
    所述第三放大器用于接收所述第三滤波器传输的所述滤波处理后的第三信号,对所述滤波处理后的所述第三信号进行放大处理,得到放大处理后的所述第三信号,并将所述放大处理后的所述第三信号传输至所述分路器;
    所述分路器用于接收所述第三放大器传输的所述放大处理后的所述第三信号,将所述放大处理后的所述第三信号分离为所述第一支路信号和所述第二支路信号;
    所述分路器还用于将所述第一支路信号传输至所述基带单元,并通过所述第二通信接口将所述第二支路信号传输至所述第二通信装置。
  9. 根据权利要求8所述的通信装置,其特征在于,所述第一滤波器为双工滤波器,并且所述第一滤波器与所述分路器连接;
    所述第一滤波器还用于接收所述分路器传输的所述第二支路信号,对所述第二支路信号进行滤波处理,得到滤波处理后的所述第二支路信号,并通过所述第二通信接口将所述滤波处理后的所述第二支路信号传输至所述第二通信装置。
  10. 根据权利要求1至9中任一项所述的通信装置,其特征在于,所述第一通信制式为长期演进LTE,所述第二通信制式为码分多址CDMA。
  11. 一种通信装置,所述通信装置具有第一通信制式,其特征在于,所述通信装置包括:
    基带单元、射频单元、第一通信接口和第二通信接口,所述射频单元通过所述第一通信接口与天线阵列进行通信,并且通过所述第二通信接口与第二通信装置进行通信,其中,所述第二通信装置具有不同于所述第一通信制 式的第二通信制式;
    所述射频单元用于通过所述第一通信接口接收所述天线阵列传输的第三信号,并对所述第三信号进行分路处理,以获得第一支路信号和第二支路信号;
    所述射频单元还用于将所述第一支路信号传输至所述基带单元,并将所述第二支路信号通过所述第二通信接口传输至所述第二通信装置。
  12. 根据权利要求11所述的通信装置,其特征在于,所述射频单元包括:滤波器、放大器和分路器,其中,
    所述滤波器与所述第一天线接口连接,用于通过所述第一天线接口接收所述天线阵列传输的所述第三信号,将所述第三信号进行滤波处理,以获得滤波处理后的所述第三信号,并将所述滤波处理后的所述第三信号传输至所述放大器;
    所述放大器用于接收所述滤波器传输的所述滤波处理后的所述第三信号,对所述滤波处理后的所述第三信号进行放大处理,以获得放大处理后的所述第三信号,并将所述放大处理后的所述第三信号传输至所述分路器;
    所述分路器用于接收所述放大器传输的所述放大处理后的所述第三信号,将所述放大处理后的所述第三信号进行分路处理,以获得第一支路信号和第二支路信号,并将所述第一支路信号传输至所述基带单元,以及将所述第二支路信号通过所述第二通信接口传输至所述第二通信装置。
  13. 一种通信系统,其特征在于,包括:第一通信装置、第二通信装置和天线阵列,所述第一通信装置具有第一通信制式,所述第二通信装置具有不同于所述第一通信制式的第二通信制式,所述第一通信装置与所述天线阵列之间具有第一通信接口,并且所述第一通信装置与所述第二通信装置之间具有第二通信接口,其中,
    所述第一通信装置用于生成第一信号;
    所述第二通信装置用于生成第二信号,并通过所述第二通信接口向所述第一通信装置发送所述第二信号;
    所述第一通信装置还用于通过所述第二通信接口接收所述第二通信装置发送的所述第二信号,将所述第一信号和所述第二信号进行叠加处理以获得叠加信号,并通过所述第一通信接口向所述天线阵列发送所述叠加信号。
  14. 根据权利要求13所述的通信系统,其特征在于,所述天线阵列还 用于接收第三信号,并通过所述第一通信接口将所述第三信号传输至所述第一通信装置;
    所述第一通信装置还用于通过所述第一通信接口接收所述天线阵列传输的第三信号,对所述第三信号进行分路处理以获得第一支路信号和第二支路信号,并且通过所述第二通信接口将所述第二支路信号传输至所述第二通信装置;
    所述第二通信装置还用于通过所述第二通信接口接收所述第一通信装置传输的所述第二支路信号。
  15. 根据权利要求13或14所述的通信系统,其特征在于,所述第一通信装置包括:第一基带单元、第一射频单元、所述第一通信接口和所述第二通信接口,其中,所述第一射频单元分别与所述第一基带单元、所述第一通信接口和所述第二通信接口连接。
  16. 根据权利要求15所述的通信系统,其特征在于,所述第一射频单元包括:第一放大器、第一混频器、模数转换器和数字信号处理器,其中,
    所述第一放大器与所述第二通信接口连接,用于通过所述第二通信接口接收所述第二信号,对所述第二信号进行放大处理,得到放大处理后的所述第二信号,并将所述放大处理后的所述第二信号传输至所述第一混频器;
    所述第一混频器用于接收所述第一放大器传输的所述放大处理后的所述第二信号,对所述放大处理后的所述第二信号进行混频处理,得到混频信号,并将所述混频信号传输至所述模数转换器;
    所述模数转换器用于接收所述第一混频器传输的所述混频信号,将所述混频信号转换为数字信号,并将所述数字信号传输至所述数字信号处理器;
    所述数字信号处理器分别与所述模数转换器和所述第一通信接口连接,用于接收所述模数转换器传输的所述数字信号,将所述数字信号与所述第一信号进行叠加处理,以获得叠加信号,并将所述叠加信号通过所述第一通信接口传输至所述天线阵列。
  17. 根据权利要求13至16中任一项所述的通信系统,其特征在于,所述第二通信装置包括:第二基带单元、第二射频单元和所述第二通信接口,其中所述第二射频单元分别与所述第二基带单元和所述第二通信接口连接。
  18. 根据权利要求13至17中任一项所述的通信系统,其特征在于,所述第一通信制式为长期演进LTE,所述第二通信制式为码分多址CDMA。
PCT/CN2015/096999 2014-12-15 2015-12-10 通信装置和通信系统 WO2016095747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410776430.2A CN105763232A (zh) 2014-12-15 2014-12-15 通信装置和通信系统
CN201410776430.2 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016095747A1 true WO2016095747A1 (zh) 2016-06-23

