WO2017013993A1 - 固定式等速自在継手 - Google Patents

固定式等速自在継手 Download PDF

Info

Publication number
WO2017013993A1
WO2017013993A1 PCT/JP2016/068773 JP2016068773W WO2017013993A1 WO 2017013993 A1 WO2017013993 A1 WO 2017013993A1 JP 2016068773 W JP2016068773 W JP 2016068773W WO 2017013993 A1 WO2017013993 A1 WO 2017013993A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant velocity
pocket
joint member
ball
velocity universal
Prior art date
Application number
PCT/JP2016/068773
Other languages
English (en)
French (fr)
Inventor
竜宏 後藤
智茂 小林
真 友上
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017013993A1 publication Critical patent/WO2017013993A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • F16D3/2245Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre

Definitions

  • the present invention is used in power transmission systems of automobiles, aircraft, ships, and various industrial machines. Specifically, for example, it is incorporated in a drive shaft or a propeller shaft used in an FF vehicle, a 4WD vehicle, etc.
  • the present invention relates to a fixed type constant velocity universal joint that allows only displacement.
  • the Rzeppa constant velocity universal joint as the fixed type constant velocity universal joint 1 mainly includes an outer joint member 2, an inner joint member 3, a ball 4, and a cage 5.
  • a plurality of curved track grooves 6 are formed on the spherical inner peripheral surface 8 of the outer joint member 2 at equal intervals in the circumferential direction and along the axial direction.
  • a plurality of curved track grooves 7 facing the track grooves 6 of the outer joint member 2 are formed on the spherical outer peripheral surface 9 of the inner joint member 3 at equal intervals in the circumferential direction and along the axial direction.
  • a plurality of balls 4 for transmitting torque are incorporated one by one between the track groove 6 of the outer joint member 2 and the track groove 7 of the inner joint member 3.
  • a cage 5 that holds the ball 4 is disposed between the spherical inner peripheral surface 8 of the outer joint member 2 and the spherical outer peripheral surface 9 of the inner joint member 3.
  • the outer periphery of the outer joint member 2 and the outer periphery of the shaft 12 connected to the inner joint member 3 are covered with a boot 13, and grease is enclosed as a lubricant inside the joint.
  • the centers of curvature of the spherical inner peripheral surface 8 of the outer joint member 2 and the spherical outer peripheral surface 9 of the inner joint member 3 are both formed at the center O of the joint.
  • the center of curvature A of the track groove 6 of the outer joint member 2 and the center of curvature B of the track groove 7 of the inner joint member 3 are offset by an equal distance f1 on the opposite side in the axial direction with respect to the center O of the joint. ing.
  • the fixed type constant velocity universal joint 1 is an 8-ball type Rzeppa type constant velocity universal joint. Compared with the conventional constant velocity universal joint of 6 balls, the track offset amount f1 is reduced and the number of balls is increased. In addition, by reducing the diameter, the strength, load capacity and durability of the fixed constant velocity universal joint using six balls are equal to or higher than that of the fixed type. A universal joint has been realized.
  • the axial clearance (hereinafter referred to as pocket clearance) between the pocket of the cage of the fixed type constant velocity universal joint and the ball (hereinafter referred to as pocket clearance) is an intermediate fit or a tight fit as described in Patent Document 1. Set to fit. This is because when the negative clearance is excessive, smooth movement of the ball is inhibited, and when the positive clearance is excessive, abnormal noise (ball hitting sound) is generated.
  • the torque loss of the constant velocity universal joint used for the drive shaft is relatively small among the drive system parts of the automobile, and the ratio of the torque loss to the input torque has reached 1% or less. For this reason, automakers have been trying to improve efficiency from components such as transmissions that have a relatively large torque loss, but in recent years, competition for lower fuel consumption has intensified, and constant velocity universal joints are required to further reduce torque loss. It became so.
  • the present invention has been proposed in view of the problems identified in the above-described experiment, and the purpose thereof is to prevent abnormal noise (ball hitting sound) from occurring in a region where the operating angle of the joint is large, and to be used regularly.
  • the corner is to realize a fixed type constant velocity universal joint with low torque loss.
  • the present invention includes an outer joint member in which a plurality of curved track grooves extending in the axial direction are formed on the spherical inner peripheral surface, and an axial extension on the spherical outer peripheral surface.
  • An inner joint member formed with a plurality of curved track grooves, a plurality of torque transmission balls disposed between the track grooves of the outer joint member and the track grooves of the inner joint member corresponding thereto,
  • a retainer having a spherical outer peripheral surface and a spherical inner peripheral surface that hold the torque transmitting ball in a pocket and fit to the spherical inner peripheral surface of the outer joint member and the spherical outer peripheral surface of the inner joint member, respectively,
  • a fixed type constant velocity universal joint in which the center of curvature of the curved track groove of the joint member and the center of curvature of the curved track groove of the inner joint member are offset equidistantly in the axial direction opposite to the joint center.
  • the initial pocket clearance between the cage pocket and the torque transmitting ball is up to the normal clearance in the ball movement region at the normal angle, and is negative in the region other than the ball movement region at the normal angle. It is characterized by.
  • the concave portion can be formed by machining such as cutting or grinding, cold plastic working, electric discharge machining, or the like.
  • the initial pocket clearance can be set to the correct clearance with high processing efficiency.
  • the concave portion is formed in a band shape in the radial direction of the cage and extends from the spherical inner peripheral surface of the cage to the spherical outer peripheral surface.
  • a recessed part can be shape
  • the entire pocket side surface can be processed at one time by machining such as cutting or grinding, cold plastic processing or electric discharge machining.
  • the cross-sectional shape of the concave surface into an arc shape or comprising a tapered surface, it is possible to smooth the change in the amount of pocket clearance between the ball movement region at the normal angle and the region other than this region.
  • idling vibration can be improved by reducing the bending torque, and the movement of the ball is smoothed and the frictional force is reduced, so that heat generation during joint operation is reduced and the durability life is improved.
  • FIG. 2 is a cross-sectional view of a fixed type constant velocity universal joint taken along the line PP in FIG. 1.
  • FIG. 3 is an enlarged cross-sectional view of a ball and a track groove in FIG. 2. It is a graph which shows the knowledge about the relationship between a pocket clearance amount and a torque loss rate. It is a graph which shows the knowledge about the relationship between the amount of pocket clearances, and the audible distance of unusual sound. It is a longitudinal cross-sectional view which shows the state which the joint took the big operating angle. It is a schematic diagram explaining the force with which a ball pushes a holder
  • retainer It is a schematic diagram explaining the force with which a ball pushes a holder
  • FIG. 10b is a cross-sectional view taken along line GG in FIG. 10a. It is an enlarged view of the I section in FIG. 11a. It is the fragmentary sectional view which looked at the JJ line of FIG. 11b.
  • FIG. 10b is a longitudinal sectional view taken along line KK in FIG. 10a.
  • FIG. 10a is a cross-sectional view taken along the line GG in FIG. It is the enlarged view of the I section in FIG. 13a. It is the fragmentary sectional view which looked at the JJ line of FIG. 13b.
  • FIG. 16 is a side view taken along line MM in FIG. 15. It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which concerns on 3rd Embodiment.
  • FIGS. 1 is a partial longitudinal sectional view of a fixed type constant velocity universal joint according to the present embodiment
  • FIG. 2 is a transverse sectional view taken along the line PP in FIG. 1
  • FIG. 3 is an enlarged view of a ball and a track groove. It is a cross-sectional view.
  • the fixed type constant velocity universal joint 1 of the present embodiment is a Rzeppa type constant velocity universal joint, and as shown in FIGS. 1 and 2, an outer joint member 2, an inner joint member 3, a torque transmission ball 4 (hereinafter simply referred to as a “joint velocity constant universal joint”). Ball) and the cage 5 are the main components.
  • Eight curved track grooves 6 are formed on the spherical inner peripheral surface 8 of the outer joint member 2 at equal intervals in the circumferential direction and along the axial direction.
  • Eight curved track grooves 7 facing the track grooves 6 of the outer joint member 2 are formed on the spherical outer peripheral surface 9 of the inner joint member 3 at equal intervals in the circumferential direction and along the axial direction. .
  • Eight balls 4 for transmitting torque are incorporated one by one between the track groove 6 of the outer joint member 2 and the track groove 7 of the inner joint member 3.
  • a cage 5 that holds the ball 4 is disposed between the spherical inner peripheral surface 8 of the outer joint member 2 and the spherical outer peripheral surface 9 of the inner joint member 3.
  • the spherical outer circumferential surface 10 of the cage 5 is fitted with the spherical inner circumferential surface 8 of the outer joint member 2, and the spherical inner circumferential surface 11 of the cage 5 is fitted with the spherical outer circumferential surface 9 of the inner joint member 3.
  • the centers of curvature of the spherical inner peripheral surface 8 of the outer joint member 2 and the spherical outer peripheral surface 9 of the inner joint member 3 are respectively formed at the center O of the joint.
  • the center of curvature A of the curved track groove 6 of the outer joint member 2 and the center of curvature B of the curved track groove 7 of the inner joint member 3 are opposite to the center O of the joint in the axial direction. Is offset by the same distance f1.
  • a female spline (spline includes serration; the same applies hereinafter) 16 is formed in the inner diameter hole 17 of the inner joint member 3, and a male spline 19 formed at the end of the intermediate shaft 12 is fitted to the female spline 16. , And are connected so that torque can be transmitted.
  • the inner joint member 3 and the intermediate shaft 12 are positioned in the axial direction by a retaining ring 18.
