WO2017015288A2 - Tissue grasping devices and related methods - Google Patents

Tissue grasping devices and related methods Download PDF

Info

Publication number
WO2017015288A2
WO2017015288A2 PCT/US2016/042971 US2016042971W WO2017015288A2 WO 2017015288 A2 WO2017015288 A2 WO 2017015288A2 US 2016042971 W US2016042971 W US 2016042971W WO 2017015288 A2 WO2017015288 A2 WO 2017015288A2
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
arm
gripping device
deployed configuration
tissue gripping
Prior art date
Application number
PCT/US2016/042971
Other languages
French (fr)
Other versions
WO2017015288A3 (en
Inventor
Ryan T. KRONE
Jacob L. GREENBERG
Raghuveer Basude
Original Assignee
Evalve, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evalve, Inc. filed Critical Evalve, Inc.
Priority to CN202210687529.XA priority Critical patent/CN115227450A/en
Priority to EP16741835.9A priority patent/EP3324854A2/en
Priority to CN201680042515.5A priority patent/CN107920813B/en
Publication of WO2017015288A2 publication Critical patent/WO2017015288A2/en
Publication of WO2017015288A3 publication Critical patent/WO2017015288A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/246Devices for obstructing a leak through a native valve in a closed condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2463Implants forming part of the valve leaflets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect

Definitions

  • the present disclosure relates generally to medical methods, devices, and systems.
  • the present disclosure relates to methods, devices, and systems for the endovascular, percutaneous, or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair.
  • the present disclosure relates to repair of valves of the heart and venous valves, and devices and methods for removing or disabling mitral valve repair components through minimally invasive procedures.
  • tissue approximation often involves tissue approximation and fastening of such tissues in the approximated arrangement.
  • tissue approximation often includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets.
  • fixation of the leaflets can be used to treat regurgitation which most commonly occurs in the mitral valve.
  • Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium.
  • the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium.
  • the oxygenated blood is pumped into the aorta through the aortic valve.
  • Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
  • Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall.
  • the valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles themselves, or the left ventricular wall may be damaged or otherwise dysfunctional.
  • the valve annulus may be damaged, dilated, or weakened, limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle during systole.
  • the most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty.
  • a fixation device can be installed into the heart using minimally invasive techniques.
  • the fixation device can hold the adjacent segments of the opposed valve leaflets together to reduce mitral valve regurgitation.
  • One such device used to clip the anterior and posterior leaflets of the mitral valve together is the MitraClip® fixation device, sold by Abbott Vascular, Santa Clara, California, USA.
  • fixation devices often include clips designed to grip and hold against tissue as the clip arms are moved and positioned against the tissue at the treatment site and then closed against the tissue. Such clips are designed to continue gripping the tissue as the fixation device is closed into a final position. In order to achieve this effect, such these clips are sometimes equipped with barbs or hooks to grip the tissue as the clip is flexed into position against the tissue.
  • fixation devices require a fixation device to move through a wide range of grasping angles in order to be properly positioned relative to the target tissue and then to grasp the tissue and bring it to a closed position.
  • This moving and plastically deforming components of the fixation device during pre-deployment, positioning, and closure of the device can lead to the weakening and pre-mature degradation of the fixation device.
  • tissue fixation treatments require that the fixation device maintain a degree of flexibility and mobility to allow a range of physiological movement even after the device has been properly placed and the target tissue has been properly fixed into the desired position, This can increase the risk of pre- mature failure of the device as continued plastic deformation of the flexing components (e.g., from the continuous opening and closing of valve leaflets) leads to unfavorable degradation of the device.
  • At least one embodiment of the present disclosure relates to a tissue gripping device, the tissue gripping device including: a base section; and a first arm having a first end coupled to the base section, and a free end extending from the base section; wherein the base section and the arm are formed of a shape-memory material configured to exhibit superelasticity in a physiological environment.
  • At least one embodiment of the present disclosure relates to a tissue fixation system configured for intravascular delivery and for use in joining mitral valve tissue during treatment of the mitral valve, the system including: a body; a first and second distal element, each including a first end pivotally coupled to the body and extending to a free second end and a tissue engagement surface between the first and second end, the tissue engagement surface being configured to approximate and engage a portion of leaflets of the mitral valve; and a tissue gripping device formed of a shape-memory material, the tissue gripping device including a base section and a first arm and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the first and second arms being disposed opposite one another and each arm being configured to cooperate with one of the first or second distal elements to form a space for receiving and holding a portion of mitral valve tissue therebetween.
  • At least one embodiment of the present disclosure relates to a method of gripping tissue, the method including: positioning a tissue gripping device near a target tissue, the tissue gripping device being formed from a shape-memory material and including a base section and a first arm and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the first and second arms being disposed opposite one another; and moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration, the first and second arms being configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration.
  • At least one embodiment of the present disclosure relates to a method of manufacturing a tissue gripping device, the method including: cutting one or more structural features into a strip or sheet stock material of a shape-memory alloy, the one or more structural features including a plurality of slotted recesses disposed at one or more side edges of the stock material; and heat shape setting one or more bend features into the stock material.
  • At least one embodiment of the present disclosure relates to a tissue fixation kit, the kit including: a tissue gripping system that includes an actuator rod, an actuator line, a first and second distal element, each including a first end pivotally coupled to the actuator rod and extending to a free second end and a tissue engagement surface between the first and second end, the first and second distal elements being positionable by the actuator rod, a tissue gripping device formed of a shape-memory material, the tissue gripping device including a base section, a first arm, and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the tissue gripping device being positionable by the actuator line; a handle; and a delivery catheter having a proximal end and a distal end, the tissue gripping system being couplable to the distal end of the delivery catheter and the handle being couplable to the proximal end of the delivery catheter.
  • Figure 1 illustrates free edges of leaflets of the mitral valve in normal coaptation
  • Figure 2 illustrates the free edges in regurgitative coaptation
  • Figures 3A-3C illustrate grasping of the leaflets with an embodiment of a fixation assembly, inversion of the distal elements of the fixation assembly, and removal of the fixation assembly, respectively;
  • Figure 4 illustrates the embodiment of a fixation assembly of Figures 3A-3C in a desired orientation relative to the leaflets
  • Figure 5 illustrates an embodiment of a fixation assembly coupled to a shaft
  • Figures 6A-6B, 7A-7C, and 8 illustrate an embodiment of a fixation assembly in various possible positions during introduction and placement of the assembly within the body to perform a therapeutic procedure
  • FIGS 9A-9C illustrate various views of an embodiment of a tissue gripping device according to the present disclosure
  • FIGS 1 OA- IOC illustrate a prior art tissue fixation method
  • FIGS 11A-11C illustrate an embodiment of a tissue fixation method and device
  • Figures 12A-12C illustrate an embodiment of a method of manufacture of a tissue gripping device.
  • the mitral valve consists of a pair of leaflets (LF) having free edges (FE) which, in patients with normal heart structure and function, meet evenly to close along a line of coaption (C).
  • the leaflets (LF) attach to the surrounding heart structure along an annular region called the annulus (AN).
  • the free edges (FE) of the leaflets (LF) are secured to the lower portions of the left ventricle LV through chordae tendinae (or "chordae”).
  • chordae tendinae or “chordae”
  • FIG. 2 shows a mitral valve with a defect causing regurgitation through a gap (G).
  • FIG. 3 A illustrates a schematic of an interventional tool 10 or a tissue fixation system with a delivery shaft 12 and a fixation device 14. The tool 10 has approached the mitral valve MV from the atrial side and grasped the leaflets LF.
  • the fixation device 14 is releasably attached to the shaft 12 of the interventional tool 10 at the distal end of the shaft 12.
  • proximal means the direction toward the end of the device to be manipulated by the user outside the patient's body
  • distal means the direction toward the working end of the device that is positioned at the treatment site and away from the user.
  • proximal means the atrial side of the leaflets
  • distal means the ventricular side of the leaflets.
  • the fixation device 14 includes grippers 16 and distal elements 18 which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween.
  • the fixation device 14 is coupleable to the shaft 12 by a coupling mechanism 17.
  • Figure 3B illustrates that the distal elements 18 may be moved in the direction of arrows 40 to an inverted position.
  • the grippers 16 may be raised as shown in Figure 3C.
  • the device 14 In the inverted position, the device 14 may be repositioned and then be reverted to a grasping position against the leaflets as in Figure 3A. Or, the fixation device 14 may be withdrawn (indicated by arrow 42) from the leaflets as shown in Figure 3C.
  • Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues.
  • FIG 4 illustrates the fixation device 14 in a desired orientation in relation to the leaflets LF.
  • the mitral valve MV is viewed from the atrial side, so the grippers 16 are shown in solid line and the distal elements 18 are shown in dashed line.
  • the grippers 16 and distal elements 18 are positioned to be substantially perpendicular to the line of coaptation C.
  • fixation device 14 holds the leaflets LF in position between the grippers 16 and distal elements 18 surrounded by openings or orifices O which result from the diastolic pressure gradient, as shown in Figure 4.
  • the fixation device 14 is detached from the shaft 12 and left behind as an implant.
  • FIG. 5 illustrates an exemplary fixation device 14.
  • the fixation device 14 is shown coupled to a shaft 12 to form an interventional tool 10.
  • the fixation device 14 includes a coupling member 19, a gripper 16 having a pair of opposed arms, and a pair of opposed distal elements 18.
  • the distal elements 18 include elongate arms 53, each arm having a proximal end 52 rotatably connected to the coupling member 19 and a free end 54.
  • each free end 54 defines a curvature about two axes, axis 66 perpendicular to longitudinal axis of elongate arms 53, and axis 67 perpendicular to axis 66 or the longitudinal axis of elongate arms 53.
  • Elongate arms 53 have tissue engagement surfaces 50. Elongate arms 53 and tissue engagement surfaces 50 are configured to engage 4-10 mm of tissue, and preferably 6-8 mm, along the longitudinal axis of elongate arms 53. Elongate arms 53 further include a plurality of openings.
  • the arms of the gripper 16 are preferably resiliently biased toward the distal elements 18. When the fixation device 14 is in the open position, each arm of the gripper 16 is separated from the engagement surface 50 near the proximal end 52 of elongate arm 53 and slopes toward the engagement surface 50 near the free end 54 with the free end of the gripper 16 contacting engagement surface 50, as illustrated in Figure 5. Arms of gripper 16 can include a plurality of openings 63 and scalloped side edges 61 to increase their grip on tissue.
  • the arms of gripper 16 optionally include a frictional element or multiple frictional elements to assist in grasping the leaflets.
  • the frictional elements may include barbs 60 having tapering pointed tips extending toward tissue engagement surfaces 50.
  • Any suitable frictional elements may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these.
  • the gripper 16 may be covered with a fabric or other flexible material. Preferably, when fabrics or coverings are used in combination with barbs or other frictional features, such features will protrude through such fabric or other covering so as to contact any tissue engaged by gripper 16.
  • the fixation device 14 also includes an actuator or actuation mechanism 58.
  • the actuation mechanism 58 includes two link members or legs 68, each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 at a riveted joint 76 and a second end 72 which is rotatably joined with a stud 74.
  • the actuation mechanism 58 includes two legs 68 which are each movably coupled to a base 69. Or, each leg 68 may be individually attached to the stud 74 by a separate rivet or pin.
  • the stud 74 is joinable with an actuator rod which extends through the shaft 12 and is axially extendable and retractable to move the stud 74 and therefore the legs 68 which rotate the distal elements 18 between closed, open, and inverted positions. Immobilization of the stud 74 holds the legs 68 in place and therefore holds the distal elements 18 in a desired position.
  • the stud 74 may also be locked in place by a locking feature.
  • This actuator rod and stud assembly may be considered a first means for selectively moving the distal elements between a first position in which the distal elements are in a collapsed, low profile configuration for delivery of the device, a second position in which the distal elements are in an expanded configuration for positioning the device relative to the mitral valve, and a third position in which the distal elements are secured in position against a portion of the leaflets adjacent the mitral valve on the ventricular side.
  • Figures 6A-6B, 7A-7C, and 8 illustrate various possible positions of the fixation device 14 of Figure 5.
  • Figure 6A illustrates an interventional tool 10 delivered through a catheter 86.
  • the catheter 86 may take the form of a guide catheter or sheath.
  • the interventional tool 10 comprises a fixation device 14 coupled to a shaft 12 and the fixation device 14 is shown in the closed position.
  • Figure 6B illustrates a device similar to the device of Figure 6A in a larger view.
  • the opposed pair of distal elements 18 are positioned so that the tissue engagement surfaces 50 face each other.
  • Each distal element 18 comprises an elongate arm 53 having a cupped or concave shape so that together the elongate arms 53 surround the shaft 12. This provides a low profile for the fixation device 14.
  • FIGs 7A-7B illustrate the fixation device 14 in the open position.
  • the distal elements 18 are rotated so that the tissue engagement surfaces 50 face a first direction.
  • Such rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are directed slightly outwards.
  • the stud 74 may be advanced to any desired distance correlating to a desired separation of the distal elements 18.
  • tissue engagement surfaces 50 are disposed at an acute angle relative to shaft 12, and can be at an angle of between 15 and 270 degrees relative to each other, preferably at an angle of between 45 and 225 degrees or between 90 and 180 degrees relative to each other (e.g., between 45 and 210 degrees, between 60 and 180 degrees, between 75 and 165 degrees, between 90 and 150 degrees, between 1 15 and 135 degrees, or 120 degrees).
  • the free ends 54 of elongate arms 53 may have a span therebetween of 1-40 mm, or 5-30 mm, usually 10-20 mm or 12-18 mm, and preferably 14-16 mm.
  • the arms of gripper 16 are typically biased outwardly toward elongate arms 53 when in a relaxed configuration.
  • the arms of gripper 16 may be moved inwardly toward the shaft 12 and held against the shaft 12 with the aid of gripper lines 90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures.
  • the gripper lines 90 can extend through a shaft of a delivery catheter (not shown) and connect with the gripper 16.
  • the arms of the gripper 16 can be raised and/or lowered by manipulation of the gripper lines 90.
  • Figure 7C illustrates gripper 16 in a lowered position as a result of releasing tension and/or providing slack to gripper lines 90.
  • the gripper lines 90 may be considered a second means for selectively moving the gripper 16 between a first position in which the gripper arms are in a collapsed, low profile configuration for delivery of the device and a second position in which the gripper arms are in an expanded configuration for engaging a portion of the leaflets adjacent the mitral valve on the atrial side.
  • the fixation device 14 can engage the tissue which is to be approximated or treated.
  • the interventional tool 10 is advanced through the mitral valve from the left atrium to the left ventricle.
  • the distal elements 18 are then deployed by advancing actuator rod relative to shaft 12 to thereby reorient distal elements 18 to be perpendicular to the line of coaptation.
  • the entire assembly is then withdrawn proximally and positioned so that the tissue engagement surfaces 50 contact the ventricular surface of the valve leaflets, thereby engaging the left ventricle side surfaces of the leaflets.
  • the arms of the gripper 16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements.
  • the interventional tool 10 may be repeatedly manipulated to reposition the fixation device 14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while the device 14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved.
  • FIG. 8 illustrates the fixation device 14 in the inverted position.
  • the distal elements 18 are further rotated so that the tissue engagement surfaces 50 face outwardly and free ends 54 point distally, with each elongate arm 53 forming an obtuse angle relative to shaft 12.
  • the angle between elongate arms 53 when the device is inverted is preferably in the range of 180 to 360 degrees (e.g., 210 to 360 degrees, 240 to 360 degrees, 270 to 360 degrees, 300 to 360 degrees, or 330 to 360 degrees). Further advancement of the stud 74 further rotates the distal elements 18 around joints 76. This rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are returned toward their initial position, generally parallel to each other.
  • the stud 74 may be advanced to any desired distance correlating to a desired inversion of the distal elements 18.
  • the span between free ends 54 is no more than 40 mm, or no more than 30 mm or 20 mm, usually less than 16 mm, preferably 1-15 mm, 5-15 mm, or 10-15 mm, more preferably 12-14 mm.
  • Barbs 60 are preferably angled in the distal direction (away from the free ends of the grippers 16), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn.
  • the leaflets may then be captured between the gripper 16 and the distal elements 18.
  • the arms of the gripper 16 are lowered toward the tissue engagement surfaces 50 by releasing tension from gripper lines 90, thereby releasing the arms of the gripper 16 so that they are then free to move, in response to the internal spring bias force formed into gripper 16, from a constrained, collapsed position to an expanded, deployed position with the purpose of holding the leaflets between the gripper 16 and the distal elements 18. If regurgitation is not sufficiently reduced and/or if one or more of the leaflets are not properly engaged, the arms of the gripper 16 may be raised and the distal elements 18 adjusted or inverted to reposition the fixation device 14.
  • the distal elements 18 may be locked to hold the leaflets in this position or the fixation device 14 may be returned to or toward a closed position. This is achieved by retraction of the stud 74 proximally relative to coupling member 19 so that the legs 68 of the actuation mechanism 58 apply an upwards force to the distal elements 18, which, in turn, rotate the distal elements 18 so that the tissue engagement surfaces 50 again face one another.
  • the released grippers 16 which are biased outwardly toward distal elements 18 are concurrently urged inwardly by the distal elements 18.
  • the fixation device 14 may then be locked to hold the leaflets in this closed position.
  • the fixation device 14 may then be released from the shaft 12.
  • the fixation device 14 optionally includes a locking mechanism for locking the device 14 in a particular position, such as an open, closed, or inverted position, or any position therebetween.
  • the locking mechanism may include a release harness. Applying tension to the release harness may unlock the locking mechanism.
  • Lock lines can engage a release harnesses of the locking mechanism to lock and unlock the locking mechanism.
  • the lock lines can extend through a shaft of the delivery catheter. A handle attached to the proximal end of the shaft can be used to manipulate and decouple the fixation device 14.
  • fixation devices 14 may be found in PCT Publication No. WO 2004/103162 and U.S. Patent Application No. 14/216,787, the disclosures of both of which are incorporated by reference herein in their entirety.
  • tissue fixation devices of the present disclosure include a gripper formed from a shape-memory material.
  • the shape-memory material is configured to exhibit superelasticity when positioned in a physiological environment.
  • shape-memory materials can include shape-memory alloys and/or shape-memory polymers.
  • Shape-memory alloys included in embodiments of grippers of the present disclosure include copper-zinc-aluminum; copper-aluminum- nickel; nickel -titanium (NiTi) alloys known as nitinol; nickel -titanium platinum; and nickel -titanium palladium alloys, for example.
  • Shape-memory polymers included in embodiments of grippers of the present disclosure include biodegradable polymers, such as oligo(8-caprolactone)diol, oligo(p-dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, for example.
  • the gripper is formed from nitinol.
  • Such nitinol grippers can be configured with linear elastic properties, non-linear elastic properties, pseudo linear-elastic properties, or other elastic properties.
  • FIGS 9A-9C illustrate various views of an embodiment of a tissue gripper 1 16 formed from a shape-memory material.
  • the tissue gripper 1 16 is formed from a nickel titanium alloy with transformation temperature (e.g., an austenite finish temperature (Af)) of -5 to 37 degrees C, or from -5 to 30 degrees C, or from -5 to 27 degrees C, or from -5 to 25 degrees C, or from -5 to 20 degrees C, or from - 5 to 15 degrees C, or from -5 to 10 degrees C, or from 0 to 10 degrees C.
  • the gripper 1 16 can exhibit superelasticity at physiological temperatures, and can exhibit superelasticity during flexing, bending, and/or other maneuvering of the gripper 1 16.
  • the gripper 1 16 can exhibit superelasticity during positioning and deployment of the device at a treatment site and/or during continued movement after being deployed.
  • portions of the tissue gripping device may need to repeatedly pass through wide angles as multiple tissue grasping attempts are made and/or as the gripper 1 16 is moved into an acceptable position against the leaflets of the mitral valve or against other targeted tissue.
  • the tissue gripper 1 16 may need to provide some amount of flexibility and movement as the repaired and/or fixated tissue continues to flex and/or move. For example, one situation where additional flexibility and movement may be necessary is where mitral valve tissue continues to flex against the gripper 1 16 during cardiac cycles.
  • additional flexibility and movement may be necessary as the repaired and/or fixated tissue flexes, shifts, stretches, or otherwise moves relative to an original fixed position, such as with various musculoskeletal tissues during various forms of physiological movement (e.g., in response to muscle contraction and/or relaxation, movement at a joint, and movement between adjacent or nearby connective tissues).
  • Forming the tissue gripper 1 16 from a shape-memory material such as nitinol may avoid plastic deformation of the tissue gripper 1 16 during these movements.
  • the shape-memory material is configured to exhibit superelasticity at physiological temperatures, thereby enabling the tissue gripper 1 16 to stay entirely within the elastic deformation range throughout its life within the body.
  • the shape-memory material is configured to exhibit superelasticity throughout the range of temperatures expected to be encountered during pre-deployment, deployment, and implanted use within the body (e.g., 0 to 40 degrees C, 5 to 40 degrees C, 10 to 37 degrees C, 15 to 37 degrees C, 20 to 37 degrees C, and 22 to 37 degrees C).
  • the shape-memory material can be nitinol, and the nitinol can be configured to have a hysteresis curve that leaves the tissue gripper 1 16 within the elastic deformation range throughout its life and throughout the range of temperatures that are expected to be encountered during pre-deployment, deployment, and implanted use within the body, or during any other time where the tissue gripper 1 16 is flexed and/or deformed, such as during post manufacturing testing and/or positioning within a delivery system prior to delivery to target tissue.
  • Such embodiments can advantageously reduce and/or eliminate mechanical fatigue and degradation of the tissue gripper 1 16 from repeated and/or high levels of plastic deformation.
  • embodiments of the present disclosure can promote easier tissue grasping during deployment and/or positioning of the tissue gripper 1 16.
  • the tissue gripper 1 16 includes a proximal side 1 14, a distal side 134, a base section 104, and a pair of arms 106.
  • Each arm 106 may extend from the base section 104 to a free end 108.
  • some embodiments may have multiple arms arrayed about a base section (e.g., in a radial fashion), and/or may include a first plurality of arms disposed opposite a second plurality of arms.
  • the gripper 1 16 of the illustrated embodiment includes a pair of base bend features 1 10 disposed at the base section 104, and a pair of arm bend features 1 12 partitioning the arms 106 from the base section 104.
  • the base bend features 1 10 form angles of 90 degrees or just under 90 degrees (e.g., 15 to 165 degrees, 30 to 150 degrees, 45 to 135 degrees, 60 to 120 degrees, 70 to 1 10 degrees, or 80 to 100 degrees) as measured from the proximal side 1 14, and the arm bend features 1 12 form angles of 90 degrees or just under 90 degrees (e.g., 15 to 165 degrees, 30 to 150 degrees, 45 to 135 degrees, 60 to 120 degrees, 70 to 1 10 degrees, or 80 to 100 degrees) as measured from the distal side 134.
  • the base bend features 1 10 and arm bend features 1 12 are configured to give the tissue gripper 1 16 a bent configuration when the tissue gripper 1 16 is in a relaxed state, such that when the tissue gripper 1 16 is forced into a stressed state (e.g., by bending the tissue gripper 1 16 at one or more of the base and/or arm bend features 1 10 and 1 12), the tissue gripper 1 16 is resiliently biased toward the relaxed state.
  • an arm 106 may be positioned at the arm bend feature 1 12 in a manner that flexes the arm 106 in a proximal direction and an inward direction, thereby flexing the arm 106 toward a straighter configuration (e.g., increasing the angle of the arm bend feature 1 12 as measured from the distal side 134).
  • the tissue gripper 1 16 is in a stressed state such that the arm 106 of the tissue gripper 1 16 is resiliently biased toward a distal direction and an outward direction.
  • Other embodiments may omit one or more of the bend features, and other embodiments may include additional bend features. These and other embodiments may include bend features with differing bend angles when in a relaxed state.
  • some embodiments may include bend features that measure greater than 90 degrees or less than 90 degrees when in a relaxed state.
  • the tissue gripper prior to moving the tissue gripper 1 16 into position in the mitral valve or into position near other targeted tissue, the tissue gripper may be positioned in a pre-deployed configuration (see, e.g., Figures 6A-7B and related discussion) by positioning the arm bend features 1 12 toward a straighter configuration.
  • the tissue grippers of the present disclosure, such as illustrated tissue gripper 1 16 beneficially and advantageously can be moved into such a pre-deployed configuration without being plastically deformed at the arm bend features 1 12 and/or at other areas.
  • tissue gripper 1 16 may move from such a pre-deployed configuration back toward a relaxed configuration by allowing the arms 106 to move distally and outwardly.
  • the relaxed configuration after the tissue gripper 1 16 has been moved into a pre-deployed configuration and back, is the same or substantially the same as prior to the tissue gripper 1 16 being moved into the pre-deployed configuration and back (e.g., the angles at the arm bend features 1 12 in the relaxed configuration are unchanged, as opposed to being altered as a result of plastic deformation).
  • the tissue gripper 1 16 of the illustrated embodiment may include a plurality of holes 1 18 distributed along the length of each arm 106.
  • the holes 1 18 may be configured to provide a passage or tie point for one or more sutures, wires, nitinol wires, rods, cables, polymeric lines, other such structures, or combinations thereof.
  • these materials may be coupled to one or more arms 106 to operate as gripper lines (e.g., gripper lines 90 illustrated in Figures 7A-7C) for raising, lowering, and otherwise manipulating, positioning and/or deploying the tissue gripper 1 16.
  • suture loops or other structures may be positioned at one or more of the holes 1 18, and one or more gripper lines may be threaded, laced, or otherwise passed through the suture loops.
  • suture loops or other suture fastening structures may be wrapped and/or threaded a single time or multiple times before being tied, tightened, or otherwise set in place.
  • some suture lines may be wrapped repeatedly and/or may double back on themselves in order to strengthen or further secure the coupling of the suture loop to an arm 106.
  • Other embodiments may include a tissue gripper with more or less holes and/or with holes in other positions of the tissue gripper. For example, some embodiments may omit holes completely, and some embodiments may include only one hole and/or only one hole per arm. Other embodiments may include holes of different shapes and/or sizes, such as holes formed as slots, slits, or other shapes. In embodiments where more than one hole is included, the holes may be uniform in size, shape, and distribution or may be non-uniform in one or more of size, shape, and distribution.
  • Each arm 106 of the illustrated embodiment includes a furcated section 120.
  • the furcated section 120 may extend from the base section 104 to a position farther along the arm 106 toward the free end 108 of the arm 106, as illustrated.
  • a furcated section may be positioned at other locations along an arm and/or base section.
  • Other embodiments may include one or more furcated sections extending completely to the free end of an arm, thereby forming a bifurcated or fork-shaped arm. Other embodiments omit any furcated sections.
  • the furcated sections 120 of the illustrated embodiment coincide with the arm bend features 1 12.
  • the furcated sections 120 may be configured (e.g., in size, shape, spacing, position, etc.) so as to provide desired resiliency, fatigue resistance, and/or flexibility at the coinciding arm bend features 1 12.
  • the tissue gripper 1 16 includes a plurality of frictional elements 128 configured to engage with tissue at a treatment site and resist movement of tissue away from the tissue gripping member after the frictional elements 128 have engaged with the tissue.
  • the frictional elements 128 are formed as angled barbs extending distally and inwardly from a side edge 130 of the arms 106 of the gripper 1 16. In this manner, tissue that is engaged with the frictional elements 128 of a tissue gripper 1 16 is prevented from moving proximally and outwardly relative to the tissue gripper 1 16.
  • the frictional elements 128 of the illustrated tissue gripper 1 16 protrude from a side edge 130 of each of the arms 106, thereby forming a plurality of slotted recesses 132 disposed along side edges 130 of each arm 106 at sections adjacent to the frictional elements 128.
  • Other embodiments may include frictional elements of varying size, number, and/or shape.
  • the frictional elements may be formed as posts, tines, prongs, bands, grooves, channels, bumps, pads, or a combination of these or any other feature suitable for increasing friction and/or gripping of contacted tissue.
  • Embodiments of the devices, systems, and methods of the present disclosure can provide particular advantages and benefits in relation to a tissue gripping and/or tissue fixation procedure.
  • at least one embodiment of the devices, systems, and methods of the present disclosure can include moving and/or flexing a tissue gripper from a pre-deployed configuration toward a deployed configuration at a wider angle (e.g., angle in which the arms of the gripping device are separated) than that disclosed by the prior art, providing advantages such as better grasping ability, less tissue trauma, better grasping of separate portions of tissue simultaneously (e.g., opposing leaflets of the mitral valve), reduced slip-out of tissue during additional device movements or procedural steps (e.g., during a closing step), reduced grasping force required in order to grip the targeted tissue, or combinations thereof.
  • tissue grippers of the present disclosure may be moved into a pre-deployed configuration without resulting plastic deformation affecting the range of grasping angles of the device.
  • At least one embodiment of the present disclosure can include increased resistance to mechanical fatigue than that disclosed by the prior art.
  • at least some of the tissue gripping devices of the present disclosure can be formed of a shape-memory material that provides resistance to progressive weakening of the device as a result of repeatedly applied and/or cyclic loads.
  • at least some of the tissue gripping devices of the present disclosure have enhanced resistance to the formation of microscopic cracks and other stress concentrators (e.g., at grain boundaries or other discontinuity locations of the material).
  • FIGs lOA-lOC illustrate a prior art gripping system 200 in use in a tissue gripping application.
  • Figure 10A shows a tissue gripper 290 made from a plastically deformable material positioned in a pre-deployed configuration.
  • a pair of distal elements 280 is illustrated in an open position at 120 degrees, as measured from a proximal side, the pair of distal elements being positioned near target tissue 270 on the distal side of target tissue.
  • the arms of the tissue gripper 290 move slightly in a proximal and outward direction toward the target tissue 270.
  • the tissue gripper 290 is only able to reach a deployment angle, as measured by the separation of the opposing arms of the tissue gripper 290 on the proximal side, of 85 degrees. As illustrated in Figure 10B, this may result in incomplete or missed grasping of the target tissue 270, as the arms of the tissue gripper 290 are unable to flex or extend outwardly and proximally far enough to fully engage with the target tissue 270.
  • gripping of the target tissue 270 requires at least an additional step of closing the distal elements 280 to 60 degrees in order to grip the target tissue 270 between the distal elements 280 and the arms of the tissue gripper 290 by moving the distal elements 280 proximally and inwardly toward the tissue gripper 290.
  • the target tissue 270 may move or slip away from the gripping system 200.
  • the position of the target tissue 270 or portions of the target tissue 270 may shift relative to the tissue gripper 290 and/or the distal elements 280, requiring repositioning of the gripping system 200 and/or its components.
  • FIGS 1 1A-1 1C illustrate an embodiment of a tissue gripping system 300 of the present disclosure in a tissue gripping application.
  • a pair of distal elements 318 are coupled to a body 336 (e.g., an actuator rod) and are associated with a tissue gripper 316.
  • the tissue gripping system 300 may be positioned at or near target tissue 370, where the tissue gripper 316 can be positioned in a pre-deployed configuration with the arms of the tissue gripper 316 extending proximally from the base of the tissue gripper 316.
  • the distal elements 318 may be moved to a distal side of the target tissue before, during, or after being positioned in an open configuration with an opening angle 340 of 120 degrees (e.g., 60 to 180 degrees, 75 to 165 degrees, 90 to 150 degrees, 105 to 135 degrees, 100 to 140 degrees, or 1 10 to 130 degrees).
  • the opening angle 340 may be more or less than 120 degrees (e.g., 60 to 90 degrees, or 90 to 120 degrees, or 120 to 150 degrees, or 150 to 180 degrees), though in preferred embodiments, the opening angle 340 is at least 120 degrees or more (e.g., 120 to 180 degrees). In some embodiments, the opening angle 340 can be more than 180 degrees (e.g., 190 degrees or 200 degrees or more).
  • the tissue gripper 316 can be moved and/or dropped from the pre-deployed configuration, where the arms of the tissue gripper 316 are positioned in a stressed state, toward a deployed configuration, where the arms flex and/or move toward a relaxed state.
  • the tissue gripper 316 may be moved, dropped, or otherwise actuated using, for example, one or more gripper lines (such as those illustrated in Figures 7A-7C).
  • the tissue gripper 316 moves outwardly and distally to fully engage with the target tissue 370, and to fully engage the target tissue 370 against the proximal surface of the distal elements 318 by closing to an actuation angle 342 (as measured from the proximal side) that is substantially similar to the opening angle 340 of the distal elements 318.
  • the actuation angle 342 may equal the opening angle 340 or may be slightly smaller than the opening angle 340 (e.g., by 1 to 30 degrees, or 1 to 20 degrees, or 1 to 10 degrees, or 1 to 5 degrees or less) as a result of target tissue 370 being gripped between the distal elements 318 and the arms of the tissue gripper 316.
  • the full length of the arms of the tissue gripper 316 may be engaged against the target tissue 370 upon actuation of the tissue gripper 316 towards the deployed configuration.
  • the actuation angle 342 is the same as or is substantially similar to the opening angle 340, any separation between the proximal surfaces of the distal elements 318 and the arms of the tissue gripper 316 is due to an amount of target tissue 370 caught and/or engaged between the arms of the tissue gripper 316 and a proximal surface of a distal element 318.
  • the tissue gripper 316 can be configured to provide an actuation angle 342 that is 90 to 180 degrees.
  • the actuation angle is 120 degrees (e.g., 60 to 180 degrees, 75 to 165 degrees, 90 to 150 degrees, 105 to 135 degrees, 100 to 140 degrees, or 1 10 to 130 degrees).
  • the actuation angle 342 may be more or less than 120 degrees (e.g., 60 to 90 degrees, or 90 to 120 degrees, or 120 to 150 degrees, or 150 to 180 degrees).
  • the tissue gripper 316 is configured such that the arms of the tissue gripper 316 resiliently flex against target tissue 370 and/or distal elements 318 after moving from a pre-deployed configuration toward a deployed configuration.
  • the tissue gripper 316 can be configured such that, when positioned in a relaxed configuration, the arms of the tissue gripper 316 are open at an angle that is greater than a selected opening angle 340 of the distal elements 318.
  • the arms of the tissue gripper 316 while positioned in a relaxed configuration, can be angled apart, as measured from a proximal side, at 180 degrees or slightly more than 180 degrees (e.g., 190 to 200 degrees).
  • the opening angle 340 of the distal elements 318 can be less than the angle between the arms of the tissue gripper 316 (e.g., 60 to 180 degrees, or 90 to 150 degrees, or 120 degrees).
  • the actuation angle 344 of the tissue gripper 316 will expand to reach 120 degrees or beyond 120 degrees after moving toward a deployed configuration, but the arms of the tissue gripper 316 will not have moved to the full extent of the relaxed configuration.
  • the arms of the tissue gripper 316 in such embodiments, will continue to resiliently flex against target tissue 370 and/or distal elements 318 even after expanding the full range of the actuation angle 344.
  • the arms of the tissue gripper 316 when the tissue gripper 316 is moved from the pre-deployed configuration toward the deployed configuration, the arms of the tissue gripper 316 abut against the target tissue 370 and/or the distal elements 318 before reaching the full distal and outward extension of the relaxed configuration. In this manner, the arms of the tissue gripper 316 can resiliently flex against the target tissue 370 and/or distal elements 318 even after the tissue gripper 316 has moved the full or substantially full extent of the actuation angle 342.
  • the tissue gripper 316, opening angle 340, and actuation angle 342 are configured such that when the tissue gripper 316 moves toward a deployed configuration and engages with target tissue 370, the tissue gripper 316 exerts a force of from 0.06 to 0.10 pounds against the target tissue 370. In other embodiments, the tissue gripper can exert a force of from 0.06 to 0.12 pounds or from 0.12 to 0.17 pounds, for example.
  • Figure 1 1C illustrates that, in some embodiments, following movement of the tissue gripper 316 toward a deployed configuration, the distal elements 318 may be closed or partially closed in order to move or position the target tissue 370 and/or the components of the tissue gripping system 300 to a desired position and/or to assess the grasped tissue prior to further closing and release of the tissue gripping system 300.
  • the distal elements 318 can be actuated toward a closing angle 344 in order to move the distal elements 318 and the arms of the tissue gripper 316, as well as any target tissue 370 grasped therebetween, into a closed position.
  • the closing angle 344 will be 60 degrees, or will range from 0 to 90 degrees (e.g., 0 to 30 degrees or 30 to 60 degrees or 60 degrees to 90 degrees). In other embodiments, closing or partially closing the distal elements is omitted.
  • the tissue gripping system 300 or components thereof may be left in place or may be considered as properly positioned after moving the tissue gripper 316 through the actuation angle 342, without additional closing of the tissue gripping system 300.
  • a closing angle 344 of 60 degrees or less may be useful in assessing the sufficiency of a tissue grasping attempt in a mitral valve regurgitation procedure
  • a closing angle 344 that is greater than 60 degrees may be useful in a functional mitral valve regurgitation procedure and/or in assessing the sufficiency of a tissue grasping attempt in a functional mitral valve regurgitation procedure.
  • Embodiments of tissue gripping devices of the present disclosure may be manufactured by forming a tissue gripper from a shape-memory material (such as nitinol), as illustrated in Figures 12A-12C. Forming the tissue gripper may be accomplished by cutting a pattern shape from a shape-memory stock material 450.
  • the stock material 450 can be strip stock, sheet stock, band stock, or other forms of stock material.
  • the stock material 450 may be subjected to a subtractive manufacturing processes in order to prepare the stock material 450 with a suitable size and shape prior to further manufacturing. For example, grinding of one or more surfaces of the stock material 450 may be carried out in order to achieve a desired dimension and/or a desired uniformity along a given direction (e.g., grinding of a top and/or bottom surface to achieve a desired thickness).
  • various structural features may be formed in the stock material 450. This may be accomplished using any suitable subtractive manufacturing process such as drilling, lathing, die stamping, cutting, or the like.
  • features are formed using a laser cut or wire-EDM process.
  • a plurality of slotted recesses 432 are formed in the stock material 450 using a laser cutting process.
  • other features may be added using an additive manufacturing process.
  • the tissue gripper may be further processed through a shape setting process.
  • one or more bend features may be formed in the tissue gripper by subjecting the tissue gripper to a heated shape setting process in order to set the shape of the bend(s) in the shape-memory material of the tissue gripper.
  • the austenite phase i.e., parent phase or memory phase
  • this requires positioning and/or forming the desired shape while heating the gripper to a temperature high enough to fix the shape as part of the austenite phase (e.g., 300 to 700 degrees C).
  • one or more of the base bend features 410, arm bend features 412, and frictional elements 428 may be formed in a heat shape setting process. In some embodiments, these features may be set at the same time in one heat shape setting process. In other embodiments, multiple heat shape setting steps may be used, such as a first heat shape setting process to form the base bend features 410, followed by a second heat shape setting process to form the arm bend features 412, followed by a third heat shape setting process to form the frictional elements 428 (e.g., by bending portions of the side edge 430 adjacent to slotted recesses 432 in order to form distally and inwardly projecting barbs). In yet other embodiments, other combinations of features may be set in any suitable number of heat shape setting steps in order to form the tissue gripper 416.
  • the arm bend features 412 are formed in a heat shape setting process such that the angle between the opposing arms 406, as measured from a proximal side 414 while the tissue gripper 416 is in a relaxed configuration, is 180 degrees or is slightly more than 180 degrees (e.g., 185 to 200 degrees).
  • the tissue gripper 416 formed as a result of the manufacturing process can be moved into a pre-deployed configuration by bending the arm bend features 412 to move the arms 406 proximally and inwardly. In such a stressed state, the arms 406 will resiliently flex toward the relaxed configuration for the full range of angles up to the relaxed configuration of 180 degrees or slightly more than 180 degrees.
  • the tissue gripper 416 is formed of a shape-memory material such as nitinol, and is configured to exhibit superelasticity at operational and physiological temperatures, the arms 406 of the tissue gripper 416 are able to move from the relaxed configuration to the pre-deployed configuration without being plastically deformed, and are thus able to fully flex toward the original relaxed configuration and return to the original relaxed configuration.
  • one or more additional manufacturing processes may be performed to prepare a tissue gripper 416.
  • mechanical deburring e.g., small particulate blasting
  • electropolishing e.g., to clean edges and passivate the tissue gripper 416
  • additional processes may be done prior to, intermittent with, or after one or more heat shape setting processes.
  • the tissue gripper 416 may be cleaned in an ultrasonic bath (e.g., with DI water and/or isopropyl alcohol, in combination or in succession).
  • Kit embodiments can include any of the components described herein, as well as additional components useful for carrying out a tissue gripping procedure.
  • Kits may include, for example, a tissue gripping system as described herein, including a tissue gripper, distal elements, actuator rod, and actuator lines (such as lock lines and gripper lines), a delivery catheter, and a handle, the tissue gripping system being couplable to the delivery catheter at a distal end of the delivery catheter and the handle being couplable to the delivery catheter at a proximal end of the delivery catheter.
  • the actuator lines and/or actuator rod can pass from the tissue gripping system through lumens of the delivery catheter and to the handle, and the handle can include one or more controls for actuating or otherwise controlling the components of the tissue gripping system.
  • kits may include additional interventional tools, such as a guidewire, dilator, needle, and/or instructions for use. Instructions for use can set forth any of the methods described herein.
  • the components of the kit can optionally be packaged together in a pouch or other packaging, and in preferred embodiments will be sterilized.
  • separate pouches, bags, trays, or other packaging may be provided within a larger package such that smaller packages can be opened separately to separately maintain the components in a sterile manner.
  • the terms “approximately,” “about,” and “substantially” as used herein represent an amount or condition close to the stated amount or condition that still performs a desired function or achieves a desired result.
  • the terms “approximately,” “about,” and “substantially” may refer to an amount that is within less than 10% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of a stated amount.
  • elements described in relation to any embodiment depicted and/or described herein may be combinable with elements described in relation to any other embodiment depicted and/or described herein.
  • any element described in relation to an embodiment depicted in Figures 9A-9C may be combinable an embodiment described in Figures 11 A-l 1C.