Family

ID=56125911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096999 WO2016095747A1 (zh) 2014-12-15 2015-12-10 通信装置和通信系统

Country Status (2)

Country Link
CN (1) CN105763232A (zh)
WO (1) WO2016095747A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098696A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种综合接入系统
CN111147087A (zh) * 2019-12-23 2020-05-12 京信通信系统(中国)有限公司 中频备份单元、系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859653A (zh) * 2005-09-16 2006-11-08 华为技术有限公司 一种wcdma与同频段gsm系统共天线的实现方法及系统
WO2010130080A1 (zh) * 2009-05-11 2010-11-18 华为技术有限公司 一种共享射频接收单元的方法、装置及系统
CN102082326A (zh) * 2009-11-26 2011-06-01 中国移动通信集团公司 一种支持异系统独立电调的智能天线设备及方法
CN102208940A (zh) * 2011-05-20 2011-10-05 大唐移动通信设备有限公司 一种射频系统
US20130336181A1 (en) * 2012-06-18 2013-12-19 Rf Micro Devices, Inc. Dual antenna integrated carrier aggregation front end solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130715Y (zh) * 2007-12-18 2008-10-08 京信通信系统(中国)有限公司 多系统共用天线
CN102026422B (zh) * 2009-09-10 2017-06-20 上海华为技术有限公司 一种多模基站共享传输线路的方法和多模基站
CN102761876B (zh) * 2011-04-25 2016-02-24 中兴通讯股份有限公司 双网共模方法与系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859653A (zh) * 2005-09-16 2006-11-08 华为技术有限公司 一种wcdma与同频段gsm系统共天线的实现方法及系统
WO2010130080A1 (zh) * 2009-05-11 2010-11-18 华为技术有限公司 一种共享射频接收单元的方法、装置及系统
CN102082326A (zh) * 2009-11-26 2011-06-01 中国移动通信集团公司 一种支持异系统独立电调的智能天线设备及方法
CN102208940A (zh) * 2011-05-20 2011-10-05 大唐移动通信设备有限公司 一种射频系统
US20130336181A1 (en) * 2012-06-18 2013-12-19 Rf Micro Devices, Inc. Dual antenna integrated carrier aggregation front end solution

Also Published As

Publication number Publication date
CN105763232A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
EP3531565B1 (en) Tower top device and passive intermodulation cancellation method
US20130077540A1 (en) Communication device for simultaneous transmission by multiple transceivers
CN103858396A (zh) 将现有接收机重用于反馈的自适应发射机预畸变
US11528180B2 (en) System and method for hybrid transmitter
KR102058975B1 (ko) 신호 송신 방법 및 장치
CN103546186A (zh) 无线电通信装置、无线电通信方法以及程序
WO2016206461A1 (zh) 一种解决干扰的方法、用户设备及计算机存储介质
US9948245B2 (en) Amplifying stage working point determination
JP2022034027A (ja) 基地局及びセル設定方法
US9924374B2 (en) Method and apparatus for transmitting data
WO2016095747A1 (zh) 通信装置和通信系统
WO2017172450A1 (en) Packet data convergence protocol optimizations for lte-wlan aggregation
US9543911B2 (en) Phase-modulated load apparatus and method
EP4131776A1 (en) Wireless communication device, system, and signal processing method
WO2018095337A1 (zh) 一种异制式系统间协调发射信号的方法及装置
US8660503B2 (en) Transmitter
WO2021091610A1 (en) Harmonics rejection transceiver with duty ratio control
WO2018119596A1 (zh) 分布式基站中的信号处理方法和分布式控制装置
EP4231744A1 (en) Capability reporting method for terminal, terminal configuration method, terminal device, and network device
EP4020820A1 (en) Methods and devices for asymmetric frequency spreading
CN113169753B (zh) 收发开关
WO2015123819A1 (en) Transmitter, method therein, transmitting node, computer program, and computer-readable storage medium
CN113543224A (zh) 一种全球移动通信系统gsm数据的通信方法和相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869255

Country of ref document: EP

Kind code of ref document: A1