WO2017016451A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2017016451A1
WO2017016451A1 PCT/CN2016/091057 CN2016091057W WO2017016451A1 WO 2017016451 A1 WO2017016451 A1 WO 2017016451A1 CN 2016091057 W CN2016091057 W CN 2016091057W WO 2017016451 A1 WO2017016451 A1 WO 2017016451A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
data
data message
message
message sent
Prior art date
Application number
PCT/CN2016/091057
Other languages
English (en)
French (fr)
Inventor
乔登宇
丁志明
树贵明
杜振国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017016451A1 publication Critical patent/WO2017016451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • H04L1/1678Details of the supervisory signal the supervisory signal being transmitted together with control information where the control information is for timing, e.g. time stamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and apparatus.
  • Wireless Fidelity is a wireless LAN technology based on the IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers (IEEE), which enables personal computers (Personal Computers, PCs) and users. Terminals such as User Equipment (UE) form a computer network in a wireless manner.
  • a WiFi network is composed of stations (Stations, STAs). The stations may include an access point (AP) and a user site. The communication link between the access point and the user site is called an indirect link.
  • the IEEE 802.11 standard specifies Direct Link technology, that is, the communication link between the user site and the user site does not need to pass through the access point, but only at the same time Allows a pair of direct link sites to communicate.
  • an application scenario of a typical direct link and an indirect link includes a first user site STA1, a second user site STA2, a third user site STA3, and a fourth user site STA4.
  • the first user station STA1 and the second user station STA2 are directly connected links;
  • the third user station STA3 and the fourth user station STA4 are directly connected links;
  • the fifth user station STA5 and the sixth user station STA6 are respectively Establish a non-direct link with access point AP1.
  • the first user station STA1 and the second user station STA2 are connected to the AP1 to accept the control of the access point AP1, but they communicate through the direct link, and do not need to be forwarded through the access point AP1.
  • the fifth user station STA5 and the sixth user station STA6 communicate, they must be forwarded through the access point AP1 because the direct link is not established.
  • the new IEEE 802.11 supplementation standard proposed by the IEEE will either enhance the original direct link part to further adapt to future high-density scenarios.
  • the original IEEE 802.11 standard stipulates that only one pair of communication links are allowed in the same channel resource, so multiple direct connections must use the same bandwidth resource in a competitive manner. Because the distance between the two sides of the direct link is generally relative Closer, so you don't have to use the maximum transmit power to meet the communication requirements. Then, after power control of the transmit power, the spatial coverage of a pair of directly connected links will be effectively reduced, and the direct link that is not within the above spatial coverage will not be interfered by the direct link.
  • the new generation IEEE 802.11 supplementation standard will allow multiple direct links to operate simultaneously on the same channel after proper power control, ie, spatial multiplexing of frequencies .
  • spatial multiplexing of frequencies means that the direct link between the first user station STA1 and the second user station STA2 can share the same direct link with the third user station STA3 and the fourth user station STA4. bandwidth.
  • the invention provides a data transmission method and device, which can reduce waste of direct link resources after interference occurs and improve bandwidth efficiency.
  • a first aspect of the present invention provides a data transmission method, which may include:
  • the first station receives the data message sent by the second station during the data continuous transmission period
  • the first station When the first station fails to successfully receive the data message sent by the second station, the first station sends a non-instantaneous acknowledged data message to the second station.
  • a second aspect of the present invention provides a data transmission method, which may include:
  • the first station receives the data message sent by the second station during the data continuous transmission period
  • the first station When the first station fails to receive the data message sent by the second station, the first station sends a conflict indication message to the second station; the conflict indication message is used to indicate the second station
  • the data message is transmitted with a transmit power that is higher than the link power.
  • a third aspect of the present invention provides a data transmission method, which may include:
  • the second station sends a data message to the first station during the data continuous transmission period
  • the second site When the second site fails to successfully receive the acknowledgement message sent by the first site, the second site pauses to send a data message to the first site, so that the first site is to the second site. Send a data message that is not instantly acknowledged.
  • a fourth aspect of the present invention provides a data transmission method, which may include:
  • the second station receives the message sent by the first station during the data continuous transmission period
  • the second station When the second station successfully receives the conflict indication message sent by the first station, the second station sends a data message by using a transmit power higher than the link power.
  • a fifth aspect of the present invention provides a data transmission method, which may include:
  • the second station sends a data message to the first station during the data continuous transmission period
  • the second station adopts The data message is transmitted at a transmit power higher than the link power.
  • a sixth aspect of the present invention provides a data transmission apparatus, which may include:
  • a receiving unit configured to receive a data message sent by the second station during a data continuous transmission period
  • a sending unit configured to send a non-instant confirmation data message to the second station when the data message sent by the second station is not successfully received.
  • a seventh aspect of the present invention provides a data transmission apparatus, which may include:
  • a receiving unit configured to receive a data message sent by the second station during a data continuous transmission period
  • a sending unit configured to send a conflict indication message to the second station when the data message sent by the second station is not successfully received; the conflict indication message is used to indicate that the second station adopts a higher than link power
  • the transmit power transmits the data message.
  • An eighth aspect of the present invention provides a data transmission apparatus, which may include:
  • a sending unit configured to send a data message to the first station during a data continuous transmission period
  • a processing unit configured to: when the acknowledgment message sent by the first station is not successfully received, suspend sending a data message to the first station, so that the first station sends a data message that is not immediately confirmed.
  • a ninth aspect of the present invention provides a data transmission apparatus, which may include:
  • a receiving unit configured to receive a message sent by the first station during a data continuous transmission period
  • the processing unit is configured to: when successfully receiving the conflict indication message sent by the first station, send a data message by using a transmit power higher than the link power.
  • a tenth aspect of the present invention provides a data transmission apparatus, which may include:
  • a sending unit configured to send a data message to the first station during a data continuous transmission period
  • a processing unit configured to use a higher than the chain when the number of repetitions of sending the same data message to the first station by using no more than the link power as the transmit power exceeds the first preset value or the repetition time exceeds the second preset value
  • the transmit power of the road power transmits the data message.
  • the present invention has the following advantages: the first site is held in data Receiving a data message sent by the second station, wherein the first station waits to receive the data message sent by the second station; when the first station fails to receive the data sent by the second station In the message, the first station sends a non-instant acknowledgment data message to the second station; since the second station does not necessarily have interference, the reverse transmission is initiated to reduce the waste of the direct link resource. Improve the efficiency of bandwidth.
  • 1 is a schematic diagram of a direct link
  • FIG. 3 is a schematic flow chart of an embodiment of a data transmission method provided by the present invention.
  • FIG. 4 is a schematic flow chart of another embodiment of a data transmission method according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 6 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 7 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 8 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 9 is a schematic flowchart diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 10 is a schematic structural diagram of an embodiment of a data transmission apparatus according to the present invention.
  • FIG. 11 is a schematic structural diagram of another embodiment of a data transmission apparatus according to the present invention.
  • FIG. 12 is a schematic structural diagram of another embodiment of a data transmission apparatus according to the present invention.
  • FIG. 13 is a schematic structural diagram of another embodiment of a data transmission apparatus according to the present invention.
  • FIG. 14 is a schematic structural diagram of another embodiment of a data transmission apparatus according to the present invention.
  • first, second, etc. may be used to describe various sites, users, or terminals in the embodiments of the present invention, the sites, users, or terminals should not be limited to these terms. These terms are only used to distinguish sites, users, or terminals from one another.
  • the first site may also be referred to as a second site, and similarly, the second site may also be referred to as a first site; likewise, the second site may also be referred to as a third site, etc.
  • the site can include access points and user sites.
  • the prerequisite for realizing frequency space multiplexing is to minimize interference between links, and power control is a common method to reduce interference problems.
  • power control can generally start from the following two aspects. First, the link power of the direct link is obtained by power measurement, that is, the minimum transmit power under the premise of satisfying the communication demand and quality, and the transmit power of the direct link sender is set as the link power. Second, assuming that all direct links are working at link power, investigate the interference status between the directly connected links, establish a relationship table between the direct links, and make the interference less likely by the scheduling method.
  • the direct link can share bandwidth resources, and the direct link with higher interference possibility allocates different bandwidth resources, thereby realizing spatial multiplexing of frequencies.