Abstract

A tissue gripping device is formed from a shape-memory material, and has a base section, a first arm, and a second arm disposed opposite the first arm, each arm having a first end coupled to the base section and a free end extending from the base section. The arms of the tissue gripping device are configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration. The tissue gripping device is usable in a method for gripping tissue. The method includes positioning the tissue gripping device near target tissue and moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration in order to grip the target tissue.

Description

TISSUE GRASPING DEVICES AND RELATED METHODS
CROSS-REFERENCE TO RELATED APPLICATIONS 1] This application claims the benefit of and priority to U.S. Application No.
14/805,275, filed on July 21, 2015; which is herein incorporated by reference in its entirety.
BACKGROUND
[0001] The present disclosure relates generally to medical methods, devices, and systems. In particular, the present disclosure relates to methods, devices, and systems for the endovascular, percutaneous, or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present disclosure relates to repair of valves of the heart and venous valves, and devices and methods for removing or disabling mitral valve repair components through minimally invasive procedures.
[0002] Surgical repair of bodily tissues often involves tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation often includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets. Such fixation of the leaflets can be used to treat regurgitation which most commonly occurs in the mitral valve.
[0003] Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve. Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
[0004] Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles themselves, or the left ventricular wall may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened, limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle during systole. [0005] The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. One technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the "bow-tie" or "edge-to-edge" technique. While all these techniques can be effective, they usually rely on open heart surgery where the patient' s chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.
[0006] In some patients, a fixation device can be installed into the heart using minimally invasive techniques. The fixation device can hold the adjacent segments of the opposed valve leaflets together to reduce mitral valve regurgitation. One such device used to clip the anterior and posterior leaflets of the mitral valve together is the MitraClip® fixation device, sold by Abbott Vascular, Santa Clara, California, USA.
[0007] These fixation devices often include clips designed to grip and hold against tissue as the clip arms are moved and positioned against the tissue at the treatment site and then closed against the tissue. Such clips are designed to continue gripping the tissue as the fixation device is closed into a final position. In order to achieve this effect, such these clips are sometimes equipped with barbs or hooks to grip the tissue as the clip is flexed into position against the tissue.
[0008] However, some tissue fixation treatments require a fixation device to move through a wide range of grasping angles in order to be properly positioned relative to the target tissue and then to grasp the tissue and bring it to a closed position. This moving and plastically deforming components of the fixation device during pre-deployment, positioning, and closure of the device can lead to the weakening and pre-mature degradation of the fixation device. Additionally, some tissue fixation treatments require that the fixation device maintain a degree of flexibility and mobility to allow a range of physiological movement even after the device has been properly placed and the target tissue has been properly fixed into the desired position, This can increase the risk of pre- mature failure of the device as continued plastic deformation of the flexing components (e.g., from the continuous opening and closing of valve leaflets) leads to unfavorable degradation of the device.
[0009] For at least these reasons, there is an ongoing need to provide alternative and/or additional methods, devices, and systems for tissue fixation that may provide beneficial elasticity and durability of the flexing components without unduly increasing the associated manufacturing costs of the flexing components. There is also a need to provide such methods, devices, and systems in a manner that does not limit the tissue gripping ability of the tissue fixation device. At least some of the embodiments disclosed below are directed toward these objectives.
BRIEF SUMMARY
[0010] At least one embodiment of the present disclosure relates to a tissue gripping device, the tissue gripping device including: a base section; and a first arm having a first end coupled to the base section, and a free end extending from the base section; wherein the base section and the arm are formed of a shape-memory material configured to exhibit superelasticity in a physiological environment.
[0011] At least one embodiment of the present disclosure relates to a tissue fixation system configured for intravascular delivery and for use in joining mitral valve tissue during treatment of the mitral valve, the system including: a body; a first and second distal element, each including a first end pivotally coupled to the body and extending to a free second end and a tissue engagement surface between the first and second end, the tissue engagement surface being configured to approximate and engage a portion of leaflets of the mitral valve; and a tissue gripping device formed of a shape-memory material, the tissue gripping device including a base section and a first arm and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the first and second arms being disposed opposite one another and each arm being configured to cooperate with one of the first or second distal elements to form a space for receiving and holding a portion of mitral valve tissue therebetween.
[0012] At least one embodiment of the present disclosure relates to a method of gripping tissue, the method including: positioning a tissue gripping device near a target tissue, the tissue gripping device being formed from a shape-memory material and including a base section and a first arm and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the first and second arms being disposed opposite one another; and moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration, the first and second arms being configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration. [0013] At least one embodiment of the present disclosure relates to a method of manufacturing a tissue gripping device, the method including: cutting one or more structural features into a strip or sheet stock material of a shape-memory alloy, the one or more structural features including a plurality of slotted recesses disposed at one or more side edges of the stock material; and heat shape setting one or more bend features into the stock material.
[0014] At least one embodiment of the present disclosure relates to a tissue fixation kit, the kit including: a tissue gripping system that includes an actuator rod, an actuator line, a first and second distal element, each including a first end pivotally coupled to the actuator rod and extending to a free second end and a tissue engagement surface between the first and second end, the first and second distal elements being positionable by the actuator rod, a tissue gripping device formed of a shape-memory material, the tissue gripping device including a base section, a first arm, and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the tissue gripping device being positionable by the actuator line; a handle; and a delivery catheter having a proximal end and a distal end, the tissue gripping system being couplable to the distal end of the delivery catheter and the handle being couplable to the proximal end of the delivery catheter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] To further clarify the above and other advantages and features of the present disclosure, a more particular description of the disclosure will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the disclosure and are therefore not to be considered limiting of its scope. Embodiments of the disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
[0016] Figure 1 illustrates free edges of leaflets of the mitral valve in normal coaptation, and Figure 2 illustrates the free edges in regurgitative coaptation;
[0017] Figures 3A-3C illustrate grasping of the leaflets with an embodiment of a fixation assembly, inversion of the distal elements of the fixation assembly, and removal of the fixation assembly, respectively;
[0018] Figure 4 illustrates the embodiment of a fixation assembly of Figures 3A-3C in a desired orientation relative to the leaflets;
[0019] Figure 5 illustrates an embodiment of a fixation assembly coupled to a shaft; [0020] Figures 6A-6B, 7A-7C, and 8 illustrate an embodiment of a fixation assembly in various possible positions during introduction and placement of the assembly within the body to perform a therapeutic procedure;
[0021] Figures 9A-9C illustrate various views of an embodiment of a tissue gripping device according to the present disclosure;
[0022] Figures 1 OA- IOC illustrate a prior art tissue fixation method;
[0023] Figures 11A-11C illustrate an embodiment of a tissue fixation method and device; and
[0024] Figures 12A-12C illustrate an embodiment of a method of manufacture of a tissue gripping device.
DETAILED DESCRIPTION
I. Cardiac physiology
[0025] As shown in Figure 1, the mitral valve (MV) consists of a pair of leaflets (LF) having free edges (FE) which, in patients with normal heart structure and function, meet evenly to close along a line of coaption (C). The leaflets (LF) attach to the surrounding heart structure along an annular region called the annulus (AN). The free edges (FE) of the leaflets (LF) are secured to the lower portions of the left ventricle LV through chordae tendinae (or "chordae"). As the left ventricle of a heart contracts (which is called "systole"), blood flow from the left ventricle to the left atrium through the mitral valve (MV) (called "mitral regurgitation") is usually prevented by the mitral valve. Regurgitation occurs when the valve leaflets do not close properly and allow leakage from the left ventricle into the left atrium. A number of heart structural defects can cause mitral regurgitation. Figure 2 shows a mitral valve with a defect causing regurgitation through a gap (G).
II. Exemplary Mitral Valve Fixation System
[0026] Several methods for repairing or replacing a defective mitral valve exist. Some defects in the mitral valve can be treated through intravascular procedures, where interventional tools and devices are introduced and removed from the heart through the blood vessels. One method of repairing certain mitral valve defects includes intravascular delivery of a fixation device to hold portions of the mitral valve tissues in a certain position. One or more interventional catheters may be used to deliver a fixation device to the mitral valve and install it there as an implant to treat mitral regurgitation. [0027] Figure 3 A illustrates a schematic of an interventional tool 10 or a tissue fixation system with a delivery shaft 12 and a fixation device 14. The tool 10 has approached the mitral valve MV from the atrial side and grasped the leaflets LF. The fixation device 14 is releasably attached to the shaft 12 of the interventional tool 10 at the distal end of the shaft 12. In this application, when describing devices, "proximal" means the direction toward the end of the device to be manipulated by the user outside the patient's body, and "distal" means the direction toward the working end of the device that is positioned at the treatment site and away from the user. When describing the mitral valve, proximal means the atrial side of the leaflets and distal means the ventricular side of the leaflets. The fixation device 14 includes grippers 16 and distal elements 18 which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween. The fixation device 14 is coupleable to the shaft 12 by a coupling mechanism 17.
[0028] Figure 3B illustrates that the distal elements 18 may be moved in the direction of arrows 40 to an inverted position. The grippers 16 may be raised as shown in Figure 3C. In the inverted position, the device 14 may be repositioned and then be reverted to a grasping position against the leaflets as in Figure 3A. Or, the fixation device 14 may be withdrawn (indicated by arrow 42) from the leaflets as shown in Figure 3C. Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues.
[0029] Figure 4 illustrates the fixation device 14 in a desired orientation in relation to the leaflets LF. The mitral valve MV is viewed from the atrial side, so the grippers 16 are shown in solid line and the distal elements 18 are shown in dashed line. The grippers 16 and distal elements 18 are positioned to be substantially perpendicular to the line of coaptation C. During diastole (when blood is flowing from the left atrium to the left ventricle), fixation device 14 holds the leaflets LF in position between the grippers 16 and distal elements 18 surrounded by openings or orifices O which result from the diastolic pressure gradient, as shown in Figure 4. Once the leaflets are coapted in the desired arrangement, the fixation device 14 is detached from the shaft 12 and left behind as an implant.
[0030] Figure 5 illustrates an exemplary fixation device 14. The fixation device 14 is shown coupled to a shaft 12 to form an interventional tool 10. The fixation device 14 includes a coupling member 19, a gripper 16 having a pair of opposed arms, and a pair of opposed distal elements 18. The distal elements 18 include elongate arms 53, each arm having a proximal end 52 rotatably connected to the coupling member 19 and a free end 54. Preferably, each free end 54 defines a curvature about two axes, axis 66 perpendicular to longitudinal axis of elongate arms 53, and axis 67 perpendicular to axis 66 or the longitudinal axis of elongate arms 53. Elongate arms 53 have tissue engagement surfaces 50. Elongate arms 53 and tissue engagement surfaces 50 are configured to engage 4-10 mm of tissue, and preferably 6-8 mm, along the longitudinal axis of elongate arms 53. Elongate arms 53 further include a plurality of openings.
[0031] The arms of the gripper 16 are preferably resiliently biased toward the distal elements 18. When the fixation device 14 is in the open position, each arm of the gripper 16 is separated from the engagement surface 50 near the proximal end 52 of elongate arm 53 and slopes toward the engagement surface 50 near the free end 54 with the free end of the gripper 16 contacting engagement surface 50, as illustrated in Figure 5. Arms of gripper 16 can include a plurality of openings 63 and scalloped side edges 61 to increase their grip on tissue. The arms of gripper 16 optionally include a frictional element or multiple frictional elements to assist in grasping the leaflets. The frictional elements may include barbs 60 having tapering pointed tips extending toward tissue engagement surfaces 50. Any suitable frictional elements may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these. The gripper 16 may be covered with a fabric or other flexible material. Preferably, when fabrics or coverings are used in combination with barbs or other frictional features, such features will protrude through such fabric or other covering so as to contact any tissue engaged by gripper 16.
[0032] The fixation device 14 also includes an actuator or actuation mechanism 58. The actuation mechanism 58 includes two link members or legs 68, each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 at a riveted joint 76 and a second end 72 which is rotatably joined with a stud 74. The actuation mechanism 58 includes two legs 68 which are each movably coupled to a base 69. Or, each leg 68 may be individually attached to the stud 74 by a separate rivet or pin. The stud 74 is joinable with an actuator rod which extends through the shaft 12 and is axially extendable and retractable to move the stud 74 and therefore the legs 68 which rotate the distal elements 18 between closed, open, and inverted positions. Immobilization of the stud 74 holds the legs 68 in place and therefore holds the distal elements 18 in a desired position. The stud 74 may also be locked in place by a locking feature. This actuator rod and stud assembly may be considered a first means for selectively moving the distal elements between a first position in which the distal elements are in a collapsed, low profile configuration for delivery of the device, a second position in which the distal elements are in an expanded configuration for positioning the device relative to the mitral valve, and a third position in which the distal elements are secured in position against a portion of the leaflets adjacent the mitral valve on the ventricular side.
[0033] Figures 6A-6B, 7A-7C, and 8 illustrate various possible positions of the fixation device 14 of Figure 5. Figure 6A illustrates an interventional tool 10 delivered through a catheter 86. The catheter 86 may take the form of a guide catheter or sheath. The interventional tool 10 comprises a fixation device 14 coupled to a shaft 12 and the fixation device 14 is shown in the closed position.
[0034] Figure 6B illustrates a device similar to the device of Figure 6A in a larger view. In the closed position, the opposed pair of distal elements 18 are positioned so that the tissue engagement surfaces 50 face each other. Each distal element 18 comprises an elongate arm 53 having a cupped or concave shape so that together the elongate arms 53 surround the shaft 12. This provides a low profile for the fixation device 14.
[0035] Figures 7A-7B illustrate the fixation device 14 in the open position. In the open position, the distal elements 18 are rotated so that the tissue engagement surfaces 50 face a first direction. Distal advancement of the actuator rod relative to shaft 12, and thus distal advancement of the stud 74 relative to coupling member 19, applies force to the distal elements 18 which begin to rotate around joints 76. Such rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are directed slightly outwards. The stud 74 may be advanced to any desired distance correlating to a desired separation of the distal elements 18. In the open position, tissue engagement surfaces 50 are disposed at an acute angle relative to shaft 12, and can be at an angle of between 15 and 270 degrees relative to each other, preferably at an angle of between 45 and 225 degrees or between 90 and 180 degrees relative to each other (e.g., between 45 and 210 degrees, between 60 and 180 degrees, between 75 and 165 degrees, between 90 and 150 degrees, between 1 15 and 135 degrees, or 120 degrees). In the open position, the free ends 54 of elongate arms 53 may have a span therebetween of 1-40 mm, or 5-30 mm, usually 10-20 mm or 12-18 mm, and preferably 14-16 mm.
[0036] The arms of gripper 16 are typically biased outwardly toward elongate arms 53 when in a relaxed configuration. The arms of gripper 16 may be moved inwardly toward the shaft 12 and held against the shaft 12 with the aid of gripper lines 90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures. The gripper lines 90 can extend through a shaft of a delivery catheter (not shown) and connect with the gripper 16. The arms of the gripper 16 can be raised and/or lowered by manipulation of the gripper lines 90. For example, Figure 7C illustrates gripper 16 in a lowered position as a result of releasing tension and/or providing slack to gripper lines 90. Once the device is properly positioned and deployed, the gripper lines can be removed by withdrawing them through the catheter and out the proximal end of the tool 10. The gripper lines 90 may be considered a second means for selectively moving the gripper 16 between a first position in which the gripper arms are in a collapsed, low profile configuration for delivery of the device and a second position in which the gripper arms are in an expanded configuration for engaging a portion of the leaflets adjacent the mitral valve on the atrial side.
[0037] In the open position, the fixation device 14 can engage the tissue which is to be approximated or treated. The interventional tool 10 is advanced through the mitral valve from the left atrium to the left ventricle. The distal elements 18 are then deployed by advancing actuator rod relative to shaft 12 to thereby reorient distal elements 18 to be perpendicular to the line of coaptation. The entire assembly is then withdrawn proximally and positioned so that the tissue engagement surfaces 50 contact the ventricular surface of the valve leaflets, thereby engaging the left ventricle side surfaces of the leaflets. The arms of the gripper 16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements. The interventional tool 10 may be repeatedly manipulated to reposition the fixation device 14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while the device 14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved.
[0038] It may also be desired to invert distal elements 18 of the fixation device 14 to aid in repositioning or removal of the fixation device 14. Figure 8 illustrates the fixation device 14 in the inverted position. By further advancement of actuator rod relative to shaft 12, and thus stud 74 relative to coupling member 19, the distal elements 18 are further rotated so that the tissue engagement surfaces 50 face outwardly and free ends 54 point distally, with each elongate arm 53 forming an obtuse angle relative to shaft 12.
[0039] The angle between elongate arms 53 when the device is inverted is preferably in the range of 180 to 360 degrees (e.g., 210 to 360 degrees, 240 to 360 degrees, 270 to 360 degrees, 300 to 360 degrees, or 330 to 360 degrees). Further advancement of the stud 74 further rotates the distal elements 18 around joints 76. This rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are returned toward their initial position, generally parallel to each other. The stud 74 may be advanced to any desired distance correlating to a desired inversion of the distal elements 18. Preferably, in the fully inverted position, the span between free ends 54 is no more than 40 mm, or no more than 30 mm or 20 mm, usually less than 16 mm, preferably 1-15 mm, 5-15 mm, or 10-15 mm, more preferably 12-14 mm. Barbs 60 are preferably angled in the distal direction (away from the free ends of the grippers 16), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn.
[0040] Once the distal elements 18 of the fixation device 14 have been positioned in a desired location against the ventricle side surfaces of the valve leaflets, the leaflets may then be captured between the gripper 16 and the distal elements 18. The arms of the gripper 16 are lowered toward the tissue engagement surfaces 50 by releasing tension from gripper lines 90, thereby releasing the arms of the gripper 16 so that they are then free to move, in response to the internal spring bias force formed into gripper 16, from a constrained, collapsed position to an expanded, deployed position with the purpose of holding the leaflets between the gripper 16 and the distal elements 18. If regurgitation is not sufficiently reduced and/or if one or more of the leaflets are not properly engaged, the arms of the gripper 16 may be raised and the distal elements 18 adjusted or inverted to reposition the fixation device 14.
[0041] After the leaflets have been captured between the gripper 16 and distal elements 18 in a desired arrangement, the distal elements 18 may be locked to hold the leaflets in this position or the fixation device 14 may be returned to or toward a closed position. This is achieved by retraction of the stud 74 proximally relative to coupling member 19 so that the legs 68 of the actuation mechanism 58 apply an upwards force to the distal elements 18, which, in turn, rotate the distal elements 18 so that the tissue engagement surfaces 50 again face one another. The released grippers 16 which are biased outwardly toward distal elements 18 are concurrently urged inwardly by the distal elements 18. The fixation device 14 may then be locked to hold the leaflets in this closed position. The fixation device 14 may then be released from the shaft 12.
[0042] The fixation device 14 optionally includes a locking mechanism for locking the device 14 in a particular position, such as an open, closed, or inverted position, or any position therebetween. The locking mechanism may include a release harness. Applying tension to the release harness may unlock the locking mechanism. Lock lines can engage a release harnesses of the locking mechanism to lock and unlock the locking mechanism. The lock lines can extend through a shaft of the delivery catheter. A handle attached to the proximal end of the shaft can be used to manipulate and decouple the fixation device 14.
[0043] Additional disclosure regarding such fixation devices 14 may be found in PCT Publication No. WO 2004/103162 and U.S. Patent Application No. 14/216,787, the disclosures of both of which are incorporated by reference herein in their entirety.
III. Improved Gripping Device
[0044] Certain embodiments of tissue fixation devices of the present disclosure include a gripper formed from a shape-memory material. In preferred embodiments, the shape-memory material is configured to exhibit superelasticity when positioned in a physiological environment. Such shape-memory materials can include shape-memory alloys and/or shape-memory polymers. Shape-memory alloys included in embodiments of grippers of the present disclosure include copper-zinc-aluminum; copper-aluminum- nickel; nickel -titanium (NiTi) alloys known as nitinol; nickel -titanium platinum; and nickel -titanium palladium alloys, for example. Shape-memory polymers included in embodiments of grippers of the present disclosure include biodegradable polymers, such as oligo(8-caprolactone)diol, oligo(p-dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, for example. In preferred embodiments, the gripper is formed from nitinol. Such nitinol grippers can be configured with linear elastic properties, non-linear elastic properties, pseudo linear-elastic properties, or other elastic properties.
[0045] Figures 9A-9C illustrate various views of an embodiment of a tissue gripper 1 16 formed from a shape-memory material. In preferred embodiments, the tissue gripper 1 16 is formed from a nickel titanium alloy with transformation temperature (e.g., an austenite finish temperature (Af)) of -5 to 37 degrees C, or from -5 to 30 degrees C, or from -5 to 27 degrees C, or from -5 to 25 degrees C, or from -5 to 20 degrees C, or from - 5 to 15 degrees C, or from -5 to 10 degrees C, or from 0 to 10 degrees C. In such embodiments, the gripper 1 16 can exhibit superelasticity at physiological temperatures, and can exhibit superelasticity during flexing, bending, and/or other maneuvering of the gripper 1 16. For instance, the gripper 1 16 can exhibit superelasticity during positioning and deployment of the device at a treatment site and/or during continued movement after being deployed.
[0046] During a mitral valve repair procedure or other tissue fixing procedure, for example, portions of the tissue gripping device may need to repeatedly pass through wide angles as multiple tissue grasping attempts are made and/or as the gripper 1 16 is moved into an acceptable position against the leaflets of the mitral valve or against other targeted tissue. Furthermore, even after deployment, the tissue gripper 1 16 may need to provide some amount of flexibility and movement as the repaired and/or fixated tissue continues to flex and/or move. For example, one situation where additional flexibility and movement may be necessary is where mitral valve tissue continues to flex against the gripper 1 16 during cardiac cycles. In other situations, additional flexibility and movement may be necessary as the repaired and/or fixated tissue flexes, shifts, stretches, or otherwise moves relative to an original fixed position, such as with various musculoskeletal tissues during various forms of physiological movement (e.g., in response to muscle contraction and/or relaxation, movement at a joint, and movement between adjacent or nearby connective tissues).