  • the boot 13 is mounted on the outer periphery of the outer joint member 2 and the outer periphery of the shaft 12 connected to the inner joint member 3, and both ends of the boot 13 are fastened and fixed by boot bands 14 and 15. Grease as a lubricant is sealed inside the joint covered with the boot 13.
  • a stem portion 20 is integrally formed at the bottom of the mouth portion 2a of the outer joint member 2, and a male spline 21 and a screw portion for fastening are fitted to the stem portion 20 to be fitted to a hub wheel (not shown) to which a drive wheel is attached. 22 is formed.
  • FIG. 3 is an enlarged cross-sectional view of the ball and track groove of FIG.
  • the ball 4 is in angular contact with the track groove 6 of the outer joint member 2 at two points C12 and C13, and is in angular contact with the track groove 7 of the inner joint member 3 at two points C15 and C16.
  • the angle (contact angle ⁇ ) formed by a straight line passing through the ball center O5 and the contact points C12, C13, C15, C16 and a straight line passing through the ball center O5 and the joint center O is preferably set to 30 ° or more.
  • the length of the line segment connecting the center of curvature A of the track groove 6 of the outer joint member 2 and the center O5 of the ball 4, and the length of the line segment connecting the center of curvature B of the track groove 7 of the inner joint member 3 and the center O5 of the ball 4 are respectively PCR, and both are equal.
  • the overall configuration of the fixed type constant velocity universal joint 1 of the present embodiment is as described above, but the feature of the fixed type constant velocity universal joint 1 of the present embodiment is that the pocket 5a of the cage 5 and the torque transmission ball 4 are The clearance between the pockets is up to the positive clearance in the ball movement area at the normal angle, and the negative clearance is set in the area other than the ball movement area at the normal angle.
  • the working angle of the fixed type constant velocity universal joint 1 will be described.
  • the normal angle is an operating angle generated in the fixed constant velocity universal joint 1 of the front drive shaft when the steering is straight in a vehicle where two passengers are on a horizontal and flat road surface.
  • the service angle is usually determined between about 2 ° and 15 ° according to the design conditions for each vehicle type.
  • Automobiles are broadly classified into sedan passenger cars and SUVs (sports multipurpose vehicles).
  • a sedan passenger car usually has a working angle of about 3 ° to 6 °.
  • the SUV is a vehicle with a high vehicle height including a van and a pickup truck, and usually has a common angle of about 6 ° to 12 °.
  • FIG. 8 is a longitudinal sectional view of the cage 5.
  • the cage 5 is provided with eight pockets 5a in the circumferential direction defined by the pillar portion 5b.
  • the surface facing the axial direction of the pocket 5a is a pocket side surface 5a1 that holds the ball 4, and the axial dimension between the pocket side surfaces 5a1 and 5a1 is N.
  • the initial pocket clearance with the diameter (D BALL ) of the ball 4 indicated by a two-dot chain line is expressed by the following equation.
  • Initial pocket clearance Axial dimension between side surfaces 5a1, 5a1 of cage 5 N-diameter of ball (D BALL )
  • the initial pocket clearance is a positive clearance when the ball diameter (D BALL ) is smaller than the axial dimension N, and conversely a negative clearance when the ball diameter (D BALL ) is larger than the axial dimension N.
  • the initial pocket clearance between the cage pocket and the torque transmitting ball is used in the above sense.
  • the initial pocket clearance up to a negative clearance means a negative clearance including zero clearance.
  • the initial pocket clearance is simply abbreviated as pocket clearance. In FIG. 8, the pocket clearance (correct clearance) is exaggerated for easy understanding.
  • FIG. 6a shows a state where the joint takes a large operating angle ⁇ .
  • a broken line L1 is a locus of a contact point between the track groove 6 of the outer joint member 2 and the ball 4
  • a broken line L2 is a locus of a contact point between the track groove 7 of the inner joint member 3 and the ball 4.
  • the top dead center phase angle of FIG. 6a is set to 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 °, and 360 °.
  • FIG. 7 is an analysis result showing variation in pocket load during one rotation of the joint when the joint transmits rotational torque at an operating angle of 40 °.
  • the horizontal axis of FIG. 7 shows the phase angle during one rotation of the joint of any one ball 4 and pocket 5a
  • the vertical axis shows the value obtained by dividing the pocket loads P5 and P6 by the load PN in the rotational torque transmission direction. Indicates the dimensioned value.
  • the pocket load P ⁇ b> 5 is a force by which the ball 4 pushes the cage 5 toward the opening side of the outer joint member 2
  • the pocket load P ⁇ b> 6 is the ball 4 pushes the cage 5 to the back side of the outer joint member 2. It is a pushing force.
  • the phase angle surrounded by a circle in FIG. 7 indicates a portion where the direction of the pocket load is reversed, and it is considered that a ball hitting sound is generated at such a phase angle.
  • the pocket load was reversed when the phase angle was about 30 °, 60 °, and 180 °.
  • the pocket clearance was 10 ⁇ m.
  • the sliding in the radial direction within the pocket 5a of the ball 4 is caused by the track offset amount f1 (see FIG. 1).
  • 6a when the operating angle ⁇ is taken, the top dead center ball 4 moves to the opening side of the outer joint member 2, and the bottom dead center ball 4 moves to the back side of the outer joint member 2.
  • the track offset amount f1 is provided, the track grooves 6 and 7 of the outer joint member 2 and the inner joint member 3 are formed so that the groove depth is deeper on the opening side and shallower toward the back side.
  • the ball 4 that has moved to the opening side of the outer joint member 2 moves to the outer side in the radial direction
  • the ball 4 that has moved to the inner side of the outer joint member 2 moves to the inner side in the radial direction.
  • the ball 4 moves in the radial direction depending on the axial position of the track grooves 6 and 7 in contact with the ball 4.
  • FIG. 9 shows the result of the mechanism analysis.
  • the ball 4 (not shown) moves so as to draw a figure 8 on the pocket side surface 5a1, and moves larger as the operating angle increases.
  • FIG. 9 mainly shows the movement trajectory of a normal operating angle (operating angle 6 °) where torque loss is to be reduced and a high operating angle (operating angle 40 °) that may cause abnormal noise (ball hitting sound).
  • the circumferential length of the pocket 5a of the cage 5 is set based on the assembly angle (about 65 °) required for ball assembly when the joint is assembled. This built-in angle is larger than the maximum operating angle (about 47 °) in the joint operating state. Since the pocket 5a has such a length in the circumferential direction, in the case of NTN EBJ82M, the ball 4 has a working width of about 1 mm from the central portion of the pocket side surface 5a1 to the left and right at a working angle (operating angle 6 °). e with a high operating angle (operating angle 40 °) and a moving width f of about 0.3 mm.
  • the positions of the balls 4 near the phase angles of 30 °, 60 °, and 180 ° that are considered to generate abnormal noise at high operating angles are as follows:
  • the position of the ball 4 at the service angle (operating angle 6 °) that is frequently used and that is close to the inner diameter side and the outer diameter side deviated from the central portion of the pocket side surface 5a1 and for which torque loss is to be reduced most is described above.
  • the movement width e remains in the vicinity of the central portion of the pocket side surface 5a1 even if about ⁇ 1 mm is taken into account.
  • the present embodiment has been reached through a new idea of setting a preferred pocket clearance for each ball movement region at the normal angle and the high operating angle in the same pocket side surface 5a1 of the cage 5.
  • the pocket clearance between the pocket 5a (pocket side surface 5a1) of the cage 5 and the ball 4 which is a feature of the fixed type constant velocity universal joint 1 of the present embodiment is up to the normal clearance in the ball movement region at the normal angle, and A specific configuration in which a negative clearance is set in an area other than the ball movement area at the normal angle will be described with reference to FIGS.
  • Fig. 10a is a front view of the cage alone
  • Fig. 10b is a perspective view of the cage alone.
  • the retainer 5 has the spherical outer peripheral surface 10 and the spherical inner peripheral surface 11 as described above, and is provided with eight pockets 5a in the circumferential direction defined by the column portion 5b.
  • a pocket side surface 5 a 1 facing the axial direction of the pocket 5 a is a surface for holding the ball 4.
  • the present embodiment is characterized by the shape of the pocket side surface 5a1.
  • FIG. 11a is a cross-sectional view taken along the line GG in FIG. 10a
  • FIG. 11b is an enlarged view of the portion I in FIG. 11a
  • FIG. 11c is taken along the line JJ in FIG. It is a fragmentary sectional view.
  • a band-shaped recess 30 is formed in the center of the pocket side surface 5a1 in the circumferential direction.
  • the depth a of the recess 30 shown in FIG. 11c is about 5 to 30 ⁇ m. However, in FIG. 11c, the depth a of the recess 30 is exaggerated for easy understanding.
  • the dimensions are such that the ball 4 can come into contact with the bottom of the recess 30.
  • the dimensions are such that the ball 4 can contact the bottom.
  • the length b of the recess 30 shown in FIG. 11b is about 2 to 3 mm in consideration of the movement width e at the normal angle, and the width c is about 1 to 2 mm.
  • the length of the ball 4 when the joint operates at the normal angle is as follows. Includes moving trajectory. Thereby, the initial pocket clearance can be reliably set to the correct clearance in the ball movement region at the normal angle.
  • the band-shaped concave portion 30 is formed in the central portion of the pocket side surface 5a1 in the circumferential direction, the initial pocket clearance can be set with high processing efficiency.
  • the recess 30 is provided on one side of the pocket side surface 5a1 that faces the cage 5 in the axial direction. Since the recess 30 is provided, in the ball movement region at the normal angle, the dimension obtained by adding the depth a of the recess 30 to the distance between the pocket side surfaces 5a1, 5a1 is the axial dimension N shown in FIG.
  • the pocket clearance is the correct clearance. Surfaces other than the concave portion 30 of the pocket side surface 5a1 maintain the distance between the two side surfaces 5a1, 5a1 facing each other so as to obtain a pocket clearance equivalent to the conventional case, that is, a negative clearance.
  • the concave portion 30 is provided on one side of the pocket side surface 5a1, but the present invention is not limited to this, and the concave portion 30 may be provided on both side pocket side surfaces 5a1.