  • the power measurement achieves power estimation through an indirect method, so there must be a certain estimation error. If the estimated error is occasionally large, then interference between the directly connected links as shown in Figure 2 may occur.
  • the third user station STA3 is in the coverage of the second user station STA2, so when the second user station STA2 sends the data frame, it will inevitably cause the third user station STA3 to receive the data frame. Since the reception of the third user station STA3 is interfered, the ACK (Acknowledgement) frame cannot be returned to the fourth user station STA4.
  • the fourth user station STA4 will continuously try to send a frame to the third user station STA3, so that the direct link between the third user station STA3 and the fourth user station STA4 will not work, resulting in waste of direct link resources.
  • the first user station STA1 and the second user station STA2 are a pair of direct links
  • the third user station STA3 and the fourth user station STA4 are a pair of straight links. Connected to the link.
  • the second user station STA2 interferes with the data reception of the third user station STA3 when transmitting data, so that the data transmitted by the fourth user station STA4 to the third user station STA3 is difficult to be normally received by the third user station STA3. If you are in direct service week If the interference cannot be corrected during the period, the direct link between the third user site STA3 and the fourth user site STA4 may not work properly, which may result in waste of direct link resources.
  • the directly connected site performs direct communication according to the allocated resources.
  • the resource allocation will probably adopt the spatial multiplexing of frequencies, that is, multiple direct links will use a certain channel resource at the same time.
  • the interference between the frequency reuse direct link may collide with each other, so the present invention proposes a solution after the direct link collision.
  • the present invention provides a data transmission method, which is applied to a first site.
  • the method is mainly performed by a data transmission device.
  • an embodiment of the data transmission method provided by the present invention includes:
  • the first station receives a data message sent by the second station during a data continuous transmission period.
  • the data continuous transmission period may be a transmission Opportunity (TXOP) established between the access point and the user station, or may be a direct link service period;
  • TXOP transmission Opportunity
  • the direct link service period Refers to the data continuous transmission period established for the direct link; specifically, the direct connection service period includes time domain and frequency domain resources used by the first station to establish direct communication with the second station.
  • the first station fails to successfully receive the data message sent by the second station, the first station sends a data message that is not an instant confirmation to the second station.
  • the failure to successfully receive includes detecting that the channel is busy but cannot correctly parse the received message;
  • the non-instant acknowledgment data message refers to a data message indicating that the receiving station does not have to immediately acknowledge the acknowledgment message.
  • the first station fails to receive the data message sent by the second station before the arrival of the time t1, and then the first station attempts to send a non-instantaneous acknowledged data message after the time t1; wherein the time t1 can be defined a fixed time point after the last time the first station successfully receives the message sent by the second station in the current direct link service period (if not, the direct link start time) . It can be understood that if there is enough data sent to the second site by the first station, the first station will continue until the end of the current direct link service period.
  • the first station receives the data message sent by the second station during the data continuous transmission period; when the first station fails to successfully receive the data message sent by the second station, the first The station sends a non-instant acknowledgment data message to the second station; since the second station does not necessarily have interference, the reverse transmission is initiated to reduce the waste of the direct link resources and improve the bandwidth efficiency.
  • FIG. 4 another embodiment of the data transmission method provided by the present invention is applied to a first site, including:
  • the first station receives a data message sent by the second station during a data continuous transmission period.
  • the data continuous transmission period may be a transmission Opportunity (TXOP) established between the access point and the user station, or may be a direct link service period;
  • TXOP transmission Opportunity
  • the direct link service period Refers to the data continuous transmission period established for the direct link; specifically, the direct connection service period includes time domain and frequency domain resources used by the first station to establish direct communication with the second station.
  • the first station When the first site fails to receive the data message sent by the second station, the first station sends a conflict indication message to the second station, where the conflict indication message is used to indicate the The second station transmits the data message with a transmit power higher than the link power.
  • the failure to successfully receive includes detecting that the channel is busy but cannot correctly parse the received message; and the conflict indication message is used to indicate that the second station sends the data message by using a transmit power higher than the link power.
  • the link power refers to the highest transmit power agreed upon to establish data transmission between the first station and the second station.
  • the second station If the second station successfully receives the conflict indication message sent by the first station, the second station will start a high power transmission mode/mechanism, that is, use a transmission power higher than the link power (over the link power, for example, 5% or 6 dBm) ) Send data messages.
  • the transmit power is only allowed to be increased once, and if the number of other direct links sharing the bandwidth with the direct link exceeds one, the high power transmission mode is not enabled to avoid causing a recursive link reaction.
  • the activation of the high power transmission mode can be indicated by both implicit and display methods.
  • the implicit method is determined by the number of links of the shared bandwidth according to the foregoing station, and the number of direct links indicating the use of the same resource when the access point sends the direct link resource allocation information to the foregoing station.
  • the explicit method is to indicate whether the access point occupies 1 bit in the transmission direct link resource allocation frame to indicate whether it is allowed or not.
  • the first station when the first station fails to receive the data message sent by the second station, the first station sends a conflict indication message to the second station; the conflict indication message is used. Instructing the second station to transmit the data message by using a transmit power higher than link power; thereby improving bandwidth efficiency and reducing waste of direct link resources.
  • the present invention provides a data transmission method, which is applied to a second site, and the method is mainly performed by a data transmission device.
  • a data transmission method provided by the present invention. include:
  • the second station sends a data message to the first station during a data continuous transmission period
  • the data continuous transmission period may be a transmission Opportunity (TXOP) established between the access point and the user station, or may be a direct link service period; the direct link service period is referred to as a direct link.
  • TXOP transmission Opportunity
  • the data established by the path is continuously transmitted.
  • the direct connection service period includes time domain and frequency domain resources used by the first station to establish direct communication with the second station.
  • the second site fails to receive the acknowledgement message sent by the first site, the second site pauses to send a data message to the first site, so that the first site is to the first site.
  • the second station sends a data message that is not immediately acknowledged.
  • the first station after receiving the data message sent by the second station, the first station sends an acknowledgement message to the second station; when the second site fails to receive the acknowledgement message sent by the first station And the second station pauses to send a data message to the first station, so that the first station initiates a reverse transmission, thereby sending a non-instantaneous acknowledged data message to the second station.
  • the non-instant acknowledgment data message means that the acknowledgment mode field in the data message indicates that the receiving station does not have to immediately acknowledge the acknowledgment message
  • the second station sends a data message to the first station from 0 to t1, but the first station fails to receive the data message sent by the second station without sending the acknowledgement message; then the first site tries after the time t1.
  • the second station suspending sending the data message to the first station to successfully receive the non-instantaneous acknowledgement data message; wherein the time t1 can be defined as the second site in the current time The fixed time point after the last successful message sent in the link service period (if not, the direct link start time).
  • the successful sending means that the corresponding confirmation message is successfully received after the message is sent. It can be understood that if there is enough data sent to the second site by the first station, the first station will continue until the end of the current direct link service period.
  • the second station sends a data message to the first station during the data continuous transmission period; when the second station fails to receive the confirmation message sent by the first station, the second station pauses Transmitting, by the first station, a data message, so that the first station sends a non-instant confirmation data message to the second station; because the second station receives the interference, the second station is suspended.
  • the first station reduces the waste of the directly connected link resources by starting the reverse transmission, thereby improving the efficiency of the bandwidth.
  • FIG. 6 another embodiment of the data transmission method provided by the present invention is applied to the second Sites, including:
  • the second station receives the message sent by the first station during the data continuous transmission period
  • the data continuous transmission period may be a transmission Opportunity (TXOP) established between the access point and the user station, or may be a direct link service period;
  • TXOP transmission Opportunity
  • the direct link service period Refers to the data continuous transmission period established for the direct link; specifically, the direct connection service period includes time domain and frequency domain resources used by the first station to establish direct communication with the second station.
  • the second station When the second station successfully receives the conflict indication message sent by the first station, the second station sends a data message by using a transmit power higher than the link power.
  • the conflict indication message is used to indicate that the second station sends the data message by using a transmit power higher than link power; the link power refers to establishing data transmission between the first station and the second station. The agreed maximum transmit power. If the second station successfully receives the conflict indication message sent by the first station, the second station will initiate a high power transmission mode/mechanism, that is, using a transmission power higher than the link power (exceeding the link power, for example, increasing 5% or 6 dBm) The sending of data messages.