[0047] Forming the tissue gripper 1 16 from a shape-memory material such as nitinol may avoid plastic deformation of the tissue gripper 1 16 during these movements. In preferred embodiments, the shape-memory material is configured to exhibit superelasticity at physiological temperatures, thereby enabling the tissue gripper 1 16 to stay entirely within the elastic deformation range throughout its life within the body. Even more preferably, the shape-memory material is configured to exhibit superelasticity throughout the range of temperatures expected to be encountered during pre-deployment, deployment, and implanted use within the body (e.g., 0 to 40 degrees C, 5 to 40 degrees C, 10 to 37 degrees C, 15 to 37 degrees C, 20 to 37 degrees C, and 22 to 37 degrees C).
[0048] For instance, in some embodiments, the shape-memory material can be nitinol, and the nitinol can be configured to have a hysteresis curve that leaves the tissue gripper 1 16 within the elastic deformation range throughout its life and throughout the range of temperatures that are expected to be encountered during pre-deployment, deployment, and implanted use within the body, or during any other time where the tissue gripper 1 16 is flexed and/or deformed, such as during post manufacturing testing and/or positioning within a delivery system prior to delivery to target tissue. Such embodiments can advantageously reduce and/or eliminate mechanical fatigue and degradation of the tissue gripper 1 16 from repeated and/or high levels of plastic deformation. In addition, as will be explained in more detail below, embodiments of the present disclosure can promote easier tissue grasping during deployment and/or positioning of the tissue gripper 1 16.
[0049] In the illustrated embodiment, the tissue gripper 1 16 includes a proximal side 1 14, a distal side 134, a base section 104, and a pair of arms 106. Each arm 106 may extend from the base section 104 to a free end 108. In other embodiments, there may be one arm extending from a base section, or there may be more than two arms extending from a base section. For example, some embodiments may have multiple arms arrayed about a base section (e.g., in a radial fashion), and/or may include a first plurality of arms disposed opposite a second plurality of arms.
[0050] The gripper 1 16 of the illustrated embodiment includes a pair of base bend features 1 10 disposed at the base section 104, and a pair of arm bend features 1 12 partitioning the arms 106 from the base section 104. The base bend features 1 10 form angles of 90 degrees or just under 90 degrees (e.g., 15 to 165 degrees, 30 to 150 degrees, 45 to 135 degrees, 60 to 120 degrees, 70 to 1 10 degrees, or 80 to 100 degrees) as measured from the proximal side 1 14, and the arm bend features 1 12 form angles of 90 degrees or just under 90 degrees (e.g., 15 to 165 degrees, 30 to 150 degrees, 45 to 135 degrees, 60 to 120 degrees, 70 to 1 10 degrees, or 80 to 100 degrees) as measured from the distal side 134.
[0051] The base bend features 1 10 and arm bend features 1 12 are configured to give the tissue gripper 1 16 a bent configuration when the tissue gripper 1 16 is in a relaxed state, such that when the tissue gripper 1 16 is forced into a stressed state (e.g., by bending the tissue gripper 1 16 at one or more of the base and/or arm bend features 1 10 and 1 12), the tissue gripper 1 16 is resiliently biased toward the relaxed state.
[0052] For example, an arm 106 may be positioned at the arm bend feature 1 12 in a manner that flexes the arm 106 in a proximal direction and an inward direction, thereby flexing the arm 106 toward a straighter configuration (e.g., increasing the angle of the arm bend feature 1 12 as measured from the distal side 134). In such a position, the tissue gripper 1 16 is in a stressed state such that the arm 106 of the tissue gripper 1 16 is resiliently biased toward a distal direction and an outward direction. Other embodiments may omit one or more of the bend features, and other embodiments may include additional bend features. These and other embodiments may include bend features with differing bend angles when in a relaxed state. For example, some embodiments may include bend features that measure greater than 90 degrees or less than 90 degrees when in a relaxed state. [0053] In another example, prior to moving the tissue gripper 1 16 into position in the mitral valve or into position near other targeted tissue, the tissue gripper may be positioned in a pre-deployed configuration (see, e.g., Figures 6A-7B and related discussion) by positioning the arm bend features 1 12 toward a straighter configuration. The tissue grippers of the present disclosure, such as illustrated tissue gripper 1 16, beneficially and advantageously can be moved into such a pre-deployed configuration without being plastically deformed at the arm bend features 1 12 and/or at other areas. Accordingly, tissue gripper 1 16 may move from such a pre-deployed configuration back toward a relaxed configuration by allowing the arms 106 to move distally and outwardly. In preferred embodiments, the relaxed configuration, after the tissue gripper 1 16 has been moved into a pre-deployed configuration and back, is the same or substantially the same as prior to the tissue gripper 1 16 being moved into the pre-deployed configuration and back (e.g., the angles at the arm bend features 1 12 in the relaxed configuration are unchanged, as opposed to being altered as a result of plastic deformation).
[0054] The tissue gripper 1 16 of the illustrated embodiment may include a plurality of holes 1 18 distributed along the length of each arm 106. The holes 1 18 may be configured to provide a passage or tie point for one or more sutures, wires, nitinol wires, rods, cables, polymeric lines, other such structures, or combinations thereof. As discussed above, these materials may be coupled to one or more arms 106 to operate as gripper lines (e.g., gripper lines 90 illustrated in Figures 7A-7C) for raising, lowering, and otherwise manipulating, positioning and/or deploying the tissue gripper 1 16. In some embodiments, for example, suture loops or other structures may be positioned at one or more of the holes 1 18, and one or more gripper lines may be threaded, laced, or otherwise passed through the suture loops. Such suture loops or other suture fastening structures may be wrapped and/or threaded a single time or multiple times before being tied, tightened, or otherwise set in place. For example, some suture lines may be wrapped repeatedly and/or may double back on themselves in order to strengthen or further secure the coupling of the suture loop to an arm 106.
[0055] Other embodiments may include a tissue gripper with more or less holes and/or with holes in other positions of the tissue gripper. For example, some embodiments may omit holes completely, and some embodiments may include only one hole and/or only one hole per arm. Other embodiments may include holes of different shapes and/or sizes, such as holes formed as slots, slits, or other shapes. In embodiments where more than one hole is included, the holes may be uniform in size, shape, and distribution or may be non-uniform in one or more of size, shape, and distribution.
[0056] Each arm 106 of the illustrated embodiment includes a furcated section 120. The furcated section 120 may extend from the base section 104 to a position farther along the arm 106 toward the free end 108 of the arm 106, as illustrated. In other embodiments, a furcated section may be positioned at other locations along an arm and/or base section. Other embodiments may include one or more furcated sections extending completely to the free end of an arm, thereby forming a bifurcated or fork-shaped arm. Other embodiments omit any furcated sections. The furcated sections 120 of the illustrated embodiment coincide with the arm bend features 1 12. The furcated sections 120 may be configured (e.g., in size, shape, spacing, position, etc.) so as to provide desired resiliency, fatigue resistance, and/or flexibility at the coinciding arm bend features 1 12.
[0057] As illustrated, the tissue gripper 1 16 includes a plurality of frictional elements 128 configured to engage with tissue at a treatment site and resist movement of tissue away from the tissue gripping member after the frictional elements 128 have engaged with the tissue. As shown in the illustrated embodiment, the frictional elements 128 are formed as angled barbs extending distally and inwardly from a side edge 130 of the arms 106 of the gripper 1 16. In this manner, tissue that is engaged with the frictional elements 128 of a tissue gripper 1 16 is prevented from moving proximally and outwardly relative to the tissue gripper 1 16.
[0058] The frictional elements 128 of the illustrated tissue gripper 1 16 protrude from a side edge 130 of each of the arms 106, thereby forming a plurality of slotted recesses 132 disposed along side edges 130 of each arm 106 at sections adjacent to the frictional elements 128. Other embodiments may include frictional elements of varying size, number, and/or shape. For example, in some embodiments the frictional elements may be formed as posts, tines, prongs, bands, grooves, channels, bumps, pads, or a combination of these or any other feature suitable for increasing friction and/or gripping of contacted tissue.
[0059] Embodiments of the devices, systems, and methods of the present disclosure can provide particular advantages and benefits in relation to a tissue gripping and/or tissue fixation procedure. For example, at least one embodiment of the devices, systems, and methods of the present disclosure can include moving and/or flexing a tissue gripper from a pre-deployed configuration toward a deployed configuration at a wider angle (e.g., angle in which the arms of the gripping device are separated) than that disclosed by the prior art, providing advantages such as better grasping ability, less tissue trauma, better grasping of separate portions of tissue simultaneously (e.g., opposing leaflets of the mitral valve), reduced slip-out of tissue during additional device movements or procedural steps (e.g., during a closing step), reduced grasping force required in order to grip the targeted tissue, or combinations thereof. In addition, tissue grippers of the present disclosure may be moved into a pre-deployed configuration without resulting plastic deformation affecting the range of grasping angles of the device.
[0060] In addition, at least one embodiment of the present disclosure can include increased resistance to mechanical fatigue than that disclosed by the prior art. For example, at least some of the tissue gripping devices of the present disclosure can be formed of a shape-memory material that provides resistance to progressive weakening of the device as a result of repeatedly applied and/or cyclic loads. For instance, as compared to a tissue gripping device not formed from a shape-memory material, at least some of the tissue gripping devices of the present disclosure have enhanced resistance to the formation of microscopic cracks and other stress concentrators (e.g., at grain boundaries or other discontinuity locations of the material).
[0061] Figures lOA-lOC illustrate a prior art gripping system 200 in use in a tissue gripping application. Figure 10A shows a tissue gripper 290 made from a plastically deformable material positioned in a pre-deployed configuration. A pair of distal elements 280 is illustrated in an open position at 120 degrees, as measured from a proximal side, the pair of distal elements being positioned near target tissue 270 on the distal side of target tissue. Upon movement or release of the tissue gripper 290 from the pre- deployment configuration, the arms of the tissue gripper 290 move slightly in a proximal and outward direction toward the target tissue 270. However, the tissue gripper 290 is only able to reach a deployment angle, as measured by the separation of the opposing arms of the tissue gripper 290 on the proximal side, of 85 degrees. As illustrated in Figure 10B, this may result in incomplete or missed grasping of the target tissue 270, as the arms of the tissue gripper 290 are unable to flex or extend outwardly and proximally far enough to fully engage with the target tissue 270.
[0062] As illustrated in Figure IOC, gripping of the target tissue 270 requires at least an additional step of closing the distal elements 280 to 60 degrees in order to grip the target tissue 270 between the distal elements 280 and the arms of the tissue gripper 290 by moving the distal elements 280 proximally and inwardly toward the tissue gripper 290. During this step and/or during the interim between the position illustrated in Figure 10B and the position illustrated in Figure IOC, the target tissue 270 may move or slip away from the gripping system 200. In addition, the position of the target tissue 270 or portions of the target tissue 270 may shift relative to the tissue gripper 290 and/or the distal elements 280, requiring repositioning of the gripping system 200 and/or its components. This can be particularly problematic in procedures, such as mitral valve repair procedures, where the target tissue is rapidly and continuously moving, where multiple portions of target tissue must be grasped simultaneously, and where precise gripping position is demanded. Such limitations limit the number of available tissue gripping and/or fixation procedures and their effectiveness.
[0063] In contrast, Figures 1 1A-1 1C illustrate an embodiment of a tissue gripping system 300 of the present disclosure in a tissue gripping application. As illustrated in Figure 1 1 A, a pair of distal elements 318 are coupled to a body 336 (e.g., an actuator rod) and are associated with a tissue gripper 316. The tissue gripping system 300 may be positioned at or near target tissue 370, where the tissue gripper 316 can be positioned in a pre-deployed configuration with the arms of the tissue gripper 316 extending proximally from the base of the tissue gripper 316. In addition, the distal elements 318 may be moved to a distal side of the target tissue before, during, or after being positioned in an open configuration with an opening angle 340 of 120 degrees (e.g., 60 to 180 degrees, 75 to 165 degrees, 90 to 150 degrees, 105 to 135 degrees, 100 to 140 degrees, or 1 10 to 130 degrees). In other embodiments, the opening angle 340 may be more or less than 120 degrees (e.g., 60 to 90 degrees, or 90 to 120 degrees, or 120 to 150 degrees, or 150 to 180 degrees), though in preferred embodiments, the opening angle 340 is at least 120 degrees or more (e.g., 120 to 180 degrees). In some embodiments, the opening angle 340 can be more than 180 degrees (e.g., 190 degrees or 200 degrees or more).
[0064] As illustrated in Figure 1 1B, after positioning the distal elements 318, the tissue gripper 316 can be moved and/or dropped from the pre-deployed configuration, where the arms of the tissue gripper 316 are positioned in a stressed state, toward a deployed configuration, where the arms flex and/or move toward a relaxed state. The tissue gripper 316 may be moved, dropped, or otherwise actuated using, for example, one or more gripper lines (such as those illustrated in Figures 7A-7C).
[0065] As illustrated in Figure 1 1B, upon actuation, the tissue gripper 316 moves outwardly and distally to fully engage with the target tissue 370, and to fully engage the target tissue 370 against the proximal surface of the distal elements 318 by closing to an actuation angle 342 (as measured from the proximal side) that is substantially similar to the opening angle 340 of the distal elements 318. For example, the actuation angle 342 may equal the opening angle 340 or may be slightly smaller than the opening angle 340 (e.g., by 1 to 30 degrees, or 1 to 20 degrees, or 1 to 10 degrees, or 1 to 5 degrees or less) as a result of target tissue 370 being gripped between the distal elements 318 and the arms of the tissue gripper 316.
[0066] As shown by Figure 1 1B, the full length of the arms of the tissue gripper 316 may be engaged against the target tissue 370 upon actuation of the tissue gripper 316 towards the deployed configuration. For example, because the actuation angle 342 is the same as or is substantially similar to the opening angle 340, any separation between the proximal surfaces of the distal elements 318 and the arms of the tissue gripper 316 is due to an amount of target tissue 370 caught and/or engaged between the arms of the tissue gripper 316 and a proximal surface of a distal element 318.
[0067] The tissue gripper 316 can be configured to provide an actuation angle 342 that is 90 to 180 degrees. In preferred embodiments, the actuation angle is 120 degrees (e.g., 60 to 180 degrees, 75 to 165 degrees, 90 to 150 degrees, 105 to 135 degrees, 100 to 140 degrees, or 1 10 to 130 degrees). In other embodiments, the actuation angle 342 may be more or less than 120 degrees (e.g., 60 to 90 degrees, or 90 to 120 degrees, or 120 to 150 degrees, or 150 to 180 degrees).
[0068] In preferred embodiments, the tissue gripper 316 is configured such that the arms of the tissue gripper 316 resiliently flex against target tissue 370 and/or distal elements 318 after moving from a pre-deployed configuration toward a deployed configuration. For example, the tissue gripper 316 can be configured such that, when positioned in a relaxed configuration, the arms of the tissue gripper 316 are open at an angle that is greater than a selected opening angle 340 of the distal elements 318. In some embodiments, for example, the arms of the tissue gripper 316, while positioned in a relaxed configuration, can be angled apart, as measured from a proximal side, at 180 degrees or slightly more than 180 degrees (e.g., 190 to 200 degrees). In such embodiments, the opening angle 340 of the distal elements 318 can be less than the angle between the arms of the tissue gripper 316 (e.g., 60 to 180 degrees, or 90 to 150 degrees, or 120 degrees). For example, when the opening angle 340 is 120 degrees, the actuation angle 344 of the tissue gripper 316 will expand to reach 120 degrees or beyond 120 degrees after moving toward a deployed configuration, but the arms of the tissue gripper 316 will not have moved to the full extent of the relaxed configuration. Thus, the arms of the tissue gripper 316, in such embodiments, will continue to resiliently flex against target tissue 370 and/or distal elements 318 even after expanding the full range of the actuation angle 344.
[0069] Accordingly, in such embodiments, when the tissue gripper 316 is moved from the pre-deployed configuration toward the deployed configuration, the arms of the tissue gripper 316 abut against the target tissue 370 and/or the distal elements 318 before reaching the full distal and outward extension of the relaxed configuration. In this manner, the arms of the tissue gripper 316 can resiliently flex against the target tissue 370 and/or distal elements 318 even after the tissue gripper 316 has moved the full or substantially full extent of the actuation angle 342.
[0070] In preferred embodiments, the tissue gripper 316, opening angle 340, and actuation angle 342 are configured such that when the tissue gripper 316 moves toward a deployed configuration and engages with target tissue 370, the tissue gripper 316 exerts a force of from 0.06 to 0.10 pounds against the target tissue 370. In other embodiments, the tissue gripper can exert a force of from 0.06 to 0.12 pounds or from 0.12 to 0.17 pounds, for example.
[0071] Figure 1 1C illustrates that, in some embodiments, following movement of the tissue gripper 316 toward a deployed configuration, the distal elements 318 may be closed or partially closed in order to move or position the target tissue 370 and/or the components of the tissue gripping system 300 to a desired position and/or to assess the grasped tissue prior to further closing and release of the tissue gripping system 300. For example, the distal elements 318 can be actuated toward a closing angle 344 in order to move the distal elements 318 and the arms of the tissue gripper 316, as well as any target tissue 370 grasped therebetween, into a closed position. In some embodiments, the closing angle 344 will be 60 degrees, or will range from 0 to 90 degrees (e.g., 0 to 30 degrees or 30 to 60 degrees or 60 degrees to 90 degrees). In other embodiments, closing or partially closing the distal elements is omitted. For example, the tissue gripping system 300 or components thereof may be left in place or may be considered as properly positioned after moving the tissue gripper 316 through the actuation angle 342, without additional closing of the tissue gripping system 300.
[0072] Various tissue gripping and/or tissue fixation procedures may call for different closing angles 344 to be used. For example, a closing angle 344 of 60 degrees or less may be useful in assessing the sufficiency of a tissue grasping attempt in a mitral valve regurgitation procedure, and a closing angle 344 that is greater than 60 degrees (e.g., up to 180 degrees) may be useful in a functional mitral valve regurgitation procedure and/or in assessing the sufficiency of a tissue grasping attempt in a functional mitral valve regurgitation procedure.
IV. Methods of Manufacture
[0073] Embodiments of tissue gripping devices of the present disclosure may be manufactured by forming a tissue gripper from a shape-memory material (such as nitinol), as illustrated in Figures 12A-12C. Forming the tissue gripper may be accomplished by cutting a pattern shape from a shape-memory stock material 450. The stock material 450 can be strip stock, sheet stock, band stock, or other forms of stock material.
[0074] The stock material 450 may be subjected to a subtractive manufacturing processes in order to prepare the stock material 450 with a suitable size and shape prior to further manufacturing. For example, grinding of one or more surfaces of the stock material 450 may be carried out in order to achieve a desired dimension and/or a desired uniformity along a given direction (e.g., grinding of a top and/or bottom surface to achieve a desired thickness).
[0075] As illustrated in Figure 12B, various structural features (e.g., furcated sections 420, holes 418, slotted recesses 432) may be formed in the stock material 450. This may be accomplished using any suitable subtractive manufacturing process such as drilling, lathing, die stamping, cutting, or the like. In preferred embodiments, features are formed using a laser cut or wire-EDM process. For example, in preferred embodiments, a plurality of slotted recesses 432 are formed in the stock material 450 using a laser cutting process. In some embodiments, other features may be added using an additive manufacturing process.
[0076] As illustrated in Figure 12C, in some embodiments, the tissue gripper may be further processed through a shape setting process. For example, one or more bend features may be formed in the tissue gripper by subjecting the tissue gripper to a heated shape setting process in order to set the shape of the bend(s) in the shape-memory material of the tissue gripper. For example, in embodiments including grippers formed from nitinol, the austenite phase (i.e., parent phase or memory phase) can be set with the desired bend features. In some embodiments, this requires positioning and/or forming the desired shape while heating the gripper to a temperature high enough to fix the shape as part of the austenite phase (e.g., 300 to 700 degrees C).
[0077] For example, one or more of the base bend features 410, arm bend features 412, and frictional elements 428 may be formed in a heat shape setting process. In some embodiments, these features may be set at the same time in one heat shape setting process. In other embodiments, multiple heat shape setting steps may be used, such as a first heat shape setting process to form the base bend features 410, followed by a second heat shape setting process to form the arm bend features 412, followed by a third heat shape setting process to form the frictional elements 428 (e.g., by bending portions of the side edge 430 adjacent to slotted recesses 432 in order to form distally and inwardly projecting barbs). In yet other embodiments, other combinations of features may be set in any suitable number of heat shape setting steps in order to form the tissue gripper 416.
[0078] In preferred embodiments, the arm bend features 412 are formed in a heat shape setting process such that the angle between the opposing arms 406, as measured from a proximal side 414 while the tissue gripper 416 is in a relaxed configuration, is 180 degrees or is slightly more than 180 degrees (e.g., 185 to 200 degrees). In such embodiments, the tissue gripper 416 formed as a result of the manufacturing process can be moved into a pre-deployed configuration by bending the arm bend features 412 to move the arms 406 proximally and inwardly. In such a stressed state, the arms 406 will resiliently flex toward the relaxed configuration for the full range of angles up to the relaxed configuration of 180 degrees or slightly more than 180 degrees. In addition, because the tissue gripper 416 is formed of a shape-memory material such as nitinol, and is configured to exhibit superelasticity at operational and physiological temperatures, the arms 406 of the tissue gripper 416 are able to move from the relaxed configuration to the pre-deployed configuration without being plastically deformed, and are thus able to fully flex toward the original relaxed configuration and return to the original relaxed configuration.
[0079] In some embodiments, one or more additional manufacturing processes may be performed to prepare a tissue gripper 416. For example, mechanical deburring (e.g., small particulate blasting) and/or electropolishing (e.g., to clean edges and passivate the tissue gripper 416) may be performed on the tissue gripper 416, or on parts thereof. Such additional processes may be done prior to, intermittent with, or after one or more heat shape setting processes. In addition, the tissue gripper 416 may be cleaned in an ultrasonic bath (e.g., with DI water and/or isopropyl alcohol, in combination or in succession).
V. Kits
[0080] Kit embodiments can include any of the components described herein, as well as additional components useful for carrying out a tissue gripping procedure. Kits may include, for example, a tissue gripping system as described herein, including a tissue gripper, distal elements, actuator rod, and actuator lines (such as lock lines and gripper lines), a delivery catheter, and a handle, the tissue gripping system being couplable to the delivery catheter at a distal end of the delivery catheter and the handle being couplable to the delivery catheter at a proximal end of the delivery catheter. In such embodiments, the actuator lines and/or actuator rod can pass from the tissue gripping system through lumens of the delivery catheter and to the handle, and the handle can include one or more controls for actuating or otherwise controlling the components of the tissue gripping system.
[0081] Some embodiments of kits may include additional interventional tools, such as a guidewire, dilator, needle, and/or instructions for use. Instructions for use can set forth any of the methods described herein. The components of the kit can optionally be packaged together in a pouch or other packaging, and in preferred embodiments will be sterilized. Optionally, separate pouches, bags, trays, or other packaging may be provided within a larger package such that smaller packages can be opened separately to separately maintain the components in a sterile manner.
[0082] The terms "approximately," "about," and "substantially" as used herein represent an amount or condition close to the stated amount or condition that still performs a desired function or achieves a desired result. For example, the terms "approximately," "about," and "substantially" may refer to an amount that is within less than 10% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of a stated amount. In addition, unless expressly described otherwise, all amounts (e.g., temperature amounts, angle measurements, dimensions measurements, etc.) are to be interpreted as being "approximately," "about," and/or "substantially" the stated amount, regardless of whether the terms "approximately," "about," and/or "substantially."
[0083] Additionally, elements described in relation to any embodiment depicted and/or described herein may be combinable with elements described in relation to any other embodiment depicted and/or described herein. For example, any element described in relation to an embodiment depicted in Figures 9A-9C may be combinable an embodiment described in Figures 11 A-l 1C.
[0084] The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