  • the means for forming the recess 30 may be machining such as cutting or grinding, or may be cold plastic working or electric discharge machining.
  • the length b is about 2 to 3 mm and the width c is about 1 to 2 mm as dimensions of the concave portion 30, this dimension is appropriately increased or decreased depending on the size of the joint.
  • the pocket side surface 5a1 is configured as described above, the pocket clearance is positive in the ball movement region at a frequently used service angle, and is negative in the ball movement region at a high operating angle.
  • a preferable pocket clearance can be set for each ball movement region in the normal angle and the high operating angle in the same pocket side surface 5a1.
  • idling vibration can be improved by reducing the bending torque, and the movement of the ball is smoothed and the frictional force is reduced, so that heat generation during joint operation is reduced and the durability life is improved.
  • FIGS. 12b to 12e show various forms of the recesses on the side surfaces of the pockets.
  • 12a is a vertical cross-sectional view of the cage taken along the line KK in FIG. 10a
  • FIGS. 12b to 12e are enlarged views of a portion L in FIG. 12a.
  • Recess 30 1 shown in FIG. 12b is obtained by the cross-sectional shape of the recess 30 of Figure 11b and Figure 11c described above an arcuate curvature radius r1, recesses 30 2 shown in Figure 12c, the inclined cross-sectional shape
  • the taper shape has an angle ⁇ 1. Thereby, it is possible to smoothly connect the ball movement region at the normal angle and the region other than this region.
  • Pocket side 5a1 shown in FIG. 12d is formed by the concave 30 3 in cross-section of the cage 5, the radial overall width of the pocket side surface 5a1 is formed in an arc-shaped curvature radius r2.
  • Pocket side 5a1 shown in FIG. 12e is formed by the concave 30 4 in cross-section of the cage 5, the radial overall width of the pocket side surface 5a1 is formed in the tapered surface of the inclination angle .beta.2.
  • the whole pocket side surface 5a1 can be processed at once by mechanical processing such as cutting or grinding, cold plastic processing, electric discharge processing, or the like.
  • the length in the circumferential direction of the concave surfaces 30 3 and 30 4 is set to an appropriate dimension of about 2 to 3 mm or more.
  • the depths of the concave surfaces 30 3 and 30 4 are also about 5 to 30 ⁇ m, and the pocket clearance in the ball movement area at the frequently used service angle is positive, and negative in the ball movement area at the high operating angle. .
  • the depths of the concave portions 30 1 and 30 2 and the concave surfaces 30 3 and 30 4 are as shallow as about 5 to 30 ⁇ m, the radii of curvature r1 and r2 are correspondingly large, and the inclination angle ⁇ 1 , ⁇ 2 is correspondingly small.
  • the curvature radius r3 and the inclination angle ⁇ 3 of the modified example described later are the same applies.
  • FIGS. 13a to 13c show a first modification of the concave portion on the side surface of the pocket.
  • 13a is a cross-sectional view taken along line GG in FIG. 10a
  • FIG. 13b is an enlarged view of portion I in FIG. 13a
  • FIG. 13c is a part taken along line JJ in FIG. 13b. It is sectional drawing.
  • the recess 30 5 of this modification is formed in a narrow band width in the radial direction in the center of the pocket side surface 5a1 (width of about 1 mm), the spherical outer peripheral spherical inner peripheral surface 11 of the cage 5 It extends to the surface 10.
  • the cross-sectional shape of the concave portion 30 5 is an arcuate curvature radius r3.
  • the length b of the concave portion 30 is set to about 2 to 3 mm in consideration of the movement width e (about ⁇ 1 mm) of the ball 4 at the normal angle (operating angle 6 °).
  • this modification is formed into a narrow recess 30 5 width over the radial overall width in the central portion of the pocket side surface 5a1 strip (width of about 1mm) .
  • the pocket clearance of the portion used at the normal angle is a positive clearance
  • the portion used at the high operating angle is basically a negative clearance.
  • the high operating angle balls 4 a recess 30 5 of the strip during moves it was confirmed that not lead to abnormal sound because of the narrow band width.
  • the ball movement region at the normal angle can surely reduce the torque loss rate, and it is possible to realize the fixed type constant velocity universal joint 1 that does not generate any abnormal noise even at a high operating angle.
  • the recess 30 5 of this modification can simultaneously molded during shaving pocket side 5a1, productivity is good and the manufacturing cost can be suppressed.
  • FIG. 14a to 14b show a second modification of the concave portion on the side surface of the pocket.
  • 14a is an enlarged view of a portion I in FIG. 11a
  • FIG. 14b is a partial cross-sectional view taken along line JJ in FIG. 14a.
  • the recess 30 6 of this modification similarly to the first modification is formed in a narrow band (width of about 1mm) of width in the radial direction in the center of the pocket side surface 5a1, the cage 5 spherical It extends from the inner peripheral surface 11 to the spherical outer peripheral surface 10.
  • cross-sectional shape of the recess 30 6 are formed in the tapered surface of the inclination angle .beta.3.
  • FIG. 15 is a partial longitudinal sectional view of the fixed type constant velocity universal joint
  • FIG. 16 is a side view taken along the line MM in FIG.
  • Fixed type constant velocity universal joint 1 of the present embodiment is a Tsueppa type constant velocity universal joint using six balls. Although the point that six balls are used is different from that of the first embodiment, the other configurations are the same as those of the first embodiment. Therefore, parts having the same functions are denoted by the same reference numerals (subscripts). The contents described in the first embodiment are applied mutatis mutandis, and only the main points will be described.
  • the outer joint member 2 1 a spherical inner circumferential surface 8 track grooves 6 1 six curved to 1 are formed equiangularly, and along the axial direction.
  • Six balls 4 1 for transmitting torque between the track grooves 7 1 of the outer joint member 2 1 of the track grooves 61 and the inner joint member 3 1 is incorporated one by one.
  • the cage 5 1 is arranged to hold the ball 4 1.
  • Each spherical outer peripheral surface 10 1 of the cage 5 1 The spherical inner peripheral surface 81 of the outer joint member 2 1, the cage 5 1 of the spherical inner peripheral surface 11 1 and the spherical outer peripheral surface 9 1 of the inner joint member 3 1 It is mated.
  • the outer joint member 2 1 a spherical inner peripheral surface 81 and the inner joint member 3 1 of the center of curvature of the spherical outer peripheral surface 9 1 is formed on the center O of the joint respectively.
  • the center of curvature A 1 of the outer joint member 2 1 a curved track grooves 61, the center of curvature B 1 of the inner joint member 3 1 curved track grooves 7 1, the center O of the joint On the other hand, it is offset by an equal distance f2 on the opposite side in the axial direction.
  • the cage 5 1 6 pockets 5a 1 in the circumferential direction is provided.
  • Pocket side surfaces 5a1 1 facing in the axial direction of the pocket 5a 1 is a surface for holding the balls 4 1.
  • a first embodiment and similar concave or concave and its modification is formed in a pocket side 5a1 1.
  • the pocket clearance in the ball movement region at the frequently used operating angle is a positive clearance
  • the ball movement region at a high operating angle is a negative clearance.
  • the ball moving region in common angle conventional angle can reliably reduce the torque loss ratio, and it becomes possible to realize a fixed type constant velocity universal joint 1 1 occurrence is not of noise at high operating angle.
  • FIG. 17 is a partial longitudinal sectional view of a fixed type constant velocity universal joint.
  • Fixed type constant velocity universal joint 1 2 of the present embodiment is undercut-free type constant velocity universal joint using six balls. Although it differs from the first embodiment in that six balls are used and there is no undercut in the track groove, the other configurations are the same as those in the first embodiment, so the same function is applied to parts having similar functions. Only the main points will be described using the contents described in the first embodiment mutatis mutandis.
  • Curved track grooves 6 2 of the outer joint member 2 2 is provided with a linear track groove portion 6 2S on the opening side of the outer joint member 2 2.
  • curved track grooves 7 2 of the inner joint member 3 2 is provided with a linear track groove portion 7 2S on the far side of the outer joint member 2 2.
  • Six balls 4 2 for transmitting torque between the outer joint member 2 and second track grooves 6 2 and the inner joint member 3 and second track grooves 7 2 is incorporated one by one.
  • the cage 5 2 are arranged to hold the ball 4 2.
  • the center of curvature C 2 of the cage 5 2 spherical outer peripheral surface 10 2 and the outer joint member 2 and second spherical inner peripheral surface 82, the cage 5 2 spherical inner peripheral surface 11 2 and the inner joint member 3 and second spherical outer periphery center of curvature D 2 surface 9 2 are equidistant f4 axially offset opposite to the center O of the joint.
  • the center of curvature A 2 of the outer joint member 2 and second curved track grooves 6 2, the center of curvature B 2 of the inner joint member 3 and second curved track grooves 7 2 the axis with respect to the center O of the joint Equal distance f3 is offset on the opposite side.
  • Fixed type constant velocity universal joint 1 2 of the present embodiment curved track grooves 6 2, 7 2, since each comprise straight track grooves 6 2S, 7 2S a part thereof, undercuts There will be no track grooves.
  • the fixed type constant velocity universal joint 1 2 may be due to the presence of linear track grooves 6 2S on the opening side of the outer joint member 2 2, it corresponds to a larger operating angle.
  • the cage 5 2 6 pockets 5a 2 in the circumferential direction are provided.
  • Pocket side surfaces 5a1 2 axially opposite the pockets 5a 2 is a surface for holding the ball 4 2.
  • the first embodiment and similar concave or concave and its modification is formed in a pocket side 5a1 2.
  • the pocket clearance in the ball movement region at the frequently used operating angle is a positive clearance
  • the ball movement region at a high operating angle is a negative clearance.
  • the ball moving region in common angle can reliably reduce the torque loss ratio, and it becomes possible to realize a fixed type constant velocity universal joint 1 1 occurrence is not of noise at high operating angle.
  • the operating angle generated in the fixed type constant velocity universal joint is larger than the above-mentioned normal angle.
  • joints 1, 1 1 and 1 2 the frequency of use at large operating angles such as sharply curved roads and intersections is low, so by improving joint efficiency (reducing torque loss rate) in the range of regular angles, Overall, joint efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