  • the transmit power is only allowed to be increased once, and if the number of other direct links sharing the bandwidth with the direct link exceeds one, the high power transmission mode is not enabled to avoid causing a recursive link reaction.
  • the activation of the high power transmission mode can be indicated by both implicit and display methods.
  • the implicit method is determined by the number of links of the shared bandwidth according to the foregoing station, and the number of direct links indicating the use of the same resource by the AP when transmitting the direct link resource allocation information to the foregoing station;
  • the method is to allow the AP to occupy 1 bit in the transmission direct link resource allocation frame to indicate whether it is allowed or not.
  • the second station when the second station successfully receives the conflict indication message sent by the first station, the second station sends a data message by using a transmit power higher than the link power; thereby improving bandwidth efficiency and reducing straightness. Waste of link resources.
  • FIG. 7 another embodiment of the data transmission method provided by the present invention is applied to a second site, including:
  • the second station sends a data message to the first station during a data continuous transmission period
  • the data continuous transmission period may be a transmission Opportunity (TXOP) established between the access point and the user station, or may be a direct link service period; the direct link service period is referred to as a direct link.
  • TXOP transmission Opportunity
  • the data established by the road continues to be transmitted; specifically, the direct connection
  • the service period includes time domain and frequency domain resources used by the first station to establish direct communication with the second station.
  • the second station sends a data message to the first station by using no more than link power as the transmit power.
  • the link power refers to the highest transmit power agreed upon for direct communication between the first station and the second station.
  • the second station uses the no-high-link power as the transmit power to send the same data message to the first station, the number of repetitions exceeds a first preset value, or the repetition time exceeds a second preset value, the second The station transmits the data message with a transmit power that is higher than the link power.
  • the first station after receiving the data message sent by the second station, the first station sends an acknowledgement message to the second site, if the second site fails to successfully receive the first site.
  • the acknowledgment message sent the second station repeatedly sends the data message to the first station. If the number of repeated transmissions does not exceed the first preset value or the repetition time does not exceed the second preset value, the second station still uses the link power as the transmission power to transmit the data message; if the number of repeated transmissions exceeds the first If the preset value or the repetition time exceeds the second preset value, the second station transmits the data message by using the transmission power higher than the link power.
  • the first preset value and the second preset value are respectively integers greater than one; the link power refers to a highest transmit power agreed upon to establish data transmission between the first station and the second station. .
  • the second station will initiate a high-power transmission mode/mechanism, that is, transmit data messages with a transmission power higher than the link power (over the link power, for example, 5% or 6 dBm).
  • the transmit power is only allowed to be increased once, and if the number of other direct links sharing the bandwidth with the direct link exceeds one, the high power transmission mode is not enabled to avoid causing a recursive link reaction.
  • the activation of the high power transmission mode can be indicated by both implicit and display methods.
  • the implicit method is determined by the number of links of the shared bandwidth according to the foregoing station, and the number of direct links indicating the use of the same resource when the access point sends the direct link resource allocation information to the foregoing station.
  • the explicit method is to indicate whether the access point occupies 1 bit in the transmission direct link resource allocation frame to indicate whether it is allowed or not.
  • the second station sends a data message to the first station during the data continuous transmission period; when the second station uses the link power as the transmission power to send the same data message to the first station, the number of repetitions exceeds When the first preset value or the repetition time exceeds the second preset value, the second station sends the data message by using a transmit power higher than the link power; thereby improving bandwidth efficiency and reducing waste of direct link resources.
  • the display mode triggers high power transmission in the scene, please refer to Figure 8.
  • step 601 after the first station and the second station establish data transmission in the direct link service period, the first station performs step 603, and the second station performs step 602;
  • the second station sends a data message to the first station with a transmit power that is not higher than the link power, and then step 606 is performed;
  • the first station determines whether the data message sent by the second station is successfully received, if successful, step 604 is performed, if not successfully received, step 605 is performed;
  • the first station sends a confirmation message to the second station, and then step 621 is performed;
  • the first station determines whether the time t1 has been exceeded, if it has been exceeded, step 608 is performed, if not, step 603 is performed; the time t1 can be defined as the first station in the direct link service The fixed time point after the last successful received message in the period (if not, the start time of the direct link);
  • the second station determines whether the acknowledgment message of the first station is successfully received, if successful, step 621 is performed, if not, step 607 is performed;
  • the second station determines whether the time t1 has been exceeded, if it has been exceeded, step 612 is performed, if not, step 602 is performed; the time t1 can be defined as the second station serving in the direct link service The fixed time point after the last successful message sent in the cycle (if not, the start time of the direct link);
  • the first station determines whether there is a data message to be sent to the second station, if yes, step 609 is performed, if not, step 611 is performed;
  • the first station sends a data message that is not immediately acknowledged to the second station.
  • the first station determines whether the direct link service period is over, if yes, step 622 is performed, if not, step 608 is performed;
  • the first station sends a conflict indication message to the second station, and then performs step 616, where the conflict indication message is used to indicate the occurrence of the conflict.
  • the second station determines whether the non-instant confirmation data message of the first station is successfully received, if yes, step 613 is performed, if no, step 614 is performed;
  • the second station determines whether the direct link service period is over, and if so, step 622 is performed, and if no, step 612 is performed;
  • the second station determines whether the conflict indication message of the first station is successfully received, if yes, step 615 is performed, if no, step 612 is performed;
  • the second station sends a data message by using a transmit power higher than the link power (exceeding the link power, for example, increasing by 5% or 6 dBm), and then performing step 619; optionally, the transmit power is allowed to be increased only once, and if The number of other directly connected links sharing the bandwidth of the direct link exceeds one, so the high power transmission mode is not enabled in order to avoid causing recursive chain reaction.
  • the activation of the high power transmission mode can be indicated by both implicit and display methods.
  • the implicit method is determined by the number of links of the shared bandwidth according to the foregoing station, and the number of direct links indicating the use of the same resource when the access point sends the direct link resource allocation information to the foregoing station.
  • the explicit method is to indicate whether the access point occupies 1 bit in the transmission direct link resource allocation frame to indicate permission or not;
  • the first station determines whether the data message sent by the second station is successfully received, if successful, step 617 is performed, if not, step 618 is performed;
  • the first station sends a confirmation message to the second station.
  • the first station determines whether the direct link service period is over, if yes, step 622 is performed, if not, step 616 is performed;
  • the second station determines whether the acknowledgment message of the first station is successfully received, if successful, step 620 is performed, if it is not successfully received, step 622 is performed;
  • the second station updates the link power to the transmit power used in step 621.
  • the first station and the second station perform subsequent direct communication
  • the first station and the second station respectively terminate the direct link service period.
  • step 701 after the first station and the second station establish data transmission in the direct link service period, the first station performs step 703, and the second station performs step 702;
  • the second station sends a data message to the first station with a transmit power that is not higher than the link power, and then step 706 is performed;
  • the first station determines whether the data message sent by the second station is successfully received, if successful, step 704 is performed, if not successfully received, step 705 is performed;
  • the first station sends a confirmation message to the second station, and then step 721;
  • the first station determines whether the time t1 has been exceeded, if it has been exceeded, step 708 is performed, if not, step 703 is performed; the time t1 can be defined as the first station is The fixed time point after the last successful reception of the message in the direct link service period (if not, the direct link start time);
  • the second station determines whether the acknowledgment message of the first station is successfully received, if successful, step 721 is performed, if not, step 707 is performed;
  • the second station determines whether the time t1 has been exceeded, if it has been exceeded, step 712 is performed, if not, step 702 is performed; the time t1 can be defined as the second station serving in the direct link service The fixed time point after the last successful message sent in the cycle (if not, the start time of the direct link);
  • the first station determines whether there is a data message to be sent to the second station, if yes, step 709 is performed, if not, step 711 is performed;
  • the first station sends a data message that is not immediately acknowledged to the second station.