CLAIMS What is claimed is:
1. A tissue gripping device comprising:
a base section; and
a first arm having a first end coupled to the base section, and a free end extending from the base section;
wherein the base section and the arm are formed of a shape-memory material configured to exhibit superelasticity in a physiological environment.
2. The tissue gripping device of claim 1, wherein the shape-memory material is comprised of one or more of a shape-memory alloy or shape-memory polymer.
3. The tissue gripping device of claim 2, wherein the shape-memory material is a shape-memory alloy selected from the group consisting of: copper-zinc-aluminum; copper-aluminum-nickel; nickel -titanium; nickel -titanium platinum; and nickel -titanium palladium alloys.
4. The tissue gripping device of claim 2, wherein the shape-memory material is a nickel titanium alloy.
5. The tissue gripping device of claim 2, wherein the shape-memory material is a shape-memory polymer selected from the group consisting of: oligo(8-caprolactone)diol, oligo(p-dioxanone)diol, polynorborene, polyisoprene, styrene butadiene, polyurethane- based materials, and vinyl acetate-polyester-based compounds.
6. The tissue gripping device of claim 1, wherein the arm is configured to resiliently flex toward a relaxed configuration in a distal direction when the arm is positioned in a pre-deployed configuration.
7. The tissue gripping device of claim 1, further comprising a second arm having a first end coupled to the base section, and a free end extending from the base section, the second arm being disposed opposite the first arm, wherein the first arm and the second arm are separated by an angle of about 90 degrees or more as measured from a proximal side, when the first arm and second arm are in a deployed configuration after release from a pre-deployed configuration.
8. The tissue gripping device of claim 1, further comprising a second arm having a first end coupled to the base section, and a free end extending from the base section, the second arm being disposed opposite the first arm, wherein the first arm and the second arm are separated by an angle of about 120 degrees or more as measured from a proximal side, when the first arm and second arm are in a deployed configuration after release from a pre-deployed configuration.
9. A tissue fixation system configured for intravascular delivery and for use in joining mitral valve tissue during treatment of the mitral valve, comprising:
a body;
a first and second distal element, each including:
a first end pivotally coupled to the body and extending to a free second end; and
a tissue engagement surface between the first and second end, the tissue engagement surface being configured to approximate and engage a portion of leaflets of the mitral valve; and
a tissue gripping device formed of a shape-memory material, including:
a base section; and
a first arm and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the first and second arms being disposed opposite one another and each arm being configured to cooperate with one of the first or second distal elements to form a space for receiving and holding a portion of mitral valve tissue therebetween.
10. The tissue fixation system of claim 9, wherein tissue engagement surfaces of the distal elements are angled apart at about 90 degrees or more when positioned in an open configuration, and wherein the first and second arms of the tissue gripping device are configured to move from a pre-deployed configuration toward a deployed configuration by moving toward the tissue engagement surfaces, the first and second arms being angled apart at about 90 degrees or more when positioned in the deployed configuration.
11. The tissue fixation system of claim 9, wherein tissue engagement surfaces of the distal elements are angled apart at about 120 degrees or more when positioned in a pre- deployed configuration, and wherein the first and second arms of the tissue gripping device are configured to move from a pre-deployed configuration toward a deployed configuration by moving toward the tissue engagement surfaces, the first and second arms being angled apart at about 120 degrees or more when positioned in the deployed configuration.
12. The tissue fixation system of claim 9, wherein the shape-memory material of the tissue gripping device is a nickel titanium alloy.
13. The tissue fixation system of claim 12, wherein the nickel titanium alloy of the tissue gripping device has a transformation temperature of between about -5 to about 37 degrees C.
14. The tissue fixation system of claim 12, wherein the nickel titanium alloy of the tissue gripping device has a transformation temperature of between about -5 to about 10 degrees C.
15. The tissue fixation system of claim 9, wherein the tissue gripping device is configured such that upon being positioned in a deployed state against a leaflet of the mitral valve, an arm of the tissue gripping device exerts a force of about 0.06 to about 0.10 pounds against the leaflet.
16. The tissue fixation system of claim 9, wherein the arms of the tissue gripping device, upon moving from a pre-deployed configuration to a deployed configuration, deploy to engage the mitral valve tissue against the tissue engagement surfaces of the distal elements while the distal elements are in an open configuration without any proximal movement of the distal elements.
17. The tissue fixation system of claim 9, wherein a full length of the arms of the tissue gripping device, upon moving from a pre-deployed configuration to a deployed configuration, engage the mitral valve tissue against the tissue engagement surfaces of the distal elements while the distal elements are in an open configuration.
18. A method of gripping tissue, the method comprising:
positioning a tissue gripping device near a target tissue, the tissue gripping device being formed from a shape-memory material and including:
a base section; and
a first arm and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the first and second arms being disposed opposite one another; and
moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration, the first and second arms being configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration.
19. The method of claim 18, further comprising the tissue gripping device gripping the target tissue after moving toward the deployed configuration.
20. The method of claim 19, wherein the tissue gripping device grips the tissue by exerting a force of about 0.06 to about 0.10 pounds against the tissue.
21. The method of claim 19, wherein the free ends of the first and second arms of the tissue gripping device engage with the target tissue upon moving the tissue gripping device toward the deployed configuration.
22. The method of claim 19, wherein an entire length of the first arm and an entire length of the second arm engage with the target tissue upon moving the tissue gripping device toward the deployed configuration.
23. The method of claim 18, wherein prior to positioning the tissue gripping device near the target tissue, the tissue gripping device is moved from the relaxed configuration into the pre-deployed configuration by moving the first and second arms proximally and inwardly.
24. The method of claim 23, wherein moving the tissue gripping device into the pre- deployed configuration does not plastically deform the tissue gripping device, and wherein the tissue gripping device can return toward the relaxed configuration upon being moved toward the deployed configuration, the relaxed configuration being unaltered by moving the tissue gripping device into the pre-deployed configuration.
25. The method of claim 23, wherein moving the tissue gripping device from a pre- deployed configuration toward a deployed configuration includes moving the tissue gripping device toward a relaxed configuration such that the first arm and the second arm are separated by an angle of about 90 degrees or more as measured from a proximal side.
26. The method of claim 23, wherein moving the tissue gripping device from a pre- deployed configuration toward a deployed configuration includes moving the tissue gripping device toward a relaxed configuration such that the first arm and the second arm are separated by an angle of about 120 degrees or more as measured from a proximal side.
27. A method of manufacturing a tissue gripping device, the method comprising: cutting one or more structural features into a strip or sheet stock material of a shape-memory alloy, the one or more structural features including a plurality of slotted recesses disposed at one or more side edges of the stock material; and
heat shape setting one or more bend features into the stock material.
28. The method of claim 27, wherein the one or more bend features includes a frictional element formed by heat shape setting one or more portions of the stock material adjacent to a slotted recess as a protruding barb.
29. The method of claim 27, further comprising, after obtaining the stock material, subtracting an amount of the stock material using a subtractive process.
30. The method of claim 29, wherein the subtractive process includes grinding to adjust a thickness of the stock material.
31. The method of claim 27, further comprising, after heat shape setting, finishing the tissue gripping device by one or more of mechanical deburring, particulate blasting, electropolishing, cleaning, or passivating.
32. The method of claim 31, wherein cleaning includes ultrasonic bathing.
33. The method of claim 27, wherein the stock material is a nickel titanium alloy.
34. The method of claim 27, wherein the cutting one or more structural features into the stock material includes one or more of laser cutting or wire-EDM.
35. A tissue fixation kit, the kit comprising:
a tissue gripping system, the tissue gripping system including:
an actuator rod;
an actuator line;
a first and second distal element, each including a first end pivotally coupled to the actuator rod and extending to a free second end and a tissue engagement surface between the first and second end, the first and second distal elements being positionable by the actuator rod;
a tissue gripping device formed of a shape-memory material, the tissue gripping device including a base section, a first arm, and a second arm, each arm having a first end coupled to the base section and a free end extending from the base section, the tissue gripping device being positionable by the actuator line; a handle; and
a delivery catheter having a proximal end and a distal end, the tissue gripping system being couplable to the distal end of the delivery catheter and the handle being couplable to the proximal end of the delivery catheter.
PCT/US2016/042971 2015-07-21 2016-07-19 Tissue grasping devices and related methods WO2017015288A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210687529.XA CN115227450A (en) 2015-07-21 2016-07-19 Tissue gripping devices and related methods
EP16741835.9A EP3324854A2 (en) 2015-07-21 2016-07-19 Tissue grasping devices
CN201680042515.5A CN107920813B (en) 2015-07-21 2016-07-19 Tissue gripping devices and related methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/805,275 US10667815B2 (en) 2015-07-21 2015-07-21 Tissue grasping devices and related methods
US14/805,275 2015-07-21