トルク伝達ボール4、4、4をポケット5a、5a、5aに保持すると共に外側継手部材2、2、2の球状内周面8、8、8と内側継手部材3、3、3の球状外周面9、9、9にそれぞれ嵌合する球状外周面10、10、10と球状内周面11、11、11を有する保持器5、5、5を備え、外側継手部材2、2、2の曲線状のトラック溝6、6、6の曲率中心A、A、Aと内側継手部材3、3、3の曲線状のトラック溝7、7、7の曲率中心B、B、Bが継手中心Oに対して軸方向反対側に等距離f1、f2、f3オフセットされた固定式等速自在継手1、1、1において、保持器5、5、5のポケット5a、5a、5aとトルク伝達ボール4、4、4との間の初期ポケットすきまが、常用角におけるボール移動領域で正すきまであり、かつ、常用角におけるボール移動領域以外の領域では負すきまであることを特徴とする。

Description

固定式等速自在継手
 この発明は、自動車、航空機、船舶や各種産業機械の動力伝達系に使用され、具体的には、例えば、FF車や4WD車などで使用されるドライブシャフトやプロペラシャフト等に組み込まれて、角度変位のみを許容する固定式等速自在継手に関する。
 図1を参照して、固定式等速自在継手1としてのツェッパ型等速自在継手は、外側継手部材2、内側継手部材3、ボール4および保持器5を主な構成とする。外側継手部材2の球状内周面8には複数の曲線状のトラック溝6が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面9には、外側継手部材2のトラック溝6と対向する複数の曲線状のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材2のトラック溝6と内側継手部材3のトラック溝7との間にトルクを伝達する複数のボール4が1個ずつ組み込まれている。外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の間に、ボール4を保持する保持器5が配置されている。外側継手部材2の外周と、内側継手部材3に連結されたシャフト12の外周とをブーツ13で覆い、継手内部には、潤滑剤としてグリースが封入されている。
 外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の曲率中心は、いずれも、継手の中心Oに形成されている。これに対して、外側継手部材2のトラック溝6の曲率中心Aと、内側継手部材3のトラック溝7の曲率中心Bは、継手の中心Oに対して軸方向反対側に等距離f1オフセットされている。これにより、継手が作動角をとった場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等分する平面上にボール4が常に案内され、二軸間で等速に回転トルクが伝達されることになる。
 固定式等速自在継手1は、8個ボールタイプのツェッパ型等速自在継手で、従来の6個ボールの等速自在継手に比べて、トラックオフセット量f1を小さくし、ボールの個数を増やし、かつ直径を小さくしたことにより、6個のボールを用いた固定式等速自在継手と同等以上の強度、負荷容量および耐久性を確保し、軽量・コンパクトで、トルク損失の少ない高効率な等速自在継手を実現している。このような固定式等速自在継手の保持器のポケットとボールとの間の軸方向すきま(以下、ポケットすきまという。)は、特許文献1に記載されているように、中間嵌め、もしくは、しまり嵌めに設定される。これは、負すきまが過大になるとボールの円滑な運動が阻害され、逆に正すきまが過大になると異音(ボールの打音)が発生したりするためである。
特開2006-5186号公報
 ドライブシャフトに使用する等速自在継手のトルク損失は、自動車の駆動系部品の中では比較的小さく、入力トルクに対するトルク損失の比は1%以下に達している。そのため、自動車メーカは、トランスミッションなどのトルク損失が比較的大きい部品から効率改善を図ってきたが、低燃費化競争が益々激化する昨今、等速自在継手にも更なるトルク損失の低減が求められるようになった。
 このような自動車メーカの要求に対応するため、種々のポケットすきまのサンプルを製作し、ポケットすきまを正すきまにすることで、ボールの運動が円滑になり、トルク損失率の低減につながることを、実験により確認した。一方、音響試験にて、正すきまを大きくすると、継手の作動角が大きい領域で、ボールの打音が確認された。実験による確認内容の詳細は後述する。
 本発明は、前述した実験で確認された問題点に鑑みて提案されたもので、その目的は、継手の作動角が大きい領域で異音(ボールの打音)が発生せず、かつ、常用角ではトルク損失が小さい固定式等速自在継手を実現することである。
 本発明者らは、上記の目的を達成するため、詳細は後述する以下の検証および推考活動により本発明に至った。
(1)常用角における伝達効率の検証
(2)高作動角域における異音の検証
(3)異音の発生メカニズムの解析
(4)ポケット内におけるボールの移動軌跡の解析
(5)新たな着想
 前述の目的を達成するための技術的手段として、本発明は、球状内周面に軸方向に延びる複数の曲線状のトラック溝が形成された外側継手部材と、球状外周面に軸方向に延びる複数の曲線状のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝とこれに対応する前記内側継手部材のトラック溝との間に配された複数個のトルク伝達ボールと、このトルク伝達ボールをポケットに保持すると共に前記外側継手部材の球状内周面と前記内側継手部材の球状外周面にそれぞれ嵌合する球状外周面と球状内周面を有する保持器を備え、前記外側継手部材の曲線状のトラック溝の曲率中心と前記内側継手部材の曲線状のトラック溝の曲率中心が継手中心に対して軸方向反対側に等距離オフセットされた固定式等速自在継手において、前記保持器のポケットと前記トルク伝達ボールとの間の初期ポケットすきまが、常用角におけるボール移動領域で正すきまであり、かつ、前記常用角におけるボール移動領域以外の領域では負すきまであることを特徴とする。
 上記の構成により、継手の作動角が大きい領域で異音(ボールの打音)が発生せず、かつ、常用角ではトルク損失が小さい固定式等速自在継手を実現することができる。さらに具体的な効果として、折り曲げトルクの低減によりアイドリング振動を改善でき、ボールの動きが円滑になり摩擦力が減ることにより継手作動中の発熱が低減され、耐久寿命が向上する。
 具体的には、上記のポケットの軸方向に対向する一対のポケット側面のうち、少なくとも一方のポケット側面の中央部に凹部を形成することが好ましい。これにより、常用角におけるボール移動領域で初期ポケットすきまを正すきまに確実に設定することができる。また、凹部を切削や研削などの機械加工あるいは冷間塑性加工や放電加工などで形成することができる。
 上記の凹部を保持器の周方向に帯状にすることにより、継手が常用角で作動するときのボールの移動軌跡を包含させることが好ましい。これにより、加工効率よく初期ポケットすきまを正すきまに設定することができる。
 上記の凹部を保持器の径方向に帯状にし、保持器の球状内周面から球状外周面まで延ばすことが好ましい。これにより、凹部をポケット側面のシェービング加工時に同時成形でき、生産性がよく製造コストを抑制できる。
 上記の凹部の横断面形状を円弧状にすることにより、あるいは、テーパ面から構成することにより、常用角におけるボール移動領域とこの領域以外の領域を滑らかに接続することができる。
 上記のポケット側面を、保持器の横断面において凹面で形成することにより、ポケット側面全体を、切削や研削などの機械加工あるいは冷間塑性加工や放電加工などで一度に加工することができる。
 上記の凹面の横断面形状を円弧状にすることにより、あるいは、テーパ面から構成することにより、常用角におけるボール移動領域とこの領域以外の領域のポケットすきま量の変化を滑らかにすることができる。
 本発明によれば、継手の作動角が大きい領域で異音(ボールの打音)が発生せず、かつ、常用角ではトルク損失が小さい固定式等速自在継手を実現することができる。さらに具体的な効果として、折り曲げトルクの低減によりアイドリング振動を改善でき、ボールの動きが円滑になり摩擦力が減ることにより継手作動中の発熱が低減され、耐久寿命が向上する。
この発明に係る第1の実施形態の固定式等速自在継手の部分縦断面図である。 図1のP-P線で矢視した固定式等速自在継手の横断面図である。 図2のボールとトラック溝を拡大した横断面図である。 ポケットすきま量とトルク損失率の関係についての知見を示すグラフである。 ポケットすきま量と異音の可聴距離の関係についての知見を示すグラフである。 継手が大きな作動角をとった状態を示す縦断面図である。 ボールが保持器を押す力を説明する概要図である。 継手が1回転する間のポケット荷重を示すグラフである。 ポケットすきまとボールの動きを示す概要図である。 ポケット内におけるボールの移動軌跡を示す概要図である。 保持器単体の正面図である。 保持器単体の斜視図である。 図10aのG-G線で矢視した横断面図である。 図11aにおけるI部の拡大図である。 図11bのJ-J線で矢視した部分断面図である。 図10aのK-K線で矢視した縦断面図である。 図12aにおけるL部の拡大図でポケット側面の凹部の形態を示す。 図12aにおけるL部の拡大図でポケット側面の凹部の形態を示す。 図12aにおけるL部の拡大図でポケット側面の凹部の形態を示す。 図12aにおけるL部の拡大図でポケット側面の凹部の形態を示す。 図10aのG-G線で矢視した横断面図でポケット側面の凹部の変形例を示す。 図13aにおけるI部の拡大図である。 図13bのJ-J線で矢視した部分断面図である。 ポケット側面の凹部の他の変形例を示し、図13aにおけるI部の拡大図である。 図14aのJ-J線で矢視した部分断面図である。 第2の実施形態に係る固定式等速自在継手の縦断面図である。 図15のM-M線で矢視した側面図である。 第3の実施形態に係る固定式等速自在継手の縦断面図である。