  • the first station determines whether the direct link service period is over, if yes, step 722 is performed, if not, step 708 is performed;
  • the first station determines whether the time t2 has been exceeded, if it has been exceeded, step 716 is performed, if not, step 711 is performed; the time t2 can be defined as the first station in the direct link service The fixed time point after the last successful received message in the period (if not, the start time of the direct link);
  • the second station determines whether the non-instant confirmation data message of the first station is successfully received, if yes, step 713 is performed, if no, step 714 is performed;
  • the second station determines whether the direct link service period is over, if yes, step 722 is performed, if not, step 712 is performed;
  • step 714 The second station determines whether the time t2 has been exceeded. If it has been exceeded, step 715 is performed. If not, step 712 is performed, where the time t2 can be defined as the second station serving in the direct link. The fixed time point after the last time the received message was sent in the period (if not, the start time of the direct link);
  • the second station sends a data message by using a transmit power higher than the link power (exceeding the link power, for example, increasing by 5% or 6 dBm), and then performing step 719; optionally, the transmit power is allowed to be increased only once, and if The number of other directly connected links sharing the bandwidth of the direct link exceeds one, so the high power transmission mode is not enabled in order to avoid causing recursive chain reaction.
  • the activation of the high power transmission mode can be indicated by both implicit and display methods.
  • the implicit method is determined by the number of links of the shared bandwidth according to the above site, and this is determined by the access point.
  • the explicit method is to indicate that the access point occupies 1 bit in the transmission direct link resource allocation frame. Allowed or not;
  • the first station determines whether the data message sent by the second station is successfully received, if successful, step 717 is performed, if not, step 718 is performed;
  • the first station sends a confirmation message to the second station.
  • the first station determines whether the direct link service period is over, if yes, step 722 is performed, if not, step 716 is performed;
  • the second station determines whether the acknowledgment message of the first station is successfully received, if successful, step 720 is performed, if it is not successfully received, step 722 is performed;
  • the second station updates the link power to the transmit power used in step 721.
  • the first station and the second station perform subsequent direct communication
  • the first station and the second station respectively terminate the direct link service period.
  • the data transmission method provided by the present invention has been described above.
  • the structure of the data transmission apparatus provided by the present invention will be described from the perspective of a device.
  • the data transmission device includes:
  • the receiving unit 801 is configured to receive the data message sent by the second station during the data continuous transmission period
  • the sending unit 802 is configured to send, when the data message sent by the second station is not successfully received, a data message that is not immediately confirmed to the second station.
  • the receiving unit 801 receives the data message sent by the second station during the data continuous transmission period; the sending unit 802 sends the non-send to the second station when the data message sent by the second station is not successfully received.
  • Immediately acknowledged data message since the reception of the second station does not necessarily have interference, the efficiency of the bandwidth is improved by starting the reverse transmission to reduce the waste of the direct link resources.
  • the apparatus includes:
  • the receiving unit 901 is configured to receive a data message sent by the second station during a data continuous transmission period
  • the sending unit 902 is configured to: when the data message sent by the second station is not successfully received, send a conflict indication message to the second station; the conflict indication message is used to indicate that the second station uses higher than link power The transmit power sends the data message.
  • the receiving unit 901 receives the second station to send during the data continuous transmission period.
  • the data message is sent by the sending unit 902 to the second station when the data message sent by the second station is not successfully received; the conflict indication message is used to indicate that the second station adopts a higher link.
  • the transmit power of the power transmits the data message; thereby improving bandwidth efficiency and reducing waste of direct link resources.
  • the apparatus includes:
  • the sending unit 1001 is configured to send a data message to the first station during a data continuous transmission period