Publications (2)

Publication Number Publication Date
WO2017015288A2 true WO2017015288A2 (en) 2017-01-26
WO2017015288A3 WO2017015288A3 (en) 2018-03-01

Family

ID=56507913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/042971 WO2017015288A2 (en) 2015-07-21 2016-07-19 Tissue grasping devices and related methods

Country Status (4)

Country Link
US (4) US10667815B2 (en)
EP (1) EP3324854A2 (en)
CN (2) CN115227450A (en)
WO (1) WO2017015288A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019143726A1 (en) * 2018-01-16 2019-07-25 Medfree, Inc. Tissue grasping devices and related methods
EP3593758A1 (en) 2018-07-10 2020-01-15 Syntach AG An implantable cardiac valve device and system
WO2020011879A1 (en) 2018-07-10 2020-01-16 Syntach Ag An implantable cardiac valve improvement device, system and procedure
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10893941B2 (en) 2015-04-02 2021-01-19 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
US11185413B2 (en) 2016-07-13 2021-11-30 Medfree, Inc. Tissue grasping devices and related methods

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9011468B2 (en) 2011-09-13 2015-04-21 Abbott Cardiovascular Systems Inc. Independent gripper
CN107205817B (en) 2014-12-04 2020-04-03 爱德华兹生命科学公司 Percutaneous clamp for repairing heart valve
CN107624058B (en) 2015-05-14 2019-10-08 爱德华兹生命科学公司 Heart valve sealing device and its delivery apparatus
US10799675B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
EP3868306A1 (en) 2016-06-20 2021-08-25 Evalve, Inc. Transapical removal device
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
WO2018013856A1 (en) * 2016-07-13 2018-01-18 Medfree, Inc. Tissue grasping devices and related methods
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
CN115990075A (en) 2017-04-18 2023-04-21 爱德华兹生命科学公司 Heart valve sealing device and delivery device therefor
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
WO2018209313A1 (en) * 2017-05-12 2018-11-15 Evalve, Inc. Long arm valve repair clip
EP3648678A4 (en) * 2017-07-06 2021-03-24 Raghuveer Basude Tissue grasping devices and related methods
US11571305B2 (en) 2017-07-24 2023-02-07 Emory University Cardiac valve leaflet enhancer devices and systems
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11110251B2 (en) 2017-09-19 2021-09-07 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
CN111200975A (en) * 2017-10-11 2020-05-26 波士顿科学国际有限公司 Reinforced mechanical hemostatic clamp
CN109717987A (en) * 2017-10-30 2019-05-07 北京领健医疗科技有限公司 A kind of valve reparation device
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
DE102018100352B9 (en) 2018-01-09 2021-01-07 Edwards Lifesciences Corporation Valve repair system
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
BR112020010855A2 (en) 2018-01-09 2020-11-10 Edwards Lifesciences Corporation native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10507109B2 (en) 2018-01-09 2019-12-17 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
BR122021018576A2 (en) 2019-02-14 2021-10-13 Edwards Lifesciences Corporation VALVE REPAIR DEVICE FOR REPAIRING A PATIENT'S NATIVE VALVE AND VALVE REPAIR SYSTEM
US11534303B2 (en) 2020-04-09 2022-12-27 Evalve, Inc. Devices and systems for accessing and repairing a heart valve
CN110353821B (en) * 2019-06-20 2023-08-01 上海汇禾医疗科技股份有限公司 Clamping device and clamping assembly
CA3146797A1 (en) 2019-07-15 2021-01-21 Evalve, Inc. Wide clip with nondeformable wings
JP2022540903A (en) 2019-07-15 2022-09-20 エバルブ,インコーポレイティド Proximal Element Actuator Fixation and Release Mechanism
CN110403670A (en) * 2019-08-28 2019-11-05 上海汇禾医疗科技有限公司 Instrument and clamp assemblies
US11497506B2 (en) * 2019-08-28 2022-11-15 Shanghai Huihe Healthcare Technology Co., Ltd. Clamping instrument and clamping assembly
WO2021062103A1 (en) 2019-09-26 2021-04-01 Evalve, Inc. Systems for intra-procedural cardiac pressure monitoring
EP4041136A1 (en) 2019-10-11 2022-08-17 Evalve, Inc. Repair clip for variable tissue thickness
EP4054491B1 (en) 2019-11-08 2023-12-20 Evalve, Inc. Medical device delivery system with locking system
US11701229B2 (en) 2019-11-14 2023-07-18 Evalve, Inc. Kit with coaptation aid and fixation system and methods for valve repair
WO2021097124A1 (en) 2019-11-14 2021-05-20 Evalve, Inc. Catheter assembly with coaptation aid and methods for valve repair
EP4061282A4 (en) * 2019-11-19 2023-12-27 Elixir Medical Corporation Methods and devices for heart valve repair
WO2022037084A1 (en) * 2020-08-21 2022-02-24 杭州德晋医疗科技有限公司 Tissue clamping member and valve clamping device
CN113520673A (en) * 2021-06-18 2021-10-22 珠海益心医疗科技有限公司 Method for manufacturing clamping device
CN115867212A (en) * 2022-03-21 2023-03-28 宁波新跃医疗科技股份有限公司 Integrated clamping piece and manufacturing method
WO2023196183A1 (en) * 2022-04-04 2023-10-12 Edwards Lifesciences Corporation Heart valve repair devices and delivery devices therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103162A2 (en) 1999-04-09 2004-12-02 Evalve, Inc. Fixation devices, systems and methods for engaging tissue