 以下、この発明の第1の実施形態を図1~12に基づいて説明する。はじめに、本実施形態の固定式等速自在継手の全体構成を図1~3に基づいて説明する。図1は本実施形態の固定式等速自在継手の部分縦断面図で、図2は、図1のP―P線で矢視した横断面図で、図3はボールとトラック溝を拡大した横断面図である。
 本実施形態の固定型等速自在継手1は、ツェッパ型等速自在継手であり、図1および図2に示すように、外側継手部材2、内側継手部材3、トルク伝達ボール4(以下、単にボールという)および保持器5を主な構成とする。外側継手部材2の球状内周面8には8本の曲線状のトラック溝6が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面9には、外側継手部材2のトラック溝6と対向する8本の曲線状のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材2のトラック溝6と内側継手部材3のトラック溝7との間にトルクを伝達する8個のボール4が1個ずつ組み込まれている。外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の間に、ボール4を保持する保持器5が配置されている。保持器5の球状外周面10は外側継手部材2の球状内周面8と、保持器5の球状内周面11は内側継手部材3の球状外周面9とそれぞれ嵌合している。
 外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の曲率中心は、それぞれ継手の中心Oに形成されている。これに対して、外側継手部材2の曲線状のトラック溝6の曲率中心Aと、内側継手部材3の曲線状のトラック溝7の曲率中心Bは、継手の中心Oに対して軸方向反対側に等距離f1オフセットされている。これにより、継手が作動角をとった場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等する平面上にボール4が常に案内され、二軸間で等速に回転が伝達されることになる。
 内側継手部材3の内径孔17には、雌スプライン(スプラインはセレーションを含む。以下同じ。)16が形成され、中間シャフト12の端部に形成された雄スプライン19を雌スプライン16に嵌合し、トルク伝達可能に連結されている。内側継手部材3と中間シャフト12は、止め輪18により軸方向に位置決めされている。
 外側継手部材2の外周と、内側継手部材3に連結されたシャフト12の外周にブーツ13を装着し、ブーツ13の両端はブーツバンド14、15により締付固定されている。ブーツ13で覆われた継手内部には、潤滑剤としてのグリースが封入されている。
 外側継手部材2のマウス部2aの底部にステム部20が一体に形成され、ステム部20には、駆動車輪が取り付けられるハブ輪(図示省略)と嵌合する雄スプライン21と締結用のねじ部22が形成されている。
 図3は、図2のボールとトラック溝を拡大した横断面図である。図3に示すように、ボール4は、外側継手部材2のトラック溝6と2点C12、C13でアンギュラコンタクトし、内側継手部材3のトラック溝7と2点C15、C16でアンギュラコンタクトしている。ボール中心O5と各接触点C12、C13、C15、C16を通る直線と、ボール中心O5と継手中心Oを通る直線がなす角度(接触角α)は30°以上に設定することが好ましい。
 本実施形態の8個ボールタイプの固定式等速自在継手1は、図1および図2を参照して、ボール4のピッチ円直径(PCDBALL)とボール直径(DBALL)との比r1(=PCDBALL/DBALL)は3.3≦r1≦5.0、好ましくは3.5≦r1≦5.0の範囲内に設定されている。ここで、ボール4のピッチ円直径(PCDBALL)は、PCRの2倍の寸法である(PCDBALL=2×PCR)。外側継手部材2のトラック溝6の曲率中心Aとボール4の中心O5を結ぶ線分の長さ、内側継手部材3のトラック溝7の曲率中心Bとボール4の中心O5を結ぶ線分の長さが、それぞれPCRであり、両者は等しい。また、外側継手部材2の外径(DOUTER)と内側継手部材2の内径孔17の雌スプライン16のピッチ円直径(PCDSERR)との比r2(=DOUTER/PCDSERR)は2.5≦r2≦3.5の範囲内の値に設定されている。したがって、従来継手(6個ボールタイプの固定式等速自在継手)と同等以上の強度、負荷容量および耐久性を有し、かつ、外径寸法がコンパクトとなる。
 本実施形態の固定式等速自在継手1の全体構成は以上のとおりであるが、本実施形態の固定式等速自在継手1の特徴は、保持器5のポケット5aとトルク伝達ボール4との間のポケットすきまが、常用角におけるボール移動領域で正すきまであり、かつ、常用角におけるボール移動領域以外の領域では負すきまに設定されていることである。これにより、継手の作動角が大きい領域で異音(ボールの打音)が発生せず、かつ、常用角ではトルク損失が小さい固定式等速自在継手を実現することができる。
 ここで、固定式等速自在継手1の常用角について説明する。常用角とは、自動車のドライブシャフトの場合は、水平で平坦な路面上で2名乗車時の自動車において、ステアリングを直進状態にした時にフロントドライブシャフトの固定式等速自在継手1に生じる作動角をいう。常用角は、通常、2°~15°程度の間で車種ごとの設計条件に応じて決定される。自動車はセダン系乗用車とSUV(スポーツ用多目的車)に大別される。セダン系乗用車は、通常、常用角は3°~6°程度である。SUVは、バンやピックアップトラックを含む車高が高い車で、通常、常用角は6°~12°程度である。
 また、保持器5のポケット5aとボール4と間のポケットすきまを図8に基づいて説明する。図8は、保持器5の縦断面図である。保持器5には、柱部5bにより区画された周方向に8個のポケット5aが設けられている。ポケット5aの軸方向に対向する面がボール4を保持するポケット側面5a1であり、両ポケット側面5a1、5a1間の軸方向寸法をNとする。そして、二点鎖線で示したボール4の直径(DBALL)との初期ポケットすきまは、次式で表される。
 初期ポケットすきま=保持器5の両ポケット側面5a1、5a1間の軸方向寸法N-ボールの直径(DBALL
 初期ポケットすきまは、軸方向寸法Nよりボールの直径(DBALL)が小さい場合、正すきまとなり、逆に、軸方向寸法Nよりボールの直径(DBALL)が大きい場合、負すきまとなる。
 本明細書および請求の範囲において、保持器のポケットとトルク伝達ボールとの間の初期ポケットすきまは、上記の意味で用いる。また、初期ポケットすきまが負すきまであるとは、すきまゼロを含む負すきまを意味する。以下の説明では、初期ポケットすきまは、単にポケットすきまと略称する。なお、図8では、理解しやすいように、ポケットすきま(正すきま)を誇張して図示している。
 まず、本実施形態に至るまでの開発過程の検討結果および知見を図4~9に基づいて説明する。
(1)常用角における伝達効率の検証
 常用角領域における伝達効率を調査するため、8個ボールのツェッパ型等速自在継手としてNTN製EBJ82Mを用いて実験した(以降の実験においても同じ。)。ポケットすきま量を種々の値にしたサンプルを製作し、作動角4°、6°および8°についてトルク損失率を求めた。このサンプルにおける保持器5のポケット側面5a1は、凹凸のないフラットな従来の形態のものとした。実験結果を図4に示す。この結果、ポケットすきま量が-10μm以下になると、トルク損失率が大きくなることが確認できた。
(2)高作動角域における異音の検証
 ポケットすきまが正すきまで、種々の値にしたサンプルを製作し、作動角35°および40°について実験した。実験結果を図5に示す。この結果、ポケットすきま量が+30μm以上になると、継手から離れた位置でも異音が聞こえるようになることが分かった。ポケット部は長時間の使用で摩耗が進行することから、経時劣化を見込んだポケットすきまの初期値は、負すきま、もしくはゼロに設定するのが一般的であった。そのためトルク損失率を低減することは容易ではなかった。
(3)異音の発生メカニズムの解析
 ポケットすきま量と伝達損失率との関係およびポケットすきま量と異音との関係が確認できたので、次に異音の発生メカニズムを調査した。図6aに継手が大きな作動角θを取ったときの状態を示す。図中、破線L1は、外側継手部材2のトラック溝6とボール4の接触点の軌跡であり、破線L2は、内側継手部材3のトラック溝7とボール4の接触点の軌跡である。図6aの上死点の位相角を0°として、図2に示すように、反時計回りに45°、90°、135°180°225°、270°、315°、360°とする。図7は、継手が作動角40°で回転トルクを伝える場合の継手1回転中のポケット荷重の変動を示す解析結果である。図7の横軸は、任意の1個のボール4とポケット5aの継手1回転中の位相角を示し、縦軸は、ポケット荷重P5、P6を回転トルク伝達方向の荷重PNで除して無次元化した値を示す。図6bに示すように、ポケット荷重P5はボール4が外側継手部材2の開口側に保持器5を押す力であり、ポケット荷重P6はボール4が外側継手部材2の奥側に保持器5を押す力である。