  • the processing unit 1002 is configured to suspend sending a data message to the first station when the acknowledgment message sent by the first station is not successfully received, so that the first station sends a data message that is not immediately confirmed.
  • the sending unit 1001 sends a data message to the first station during the data continuous transmission period; the processing unit 1002 pauses to send the data to the first station when the confirmation message sent by the first station is not successfully received. a message, so that the first station sends a data message that is not instant acknowledged; therefore, after suspending sending the data message to the first station, the first station reduces the waste of the direct link resource by initiating reverse transmission. Improve the efficiency of bandwidth. .
  • the apparatus includes:
  • the receiving unit 1101 is configured to receive a message sent by the first station during a data continuous transmission period
  • the processing unit 1102 is configured to: when successfully receiving the conflict indication message sent by the first station, send a data message by using a transmit power higher than the link power.
  • the receiving unit 1101 receives the message sent by the first station during the data continuous transmission period; when the processing unit 1102 successfully receives the conflict indication message sent by the first station, the data is sent by using the transmission power higher than the link power. Thereby increasing the efficiency of bandwidth and reducing the waste of direct link resources.
  • the apparatus includes:
  • the sending unit 1201 is configured to send a data message to the first station during a data continuous transmission period
  • the processing unit 1202 is configured to use, when the number of repetitions of sending the same data message to the first station by using no more than the link power as the transmission power exceeds the first preset value, or the repetition time exceeds the second preset value, The transmit power of the link power transmits the data message.
  • the sending unit 1201 sends the number to the first station during the data continuous transmission period.
  • the processing unit 1202 adopts a higher than the second preset value when the number of repetitions of sending the same data message to the first station by using no more than the link power as the transmission power exceeds the first preset value.
  • the transmit power of the link power transmits the data message; thereby improving the efficiency of the bandwidth and reducing the waste of the direct link resources.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read-only memory.
  • a medium that can store program code such as a ROM (Read-Only Memory), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输方法及装置。本发明方法包括:第一站点在数据持续传输期接收第二站点发送的数据消息;当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送非即时确认的数据消息。本发明能够减少在干扰发生后直连链路资源的浪费,提高带宽的效率。

Description

一种数据传输方法及装置
本申请要求于2015年7月27日提交中国专利局、申请号为201510447818.2中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
无线保真(Wireless Fidelity,WiFi)是一种基于电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)的IEEE802.11标准的无线局域网技术,实现将个人电脑(Personal Computer,PC)、用户设备(User Equipment,UE)等终端以无线方式组成计算机网络。WiFi网络由站点(Station,STA)组成,站点可包括接入点(Access Point,AP)和用户站点,接入点与用户站点之间的通信链路称为非直连链路。为了提高带宽的使用效率,IEEE802.11标准规定了直连链路(Direct Link)技术,即用户站点与用户站点之间的通信链路之间不需要通过接入点,但是在同一时间内仅允许一对直连链路站点进行通信。示例的,如图1所示,典型的直连链路与非直连链路的应用场景包括第一用户站点STA1、第二用户站点STA2、第三用户站点STA3、第四用户站点STA4、第五用户站点STA5、第六用户站点STA6和接入点AP1。第一用户站点STA1与第二用户站点STA2之间为直连链路;第三用户站点STA3与第四用户站点STA4之间为直连链路;第五用户站点STA5与第六用户站点STA6分别与接入点AP1建立非直连链路。其中第一用户站点STA1与第二用户站点STA2虽然连接到AP1接受接入点AP1的控制,但它们通信时通过直连链路进行,不需要经接入点AP1转发。而第五用户站点STA5和第六用户站点STA6通信时则因为未建立直连链路而必须经接入点AP1转发。
IEEE拟建立的新一代IEEE802.11增补标准或将对原有直连链路部分进行增强,以进一步适应未来高密集场景。为避免互相干扰,原有的IEEE802.11标准规定同一信道资源中仅允许存在一对通信链路,因而多个直连则必须通过竞争方式轮流使用同一带宽资源。由于直连链路双方的距离一般相对 较近,所以不必使用最大发射功率即可满足通信要求。那么在对发射功率进行功率控制后,一对直连链路的空间覆盖范围将有效降低,那么未在上述空间覆盖范围内的直连链路将不受到上述直连链路的干扰。因此,为了提高高密集场景下带宽使用效率,新一代IEEE802.11增补标准或将允许在进行适当的功率控制之后多个直连链路可同时工作在同一信道上,即频率的空间复用问题。如图1所示,频率的空间复用是指第一用户站点STA1与第二用户站点STA2的直连链路能够与第三用户站点STA3与第四用户站点STA4的直连链路能够共享同一带宽。
在功率控制之前需进行功率测定,然而功率测定存在误差,频率的空间复用的直连链路之间仍会存在互相干扰,这将导致直连链路无法工作,造成直连链路资源的浪费。
发明内容
本发明提供了一种数据传输方法及装置,能够减少在干扰发生后直连链路资源的浪费,提高带宽的效率。
本发明第一方面提供了一种数据传输方法,可包括:
第一站点在数据持续传输期接收第二站点发送的数据消息;
当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送非即时确认的数据消息。
本发明第二方面提供了一种数据传输方法,可包括:
第一站点在数据持续传输期接收第二站点发送的数据消息;
当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息。
本发明第三方面提供了一种数据传输方法,可包括:
第二站点在数据持续传输期向第一站点发送数据消息;
当所述第二站点未能成功接收所述第一站点发送的确认消息时,所述第二站点暂停向所述第一站点发送数据消息,以使所述第一站点向所述第二站点发送非即时确认的数据消息。
本发明第四方面提供了一种数据传输方法,可包括:
第二站点在数据持续传输期接收第一站点发送的消息;
当所述第二站点成功接收所述第一站点发送的冲突指示消息时,所述第二站点采用高于链路功率的发射功率发送数据消息。
本发明第五方面提供了一种数据传输方法,可包括:
第二站点在数据持续传输期向第一站点发送数据消息;
当所述第二站点采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,所述第二站点采用高于所述链路功率的发射功率发送所述数据消息。
本发明第六方面提供了一种数据传输装置,可包括:
接收单元,用于在数据持续传输期接收第二站点发送的数据消息;
发送单元,用于当未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送非即时确认的数据消息。
本发明第七方面提供了一种数据传输装置,可包括:
接收单元,用于在数据持续传输期接收第二站点发送的数据消息;
发送单元,用于当未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息。
本发明第八方面提供了一种数据传输装置,可包括:
发送单元,用于在数据持续传输期向第一站点发送数据消息;
处理单元,用于当未能成功接收所述第一站点发送的确认消息时,暂停向所述第一站点发送数据消息,以使所述第一站点发送非即时确认的数据消息。
本发明第九方面提供了一种数据传输装置,可包括:
接收单元,用于在数据持续传输期接收第一站点发送的消息;
处理单元,用于当成功接收所述第一站点发送的冲突指示消息时,采用高于链路功率的发射功率发送数据消息。
本发明第十方面提供了一种数据传输装置,可包括:
发送单元,用于在数据持续传输期向第一站点发送数据消息;
处理单元,用于当采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,采用高于所述链路功率的发射功率发送所述数据消息。