Family Cites Families (502)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097018A (en) 1936-07-17 1937-10-26 Coleman R Chamberlin Multiple purpose guide and retention clip
US2108206A (en) 1937-03-09 1938-02-15 Lillian Pearl Mecker Tenaculum
US3296668A (en) 1965-03-03 1967-01-10 Winthrop J Aiken Clip for sheets and the like
US3378010A (en) 1965-07-28 1968-04-16 Coldling Surgical clip with means for releasing the clamping pressure
US3557780A (en) 1967-04-20 1971-01-26 Olympus Optical Co Mechanism for controlling flexure of endoscope
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3675639A (en) 1970-05-11 1972-07-11 Hugo S Cimber Device for and method of temporary sterilizing a female
US3874338A (en) 1972-10-09 1975-04-01 Fritz Happel Milking cup
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
GB1486351A (en) 1975-06-06 1977-09-21 Rocket Of London Ltd Surgical clip applicator
US4007743A (en) 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4112951A (en) 1976-01-26 1978-09-12 Research Corporation Surgical clip
US4091815A (en) 1976-07-06 1978-05-30 Larsen Otis M Flexible tube clamp
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
AU521676B2 (en) 1977-02-23 1982-04-22 Clark, Richard Edwin Heart valve prosthesis
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4235238A (en) 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
NL7906691A (en) 1979-09-07 1981-03-10 Jansen Anton MEDICAL DEVICE FOR COUPLING TWO Bowel Sections, Auxiliary Device For Using It And Method Of Laying A Gut Knot Using This Device.
US4578061A (en) 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4498476A (en) 1981-08-27 1985-02-12 Ethicon, Inc. Non-metallic, bio-compatible hemostatic clips with interlocking latch means
US4809695A (en) 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4944295A (en) 1981-10-21 1990-07-31 Owen Gwathmay Suturing assembly
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4487205A (en) 1982-04-26 1984-12-11 Ethicon, Inc. Non-metallic, bio-compatible hemostatic clips
US4484579A (en) 1982-07-19 1984-11-27 University Of Pittsburgh Commissurotomy catheter apparatus and method
US4458682A (en) 1982-08-02 1984-07-10 Ethicon, Inc. Non-metallic, bio-compatible hemostatic clips (ring lock clips)
US4510934A (en) 1983-05-13 1985-04-16 Batra Subhash K Suture
US4531522A (en) 1983-06-20 1985-07-30 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
DE3344934A1 (en) 1983-12-13 1985-06-20 Richard Wolf Gmbh, 7134 Knittlingen ENDOSCOPE WITH DISTALLY DEFLECTABLE AUXILIARY INSTRUMENT
GB8424582D0 (en) 1984-09-28 1984-11-07 Univ Glasgow Heart valve prosthesis
JPS6187434A (en) 1984-10-04 1986-05-02 Nec Corp Portable radio equipment
DE3504292C1 (en) 1985-02-08 1986-07-24 Richard Wolf Gmbh, 7134 Knittlingen Instrument for endoscopic interventions, especially for percutaneous gallstone removal or gallbladder surgery
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
JPH088933B2 (en) 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
WO1989009029A1 (en) 1989-02-16 1989-10-05 Taheri Syde A Method and apparatus for removing venous valves
US5447966A (en) 1988-07-19 1995-09-05 United States Surgical Corporation Treating bioabsorbable surgical articles by coating with glycerine, polalkyleneoxide block copolymer and gelatin
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5108368A (en) 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5620461A (en) 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US5092872A (en) 1989-07-28 1992-03-03 Jacob Segalowitz Valvulotome catheter
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5015249A (en) 1989-12-26 1991-05-14 Nakao Naomi L Endoscopic stapling device and method
US5049153A (en) 1989-12-26 1991-09-17 Nakao Naomi L Endoscopic stapling device and method
US5195968A (en) 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US6033378A (en) 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
EP0474887B1 (en) 1990-04-02 1994-06-15 Kanji Inoue Device for closing shunt opening by nonoperative method
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5001136A (en) 1990-06-07 1991-03-19 Pfizer Inc. Leukotriene-synthesis-inhibiting 2-substitutedmethylamino-5-(hydroxy or alkoxy)pyridines
US5389102A (en) 1990-09-13 1995-02-14 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
US5282845A (en) 1990-10-01 1994-02-01 Ventritex, Inc. Multiple electrode deployable lead
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5125758A (en) 1990-12-06 1992-06-30 Dewan Thomas E Piercing clamp
US5275578A (en) 1991-01-11 1994-01-04 Adams Andy W Clip
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5171252A (en) 1991-02-05 1992-12-15 Friedland Thomas W Surgical fastening clip formed of a shape memory alloy, a method of making such a clip and a method of using such a clip
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5251611A (en) 1991-05-07 1993-10-12 Zehel Wendell E Method and apparatus for conducting exploratory procedures
US5226429A (en) 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5304131A (en) 1991-07-15 1994-04-19 Paskar Larry D Catheter
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
CA2078530A1 (en) 1991-09-23 1993-03-24 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5226911A (en) 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
DE4137218C1 (en) 1991-11-13 1993-02-11 Heidmueller, Harald, 5000 Koeln, De
US5271381A (en) 1991-11-18 1993-12-21 Vision Sciences, Inc. Vertebrae for a bending section of an endoscope
US5242456A (en) 1991-11-21 1993-09-07 Kensey Nash Corporation Apparatus and methods for clamping tissue and reflecting the same
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5522873A (en) 1991-12-26 1996-06-04 Webster Laboratories, Inc. Catheter having electrode with annular recess and method of using same
AU3803193A (en) 1991-12-30 1994-09-26 Wellesley Research Associates, Inc. Dental implant system and apparatus
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5417700A (en) 1992-03-30 1995-05-23 Thomas D. Egan Automatic suturing and ligating device
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
US5190554A (en) 1992-04-08 1993-03-02 Eastern Virginia Medical School Appendix extractor
US5318525A (en) 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5254130A (en) 1992-04-13 1993-10-19 Raychem Corporation Surgical device
US5368601A (en) 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5325845A (en) 1992-06-08 1994-07-05 Adair Edwin Lloyd Steerable sheath for use with selected removable optical catheter
US5306283A (en) 1992-06-30 1994-04-26 American Cyanamid Company Two-part surgical ligation clip
US5368606A (en) 1992-07-02 1994-11-29 Marlow Surgical Technologies, Inc. Endoscopic instrument system
US5383886A (en) 1992-10-13 1995-01-24 Kensey Nash Corporation Methods and instruments for performing medical procedures percutaneously without a trocar
US5342393A (en) 1992-08-27 1994-08-30 Duke University Method and device for vascular repair
US6048351A (en) 1992-09-04 2000-04-11 Scimed Life Systems, Inc. Transvaginal suturing system
US5713910A (en) 1992-09-04 1998-02-03 Laurus Medical Corporation Needle guidance system for endoscopic suture device
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
CA2106126A1 (en) 1992-09-23 1994-03-24 Ian M. Scott Bipolar surgical instruments
US5500180A (en) 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5330442A (en) 1992-10-09 1994-07-19 United States Surgical Corporation Suture retaining clip
US6283127B1 (en) 1992-12-03 2001-09-04 Wesley D. Sterman Devices and methods for intracardiac procedures
US5718725A (en) 1992-12-03 1998-02-17 Heartport, Inc. Devices and methods for intracardiac procedures
US5462527A (en) 1993-06-29 1995-10-31 C.R. Bard, Inc. Actuator for use with steerable catheter
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5702825A (en) 1992-12-22 1997-12-30 Essilor International (Compagnie Generale D'optique) Low yellow index polymer compositions, polymerizable compositions and lenses using said compositions
US5368564A (en) 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
US5403326A (en) 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US5425705A (en) 1993-02-22 1995-06-20 Stanford Surgical Technologies, Inc. Thoracoscopic devices and methods for arresting the heart
US5569274A (en) 1993-02-22 1996-10-29 Heartport, Inc. Endoscopic vascular clamping system and method
EP0684789A1 (en) 1993-02-22 1995-12-06 Valleylab, Inc. A laparoscopic dissection tension retractor device and method
US5980455A (en) 1993-02-22 1999-11-09 Heartport, Inc. Method for manipulating a tissue structure within a thoracic cavity
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5636634A (en) 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
US5456400A (en) 1993-04-22 1995-10-10 United States Surgical Corporation Apparatus and clip for fastening body tissue
DE4319829C1 (en) 1993-06-16 1994-08-25 Lerch Karl Dieter Set for treating vascular deformities
US5715817A (en) 1993-06-29 1998-02-10 C.R. Bard, Inc. Bidirectional steering catheter
US5549565A (en) 1993-07-13 1996-08-27 Symbiosis Corporation Reusable surgical trocar with disposable valve assembly
US5527321A (en) 1993-07-14 1996-06-18 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5391182A (en) 1993-08-03 1995-02-21 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5507755A (en) 1993-08-03 1996-04-16 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5450860A (en) 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
US5423858A (en) 1993-09-30 1995-06-13 United States Surgical Corporation Septoplasty fasteners and device for applying same
US5472044A (en) 1993-10-20 1995-12-05 E. I. Du Pont De Nemours And Company Method and apparatus for interacting a gas and liquid on a convoluted array of tubes
US5496333A (en) 1993-10-20 1996-03-05 Applied Medical Resources Corporation Laparoscopic surgical clamp
US5423857A (en) 1993-11-02 1995-06-13 Ethicon, Inc. Three piece surgical staple
US5640955A (en) 1995-02-14 1997-06-24 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US6203531B1 (en) 1993-11-03 2001-03-20 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
GB9400739D0 (en) 1994-01-15 1994-03-16 Femcare Ltd Medical clip
US5741280A (en) 1994-01-18 1998-04-21 Coral Medical Knot tying method and apparatus
US5359994A (en) 1994-01-24 1994-11-01 Welch Allyn, Inc. Proximal steering cable adjustment
US5501698A (en) 1994-02-14 1996-03-26 Heartport, Inc. Endoscopic microsurgical instruments and methods
US5431666A (en) 1994-02-24 1995-07-11 Lasersurge, Inc. Surgical suture instrument
CA2141911C (en) 1994-02-24 2002-04-23 Jude S. Sauer Surgical crimping device and method of use
US5476470A (en) 1994-04-15 1995-12-19 Fitzgibbons, Jr.; Robert J. Trocar site suturing device
AU697233B2 (en) 1994-04-21 1998-10-01 Medchem Products, Inc. Skin stretching device
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
DE4418766C2 (en) 1994-05-28 1996-11-07 Karlsruhe Forschzent Surgical thread for creating a surgical suture
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5593435A (en) 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US5593424A (en) 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5601576A (en) 1994-08-10 1997-02-11 Heartport Inc. Surgical knot pusher and method of use
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5496332A (en) 1994-10-20 1996-03-05 Cordis Corporation Wound closure apparatus and method for its use
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5814029A (en) 1994-11-03 1998-09-29 Daig Corporation Guiding introducer system for use in ablation and mapping procedures in the left ventricle
US5487746A (en) 1994-11-23 1996-01-30 Yu; George W. Surgical clip having a longitudinal opening through which clamped tissue protrudes
US5690671A (en) 1994-12-13 1997-11-25 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5643295A (en) 1994-12-29 1997-07-01 Yoon; Inbae Methods and apparatus for suturing tissue
US5609598A (en) 1994-12-30 1997-03-11 Vnus Medical Technologies, Inc. Method and apparatus for minimally invasive treatment of chronic venous insufficiency
US6540755B2 (en) 1995-02-14 2003-04-01 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
JPH08231444A (en) 1995-02-28 1996-09-10 Daikin Ind Ltd Production of 1,1,3,3-pentafluoropropane
US5695505A (en) 1995-03-09 1997-12-09 Yoon; Inbae Multifunctional spring clips and cartridges and applicators therefor
US5571085A (en) 1995-03-24 1996-11-05 Electro-Catheter Corporation Steerable open lumen catheter
ATE269742T1 (en) 1995-03-30 2004-07-15 Heartport Inc SYSTEM FOR PERFORMING ENDOVASCULAR PROCEDURES
US5849005A (en) 1995-06-07 1998-12-15 Heartport, Inc. Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
US5626607A (en) 1995-04-03 1997-05-06 Heartport, Inc. Clamp assembly and method of use
US5639277A (en) 1995-04-28 1997-06-17 Target Therapeutics, Inc. Embolic coils with offset helical and twisted helical shapes
US5540705A (en) 1995-05-19 1996-07-30 Suturtek, Inc. Suturing instrument with thread management
US5562678A (en) 1995-06-02 1996-10-08 Cook Pacemaker Corporation Needle's eye snare
US5846253A (en) 1995-07-14 1998-12-08 C. R. Bard, Inc. Wound closure apparatus and method
US6562052B2 (en) 1995-08-24 2003-05-13 Sutura, Inc. Suturing device and method
AU6858896A (en) 1995-08-24 1997-03-19 Nobles-Lai Engineering, Inc. Method and apparatus for suturing
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
DE19534112A1 (en) 1995-09-14 1997-03-20 Wolf Gmbh Richard Endoscopic instrument with steerable distal end
US5722421A (en) 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
US5810876A (en) 1995-10-03 1998-09-22 Akos Biomedical, Inc. Flexible forceps device
US5634932A (en) 1995-10-10 1997-06-03 Industrial & Scientific Designs, Ltd. Cantilever aneurysm clip system
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
JP3293118B2 (en) 1995-10-18 2002-06-17 ニプロ株式会社 Catheter assembly for endocardial suture surgery
WO1997016119A1 (en) 1995-10-30 1997-05-09 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5855271A (en) 1995-11-03 1999-01-05 T. K. F., Inc. Noise and wear reducing apparatus for endless conveyors
US5704898A (en) 1995-11-17 1998-01-06 Circon Corporation Articulation mechanism for an endoscope
US5823955A (en) 1995-11-20 1998-10-20 Medtronic Cardiorhythm Atrioventricular valve tissue ablation catheter and method
JP2963037B2 (en) 1995-11-30 1999-10-12 三洋電機株式会社 Disk recording and playback device
US5662704A (en) 1995-12-01 1997-09-02 Medtronic, Inc. Physiologic mitral valve bioprosthesis
US5725556A (en) 1995-12-15 1998-03-10 M & R Medical, Inc. Suture locking apparatus
US5749828A (en) 1995-12-22 1998-05-12 Hewlett-Packard Company Bending neck for use with invasive medical devices
US5810853A (en) 1996-01-16 1998-09-22 Yoon; Inbae Knotting element for use in suturing anatomical tissue and methods therefor
US6015417A (en) 1996-01-25 2000-01-18 Reynolds, Jr.; Walker Surgical fastener
US6182664B1 (en) 1996-02-19 2001-02-06 Edwards Lifesciences Corporation Minimally invasive cardiac valve surgery procedure
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US5885258A (en) 1996-02-23 1999-03-23 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US6162233A (en) 1996-02-23 2000-12-19 Cardiovascular Technologies, Llc Wire fasteners for use in minimally invasive surgery and means and methods for handling those fasteners
US5879307A (en) 1996-03-15 1999-03-09 Pulse Metric, Inc. Non-invasive method and apparatus for diagnosing and monitoring aortic valve abnormalities, such a aortic regurgitation
JP3661267B2 (en) 1996-03-18 2005-06-15 フジノン株式会社 Endoscope flexible tube
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5769859A (en) 1996-04-09 1998-06-23 Dorsey; William R. Umbilical scissors
US5738649A (en) 1996-04-16 1998-04-14 Cardeon Corporation Peripheral entry biventricular catheter system for providing access to the heart for cardiopulmonary surgery or for prolonged circulatory support of the heart
US6110145A (en) 1996-04-16 2000-08-29 Cardeon Corporation Catheter system for surgical access and circulatory support of the heart
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US5662681A (en) 1996-04-23 1997-09-02 Kensey Nash Corporation Self locking closure for sealing percutaneous punctures
US5706824A (en) 1996-05-20 1998-01-13 Symbiosis Corporation Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed
US5827237A (en) 1996-06-17 1998-10-27 Cardeon Corporation Dual lumen catheter with controlled antegrade and retrograde fluid flow
EP0914064A2 (en) 1996-06-17 1999-05-12 Cardeon Corporation Externally valved catheter for controlled antegrade and retrograde fluid flow
US5833671A (en) 1996-06-17 1998-11-10 Cardeon Corporation Triple lumen catheter with controllable antegrade and retrograde fluid flow
US6059757A (en) 1996-06-18 2000-05-09 Cardeon Single lumen catheter with controlled antegrade and retrograde flow
US6001796A (en) 1996-07-03 1999-12-14 Alliedsignal Inc. Azeotrope-like compositions of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride
US5820592A (en) 1996-07-16 1998-10-13 Hammerslag; Gary R. Angiographic and/or guide catheter
US5782845A (en) 1996-07-31 1998-07-21 Shewchuk; Dwight Trocar site suturing device
US5820631A (en) 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
US6068628A (en) 1996-08-20 2000-05-30 Oratec Interventions, Inc. Apparatus for treating chondromalacia
WO1998007375A1 (en) 1996-08-22 1998-02-26 The Trustees Of Columbia University Endovascular flexible stapling device
US5713911A (en) 1996-10-03 1998-02-03 United States Surgical Corporation Surgical clip
US5861003A (en) 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
CA2273149A1 (en) 1996-12-02 1998-06-11 Angiotrax, Inc. Apparatus and methods for percutaneously performing surgery
IL119911A (en) 1996-12-25 2001-03-19 Niti Alloys Tech Ltd Surgical clip
US6406420B1 (en) 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6077214A (en) 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5928224A (en) 1997-01-24 1999-07-27 Hearten Medical, Inc. Device for the treatment of damaged heart valve leaflets and methods of using the device
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US6056769A (en) 1997-02-11 2000-05-02 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5972020A (en) 1997-02-14 1999-10-26 Cardiothoracic Systems, Inc. Surgical instrument for cardiac valve repair on the beating heart
US5989284A (en) 1997-02-18 1999-11-23 Hearten Medical, Inc. Method and device for soft tissue modification
US5885271A (en) 1997-03-14 1999-03-23 Millennium Cardiac Strategies, Inc. Device for regional immobilization of a compliant body
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US5876399A (en) 1997-05-28 1999-03-02 Irvine Biomedical, Inc. Catheter system and methods thereof
US5810849A (en) 1997-06-09 1998-09-22 Cardiologics, L.L.C. Device and method for suturing blood vessels and the like
AU8265598A (en) 1997-06-27 1999-01-19 Trustees Of Columbia University In The City Of New York, The Method and apparatus for circulatory valve repair
IT1293068B1 (en) 1997-07-01 1999-02-11 Kempro Italiana S R L PROCEDURE FOR OBTAINING A HIGH CONCENTRATION COLLOIDAL SILICA SUSPENSION AND PRODUCT SO OBTAINED
US5944733A (en) 1997-07-14 1999-08-31 Target Therapeutics, Inc. Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member
US5910148A (en) 1997-08-06 1999-06-08 Mitek Surgical Products, Inc. Suture retrograder
DE69833665T2 (en) 1997-08-08 2006-11-09 Duke University COMPOSITIONS FOR SIMPLIFYING SURGICAL PROCEDURES
US6088889A (en) 1997-09-03 2000-07-18 Edward Elson Clamp operable as a hemostasis valve
EP1009332A2 (en) 1997-09-04 2000-06-21 Endocore, Inc. Artificial chordae replacement
US6123699A (en) 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US5954732A (en) 1997-09-10 1999-09-21 Hart; Charles C. Suturing apparatus and method
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6019722A (en) 1997-09-17 2000-02-01 Guidant Corporation Device to permit offpump beating heart coronary bypass surgery
JPH1189937A (en) 1997-09-19 1999-04-06 Atsuo Mori Catheter for mitral regurgitation test
US6063106A (en) 1997-09-19 2000-05-16 Gibson; William Frits Stewart Surgical spacer
US5916147A (en) 1997-09-22 1999-06-29 Boury; Harb N. Selectively manipulable catheter
US6086600A (en) 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US6187003B1 (en) 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6007552A (en) 1997-12-18 1999-12-28 Minumys Vascular clamps and surgical retractors with directional filaments for tissue engagement
JP4187411B2 (en) 1998-01-30 2008-11-26 セント ジュード メディカル エーティージー, インコーポレイテッド Device for use in closing a septal defect
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6126658A (en) 1998-02-19 2000-10-03 Baker; James A. Radiofrequency medical instrument and methods for vessel welding
US7214230B2 (en) 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US6190408B1 (en) 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
DE19810696C1 (en) 1998-03-12 1999-05-06 Karlsruhe Forschzent Gripping arrangement for combined gripping and lithotropy instrument
US6099553A (en) 1998-05-21 2000-08-08 Applied Medical Resources Corporation Suture clinch
US6165164A (en) 1999-03-29 2000-12-26 Cordis Corporation Catheter for injecting therapeutic and diagnostic agents
US6143024A (en) 1998-06-04 2000-11-07 Sulzer Carbomedics Inc. Annuloplasty ring having flexible anterior portion
US6599311B1 (en) 1998-06-05 2003-07-29 Broncus Technologies, Inc. Method and assembly for lung volume reduction
US6283962B1 (en) 1998-06-08 2001-09-04 Quantum Therapeutics Corp. Device for valvular annulus treatment and methods thereof
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6630001B2 (en) 1998-06-24 2003-10-07 International Heart Institute Of Montana Foundation Compliant dehyrated tissue for implantation and process of making the same
US6066146A (en) 1998-06-24 2000-05-23 Carroll; Brendan J. Laparascopic incision closure device
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
ATE420595T1 (en) 1998-07-08 2009-01-15 Axya Medical Inc DEVICES FOR SECURING SUTURE MATERIAL AND TIES WITHOUT KNOTS
US7569062B1 (en) 1998-07-15 2009-08-04 St. Jude Medical, Inc. Mitral and tricuspid valve repair
WO2000003651A1 (en) 1998-07-15 2000-01-27 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of vascular calcified lesions
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6547821B1 (en) 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6159240A (en) 1998-08-31 2000-12-12 Medtronic, Inc. Rigid annuloplasty device that becomes compliant after implantation
US6267781B1 (en) 1998-08-31 2001-07-31 Quantum Therapeutics Corp. Medical device and methods for treating valvular annulus
WO2000012168A1 (en) 1998-09-01 2000-03-09 Cardeon Corporation System and methods for catheter procedures with circulatory support in high risk patients
US6203553B1 (en) 1999-09-08 2001-03-20 United States Surgical Stapling apparatus and method for heart valve replacement
US6355030B1 (en) 1998-09-25 2002-03-12 Cardiothoracic Systems, Inc. Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
US6368326B1 (en) 1998-09-28 2002-04-09 Daos Limited Internal cord fixation device
US6685627B2 (en) 1998-10-09 2004-02-03 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6319250B1 (en) 1998-11-23 2001-11-20 C.R. Bard, Inc Tricuspid annular grasp catheter
US6210419B1 (en) 1998-12-18 2001-04-03 Aesculap Ag & Co. Kg Surgical clip
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
ATE465693T1 (en) 1999-01-27 2010-05-15 Medtronic Inc DEVICE FOR HEART VALVE PROCEDURES
US6701929B2 (en) 1999-03-03 2004-03-09 Hany Hussein Device and method for treatment of congestive heart failure
US6136010A (en) 1999-03-04 2000-10-24 Perclose, Inc. Articulating suturing device and method
US6267746B1 (en) 1999-03-22 2001-07-31 Biosense Webster, Inc. Multi-directional steerable catheters and control handles
JP3425387B2 (en) 1999-03-29 2003-07-14 有限会社タカタデザインラボ Fixture for goods
AU4055700A (en) 1999-04-01 2000-10-23 David B. Bjerken Vacuum-assisted remote suture placement system
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US6629534B1 (en) 1999-04-09 2003-10-07 Evalve, Inc. Methods and apparatus for cardiac valve repair
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US6860179B2 (en) 1999-05-03 2005-03-01 Irwin Industrial Tool Company Clamp device
US6709382B1 (en) 1999-05-04 2004-03-23 Simon Marcus Horner Cardiac assist method and apparatus
US6206907B1 (en) 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
CA2373636A1 (en) 1999-05-11 2000-11-16 Craig Berky Surgical clamp devices and methods especially useful in cardiac surgery
US6165204A (en) 1999-06-11 2000-12-26 Scion International, Inc. Shaped suture clip, appliance and method therefor
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
WO2001000114A1 (en) 1999-06-25 2001-01-04 Vahid Saadat Apparatus and methods for treating tissue
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6997951B2 (en) 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7192442B2 (en) 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
DE19932565A1 (en) 1999-07-13 2001-01-18 Henkel Kgaa Agent for dyeing keratin fibers
US20030109770A1 (en) 1999-08-09 2003-06-12 Sharkey Hugh R. Device with a porous membrane for improving cardiac function
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6306133B1 (en) 1999-10-02 2001-10-23 Quantum Cor Incorporated Ablation catheter system and methods for repairing a valvular annulus
US6485489B2 (en) 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US20030069570A1 (en) 1999-10-02 2003-04-10 Witzel Thomas H. Methods for repairing mitral valve annulus percutaneously
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
WO2001026588A2 (en) 1999-10-13 2001-04-19 Yeung Jeffrey E Methods and devices for treating urinary incontinence or obstruction
US6312447B1 (en) 1999-10-13 2001-11-06 The General Hospital Corporation Devices and methods for percutaneous mitral valve repair
US6352708B1 (en) 1999-10-14 2002-03-05 The International Heart Institute Of Montana Foundation Solution and method for treating autologous tissue for implant operation
US6491511B1 (en) 1999-10-14 2002-12-10 The International Heart Institute Of Montana Foundation Mold to form stent-less replacement heart valves from biological membranes
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
WO2001028455A1 (en) 1999-10-21 2001-04-26 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6626930B1 (en) 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
EP1674040A3 (en) 1999-10-21 2007-09-19 Edwards Lifesciences Corporation Minimally invasive mitral valve repair
US6533767B2 (en) 2000-03-20 2003-03-18 Corazon Technologies, Inc. Methods for enhancing fluid flow through an obstructed vascular site, and systems and kits for use in practicing the same
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6387104B1 (en) 1999-11-12 2002-05-14 Scimed Life Systems, Inc. Method and apparatus for endoscopic repair of the lower esophageal sphincter
US6641592B1 (en) 1999-11-19 2003-11-04 Lsi Solutions, Inc. System for wound closure
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
EP1239795B1 (en) 1999-12-23 2006-12-06 Edwards Lifesciences Corporation Enhanced visualization of medical implants
CN1243520C (en) 2000-01-14 2006-03-01 维亚科公司 Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US20010010005A1 (en) 2000-01-24 2001-07-26 Kammerer Gene W. Meniscal repair device
US7507252B2 (en) 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
EP1251803B1 (en) 2000-02-02 2005-06-01 Robert V. Snyders Artificial heart valve
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
JP2004500206A (en) 2000-03-03 2004-01-08 シー・アール・バード・インク Suture clip, supply device and method
TW465542U (en) 2000-03-14 2001-11-21 Tange Seiki Taichung Co Ltd Improved structure for bearing alignment of concealed operation head joint of bicycle
AU2001245468A1 (en) 2000-03-20 2001-10-03 Corazon Technologies, Inc. Methods and systems for enhancing fluid flow through an obstructed vascular site
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6530897B2 (en) 2000-04-28 2003-03-11 Mahase Nardeo Steerable medical catheter with bendable encapsulated metal spring tip fused to polymeric shaft
US7083628B2 (en) 2002-09-03 2006-08-01 Edwards Lifesciences Corporation Single catheter mitral valve repair device and method for use
US6743239B1 (en) 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
US6902522B1 (en) 2000-06-12 2005-06-07 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6730016B1 (en) 2000-06-12 2004-05-04 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6840246B2 (en) 2000-06-20 2005-01-11 University Of Maryland, Baltimore Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart
US6358277B1 (en) 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
WO2002000099A2 (en) 2000-06-23 2002-01-03 Viacor Incorporated Automated annular plication for mitral valve repair
WO2002001999A2 (en) 2000-06-30 2002-01-10 Viacor, Incorporated Method and apparatus for performing a procedure on a cardiac valve
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
SE0002878D0 (en) 2000-08-11 2000-08-11 Kimblad Ola Device and method of treatment of atrioventricular regurgitation
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
AU2001287144A1 (en) 2000-09-07 2002-03-22 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20020035381A1 (en) 2000-09-18 2002-03-21 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
US20050228422A1 (en) 2002-11-26 2005-10-13 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8956407B2 (en) 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US7033374B2 (en) 2000-09-26 2006-04-25 Microvention, Inc. Microcoil vaso-occlusive device with multi-axis secondary configuration
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6616684B1 (en) 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6918917B1 (en) 2000-10-10 2005-07-19 Medtronic, Inc. Minimally invasive annuloplasty procedure and apparatus
US6533796B1 (en) 2000-10-11 2003-03-18 Lsi Solutions, Inc. Loader for surgical suturing instrument
EP1326672A4 (en) 2000-10-18 2007-03-07 Nmt Medical Inc Over-the-wire interlock attachment/detachment mechanism
US6447524B1 (en) 2000-10-19 2002-09-10 Ethicon Endo-Surgery, Inc. Fastener for hernia mesh fixation
US6508828B1 (en) 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US20020077687A1 (en) 2000-12-14 2002-06-20 Ahn Samuel S. Catheter assembly for treating ischemic tissue
US7591826B2 (en) 2000-12-28 2009-09-22 Cardiac Dimensions, Inc. Device implantable in the coronary sinus to provide mitral valve therapy
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
CA2433881C (en) 2001-01-30 2009-08-18 Randall T. Lashinski Medical system and method for remodeling an extravascular tissue structure
AU2002243851A1 (en) 2001-02-05 2002-08-19 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6656221B2 (en) 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
JP2001239212A (en) 2001-02-06 2001-09-04 Matsushita Electric Ind Co Ltd Vibration generating motor
US20020107531A1 (en) 2001-02-06 2002-08-08 Schreck Stefan G. Method and system for tissue repair using dual catheters
US6723109B2 (en) 2001-02-07 2004-04-20 Karl Storz Endoscopy-America, Inc. Deployable surgical clamp with delivery/retrieval device and actuator
US7842050B2 (en) 2001-02-26 2010-11-30 Diduch David R Suture passing devices
US6585761B2 (en) 2001-03-01 2003-07-01 Syde A. Taheri Prosthetic vein valve and method
JP4295925B2 (en) 2001-03-01 2009-07-15 Hoya株式会社 Bipolar high-frequency treatment instrument for endoscope
JP4827304B2 (en) 2001-03-14 2011-11-30 オリンパス株式会社 Biological tissue clip device
DE10116168A1 (en) 2001-03-31 2001-11-29 Joachim Heinzl Clip has gripper arms operated by articulated lever mechanism and joined by spacer piece, tie rod, pulley cable, locking mechanism with cogging and pawl
US20060069429A1 (en) 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US20060293701A1 (en) 2001-05-02 2006-12-28 Medtronic, Inc. Self-closing surgical clip for tissue
US6858039B2 (en) 2002-07-08 2005-02-22 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
WO2002092148A2 (en) 2001-05-17 2002-11-21 The Regents Of The University Of California Retrieval catheter
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
DE10129525A1 (en) 2001-06-21 2003-01-09 Basf Ag Multimodal polyamides, polyesters and polyester amides
US20030078654A1 (en) 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6726716B2 (en) 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
DE60225303T2 (en) 2001-08-31 2009-02-26 Mitral Interventions, Redwood City DEVICE FOR A HEART LAPSE REPAIR
US20030050693A1 (en) 2001-09-10 2003-03-13 Quijano Rodolfo C. Minimally invasive delivery system for annuloplasty rings
FR2829922B1 (en) 2001-09-21 2004-06-18 Sofradim Production COMPLETE AND UNIVERSAL IMPLANT FOR THE REPAIR OF HERNIA BY ANTERIOR
AU2002362442B2 (en) 2001-10-01 2008-08-07 Ample Medical, Inc. Methods and devices for heart valve treatments
US7144363B2 (en) 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US7052487B2 (en) 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
US6949122B2 (en) 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6805710B2 (en) 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US6575971B2 (en) 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
AU2002228753A1 (en) 2001-12-04 2003-06-17 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template system
US6908478B2 (en) 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6978176B2 (en) 2001-12-08 2005-12-20 Lattouf Omar M Treatment for patient with congestive heart failure
US6740107B2 (en) 2001-12-19 2004-05-25 Trimedyne, Inc. Device for treatment of atrioventricular valve regurgitation
US20030120341A1 (en) 2001-12-21 2003-06-26 Hani Shennib Devices and methods of repairing cardiac valves
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
WO2003105670A2 (en) 2002-01-10 2003-12-24 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7150750B2 (en) 2002-01-10 2006-12-19 Boston Scientific Scimed, Inc. Method and device for endoscopic suturing
US7125420B2 (en) 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US20030170589A1 (en) 2002-02-27 2003-09-11 Novak Eugene J. Dental handpiece with improved grease retention
DE60326214D1 (en) 2002-03-01 2009-04-02 Siemens Healthcare Diagnostics ASSAYS FOR THE MONITORING OF CANCER PATIENTS BASED ON THE MIRRORS OF ANALYTE COMPONENTS OF THE PLASMINOGEN ACTIVATOR SYSTEM IN SAMPLES FROM BODY FLUIDS
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7004958B2 (en) 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US7094244B2 (en) 2002-03-26 2006-08-22 Edwards Lifesciences Corporation Sequential heart valve leaflet repair device and method of use
US7588585B2 (en) 2002-03-26 2009-09-15 Novare Surgical Systems, Inc. Handleless clamping device
US7335221B2 (en) 2002-04-12 2008-02-26 Ethicon, Inc. Suture anchoring and tensioning device and method for using same
US7497822B1 (en) 2003-04-10 2009-03-03 Torax Medical, Inc. Stomach reduction methods and apparatus
US20030225423A1 (en) 2002-05-30 2003-12-04 Huitema Thomas W. Surgical clip
AU2003247526A1 (en) 2002-06-12 2003-12-31 Mitral Interventions, Inc. Method and apparatus for tissue connection
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
CA2494758C (en) 2002-08-01 2013-03-19 The General Hospital Corporation Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
US8172856B2 (en) 2002-08-02 2012-05-08 Cedars-Sinai Medical Center Methods and apparatus for atrioventricular valve repair
AU2003262683A1 (en) 2002-08-13 2004-02-25 The General Hospital Corporation Cardiac devices and methods for percutaneous repair of atrioventricular valves
WO2004019811A2 (en) 2002-08-28 2004-03-11 Heart Leaflet Technologies Method and device for treating diseased valve
RU2005108673A (en) 2002-08-29 2006-01-20 Митралсолюшнз, Инк. (Us) IMPLANTED DEVICES FOR REGULATING THE INTERNAL CIRCLE OF ANATOMIC HOLE OR LIGHT
US7734316B2 (en) 2002-08-30 2010-06-08 Motorola, Inc. User-specified outputs in mobile wireless communication devices and methods therefor
AU2003277118A1 (en) 2002-10-01 2004-04-23 Ample Medical, Inc. Devices for retaining native heart valve leaflet
JP2006501033A (en) 2002-10-01 2006-01-12 アンプル メディカル, インコーポレイテッド Device, system and method for reshaping a heart valve annulus
US20040133062A1 (en) 2002-10-11 2004-07-08 Suresh Pai Minimally invasive cardiac force transfer structures
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US8460371B2 (en) 2002-10-21 2013-06-11 Mitralign, Inc. Method and apparatus for performing catheter-based annuloplasty using local plications
DE10249415B3 (en) 2002-10-23 2004-03-25 Siemens Ag Motor vehicle has occupant medical support system with system controlling and/or interrogating data processor, arrangement for requesting person to carry out action and/or identification arrangement
JP2006503654A (en) 2002-10-24 2006-02-02 ボストン サイエンティフィック リミテッド Venous valve device and method
US20040097979A1 (en) 2002-11-14 2004-05-20 Oleg Svanidze Aortic valve implantation device
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
AU2003290979A1 (en) 2002-11-15 2004-06-15 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Method and device for catheter-based repair of cardiac valves
US20040133240A1 (en) 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US20040186566A1 (en) 2003-03-18 2004-09-23 Hindrichs Paul J. Body tissue remodeling methods and apparatus
US20040210240A1 (en) 2003-04-21 2004-10-21 Sean Saint Method and repair device for treating mitral valve insufficiency
US20040220593A1 (en) 2003-05-01 2004-11-04 Secant Medical, Llc Restraining clip for mitral valve repair
US20040220657A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US10646229B2 (en) * 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
WO2004112651A2 (en) 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Chordae tendinae girdle
JP2007535335A (en) 2003-06-20 2007-12-06 メドトロニック ヴァスキュラー インコーポレイテッド Annulus reduction system
US20050004665A1 (en) 2003-07-02 2005-01-06 Lishan Aklog Annuloplasty rings and methods for repairing cardiac valves
WO2005002424A2 (en) 2003-07-02 2005-01-13 Flexcor, Inc. Annuloplasty rings and methods for repairing cardiac valves
WO2005018507A2 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
DE10335648A1 (en) 2003-07-30 2005-03-03 Eberhard-Karls-Universität Tübingen Closing plug for an opening in a wall of a vessel or hollow organ
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20060167474A1 (en) 2003-09-15 2006-07-27 Medtronic Vascular, Inc. Apparatus and method for elongation of a papillary muscle
WO2005027797A1 (en) 2003-09-23 2005-03-31 Ersin Erek A mitral web apparatus for mitral valve insufficiencies
JP2007510525A (en) 2003-11-12 2007-04-26 メドトロニック ヴァスキュラー インコーポレイテッド Heart annulus reduction system
US20050159810A1 (en) 2004-01-15 2005-07-21 Farzan Filsoufi Devices and methods for repairing cardiac valves
WO2005069850A2 (en) 2004-01-15 2005-08-04 Macoviak John A Trestle heart valve replacement
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US7641686B2 (en) 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
EP1750592B1 (en) 2004-05-14 2016-12-28 Evalve, Inc. Locking mechanisms for fixation devices
US7601117B2 (en) 2004-06-30 2009-10-13 Ethicon, Inc. Systems and methods for assisting cardiac valve coaptation
US7556632B2 (en) 2004-07-09 2009-07-07 Reza Zadno Device and method for repairing tissue
US7402134B2 (en) 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
CA2848445C (en) 2004-09-14 2016-10-25 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US7635329B2 (en) 2004-09-27 2009-12-22 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060089711A1 (en) 2004-10-27 2006-04-27 Medtronic Vascular, Inc. Multifilament anchor for reducing a compass of a lumen or structure in mammalian body
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
EP1865887A1 (en) 2005-03-25 2007-12-19 Ample Medical, Inc. Device, systems, and methods for reshaping a heart valve annulus
US20060241746A1 (en) 2005-04-21 2006-10-26 Emanuel Shaoulian Magnetic implants and methods for reshaping tissue
US7753934B2 (en) 2005-04-22 2010-07-13 Wilk Patent, Llc Medical closure method and associated device
US7645286B2 (en) * 2005-05-20 2010-01-12 Neotract, Inc. Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures
CA2614271C (en) 2005-07-14 2014-02-25 Idx Medical, Ltd. Apparatus and methods for occluding a hollow anatomical structure
US20070123934A1 (en) 2005-09-26 2007-05-31 Whisenant Brian K Delivery system for patent foramen ovale closure device
WO2007078772A1 (en) 2005-12-15 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant valve
US8323338B2 (en) 2005-12-22 2012-12-04 Smith & Nephew, Inc. Tissue graft fixation
US7892244B2 (en) 2006-03-09 2011-02-22 Niti Surgical Solutions Ltd. Surgical compression clips
US20080039935A1 (en) 2006-08-14 2008-02-14 Wally Buch Methods and apparatus for mitral valve repair
US20090248071A1 (en) * 2008-03-07 2009-10-01 Alure Medical , Inc. Minimally invasive tissue support
US9192471B2 (en) 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
US7533790B1 (en) 2007-03-08 2009-05-19 Cardica, Inc. Surgical stapler
DE202009019029U1 (en) 2008-06-19 2015-08-06 Boston Scientific Scimed, Inc. Hemostatic clamping device
CN202821715U (en) 2009-09-17 2013-03-27 雅培心血管系统公司 Device for replacing chordae tendineae
US10076327B2 (en) * 2010-09-14 2018-09-18 Evalve, Inc. Flexible actuator mandrel for tissue apposition systems
US20120296349A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Percutaneous Mitral Annulus Mini-Plication
US9039715B2 (en) 2011-07-11 2015-05-26 Great Aspirations Ltd. Apparatus for entrapping and extracting objects from body cavities
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8945177B2 (en) * 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9011468B2 (en) 2011-09-13 2015-04-21 Abbott Cardiovascular Systems Inc. Independent gripper
US8870947B2 (en) 2011-09-16 2014-10-28 W.L. Gore & Associates, Inc. Medical device fixation anchors
FR2985019B1 (en) 2011-12-21 2014-01-24 Irsn SELF-CALIBRATION FLUXMETER
GB2500432A (en) 2012-03-22 2013-09-25 Stephen Brecker Replacement heart valve with resiliently deformable securing means
CN104023654B (en) 2012-07-20 2017-05-17 奥林巴斯株式会社 Hemostatic clip
WO2014031599A1 (en) 2012-08-23 2014-02-27 Covidien Lp Tissue fixation device
US9510946B2 (en) 2012-09-06 2016-12-06 Edwards Lifesciences Corporation Heart valve sealing devices
US10105221B2 (en) 2013-03-07 2018-10-23 Cedars-Sinai Medical Center Method and apparatus for percutaneous delivery and deployment of a cardiovascular prosthesis
US9364238B2 (en) 2013-04-16 2016-06-14 Ethicon Endo-Surgery, Inc. Method and apparatus for joining hollow organ sections in anastomosis
US10123805B2 (en) 2013-06-26 2018-11-13 W. L. Gore & Associates, Inc. Space filling devices
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
US9572666B2 (en) 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
US10524912B2 (en) * 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
US10667815B2 (en) * 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10238495B2 (en) * 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US10548614B2 (en) 2016-11-29 2020-02-04 Evalve, Inc. Tricuspid valve repair system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103162A2 (en) 1999-04-09 2004-12-02 Evalve, Inc. Fixation devices, systems and methods for engaging tissue