 図7の○で囲んだ位相角は、ポケット荷重の向きが反転する箇所を示し、このような位相角でボールの打音が発生すると考えられる。図示のように、位相角が約30°、60°、180°のとき、ポケット荷重が反転することが確認できた。この解析では、ポケットすきま量は10μmとした。
(4)ポケット内におけるボールの移動軌跡の解析
 継手が作動角をとった場合、ボール4は、保持器5のポケット5a内で、保持器5の半径方向と周方向に摺動する。図8に示すように、周方向の摺動(図8の矢印h)は、ポケット5aの周方向の中心からボール4が柱部5bに接近するように摺動することである。この周方向の摺動は、作動角をとると、外側継手部材2と内側継手部材3とが斜交することにより、周方向に隣り合うトラック溝6、7とボール4との接点C12、C13およびC15、C16(図3参照)の周方向の間隔が変化し、これによりトラック溝6、7に拘束されたボール4がポケット5aに対して周方向に移動させられることによって生じる。
 一方、ボール4のポケット5a内での半径方向の摺動(図8の矢印g)は、トラックオフセット量f1(図1参照)により生じる。その理由は、図6aに示すように、作動角θをとると、上死点のボール4は外側継手部材2の開口側に移動し、下死点のボール4は外側継手部材2の奥側に移動する。トラックオフセット量f1が設けられているので、外側継手部材2と内側継手部材3のトラック溝6、7は、それぞれ、溝深さが開口側で深く、奥側に行く程浅く形成されている。そのため、外側継手部材2の開口側に移動したボール4は、半径方向の外側に移動し、外側継手部材2の奥側に移動したボール4は、半径方向の内側に移動する。このように、ボール4と当接するトラック溝6、7の軸方向の位置によりボール4が半径方向に移動する。
 上記のように、ボール4は保持器5のポケット5a内で保持器5の半径方向と周方向に摺動するが、この運動を集約したポケット5a内でのボール4の移動軌跡を機構解析した。図9は機構解析の結果を示す。継手1回転中にボール4(図示省略)は、ポケット側面5a1上を8の字を描くように動き、作動角が大きくなる程大きく動く。図9では、主にトルク損失を低減したい常用角(作動角6°)と、異音(ボールの打音)発生の可能性がある高作動角(作動角40°)の移動軌跡を示す。
 保持器5のポケット5aの周方向の長さは、継手組立時にボールの組込に必要な組込角度(65°程度)に基づいて設定されている。この組込角度は、継手運転状態の最大作動角(47°程度)よりも大きい。ポケット5aがこのような周方向の長さを有するので、NTN製EBJ82Mの場合に、常用角(作動角6°)で、ボール4は、ポケット側面5a1の中央部から左右に1mm程度の移動幅eを有し、高作動角(作動角40°)で、0.3mm程度の移動幅fとなる。
(5)新たな着想
 前述した図7と図9を対比して熟考する中で、高作動角時に異音が発生すると考えられる位相角30°、60°および180°付近のボール4の位置は、ポケット側面5a1の中央部から外れた内径側および外径側に寄っていること、およびトルク損失を最も低減したい使用頻度の高い常用角(作動角6°)のボール4の位置は、前述した移動幅eが±1mm程度を加味してもポケット側面5a1の中央部付近に留まることに着目した。この着目により、保持器5の同一のポケット側面5a1の中で常用角、高作動角におけるボール移動領域毎に好ましいポケットすきまを設定するという新たな着想を経て本実施形態に至った。
 本実施形態の固定式等速自在継手1の特徴である保持器5のポケット5a(ポケット側面5a1)とボール4との間のポケットすきまが、常用角におけるボール移動領域で正すきまであり、かつ、常用角におけるボール移動領域以外の領域では負すきまに設定されている具体的な構成を図10~12に基づいて説明する。
 図10aは保持器単体の正面図であり、図10bは保持器単体の斜視図である。保持器5は、前述したように球状外周面10と球状内周面11を有し、柱部5bにより区画された周方向に8個のポケット5aが設けられている。ポケット5aの軸方向に対向するポケット側面5a1がボール4を保持する面である。本実施形態は、ポケット側面5a1の形状に特徴を有する。
 ポケット側面5a1の具体的な形状を図11a~図11cに基づいて説明する。図11aは、図10aのG-G線で矢視した横断面図で、図11bは、図11aにおけるI部の拡大図で、図11cは、図11b図のJ-J線で矢視した部分断面図である。図示のように、ポケット側面5a1の中央部に周方向に帯状の凹部30が形成されている。図11cに示す凹部30の深さaは5~30μm程度である。ただし、図11cでは、理解しやすいように凹部30の深さaを誇張して図示している。凹部30の深さaは5~30μm程度と極めて浅いものであるので、凹部30の底部にボール4が当接可能な寸法関係になっている。後述する凹部の各形態および変形例においても同様に底部にボール4が当接可能な寸法関係になっている。
 図11bに示す凹部30の長さbは、常用角における移動幅eを考慮して2~3mm程度で、幅cは1~2mm程度であり、継手が常用角で作動するときのボール4の移動軌跡を包含する。これにより、常用角におけるボール移動領域で初期ポケットすきまを正すきまに確実に設定することができる。また、ポケット側面5a1の中央部に周方向に帯状の凹部30を形成したので、加工効率よく初期ポケットすきまを設定することができる。
 本実施形態では、凹部30は保持器5の軸方向に対向するポケット側面5a1の片側に設けられている。凹部30が設けられているので、常用角におけるボール移動領域では、両ポケット側面5a1、5a1の面間距離に凹部30の深さaを加算した寸法が、図8に示す軸方向寸法Nとなり、ポケットすきまは正すきまとなる。ポケット側面5a1の凹部30以外の面は、従来と同等のポケットすきま、すなわち、負すきまが得られるように対向する両ポケット側面5a1、5a1の面間距離を保っている。
 本実施形態では、凹部30をポケット側面5a1の片側に設けたものを例示したが、これに限られず、凹部30は両側のポケット側面5a1に設けてもよい。凹部30を形成する手段は、切削や研削などの機械加工を用いてもよいし、冷間塑性加工や放電加工などを用いてもよい。凹部30の寸法として、長さbが2~3mm程度、幅cが1~2mm程度を例示したが、この寸法はジョイントのサイズにより適宜増減される。
 ポケット側面5a1を上記の構成にしたので、使用頻度の高い常用角におけるボール移動領域でポケットすきまは正すきまとなり、高作動角におけるボール移動領域では負すきまとなる。このように、同一のポケット側面5a1の中で常用角、高作動角におけるボール移動領域毎に好ましいポケットすきまを設定できる。その結果、常用角におけるボール移動領域ではトルク損失率を確実に低減でき、かつ、高作動角におけるボール移動領域では異音の発生がない固定式等速自在継手1の実現が可能となる。さらに具体的な効果として、折り曲げトルクの低減によりアイドリング振動を改善でき、ボールの動きが円滑になり摩擦力が減ることにより継手作動中の発熱が低減され、耐久寿命が向上する。
 図12a~図12eにポケット側面の凹部の種々の形態を示す。図12aは、図10aのK-K線で矢視した保持器の縦断面図であり、図12b~図12eは、図12aにおけるL部の拡大図である。図12bに示す凹部30は、前述した図11bおよび図11cの凹部30の横断面形状を曲率半径r1の円弧状にしたものであり、図12cに示す凹部30は、横断面形状を傾斜角β1のテーパ状にしたものである。これにより、常用角におけるボール移動領域とこの領域以外の領域を滑らかに接続することができる。
 図12dに示すポケット側面5a1は、保持器5の横断面において凹面30で形成され、ポケット側面5a1の半径方向の全幅が曲率半径r2の円弧状に形成されている。図12eに示すポケット側面5a1は、保持器5の横断面において凹面30で形成され、ポケット側面5a1の半径方向の全幅が傾斜角β2のテーパ面で形成されている。これにより、ポケット側面5a1全体を、切削や研削などの機械加工あるいは冷間塑性加工や放電加工などで一度に加工することができる。また、常用角におけるボール移動領域とこの領域以外の領域のポケットすきま量の変化を滑らかにすることができる。凹面30、30の周方向の長さは、2~3mm程度あるいはそれ以上の適宜の寸法としている。凹面30、30においても、その深さは5~30μm程度であり、使用頻度の高い常用角におけるボール移動領域のポケットすきまは正すきまとなり、高作動角におけるボール移動領域では負すきまとなる。その結果、常用角におけるボール移動領域はトルク損失率を確実に低減でき、かつ、高作動角におけるボール移動領域で異音の発生がない固定式等速自在継手1の実現が可能となる。
 前述したように、凹部30、30、凹面30、30の深さは5~30μm程度と極めて浅いものであるので、曲率半径r1、r2は相応に大きなものであり、傾斜角β1、β2は相応に小さなものである。後述する変形例の曲率半径r3、傾斜角β3も同様である。
 図13a~図13cに、ポケット側面の凹部の第1の変形例を示す。図13aは、図10aのG-G線で矢視した横断面図で、図13bは、図13aにおけるI部の拡大図で、図13cは、図13bのJ-J線で矢視した部分断面図である。図示のように、本変形例の凹部30は、ポケット側面5a1の中央部に径方向の幅の狭い帯状(幅1mm程度)に形成され、保持器5の球状内周面11から前記球状外周面10まで延びている.図13cに示すように、凹部30の横断面形状は曲率半径r3の円弧状にされている。