从以上技术方案可以看出,本发明具有以下优点:第一站点在数据持 续传输期接收第二站点发送的数据消息,此时,所述第一站点等待接收所述第二站点发送的数据消息;当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送非即时确认的数据消息;由于第二站点的接收不一定存在干扰,因此,通过启动反向传输以减少直连链路资源的浪费,提高带宽的效率。
附图说明
图1为直连链路示意图;
图2为直连链路之间的干扰示意图;
图3为本发明所提供的数据传输方法的一个实施例流程示意图;
图4为本发明所提供的数据传输方法的另一实施例流程示意图;
图5为本发明所提供的数据传输方法的另一实施例流程示意图;
图6为本发明所提供的数据传输方法的另一实施例流程示意图;
图7为本发明所提供的数据传输方法的另一实施例流程示意图;
图8为本发明所提供的数据传输方法的另一实施例流程示意图;
图9为本发明所提供的数据传输方法的另一实施例流程示意图;
图10为本发明所提供的数据传输装置的一个实施例结构示意图;
图11为本发明所提供的数据传输装置的另一实施例结构示意图;
图12为本发明所提供的数据传输装置的另一实施例结构示意图;
图13为本发明所提供的数据传输装置的另一实施例结构示意图;
图14为本发明所提供的数据传输装置的另一实施例结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述各个站点、用户或终端,但站点、用户或终端不应限于这些术语。这些术语仅用来将站点、用户或终端彼此区分开。例如,在不脱离本发明实施例 范围的情况下,第一站点也可以被称为第二站点,类似地,第二站点也可以被称为第一站点;同样的,第二站点也可以被称为第三站点等等,本发明实施例对此不做限制。此外,站点可包括接入点与用户站点。
首先对本发明所要解决的技术问题进行概述:
实现频率空间复用的前提条件是尽可能减少链路之间的干扰问题,而功率控制是减少干扰问题的常用方法。为了解决频率的空间复用中干扰问题,功率控制一般可从下述两方面着手。第一,通过功率测定获得直连链路的链路功率,即在满足通信需求和质量的前提下的最低发射功率,并将直连链路发送方的发射功率设定为链路功率。第二,假定所有直连链路都工作在链路功率时,调查各个直连链路之间的干扰状况,建立直连链路之间干扰的关系表,通过调度方法使得干扰可能性较低的直连链路可以共享带宽资源,而干扰可能性较高的直连链路则分配不同的带宽资源,从而实现频率的空间复用。
然而,功率测定也有存在误差,并不能完全避免直连链路之间的互相干扰。第一,功率测定通过间接的方法实现功率的估算,因此必然存在一定的估计误差。如果估计误差偶尔较大时,那么可能将发生如图2所示的直连链路之间的干扰。图2中,由于功率测定出现误差,第三用户站点STA3处于第二用户站点STA2的覆盖范围,所以当第二用户站点STA2发送数据帧时,必然会对第三用户站点STA3接收数据帧造成。由于第三用户站点STA3的接收受到干扰,无法向第四用户站点STA4回复ACK(Acknowledgement,确认)帧。那么第四用户站点STA4将不断尝试向第三用户站点STA3发送帧,这样第三用户站点STA3与第四用户站点STA4之间的直连链路将无法工作,造成直连链路资源的浪费。第二,由于无线信道的时变性以及站点的移动性,所以功率测定时的信道与实际传输时存在一定差异性,如果误差较大时,仍有可能发生如图2所示的直连链路之间的干扰。
以图2所示直连链路碰撞的情况为例,假设第一用户站点STA1与第二用户站点STA2为一对直连链路,第三用户站点STA3与第四用户站点STA4为一对直连链路。假设第二用户站点STA2发送数据时会对第三用户站点STA3的数据接收造成干扰,从而导致第四用户站点STA4向第三用户站点STA3发送的数据难以被第三用户站点STA3正常接收。如果在直连服务周 期内干扰无法纠正,那么将造成第三用户站点STA3与第四用户站点STA4之间的直连链路无法正常工作,进而导致直连链路资源的浪费。
直连站点按照所分配的资源进行直连通信。如前所述,资源分配将可能采用频率的空间复用的方式,即多个直连链路将同时使用某一信道资源。但考虑到功率测定可能带来的误差,频率复用直连链路之间的干扰可能会产生互相碰撞,因此本发明提出直连链路碰撞之后的解决方案。
本发明提供了一种数据传输方法,应用于第一站点,本方法主要由数据传输装置执行;请参阅图3,本发明所提供的数据传输方法的一个实施例包括:
101、第一站点在数据持续传输期接收第二站点发送的数据消息;
需要说明的是,所述数据持续传输期可以是接入点与用户站点之间建立的传送机会(Transmission Opportunity,TXOP),也可以是直连链路服务周期;所述直连链路服务周期指为直连链路建立的数据持续传输期;具体的,所述直连服务周期包括第一站点与第二站点建立直连通信所使用的时域与频域资源。
102、当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送非即时确认的数据消息。
需要说明的是,所述未能成功接收包括检测信道为繁忙但无法正确解析所接收的消息;所述非即时确认的数据消息指确认方式字段指示接收站点不必立即应答确认消息的数据消息。例如,第一站点在t1时刻到来之前,都未能成功接收第二站点发来的数据消息,那么在t1时刻之后第一站点尝试发送非即时确认的数据消息;其中,所述t1时刻可定义为所述第一站点在本次直连链路服务周期内最后一次成功接收第二站点所发送的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点。可以理解的是,如果第一站点存在发往第二站点的数据足够多,那么所述第一站点将持续至本次直连链路服务周期结束。
本发明实施例中,第一站点在数据持续传输期接收所述第二站点发送的数据消息;当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送非即时确认的数据消息;由于第二站点的接收不一定存在干扰,因此,通过启动反向传输以减少直连链路资源的浪费,提高带宽的效率。
请参阅图4,本发明所提供的数据传输方法的另一实施例,应用于第一站点,包括:
201、第一站点在数据持续传输期接收第二站点发送的数据消息;
需要说明的是,所述数据持续传输期可以是接入点与用户站点之间建立的传送机会(Transmission Opportunity,TXOP),也可以是直连链路服务周期;所述直连链路服务周期指为直连链路建立的数据持续传输期;具体的,所述直连服务周期包括第一站点与第二站点建立直连通信所使用的时域与频域资源。
202、当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息。
需要说明的是,所述未能成功接收包括检测信道为繁忙但无法正确解析所接收的消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率进行数据消息的发送;所述链路功率指为建立所述第一站点与所述第二站点间数据传输而约定的最高发射功率。
其中,如果第二站点成功接收第一站点发送的冲突指示消息,那么第二站点将启动高功率发送模式/机制,即采用高于链路功率的发射功率(超过链路功率,例如提高5%或者6dBm)进行数据消息的发送。
可选的,该发射功率只允许提高一次,且如果与该直连链路共享带宽的其它直连链路个数超过1个,那么为了避免引起递归的连环反应,并不启用高功率发送模式。高功率发送模式的启动与否可通过隐式和显示两种方法来进行指示。隐式的方法为由上述站点根据共享带宽的链路个数来自行决定,这个由接入点在向上述站点发送直连链路资源分配信息时指示使用此相同资源的直连链路的数量;显式的方法为由接入点在发送直连链路资源分配帧中占用1个比特来进行指示允许与否。
本发明实施例中,当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息;从而提高带宽的效率,减少直连链路资源的浪费。
本发明提供了一种数据传输方法,应用于第二站点,本方法主要由数据传输装置执行;请参阅图5,本发明所提供的数据传输方法的一个实施例 包括:
301、第二站点在数据持续传输期向第一站点发送数据消息;
所述数据持续传输期可以是接入点与用户站点之间建立的传送机会(Transmission Opportunity,TXOP),也可以是直连链路服务周期;所述直连链路服务周期指为直连链路建立的数据持续传输期;具体的,所述直连服务周期包括第一站点与第二站点建立直连通信所使用的时域与频域资源。
302、当所述第二站点未能成功接收所述第一站点发送的确认消息时,所述第二站点暂停向所述第一站点发送数据消息,以使所述第一站点向所述第二站点发送非即时确认的数据消息。
需要说明的是,第一站点在接收到第二站点发送的数据消息后,会向所述第二站点发送确认消息;当所述第二站点未能成功接收所述第一站点发送的确认消息时,所述第二站点暂停向第一站点发送数据消息,以使所述第一站点启动反向传输,从而向所述第二站点发送非即时确认的数据消息。所述非即时确认的数据消息指数据消息中确认方式字段指示接收站点不必立即应答确认消息。例如,第二站点从0至t1时刻向第一站点发送数据消息,但第一站点都未能成功接收第二站点发来的数据消息而未发送确认消息;那么在t1时刻之后第一站点尝试发送非即时确认的数据消息,第二站点为能成功接收所述非即时确认的数据消息而暂停向第一站点发送数据消息;其中,所述t1时刻可定义为所述第二站点在本次直连链路服务周期内最后一次成功发送的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点。所述成功发送指所述消息发送后成功接收相应确认消息。可以理解的是,如果第一站点存在发往第二站点的数据足够多,那么所述第一站点将持续至本次直连链路服务周期结束。
本发明实施例中,第二站点在数据持续传输期向第一站点发送数据消息;当所述第二站点未能成功接收所述第一站点发送的确认消息时,所述第二站点暂停向第一站点发送数据消息,以使所述第一站点向所述第二站点发送非即时确认的数据消息;由于第二站点的接收不一定存在干扰,因此,在所述第二站点暂停向第一站点发送数据消息后,所述第一站点通过启动反向传输以减少直连链路资源的浪费,提高带宽的效率。
请参阅图6,本发明所提供的数据传输方法的另一实施例,应用于第二 站点,包括:
401、第二站点在数据持续传输期接收第一站点发送的消息;
需要说明的是,所述数据持续传输期可以是接入点与用户站点之间建立的传送机会(Transmission Opportunity,TXOP),也可以是直连链路服务周期;所述直连链路服务周期指为直连链路建立的数据持续传输期;具体的,所述直连服务周期包括第一站点与第二站点建立直连通信所使用的时域与频域资源。
402、当所述第二站点成功接收所述第一站点发送的冲突指示消息时,所述第二站点采用高于链路功率的发射功率发送数据消息。
需要说明的是,所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息;所述链路功率指为建立第一站点与第二站点间数据传输而约定的最高发射功率。如果第二站点成功接收第一站点发送的冲突指示消息,那么第二站点将启动高功率发送模式/机制,即采用高于链路功率的发射功率(超过链路功率,例如提高5%或者6dBm)进行数据消息的发送。
可选的,该发射功率只允许提高一次,且如果与该直连链路共享带宽的其它直连链路个数超过1个,那么为了避免引起递归的连环反应,并不启用高功率发送模式。高功率发送模式的启动与否可通过隐式和显示两种方法来进行指示。隐式的方法为由上述站点根据共享带宽的链路个数来自行决定,这个由AP在向上述站点发送直连链路资源分配信息时指示使用此相同资源的直连链路的数量;显式的方法为由AP在发送直连链路资源分配帧中占用1个比特来进行指示允许与否。
本发明实施例中,当所述第二站点成功接收所述第一站点发送的冲突指示消息时,所述第二站点采用高于链路功率的发射功率发送数据消息;从而提高带宽的效率,减少直连链路资源的浪费。
请参阅图7,本发明所提供的数据传输方法的另一实施例,应用于第二站点,包括:
501、第二站点在数据持续传输期向第一站点发送数据消息;
所述数据持续传输期可以是接入点与用户站点之间建立的传送机会(Transmission Opportunity,TXOP),也可以是直连链路服务周期;所述直连链路服务周期指为直连链路建立的数据持续传输期;具体的,所述直连 服务周期包括第一站点与第二站点建立直连通信所使用的时域与频域资源。所述第二站点采用不高于链路功率作为发射功率向所述第一站点发送数据消息。所述链路功率指为第一站点与第二站点间直连通信而约定的最高发射功率。