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10893941B2 (en) 2015-04-02 2021-01-19 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
US11096691B2 (en) 2015-07-21 2021-08-24 Evalve, Inc. Tissue grasping devices and related methods
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US11759209B2 (en) 2015-07-21 2023-09-19 Evalve, Inc. Tissue grasping devices and related methods
US11185413B2 (en) 2016-07-13 2021-11-30 Medfree, Inc. Tissue grasping devices and related methods
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US11957358B2 (en) 2016-12-08 2024-04-16 Evalve, Inc. Adjustable arm device for grasping tissues
WO2019143726A1 (en) * 2018-01-16 2019-07-25 Medfree, Inc. Tissue grasping devices and related methods
US11723769B2 (en) 2018-01-16 2023-08-15 Medfree, Inc. Tissue grasping devices and related methods
WO2020011879A1 (en) 2018-07-10 2020-01-16 Syntach Ag An implantable cardiac valve improvement device, system and procedure
EP3593758A1 (en) 2018-07-10 2020-01-15 Syntach AG An implantable cardiac valve device and system
EP3878410A1 (en) 2018-07-10 2021-09-15 Syntach AG Annuloplasty device
EP4140449A2 (en) 2018-07-10 2023-03-01 Syntach AG An implantable cardiac valve system
EP4140448A1 (en) 2018-07-10 2023-03-01 Syntach AG An implantable cardiac valve system

Also Published As

Publication number Publication date
US20200281591A1 (en) 2020-09-10
WO2017015288A3 (en) 2018-03-01
US11096691B2 (en) 2021-08-24
US10667815B2 (en) 2020-06-02
US11759209B2 (en) 2023-09-19
US20210346023A1 (en) 2021-11-11
EP3324854A2 (en) 2018-05-30
CN115227450A (en) 2022-10-25
US20230371952A1 (en) 2023-11-23
US20170020521A1 (en) 2017-01-26
CN107920813B (en) 2022-05-13
CN107920813A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US11759209B2 (en) Tissue grasping devices and related methods
US20210128303A1 (en) Tissue fixation devices and methods
US11006956B2 (en) Grasping for tissue repair
US11666433B2 (en) Double orifice device for transcatheter mitral valve replacement
RU2759657C2 (en) Apparatus for sealing a cardiac valve and apparatus for delivery thereof
US20200245998A1 (en) Mitral valve fixation device removal devices and methods
EP1804686B1 (en) Fixation devices for variation in engagement of tissue
US20240074854A1 (en) Proximal Element Actuator Fixation And Release Mechanisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16741835

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016741835

Country of ref document: EP