 前述した第1の実施形態では、常用角(作動角6°)におけるボール4の移動幅e(±1mm程度)を考慮して、凹部30の長さbを2~3mm程度に設定した。しかし、常用角におけるボール4のポケット側面5a1上の位置を観察すると、ボール4はポケット側面5a1上の座りの良い場所に留まることが確認できた。この知見を基に、凹部の更なる形態を思考した結果、凹部30をポケット側面5a1の中央部に半径方向の全幅にわたって幅の狭い帯状(幅1mm程度)に形成した本変形例を想起した。この場合も、常用角で使用する部分のポケットすきまは正すきまとなり、高作動角で使用する部分は基本的に負すきまとなる。高作動角時に帯状の凹部30をボール4が移動するが、幅の狭い帯状のため異音には至らないことが確認できた。本変形例でも、常用角におけるボール移動領域はトルク損失率を確実に低減でき、かつ、高作動角でも異音の発生がない固定式等速自在継手1の実現が可能となる。また、本変形例の凹部30であれば、ポケット側面5a1のシェービング加工時に同時成形でき、生産性がよく製造コストを抑制できる。
 その他の構成については、第1の実施形態と同様であるので、同様の機能を有する部位には同一の符号(下付文字を除く)を付して、第1の実施形態における説明内容を準用し、説明を省略する。
 図14a~図14bに、ポケット側面の凹部の第2の変形例を示す。図14aは、図11aにおけるI部の拡大図で、図14bは、図14aのJ-J線で矢視した部分断面図である。図示のように、本変形例の凹部30は、第1の変形例と同様、ポケット側面5a1の中央部に径方向の幅の狭い帯状(幅1mm程度)に形成され、保持器5の球状内周面11から球状外周面10まで延びている。図14bに示すように、凹部30の横断面形状は傾斜角β3のテーパ面で形成されている。この点が、第1の変形例と異なるが、他の構成や作用については、第1の変形例と同様であるので、同様の機能を有する部位には同一の符号(下付文字を除く)を付して、第1の変形例で説明した内容を準用し、説明を省略する。
 次に、第2の実施形態に係る固定式等速自在継手を図15および図16に基づいて説明する。図15は、固定式等速自在継手の部分縦断面図で、図16は、図15のM-M線で矢視した側面図である。本実施形態の固定式等速自在継手1は、6個のボールを使用したツェッパ型等速自在継手である。6個のボールを使用した点が第1の実施形態と異なるが、その他の構成は、第1の実施形態と同様であるので、同様の機能を有する部位には同一の符号(下付文字を除く)を付して、第1の実施形態で説明した内容を準用し、要点のみを説明する。
 本実施形態の固定型等速自在継手1は、外側継手部材2、内側継手部材3、ボール4および保持器5を主な構成とする。外側継手部材2の球状内周面8には6本の曲線状のトラック溝6が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面9には、外側継手部材2のトラック溝6と対向する6本の曲線状のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材2のトラック溝6と内側継手部材3のトラック溝7との間にトルクを伝達する6個のボール4が1個ずつ組み込まれている。外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の間に、ボール4を保持する保持器5が配置されている。保持器5の球状外周面10は外側継手部材2の球状内周面8と、保持器5の球状内周面11は内側継手部材3の球状外周面9とそれぞれ嵌合している。
 外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の曲率中心は、それぞれ継手の中心Oに形成されている。これに対して、外側継手部材2の曲線状のトラック溝6の曲率中心Aと、内側継手部材3の曲線状のトラック溝7の曲率中心Bは、継手の中心Oに対して軸方向反対側に等距離f2オフセットされている。これにより、継手が作動角をとった場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等する平面上にボール4が常に案内され、二軸間で等速に回転が伝達されることになる。
 保持器5には周方向に6個のポケット5aが設けられている。ポケット5aの軸方向に対向するポケット側面5a1がボール4を保持する面である。図示は省略するが、本実施形態おいても、ポケット側面5a1に第1の実施形態およびその変形例と同様の凹部や凹面が形成されている。このため、使用頻度の高い常用角におけるボール移動領域のポケットすきまは正すきまとなり、高作動角におけるボール移動領域は負すきまとなる。その結果、常用角常用角におけるボール移動領域はトルク損失率を確実に低減でき、かつ、高作動角でも異音の発生がない固定式等速自在継手1の実現が可能となる。
 本発明の第3の実施形態に係る固定式等速自在継手を図17に基づいて説明する。図17は固定式等速自在継手の部分縦断面図である。本実施形態の固定式等速自在継手1は、6個のボールを使用したアンダーカットフリー型等速自在継手である。6個のボールを使用しトラック溝にアンダーカットがない点が第1の実施形態と異なるが、その他の構成は、第1の実施形態と同様であるので、同様の機能を有する部位には同一の符号(下付文字を除く)を付して、第1の実施形態で説明した内容を準用し、要点のみを説明する。
 本実施形態の固定型等速自在継手1は、外側継手部材2、内側継手部材3、ボール4および保持器5を主な構成とする。外側継手部材2の球状内周面8には6本の曲線状のトラック溝6が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面9には、外側継手部材2のトラック溝6と対向する6本の曲線状のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材2の曲線状のトラック溝6は、外側継手部材2の開口側に直線状のトラック溝部62Sを備えている。一方、内側継手部材3の曲線状のトラック溝7は、外側継手部材2の奥側に直線状のトラック溝部72Sを備えている。外側継手部材2のトラック溝6と内側継手部材3のトラック溝7との間にトルクを伝達する6個のボール4が1個ずつ組み込まれている。外側継手部材2の球状内周面8と内側継手部材3の球状外周面9の間に、ボール4を保持する保持器5が配置されている。保持器5の球状外周面10は外側継手部材2の球状内周面8と、保持器5の球状内周面11は内側継手部材3の球状外周面9とそれぞれ嵌合している。
 保持器5の球状外周面10および外側継手部材2の球状内周面8の曲率中心Cと、保持器5の球状内周面11および内側継手部材3の球状外周面9の曲率中心Dは、継手の中心Oに対して軸方向反対側に等距離f4オフセットされている。また、外側継手部材2の曲線状のトラック溝6の曲率中心Aと、内側継手部材3の曲線状のトラック溝7の曲率中心Bは、継手の中心Oに対して軸方向反対側に等距離f3オフセットされている。本実施形態の固定式等速自在継手1においても、継手が作動角をとった場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等する平面上にボール4が常に案内され、二軸間で等速に回転が伝達されることになる。
 本実施形態の固定式等速自在継手1は、曲線状のトラック溝6、7が、その一部に直線状のトラック溝部62S、72Sをそれぞれ備えているので、アンダーカットがないトラック溝となる。この固定式等速自在継手1は、外側継手部材2の開口側に直線状のトラック溝部62Sの存在により、より大きな作動角に対応することができる。
 保持器5には周方向に6個のポケット5aが設けられている。ポケット5aの軸方向に対向するポケット側面5a1がボール4を保持する面である。図示は省略するが、本実施形態おいても、ポケット側面5a1に第1の実施形態およびその変形例と同様の凹部や凹面が形成されている。このため、使用頻度の高い常用角におけるボール移動領域のポケットすきまは正すきまとなり、高作動角におけるボール移動領域は負すきまとなる。その結果、常用角におけるボール移動領域はトルク損失率を確実に低減でき、かつ、高作動角でも異音の発生がない固定式等速自在継手1の実現が可能となる。
 自動車の実際の走行状態として、急カーブの道路や交差点等では、固定式等速自在継手に生じる作動角は上記常用角より大きくなるが、以上説明した実施形態および変形例の固定式等速自在継手1、1、1では、急カーブの道路や交差点等の大きな作動角での使用頻度は少ないので、常用角の範囲で継手効率の向上(トルク損失率の低減)を図ることにより、総合的にみて継手効率を向上させることができる。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1     固定式等速自在継手
2     外側継手部材
3     内側継手部材
4     トルク伝達ボール
5     保持器
5a    ポケット
5a1   ポケット側面
6     トラック溝
7     トラック溝
8     球状内周面
9     球状外周面
10    球状外周面
11    球状内周面
12    中間シャフト
13    ブーツ
30    凹部
A     曲率中心
B     曲率中心
     曲率中心
     曲率中心
BALL   ボールの直径
N     軸方向寸法
O     継手中心
f1    オフセット量
f2    オフセット量
f3    オフセット量