502、当所述第二站点采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,所述第二站点采用高于所述链路功率的发射功率发送所述数据消息。
需要说明的是,所述第一站点在接收到所述第二站点发送的数据消息后,会向所述第二站点发送确认消息,如果所述第二站点未能成功接收所述第一站点发送的确认消息,所述第二站点向第一站点重复发送该数据消息。如果重复发送次数不超过第一预置值或重复时间不超过第二预置值,那么所述第二站点仍采用不高于链路功率作为发射功率进行数据消息的发送;如果重复发送次数超过第一预置值或重复时间超过第二预置值,那么所述第二站点采用高于链路功率的发射功率进行数据消息的发送。其中,所述第一预置值和第二预置值分别为大于1的整数;所述链路功率指为建立第一站点与第二站点间数据传输而约定的最高发射功率。。
其中,第二站点将启动高功率发送模式/机制,即采用高于链路功率的发射功率(超过链路功率,例如提高5%或者6dBm)进行数据消息的发送。
可选的,该发射功率只允许提高一次,且如果与该直连链路共享带宽的其它直连链路个数超过1个,那么为了避免引起递归的连环反应,并不启用高功率发送模式。高功率发送模式的启动与否可通过隐式和显示两种方法来进行指示。隐式的方法为由上述站点根据共享带宽的链路个数来自行决定,这个由接入点在向上述站点发送直连链路资源分配信息时指示使用此相同资源的直连链路的数量;显式的方法为由接入点在发送直连链路资源分配帧中占用1个比特来进行指示允许与否。
本发明实施例中,第二站点在数据持续传输期向第一站点发送数据消息;当所述第二站点采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,所述第二站点采用高于链路功率的发射功率发送所述数据消息;从而提高带宽的效率,减少直连链路资源的浪费。
以上对本发明实施例中数据传输方法进行了详细描述,为便于理解, 下面将对第一站点与第二站点之间在直连链路服务周期的交互场景进行说明:
一、场景中采用显示方式触发高功率传输,请参阅图8,
601、第一站点与第二站点在直连链路服务周期建立数据传输后,第一站点执行步骤603,第二站点执行步骤602;
602、第二站点以不高于链路功率的发射功率向第一站点发送数据消息,然后执行步骤606;
603、第一站点判断是否成功接收第二站点所发送的数据消息,如果成功接收则执行步骤604,如果未成功接收则执行步骤605;
604、第一站点向第二站点发送确认消息,然后执行步骤621;
605、第一站点判断是否已经超过t1时刻,如果已经超过,则执行步骤608,如果未超过,则执行步骤603;所述t1时刻可定义为所述第一站点在本次直连链路服务周期内最后一次成功接收的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点;
606、第二站点判断是否成功接收第一站点的确认消息,如果成功,则执行步骤621,如果未成功,则执行步骤607;
607、第二站点判断是否已经超过t1时刻,如果已经超过,则执行步骤612,如果未超过,则执行步骤602;所述t1时刻可定义为所述第二站点在本次直连链路服务周期内最后一次成功发送的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点;
608、第一站点判断是否存在待发送第二站点的数据消息,如果存在,则执行步骤609,如果不存在,则执行步骤611;
609、第一站点向第二站点发送非立即确认的数据消息;
610、第一站点判断直连链路服务周期是否结束,如果是,则执行步骤622,如果否,则执行步骤608;
611、第一站点向第二站点发送冲突指示消息,然后执行步骤616,所述冲突指示消息用于指示冲突的发生;
612、第二站点判断是否成功接收第一站点的非即时确认数据消息,如果是,则执行步骤613,如果否,则执行步骤614;
613、第二站点判断直连链路服务周期是否结束,如果是,则执行步骤622,如果否,则执行步骤612;
614、第二站点判断是否成功接收第一站点的冲突指示消息,如果是,则执行步骤615,如果否,则执行步骤612;
615、第二站点采用高于链路功率的发射功率发送数据消息(超过链路功率,例如提高5%或者6dBm),然后执行步骤619;可选的,该发射功率只允许提高一次,且如果与该直连链路共享带宽的其它直连链路个数超过1个,那么为了避免引起递归的连环反应,并不启用高功率发送模式。高功率发送模式的启动与否可通过隐式和显示两种方法来进行指示。隐式的方法为由上述站点根据共享带宽的链路个数来自行决定,这个由接入点在向上述站点发送直连链路资源分配信息时指示使用此相同资源的直连链路的数量;显式的方法为由接入点在发送直连链路资源分配帧中占用1个比特来进行指示允许与否;
616、第一站点判断是否成功接收第二站点所发送的数据消息,如果成功接收则执行步骤617,如果未能成功接收则执行步骤618;
617、第一站点向第二站点发送确认消息;
618、第一站点判断直连链路服务周期是否结束,如果是,则执行步骤622,如果否,则执行步骤616;
619、第二站点判断是否成功接收第一站点的确认消息,如果成功接收则执行步骤620,如果未能成功接收则执行步骤622;
620、第二站点更新链路功率为步骤621所使用的发射功率;
621、第一站点与第二站点进行后续直连通信;
622、第一站点与第二站点分别结束直连链路服务周期。
二、场景中采用隐式方式触发高功率传输,请参阅图9,
701、第一站点与第二站点在直连链路服务周期建立数据传输后,第一站点执行步骤703,第二站点执行步骤702;
702、第二站点以不高于链路功率的发射功率向第一站点发送数据消息,然后执行步骤706;
703、第一站点判断是否成功接收第二站点所发送的数据消息,如果成功接收则执行步骤704,如果未成功接收则执行步骤705;
704、第一站点向第二站点发送确认消息,然后执行步骤721;
705、第一站点判断是否已经超过t1时刻,如果已经超过,则执行步骤708,如果未超过,则执行步骤703;所述t1时刻可定义为所述第一站点在 本次直连链路服务周期内最后一次成功接收的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点;
706、第二站点判断是否成功接收第一站点的确认消息,如果成功,则执行步骤721,如果未成功,则执行步骤707;
707、第二站点判断是否已经超过t1时刻,如果已经超过,则执行步骤712,如果未超过,则执行步骤702;所述t1时刻可定义为所述第二站点在本次直连链路服务周期内最后一次成功发送的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点;
708、第一站点判断是否存在待发送第二站点的数据消息,如果存在,则执行步骤709,如果不存在,则执行步骤711;
709、第一站点向第二站点发送非立即确认的数据消息;
710、第一站点判断直连链路服务周期是否结束,如果是,则执行步骤722,如果否,则执行步骤708;
711、第一站点判断是否已经超过t2时刻,如果已经超过,则执行步骤716,如果未超过,则执行步骤711;所述t2时刻可定义为所述第一站点在本次直连链路服务周期内最后一次成功接收的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点;
712、第二站点判断是否成功接收第一站点的非即时确认数据消息,如果是,则执行步骤713,如果否,则执行步骤714;
713、第二站点判断直连链路服务周期是否结束,如果是,则执行步骤722,如果否,则执行步骤712;
714、第二站点判断是否已经超过t2时刻,如果已经超过,则执行步骤715,如果未超过,则执行步骤712,所述t2时刻可定义为所述第二站点在本次直连链路服务周期内最后一次发送接收的消息的时间(若无,则以直连链路起始时间计)后的一个固定时间点;
715、第二站点采用高于链路功率的发射功率发送数据消息(超过链路功率,例如提高5%或者6dBm),然后执行步骤719;可选的,该发射功率只允许提高一次,且如果与该直连链路共享带宽的其它直连链路个数超过1个,那么为了避免引起递归的连环反应,并不启用高功率发送模式。高功率发送模式的启动与否可通过隐式和显示两种方法来进行指示。隐式的方法为由上述站点根据共享带宽的链路个数来自行决定,这个由接入点在向 上述站点发送直连链路资源分配信息时指示使用此相同资源的直连链路的数量;显式的方法为由接入点在发送直连链路资源分配帧中占用1个比特来进行指示允许与否;
716、第一站点判断是否成功接收第二站点所发送的数据消息,如果成功接收则执行步骤717,如果未能成功接收则执行步骤718;
717、第一站点向第二站点发送确认消息;
718、第一站点判断直连链路服务周期是否结束,如果是,则执行步骤722,如果否,则执行步骤716;
719、第二站点判断是否成功接收第一站点的确认消息,如果成功接收则执行步骤720,如果未能成功接收则执行步骤722;
720、第二站点更新链路功率为步骤721所使用的发射功率;
721、第一站点与第二站点进行后续直连通信;
722、第一站点与第二站点分别结束直连链路服务周期。
以上对本发明所提供的数据传输方法进行了说明,下面将从装置的角度对本发明所提供的数据传输装置的结构进行说明,请参阅图10,本发明所提供的数据传输装置的一个实施例中,该数据传输装置包括:
接收单元801,用于在数据持续传输期接收第二站点发送的数据消息;
发送单元802,用于当未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送非即时确认的数据消息。
本发明实施例中,接收单元801在数据持续传输期接收第二站点发送的数据消息;发送单元802在未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送非即时确认的数据消息;由于第二站点的接收不一定存在干扰,因此,通过启动反向传输以减少直连链路资源的浪费,提高带宽的效率。
请参阅图11,本发明所提供的数据传输装置的另一实施例中,该装置包括:
接收单元901,用于在数据持续传输期接收第二站点发送的数据消息;
发送单元902,用于当未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息。
本发明实施例中,接收单元901在数据持续传输期接收第二站点发送 的数据消息;发送单元902在未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息;从而提高带宽的效率,减少直连链路资源的浪费。
请参阅图12,本发明所提供的数据传输装置的另一实施例中,该装置包括:
发送单元1001,用于在数据持续传输期向第一站点发送数据消息;
处理单元1002,用于当未能成功接收所述第一站点发送的确认消息时,暂停向所述第一站点发送数据消息,以使所述第一站点发送非即时确认的数据消息。
本发明实施例中,发送单元1001在数据持续传输期向第一站点发送数据消息;处理单元1002在未能成功接收所述第一站点发送的确认消息时,暂停向所述第一站点发送数据消息,以使所述第一站点发送非即时确认的数据消息;因此,在暂停向第一站点发送数据消息后,所述第一站点通过启动反向传输以减少直连链路资源的浪费,提高带宽的效率。。
请参阅图13,本发明所提供的数据传输装置的另一实施例中,该装置包括:
接收单元1101,用于在数据持续传输期接收第一站点发送的消息;
处理单元1102,用于当成功接收所述第一站点发送的冲突指示消息时,采用高于链路功率的发射功率发送数据消息。
本发明实施例中,接收单元1101在数据持续传输期接收第一站点发送的消息;处理单元1102在成功接收所述第一站点发送的冲突指示消息时,采用高于链路功率的发射功率发送数据消息;从而提高带宽的效率,减少直连链路资源的浪费。
请参阅图14,本发明所提供的数据传输装置的另一实施例中,该装置包括:
发送单元1201,用于在数据持续传输期向第一站点发送数据消息;
处理单元1202,用于当采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,采用高于所述链路功率的发射功率发送所述数据消息。
本发明实施例中,发送单元1201在数据持续传输期向第一站点发送数 据消息;处理单元1202在采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,采用高于所述链路功率的发射功率发送所述数据消息;从而提高带宽的效率,减少直连链路资源的浪费。