Claims (9)

  1.  球状内周面に軸方向に延びる複数の曲線状のトラック溝が形成された外側継手部材と、球状外周面に軸方向に延びる複数の曲線状のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝とこれに対応する前記内側継手部材のトラック溝との間に配された複数個のトルク伝達ボールと、このトルク伝達ボールをポケットに保持すると共に前記外側継手部材の球状内周面と前記内側継手部材の球状外周面にそれぞれ嵌合する球状外周面と球状内周面を有する保持器を備え、前記外側継手部材の曲線状のトラック溝の曲率中心と前記内側継手部材の曲線状のトラック溝の曲率中心が継手中心に対して軸方向反対側に等距離オフセットされた固定式等速自在継手において、
     前記保持器のポケットと前記トルク伝達ボールとの間の初期ポケットすきまが、常用角におけるボール移動領域で正すきまであり、かつ、前記常用角におけるボール移動領域以外の領域では負すきまであることを特徴とする固定式等速自在継手。
  2.  前記ポケットの軸方向に対向する一対のポケット側面のうち、少なくとも一方のポケット側面の中央部に凹部が形成されていることを特徴とする請求項1に記載の固定式等速自在継手。
  3.  前記凹部が前記保持器の周方向に帯状であることを特徴とする請求項2に記載の固定式等速自在継手。
  4.  前記凹部が前記保持器の径方向に帯状であり、前記保持器の前記球状内周面から前記球状外周面まで延びていることを特徴とする請求項2に記載の固定式等速自在継手。
  5.   前記凹部の横断面形状が円弧状であることを特徴とする請求項2~4のいずれか一項に記載の固定式等速自在継手。
  6.  前記凹部の横断面形状がテーパ面からなることを特徴とする請求項2~4のいずれか一項に記載の固定式等速自在継手。
  7.  前記ポケット側面が前記保持器の横断面において凹面で形成されていることを特徴とする請求項2に記載の固定式等速自在継手。
  8.  前記凹面の横断面形状が円弧状であることを特徴とする請求項7に記載の固定式等速自在継手。
  9.  前記凹面の横断面形状がテーパ面からなることを特徴とする請求項7に記載の固定式等速自在継手。
PCT/JP2016/068773 2015-07-22 2016-06-24 固定式等速自在継手 WO2017013993A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-144788 2015-07-22
JP2015144788A JP6591223B2 (ja) 2015-07-22 2015-07-22 固定式等速自在継手

Publications (1)

Publication Number Publication Date
WO2017013993A1 true WO2017013993A1 (ja) 2017-01-26

Family

ID=57833889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068773 WO2017013993A1 (ja) 2015-07-22 2016-06-24 固定式等速自在継手

Country Status (2)

Country Link
JP (1) JP6591223B2 (ja)
WO (1) WO2017013993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139724A (zh) * 2017-06-16 2019-01-04 大众汽车有限公司 用于vl万向节和cg万向节的球保持架

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542759U (ja) * 1991-11-08 1993-06-11 日本精工株式会社 等速ジヨイント
JP2001153148A (ja) * 1999-11-30 2001-06-08 Ntn Corp 固定式等速自在継手のケージおよびその製造方法並びに固定式等速自在継手
JP2002013544A (ja) * 2000-06-27 2002-01-18 Ntn Corp 等速自在継手

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542759U (ja) * 1991-11-08 1993-06-11 日本精工株式会社 等速ジヨイント
JP2001153148A (ja) * 1999-11-30 2001-06-08 Ntn Corp 固定式等速自在継手のケージおよびその製造方法並びに固定式等速自在継手
JP2002013544A (ja) * 2000-06-27 2002-01-18 Ntn Corp 等速自在継手

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139724A (zh) * 2017-06-16 2019-01-04 大众汽车有限公司 用于vl万向节和cg万向节的球保持架

Also Published As

Publication number Publication date
JP6591223B2 (ja) 2019-10-16
JP2017026025A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
US10260569B2 (en) Fixed-type constant velocity universal joint
EP1705395B1 (en) Fixed-type constant-velocity universal joint
US20140243104A1 (en) Fixed type constant-velocity universal joint
JP2010043667A (ja) 固定式等速自在継手
EP2908020B1 (en) Fixed-type constant-velocity universal joint
US9410581B2 (en) Fixed type constant velocity universal joint
JP5214336B2 (ja) 固定式等速自在継手
US20160356317A1 (en) Constant-velocity joint
US9556915B2 (en) Fixed type constant-velocity universal joint
US9551382B2 (en) Fixed type constant velocity universal joint
JP6591223B2 (ja) 固定式等速自在継手
JP2012193860A (ja) 固定式等速自在継手
JP2005180641A (ja) 等速自在継手および等速自在継手の外輪の製造方法
KR20100079651A (ko) 고정형 등속 조인트
JP2006258207A (ja) 固定式等速自在継手
JP2009079684A (ja) 固定式等速自在継手
EP2643608B1 (en) Counter track joint with axial displacement range
EP2133582B1 (en) Constant velocity universal joint
WO2023026831A1 (ja) 摺動式等速自在継手
WO2023248683A1 (ja) 等速自在継手及びその製造方法
JP2008089112A (ja) 等速自在継手
JP2011231792A (ja) 摺動式等速自在継手およびその外側継手部材のしごき加工方法
JP7071854B2 (ja) 等速自在継手
JP7224107B2 (ja) 後輪用ドライブシャフト専用の摺動式等速自在継手
KR101955190B1 (ko) 플런징타입 등속조인트용 샤프트유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827557

Country of ref document: EP

Kind code of ref document: A1