上述装置的相关描述可以对应参阅方法实施例部分的相关描述和效果进行理解,本处不做过多赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储 器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种数据传输方法,其特征在于,包括:
    第一站点在数据持续传输期接收第二站点发送的数据消息;
    当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送非即时确认的数据消息。
  2. 一种数据传输方法,其特征在于,包括:
    第一站点在数据持续传输期接收第二站点发送的数据消息;
    当所述第一站点未能成功接收所述第二站点发送的数据消息时,所述第一站点向所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息。
  3. 一种数据传输方法,其特征在于,包括:
    第二站点在数据持续传输期向第一站点发送数据消息;
    当所述第二站点未能成功接收所述第一站点发送的确认消息时,所述第二站点暂停向所述第一站点发送数据消息,以使所述第一站点向所述第二站点发送非即时确认的数据消息。
  4. 一种数据传输方法,其特征在于,包括:
    第二站点在数据持续传输期接收第一站点发送的消息;
    当所述第二站点成功接收所述第一站点发送的冲突指示消息时,所述第二站点采用高于链路功率的发射功率发送数据消息。
  5. 一种数据传输方法,其特征在于,包括:
    第二站点在数据持续传输期向第一站点发送数据消息;
    当所述第二站点采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,所述第二站点采用高于所述链路功率的发射功率发送所述数据消息。
  6. 一种数据传输装置,其特征在于,包括:
    接收单元,用于在数据持续传输期接收第二站点发送的数据消息;
    发送单元,用于当未能成功接收所述第二站点发送的数据消息时,向所述第二站点发送非即时确认的数据消息。
  7. 一种数据传输装置,其特征在于,包括:
    接收单元,用于在数据持续传输期接收第二站点发送的数据消息;
    发送单元,用于当未能成功接收所述第二站点发送的数据消息时,向 所述第二站点发送冲突指示消息;所述冲突指示消息用于指示所述第二站点采用高于链路功率的发射功率发送所述数据消息。
  8. 一种数据传输装置,其特征在于,包括:
    发送单元,用于在数据持续传输期向第一站点发送数据消息;
    处理单元,用于当未能成功接收所述第一站点发送的确认消息时,暂停向所述第一站点发送数据消息,以使所述第一站点发送非即时确认的数据消息。
  9. 一种数据传输装置,其特征在于,包括:
    接收单元,用于在数据持续传输期接收第一站点发送的消息;
    处理单元,用于当成功接收所述第一站点发送的冲突指示消息时,采用高于链路功率的发射功率发送数据消息。
  10. 一种数据传输装置,其特征在于,包括:
    发送单元,用于在数据持续传输期向第一站点发送数据消息;
    处理单元,用于当采用不高于链路功率作为发射功率向所述第一站点发送同一数据消息的重复次数超过第一预置值或重复时间超过第二预置值时,采用高于所述链路功率的发射功率发送所述数据消息。
PCT/CN2016/091057 2015-07-27 2016-07-22 一种数据传输方法及装置 WO2017016451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510447818.2A CN106413116B (zh) 2015-07-27 2015-07-27 一种数据传输方法及装置
CN201510447818.2 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017016451A1 true WO2017016451A1 (zh) 2017-02-02

Family

ID=57883932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091057 WO2017016451A1 (zh) 2015-07-27 2016-07-22 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN106413116B (zh)
WO (1) WO2017016451A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367621A (zh) * 2000-12-28 2002-09-04 Lg电子株式会社 在分组数据传输系统中确定发射功率的系统和方法
CN1777084A (zh) * 2004-11-16 2006-05-24 华为技术有限公司 调整混合自动重传请求系统功率的方法
CN102804669A (zh) * 2010-04-06 2012-11-28 高通股份有限公司 延迟自动重复请求(arq)确认
CN103546915A (zh) * 2013-10-25 2014-01-29 杭州华三通信技术有限公司 一种无线网络访问控制器控制无线接入点的方法及其装置
US20150181533A1 (en) * 2013-12-20 2015-06-25 Qualcomm Incorporated Pusch and pucch power control under coverage enhancements in lte

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219919A1 (en) * 2003-04-30 2004-11-04 Nicholas Whinnett Management of uplink scheduling modes in a wireless communication system
CN102056276A (zh) * 2009-11-10 2011-05-11 中兴通讯股份有限公司 一种基站确定下行内环功控方式的方法及装置
JP6007480B2 (ja) * 2011-09-16 2016-10-12 ソニー株式会社 通信制御装置、通信制御方法及び通信制御システム
CN104105182B (zh) * 2013-04-12 2019-05-10 中兴通讯股份有限公司 实现内环闭环功率控制的方法及基站
CN104254114A (zh) * 2013-06-27 2014-12-31 华为终端有限公司 一种网络接入方法、设备及系统
CN104506290A (zh) * 2014-12-09 2015-04-08 上海伽利略导航有限公司 一种带有用户和数据流的比特功率联合分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367621A (zh) * 2000-12-28 2002-09-04 Lg电子株式会社 在分组数据传输系统中确定发射功率的系统和方法
CN1777084A (zh) * 2004-11-16 2006-05-24 华为技术有限公司 调整混合自动重传请求系统功率的方法
CN102804669A (zh) * 2010-04-06 2012-11-28 高通股份有限公司 延迟自动重复请求(arq)确认
CN103546915A (zh) * 2013-10-25 2014-01-29 杭州华三通信技术有限公司 一种无线网络访问控制器控制无线接入点的方法及其装置
US20150181533A1 (en) * 2013-12-20 2015-06-25 Qualcomm Incorporated Pusch and pucch power control under coverage enhancements in lte

Also Published As

Publication number Publication date
CN106413116A (zh) 2017-02-15
CN106413116B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
US10880874B2 (en) Method for transmitting a response request frame and a response frame in a multi-user based wireless communication system
US10122499B2 (en) Method and apparatus for ACK transmission in a WLAN
US11785562B2 (en) Multi-link operation with triggered alignment of frames
EP2919547B1 (en) Method and apparatus to coordinate simultaneous transmission in overlapping wireless networks
JP6392338B2 (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
CN107113782B (zh) 用于数字通信中避免干扰的系统和方法
RU2665050C2 (ru) Способ многопользовательской передачи по восходящей линии связи в системе беспроводной lan и устройство для его осуществления
JP6505869B2 (ja) 無線lanマルチユーザ送信機会においてデータを送信するためのシステムおよび方法
TWI722849B (zh) 在無線網路中進行同步獨立通道存取的裝置、電腦可讀存儲介質和方法
WO2019157911A1 (zh) 波束管理方法、终端、网络设备以及存储介质
TW202123766A (zh) 無線網路中用於多重鏈路觸發上鏈存取的基於觸發協議資料單元對準之裝置和方法
JP6072315B2 (ja) 低レイテンシ802.11メディアアクセス
US9179476B2 (en) Multi-user transmission during reverse direction grant
CN109479324B (zh) 无线局域网(wlan)中的传输机会所有权转移和延长
JP2015508263A (ja) データ伝送方法、アクセス・ポイントおよび局
WO2016127666A1 (zh) 一种rlc数据包分流方法及基站
CN106465432B (zh) 用于高效无线网络中的改进的保护模式的系统和方法
WO2019141233A1 (zh) 一种协作传输控制的方法、装置及系统
US10667292B2 (en) Wireless communication method for saving power and wireless communication terminal using same
WO2017114033A1 (zh) 一种传输机会确定方法及接入点
KR20190113423A (ko) 이동통신 시스템에서 스케줄링 요청을 전송하는 방법 및 장치
WO2017016451A1 (zh) 一种数据传输方法及装置
CN109412773B (zh) 非对称全双工通信的数据传输与接收方法及装置、终端
US20240097859A1 (en) Communication apparatus and communication method for multi-ap synchronous transmission
US10454798B1 (en) Multi-user data unit arrival time adjustment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829817

Country of ref document: EP

Kind code of ref document: A1